
2

Ptolemy’s Mathematical Models and their
Meaning

Alexander Jones

Department of Classics, University of Toronto

In the middle decades of the second century of our era, a Greek-speaking
Egyptian living in the town of Canopus close to Alexandria carried out a
massive scientific program centring on the writing of about a dozen books
on astronomy, astrology, optics, harmonics, and cartography.1 Unlike his near
contemporary Galen, Ptolemy evidently did not lead the sort of career, and
certainly did not have the self-trumpeting personality, that would procure no-
toriety among one’s contemporaries, and so we know scarcely anything about
his life. But his works were well enough appreciated, in spite of their severe
style and uncompromising technicality, so that the great part of them were
preserved, almost the sole remnants of their kind of scientific writing from an-
tiquity. Though ranging widely in subject matter, these books revolve around
two great themes: mathematical modelling of phenomena, and methods of vi-
sual representation of physical reality. In the following, I wish to consider what
Ptolemy thought the relationship was between his models and the physical
nature that he was describing.

To begin, let us look briefly at what his predecessors made of this ques-
tion. The explanations of phenomena offered by Greek physical science varied
greatly, but they were often framed in terms of two broad principles: first,
that change in matter can be reduced to the operations of a small number
of fundamental qualities, typically hot, cold, wet, and dry; and secondly, that
the phenomena can be modelled by mathematical objects. These principles
tended to be regarded as mutually exclusive, so that certain phenomena were
referred to qualitative and others to quantitative explanation.

What decided which kind of rationale was appropriate in any particular
situation? The historical reality was surely that people stuck to whichever

1For the biographical data on Ptolemy see Toomer 1987. (Given the informal
nature of the present paper, I have thought it appropriate to furnish the text with
references only to translations of the pertinent works and to a few particularly helpful
works of modern scholarship. The translations of passages quoted in this paper are
my own.)
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kind seemed to work best for the subject matter. Certain areas of experience
lent themselves more obviously to mathematical modelling than others; in
particular, the motions of the heavenly bodies, the esthetics of musical inter-
vals, and the visual perception of shape, distance, and motion were sensed to
have a quantitative regularity not shared by physical change in materials such
as heating, melting, or burning, which on the contrary seemed to have a fairly
direct connection with transference of the qualities hot, cold, wet, and dry.

Aristotle’s cosmology, with its inner globe of more or less stratified earth,
water, air, and fire enclosed in an outer spherical shell of ether, was in part
motivated by this polarity, and in return gave it an a priori rationalization.
The matter of the heavens–the part of the cosmos where the stars, planets, sun,
and moon dwell–is of a different kind from the four mundane elements, subject
to a different natural motion (circular revolution as opposed to motion towards
the cosmic centre), and not subject to any other kind of change. Aristotle’s
ether has the power to force change in other things, but considered by itself,
its only property is eternally regular circular motion. Hence an Aristotelian
astronomy has everything to do with mathematics, and nothing to do with
elementary qualities. Earth, air, fire, and water, on the other hand, can be
forced by an external agent to move in any direction or to change properties,
and, moreover, these processes vary unpredictably in degree and duration.
This is why, even if the continual changes among the four elements–including
life itself–can be traced back through a chain of cause and effect to the physical
action of the heavenly bodies (most importantly the sun’s annual revolution
alternating between north and south), terrestrial phenomena are not as regular
and periodic as the celestial revolutions:

We see that when the sun comes closer, coming-into-being takes place,
and when it recedes, ceasing-to-be takes place, and each happens in
equal time. . . . But it often happens that things cease to be in a shorter
time because of the mixture of things with one another; for since their
matter is not uniform and not the same everywhere, necessarily their
comings into being too are not uniform, and some are faster and some
slower. . . . (Aristotle, De Gen. et Corr. 336b16)

Aristotle’s cosmology thus explains why we can have a mathematical as-
tronomy. It does not, however, account for the possibility of mathematical sci-
ences dealing with special aspects of the world of the four elements, although
Aristotle recognized that possibility, since he classified optics and harmon-
ics, along with astronomy, as sciences embedding mathematics, or indeed as
branches of mathematics (Physics 194a6). Here and there in the Aristotelian
corpus we encounter obiter dicta confirming that Aristotle recognized that
mundane phenomena could be subject to mathematical constraints, for ex-
ample in the following passage where he speculates on a possible analogy
between harmonic theory and colour theory:
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We have to discuss the other colours [besides white and black], dis-
tinguishing the number of ways that they can arise. Now white and
black can be placed side by side in such a way that each one cannot
be seen because of its tiny size, but the product of the two becomes
visible in this way. This cannot appear either as white or as black.
But since it must have some colour, and it cannot be either of these,
it must be a mixture and some different form of colour. In this way
one can suppose that there are more colours besides white and black,
and that they are numerous in accordance with ratio. For they can lie
next to each other in the ratio three to two, and three to four, and
in ratios of other numbers; and others can be wholly in no ratio, but
incommensurable by some excess and defect. And it is possible that
these things subsist in the same manner as (musical) concords; for the
colours that are in numbers that form good ratios, just like concords
in the other context, would seem to be the most pleasant of colours,
for example sea-purple, red, and a few others like these, for the same
reason that there are just a few concords, while those that are not in
such numbers are the other colours. (De Sensu 439b19)

But an analogy is not an explanation, and we are left in the dark as to why
simple ratios of whole numbers should have a special status in a world of
geometrically continuous matter and change. Similarly one is left wondering
why vision follows straight lines if it is in fact a process of continuous change
in nonuniform matter.

For a working scientist of the Hellenistic or Roman periods in search of a
broad rationalizing framework in which to set his own theorizing, Aristotle’s
cosmology and conception of matter were not the only ones on offer. In the
first place, Epicurus revivified atomism into an elaborate, strictly materialistic
physics in which all matter and change are reduced to the chance motions of
eternal atoms, endowed with a minimum of properties (shape and size), in an
infinite void. Epicurus has sometimes been portrayed as a prophet of science;
in reality he was no friend to the sciences of his time. He endeavoured to show
how the phenomena for which the astronomers sought unique explanations
could result from numerous different physical situations, any of which might
be temporarily valid at some time and place within his boundless universe;
his theory that vision occurs by means of films of atoms that continually peel
off bodies and fly off in all directions would not have stood up long to the
scrutiny of a practitioner of geometrical optics; and in general he contemned
any inquiry into nature that was not subordinated to his ethical goals, freeing
humanity from avoidable pain and fear.

The physics of the Stoics was closer to Aristotle’s. We find again an in-
sistence that matter is geometrically continuous and reducible to variable
mixtures of a restricted number of fundamental stuffs, which at one level of
analysis prove to be the familiar earth, air, fire, and water. The Stoic cos-
mos is finite and spherical, but there is no outer shell of special unchanging
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matter for the heavenly bodies, and the cosmos in its present differentiated
state has a finite span of life. On the other hand, although Stoic physics is
strictly materialist, its cosmos is orderly and rational. The organization of the
cosmos and its parts is effected by pneuma, a vital mixture of fire and air that
extends in varying degrees throughout the cosmos and that has the power to
“tense” the bodies with which it is intermixed. In place of a reductionist expla-
nation of the mathematical behaviour of phenomena, we encounter a deistic
appeal to the will of the cosmic mind. (It should, however, be kept in mind
that our sources for Stoic physics are less satisfactory and more controversial
than those for Epicurean physics, and in any case Stoicism was considerably
more open to innovation than Epicureanism with its ipse dixit deference to
its founder’s pronouncements.)

Alongside these more or less coherent systems there existed a looser tra-
dition of physical speculation, which we call “Peripatetic” because its most
prominent known advocates, in particular Theophrastus and Strato, were close
associates and followers of Aristotle. This was an eclectic approach, grounded
in observation and analogy, and again materialistic. Properties of matter and
processes of change are explained in fairly mechanical terms, for example by
supposing that materials can be composed of particles that can be packed
loosely or tightly, but the particles lack the permanence of true atoms and
are less denuded of innate characteristics. Aristotle’s fifth element seems to
have won no following; the heavens were instead supposed to be composed
mostly or entirely of fire. This fire might be endowed with special proper-
ties, perhaps, but the divide between the celestial and mundane spheres was
inevitably blurred.2

Such were the main lines of physical thought evolving during the century
following Aristotle’s death. It was also at this time that the earliest surviving
works that treat physical problems using mathematical models were written.
These include works on astronomy by Autolycus, Euclid, and Aristarchus,
works on statics by Archimedes, and works on optics and harmonics by (or
at least ascribed to) Euclid. What is striking about these works is not only
the attempt to deduce phenomena through explicit axiom and theorem struc-
tures, but also the fact that these works seem deliberately to evade physical
interpretation of the axioms.

One would dearly like to know what developments the subsequent three
and a half centuries brought. The state of evidence is far from encouraging.
Thus, of the numerous books written by undoubtedly the most important
mathematical scientist of this period, Hipparchus, we possess only one, and
with scarce gratitude and less justice we tend to dismiss that work as atypical
and uninteresting. Among the philosophers, Posidonius stands out as a writer
who undoubtedly exerted a considerable influence on physical thought. One
recognizes in some of the reports of his lost writings the tincture of Peripatetic

2The rejection of Aristotle’s fifth element is ably discussed by Falcon 2001, 121-
183.
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physics in his Stoicism for which he was later criticized; it is harder to discern
a serious engagement with the mathematical sciences.

For that, we must turn to Theon of Smyrna, a Platonist philosopher of
far lesser distinction than Posidonius, but one with the accidental merit that
a large part of one of his books, The Mathematics Useful for Reading Plato,
has come down to us.3 Theon’s mathematics embraces harmonics and astron-
omy, and the long astronomical section is of particular interest here. Theon
exposes, with geometrical demonstrations, the epicyclic and eccentric models
as assemblages of circular paths in the plane; but he insists that these circles
are not mere abstract conceptions but stand for spheres of ether such that,
for example, an epicycle is a rotating sphere nested in the gap between two
concentric spherical shells which revolve together, bearing the epicycle with
them. Theon was a mere generation older than Ptolemy, but this is enough to
establish that the revival of Aristotle’s etherial spheres and their adaptation
to non-homocentric models was not due to Ptolemy, though it may have been
fairly new science in his time.

It makes sense in several ways to begin considering Ptolemy’s attitude to
mathematical models in the context of his astronomy. This was the science
closest to his heart, the only one on which he is known to have written a
multiplicity of books. His central treatise on astronomical modelling, known
to us as the Almagest, preceded most of the others, yet it followed upon a
quarter-century of personal observation and analysis.4 It is also a monumental
piece of reasoning, much more complex and at the same time more structurally
unified than his other large works.

The models with which the Almagest is concerned are kinematic geometri-
cal constructions built up from circular motions representing the paths trav-
elled by the heavenly bodies (the sun, moon, planets, and fixed stars). Most
of the bulk of the Almagest, and most of its mathematics (in the usual sense
of the word), is devoted to determining the radii, rotational velocities, and
orientations of the components of each model. These parts, taken in isolation,
leave open the question whether the circles in the diagrams stand for some
sort of physical bodies in motion, or whether they are just abstract analytical
components of a complex motion which the heavenly bodies perform due to
undetermined physical causes.5 We can at least dismiss a third option, that
they are mere computational devices with no necessary relation to what the
heavenly bodies really do, but by which one can reproduce the phenomena
seen by a terrestrial observer; Ptolemy’s treatment of parallax and eclipses
depends on the assumption that his lunar and solar models correctly describe
the distances of the sun and moon from the earth as well as their directions
from the observer.

3The most reliable translation is Dupuis 1892.
4Toomer 1984.
5On the question of Ptolemy’s realism in the Almagest and Planetary Hypotheses

see Lloyd 1978.
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However, the broader deductive structure of the Almagest decisively com-
mits Ptolemy to believing that his circles stand somehow for material bodies,
even if it is not made explicit precisely how they do so. This may be seen by
examining how Ptolemy arrives at each model before turning to the deduction
of its numerical parameters. I take as an illustration Ptolemy’s model for the
moon, since Ptolemy’s presentation of this model in Books 4 and 5 of the Al-
magest is particularly explicit about the stages by which the model is worked
out.

Ptolemy starts out in Almagest 4.5 with a working hypothesis, which he
warns us will later be disproved, that the moon has a “single and invariant”
anomaly, that is, that its apparent progress along the ecliptic has a periodic
variation that always repeats exactly. He asserts that two models identically
produce this phenomenon. In one model (Fig. 1), the centre of an epicycle E
travels eastward along a circular deferent concentric with the earth T with
uniform angular velocity (relative to an arbitrary stationary radius from the
earth’s centre), while the moon M travels along the epicycle uniformly in
the opposite direction (relative to the radius from the earth’s centre to the
epicycle’s centre). The angular velocity of the moon on its epicycle is slightly
less than that of the epicycle’s centre on the deferent. In the other model (Fig.
2), the centre of an eccentric circular orbit C revolves with a slow uniform
westward motion along a circle concentric with the earth T , while the moon M
travels along the orbit with a uniform eastward motion (relative to the radius
from the earth’s centre to the eccentre’s centre). The two models, as Ptolemy
proves, are kinematically interchangeable; that is, any set of positions in space
of the moon for specific dates generated by the one model can be generated
identically by the other. Moreover, Ptolemy knows already that they are both
incorrect, because the lunar anomaly is not simply periodic. Nevertheless,
Ptolemy selects the epicyclic model as the basis for a preliminary lunar theory
in which the numerical parameters are determined by analysis of observations
of lunar eclipses. It is noteworthy that Ptolemy makes a point of showing that
the same parameters result from several different sets of observation reports,
thus establishing that the preliminary model is computationally valid for all
eclipses (and by extension, all oppositions).

The motivation for Ptolemy’s selection of the epicyclic model only becomes
fully evident when he shows in Almagest 5.2 how it is defective. He finds that
the “equation,” or difference, between the moon’s observed position and its
mean position (that is, the direction to the epicycle’s centre according to the
model) is in general greater than the model predicts, with the discrepancy
vanishing when the moon is at 0◦ or 180◦ elongation from the sun and max-
imum when it is at ±90◦ elongation. In an epicyclic model the equation is
explained by the planet’s motion on the epicycle, so that the new phenom-
enon (essentially equivalent to “evection” in later lunar theory) would amount
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Fig. 2.1. Ptolemy’s simple epicyclic model for the moon.
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Fig. 2.2. Eccentre model equivalent to the model of Fig. 1.
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to an apparent enlargement of the epicycle.6 Ptolemy accounts for this easily
(Fig. 3) by replacing the concentric deferent in the preliminary model with an
eccentric deferent, the centre C of which revolves around the earth T at a rate
such that the epicycle’s centre E (which is still revolving uniformly as seen
from T ) is furthest from the earth whenever the mean moon and the mean
sun are aligned or diametrically opposite. Now it is true that if Ptolemy had
employed an eccentric orbit to effect the anomaly in Book 4, he could have
corrected the model in Book 5 by adding an epicycle (or even a second, inde-
pendent eccentricity), but the relation of the components to the phenomena
would have been much less intuitive. And in any case Ptolemy fine-tunes the
model, for closer agreement with observations, by stipulating that the moon’s
motion on its epicycle is uniform as measured relative to a revolving radius,
not drawn from the centre of the deferent C or from T , but from a distinct
point D such that T is always the midpoint of C and D. This could not, I
believe, be translated in any straightforward way into a model in which the
primary anomaly is produced by an eccentre.

ME

T CD

Fig. 2.3. Ptolemy’s eccentre-and-epicycle model for the moon.

Thus all the stages from the selection of a basic model type to the final
model are motivated in Ptolemy’s exposition by the requirements of agreement
with observations, simplicity, and a clear one-to-one correspondence of the

6For the relationship between Ptolemy’s so-called second anomaly of the moon
and the component called “evection” in modern lunar theory, see Neugebauer 1975
v. 3, 1108–1109.
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elements of the model to the basic facts about the moon’s motion. A similar
account could be given for Ptolemy’s deduction of the models for the sun
and the five planets. Ptolemy makes no appeal in these parts of the Almagest
to physical constraints arising from the corporeal nature of the model. But
this is because those constraints have already been taken into account at a
still earlier stage, the decision to build all the models out of uniform circular
motions, which is made once and for all in Almagest 3.3, just before the first
discussion of the sun’s model. Here Ptolemy writes:

The next task being to exhibit also the apparent anomaly of the sun,
the assumption must first be made that the shiftings of the planets
[including the sun and moon] in the trailing direction of the heav-
ens [i.e., westward] are uniform, just like the movement of the whole
[heavens] in the leading direction [i.e., the daily eastward rotation of
the heavens], and they are circular by nature, that is, the straight
lines that are imagined as leading the heavenly bodies or their cir-
cles in their revolutions sweep out in all cases equal angles in equal
times with respect to the centres of each one’s revolutions, while the
apparent anomalies pertaining to them are produced by the positions
and arrangements of the circles on their spheres, by means of which
they make their motions, and nothing in nature really occurs that is
foreign to their eternity in connection with the imagined irregularity
of the phenomena.

This is one of only a handful of references in the Almagest to the circles in the
models as being on the surfaces of spheres; when he does this, it is always in
a matter-of-fact way, implying that the reader will already be familiar with
the conception. In this particular passage Ptolemy uses language connecting
the idea of uniform circular motion with physical nature and eternity, so that
ether, though not explicitly named, is inevitably called to mind.

And this brings us back to Ptolemy’s very first chapter, Almagest 1.1.
Here he defines the science of which his subject matter is a part, which he
calls “mathematics” (the Almagest’s real title is Mathematical Composition),
as the study of shapes and spatial movements in all kinds of bodies, whether
eternal and etherial or perpetually changing and composed of the four ele-
ments. Mathematics offers “sure and unshakeable knowledge,” and when con-
cerned with the etherial heavens, this knowledge is as eternal as its objects.
In other words, the conviction that the heavens are composed of etherial bod-
ies, which are by their composition both eternal and subject to no kind of
change except circular revolution, guarantees the legitimacy and truth of the
kind of reasoning that the Almagest embodies. It is noteworthy that, while
practically every other theoretical hypothesis in the Almagest is justified by
some empirical argument, the hypothesis of the etherial nature of the heavens
is given axiomatically at the beginning.

His claim to be arriving at “sure and unshakeable knowledge” in the Al-
magest turns out in practice to have certain limitations. Numerical parame-
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ters are, by his confession, knowable only approximately, and in particular
the rates of rotation become more precisely known as we accumulate a longer
temporal span of observation reports. Ptolemy does not say outright whether
he believes that his specific model structures (exclusive of their numerical
parameters) are certainly valid. What the Almagest does affirm through its
broad plan is that Ptolemy’s models suffice to explain all the known phenom-
ena of the heavenly bodies, including eclipses, planetary retrogradations, and
visibility conditions. But the impression of finality is moderated, not only by
the way that Ptolemy recounts his discovery of the moon’s evection (might
there be other phenomena waiting to be noticed?), but also by his passing ref-
erence to alterations he had only lately made in his models for Mercury and
Saturn. In a famous passage towards the end of the work (Almagest 13.2), he
justifies the complexity of his models for the latitudinal motion of the planets
by affirming that the principle of simplicity in models should not be allowed to
override the necessity to account for the phenomena, since what seems com-
plex to us with our experience of the imperfections of mechanisms built from
the four mundane elements may be simple to essences that are eternal and
free from hindrance. Implicit in this is his confidence that his models really
are the simplest that can be brought into agreement with observation.

Ptolemy’s reticence regarding any but the most fundamental properties of
ether and regarding the way in which the geometrical objects that constitute
the Almagest models are supposed to be instantiated in etherial “spheres” in
the actual heavens may be due partly to a reluctance to digress from the core
subject matter of the book, but another reason may be that he had not yet
given these topics much thought (just as he tells us in Almagest 2.13 that he
has not yet worked out the list of geographical locations that he eventually
delivered in the Geography). In a much later work, the Planetary Hypotheses,
Ptolemy has considerably more to say about the spheres.7

The Planetary Hypotheses is ostensibly an exposition of the Almagest mod-
els, with some revisions, described in a manner that will be helpful for people
who wish to make demonstration models or planetaria, with the parts either
manually adjustable to their positions at any date or driven by a mechanism.
After a first book in which Ptolemy sets out the parameters of all the models
individually and proposes a scheme for nesting the models one inside the next,
from the moon’s model outwards to those of Saturn and finally the fixed stars,
he turns in Book 2 to a consideration of the models as three-dimensional cor-
poreal objects, that is, the “spheres” alluded to in the Almagest. Here Ptolemy
engages in an extended discussion of his notion of how etherial matter works.

7The original Greek text of the Planetary Hypotheses is extant only for the first
part of Book 1, for which see Heiberg 1907, 70–106; there is no reliable modern
translation from the Greek. The whole of Book 1 in the medieval Arabic translation
is edited and translated into French in Morelon 1993. For the Arabic text of Book 2,
one currently depends on the German translation of L. Nix in Heiberg 1907, 111–145
and the facsimile of a manuscript in Goldstein 1967. Murschel 1995 is an excellent
synopsis of the work.
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Etherial bodies, he says, are subject to no external influence or alteration.
To each independent motion in the kinematic models there corresponds a
rotating etherial body incited into motion by the power of the visible heavenly
body that it bears. These visible bodies (i.e., the sun, moon, planets, and
stars) are the same in composition as the matter that surrounds them. They
differ, however, in that they issue rays that have a power to penetrate other
bodies, analogous to our intellects and vision. Moreover, their ability to set
their spheres in motion is analogous to the power of our minds to cause our
bodies to move; but in the celestial case the movement is utterly effortless.

Aristotle’s cosmology had been strongly influenced by Eudoxus’ astronom-
ical models, in which the motions of the heavenly bodies were produced by
combinations of circular motions all concentric with the centre of the cos-
mos; hence he could ascribe to ether a “natural motion” always perpendicular
to any radius from the cosmic centre (in contrast to the natural motion of
the four elements, which is always rectilinearly centripetal). For Ptolemy this
cannot do, but he proposes a novel principle, that what Aristotle had charac-
terized as natural rectilinear motion is in fact only natural to a body that has
been removed from its “natural place.” The etherial bodies, being already in
their natural place, are subject to no tendency to migrate up or down, but are
free to stand still or rotate effortlessly. “Mathematics” (i.e., deductive math-
ematical astronomy in the style of the Almagest) allows for two possibilities
for the shapes of the etherial bodies. On the one hand, they can be spherical
shells and solid spheres; but if so, they do not have to be imagined as being
driven in their rotations by their axes, as in a mundane machine. Indeed, the
entire polar regions of the spheres seem to Ptolemy to be superfluous to their
motions, so that he is prepared to restrict the mobile bodies to equatorial
slices of spheres and spherical shells, so-called “tambourines” and “rings,”
which are presumably sandwiched between regions of stationary ether. Since
distinct etherial bodies can slide freely against each other, there is no need to
imagine “unwinding” spheres that cancel out the revolutions of outer spheres,
such as Aristotle had imposed on his mechanistic interpretation of Eudoxus
in Metaphysics Λ.

When we come to the detailed description of each heavenly body’s physical
model, we find that the basic conception is similar to Theon of Smyrna’s, but
extended to include eccentric as well as epicyclic motions. Fig. 4 (a cross-
section through the plane of the moon’s orbit) shows how Ptolemy conceives
of the arrangement of etherial bodies that bring about the moon’s motion,
on the assumption that the bodies are complete spheres or spherical shells.
The entire apparatus must be thought of as being spun about the poles of the
celestial equator with the daily rotation of the heavens. The outermost shell
A rotates around the poles of the ecliptic with the slow motion of the moon’s
nodes. Within this is a shell B rotating around the poles of the inclined plane
of the moon’s orbit at the rate that, in the model of Almagest Book 5, the
centre of the moon’s eccentre revolves around the earth relative to the nodes.
Cut out of shell B (and actually dividing it into two noncontiguous parts) is an



34 Alexander Jones

eccentric shell C that has embedded within it the solid epicyclic sphere D. C
and D together revolve uniformly as seen from the centre of the cosmos T with
the rate that the centre of the epicycle revolves around the earth in Almagest
5. Finally, the epicyclic sphere rotates, carrying embedded close to its surface
the moon M itself, producing the primary anomaly. This physical model is
wholly consistent with the Almagest model, except that Ptolemy abandons
the special radius with respect to which the moon’s regular revolution on the
epicycle is reckoned, instead stipulating that the moon’s revolution is uniform
relative to the radius from the centre of the cosmos. At the beginning of the
Planetary Hypotheses, Ptolemy writes that the models as set out in this work
incorporate some revisions to the Almagest models based on newer analysis
of observations, but also that he is making some minor simplifications purely
for the sake of an easier construction of demonstration models; one is left
uncertain which kind of change is being made here in the lunar model.

M

T
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B

B

C
D

Fig. 2.4. Cross-section of Ptolemy’s etherial-spheres model for the moon.
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To the extent that the Planetary Hypotheses is intended as a description
of the reality of the heavens (as opposed to its professed purpose of giving
designs for didactic three-dimensional illustrations that we can construct), the
pronouncements in the book are more equivocal than those of the Almagest.
Ptolemy is quite sure of the etherial composition of the heavens, and also
quite sure of the fundamental geometrical structures of the celestial motions;
but the specific way that these geometrical structures are embodied in the
etherial matter is open to alternatives (complete spheres or equatorial slices,
spinning driven by cosmic souls or by planetary rays or by the axes). Ptolemy
generally tells us which way he is inclined to choose, but these topics are not
the province of the “unshakeable knowledge” of mathematics.

With the Tetrabiblos (a work written after the Almagest but probably well
before the Planetary Hypotheses), Ptolemy turns from pure contemplation of
the celestial realm of ether to an investigation of the action of the heavens upon
the world of the four elements.8 The fundamental assumption, comparable in
its role in Ptolemy’s astrology to the hypothesis of the uniform circular motion
of ether in his astronomy, is propounded in Tetrabiblos 1.2:

The fact would appear utterly obvious to everyone through even a few
considerations that some power is given forth and reaches from the
etherial and eternal nature to all the region around the earth, which
is in all respects subject to change, with the first elements below the
moon, i.e., fire and air, surrounded and directed by the movements in
the ether and surrounding and directing all the rest, i.e., earth and
water and the plants and animals within them.

There are, however, important differences between these fundamental hy-
potheses. In both, the etherial matter is simply a given. But the property of
uniform circular motion in the Almagest is justified on a priori grounds (cir-
cular rotation being the only kind of eternally unchanging motion that can
be conceived), whereas the property of exerting a power of change on the four
elements is argued directly from empirical facts. Ptolemy backs it up with a
series of examples of situations where laymen know perfectly well, and act
on the knowledge, that the motions of the heavenly bodies affect (or at least
predict) mundane phenomena such as seasons and weather, floods and tides,
and the generation of plants and animals. Secondly, and more significantly for
our topic, uniform circular motion is a mathematical behaviour, which leads
immediately to the modelling of the Almagest, while power to change the ele-
ments is by its nature not mathematical, since it operates with qualities such
as hot and cold, wet and dry. And this creates a problem: how can cause-
and-effect relations operating at the qualitative level, and largely within the
“irregular” sublunary part of the cosmos, be well described by the predictive
mathematical models of astrology?

8Robbins 1940.
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It must be confessed that Ptolemy evades this problem. Essentially Ptolemy
relies on the orderliness of the heavens to justify the mathematical structure
of the predictive schemes of his astrology, but appeals to the disorderliness
and complexity of the mundane environment to explain why astrological pre-
dictions, even when made according to the most correct principles, are not
certain to be borne out. Moreover, the schemes that Ptolemy sets out to ratio-
nalise are in great part the rather chaotic traditional practices of the astrology
of his time. Though he allows himself to reform or suppress some of this tra-
dition in accordance with his physics, he can only go so far in that direction
since his claim that astrology is a valid science depends heavily on the as-
sumption that the traditional practices really work. One can sense his delight
in finding here and there some apparent pattern in the jumble, for exam-
ple when he finds harmonically significant ratios embedded in the “aspects”
(astrologically significant linkages of zodiacal signs forming sides of triangles,
squares, or hexagons), or when–indulging in a topos beloved of authors–he
recovers from an old, neglected, and nearly illegible manuscript a gloriously
complicated rationale for the seemingly nonsensical but empirically verified
“Egyptian” system of terms (divisions of zodiacal signs associated with indi-
vidual planets). Elsewhere Ptolemy almost seems to give up trying to explain,
and lapses into catalogues of astrological associations scarcely distinguishable
from the manuals of astrologers who were less sophisticated from a scientific
point of view.

Optics, which in antiquity meant the study of visual perception, was a
more fruitful subject for the interplay between mathematical and physical
modelling. As in astronomy, there existed a range of well-established phenom-
ena that lent themselves to explanation in terms of a geometrical model, in
this case the “visual ray,” diagrammed as a straight line extending from the
viewer’s eye to a point on an object. The hypothesis is that when a visual
ray exists between the eye and a point on a body, that point is seen. The eye
(or mind) always perceives the seen point as being in the direction in which
the ray sets out from the eye, even if the ray is reflected or refracted at the
interface between two bodies. This directional information provides the eye
with indications of the shape, position, and movement of bodies; on the other
hand, the ray conveys to the eye either limited knowledge or no knowledge at
all about the distances to the point it perceives.

But what are these lines really? The classic exposition of Greek geomet-
rical optics, repeatedly cited or paraphrased by later authors, was Euclid’s
Optics. This treatise does not explain the physical nature of the visual rays
but does specify that they are discrete, with spaces between the individual
rays that grow wider as the rays fan out towards more distant objects; more-
over, some of the explanations of visual phenomena appear to assume that
the rays are somehow attached to the eye (so that as the eye moves, the
rays move accordingly). The gaps between the rays provide an explanation of
the fact that objects are seen less clearly, or not seen at all, as they become
more distant. But the gaps also lent themselves to a physical interpretation of
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the rays that is found in Peripatetic texts approximately contemporary with
Euclid. According to this interpretation the eye emits, through pores in its
surface, exquisitely thin and straight rods of matter (typically composed of
fire) that extend with unimaginable swiftness until they encounter a body, at
which point their progress may be impeded (in which case a visual perception
of the body occurs) or reflected (if the surface is smooth enough) or refracted
(if the body is porous).9

In his Geography Ptolemy treats the problem of planar map projections
as essentially one of optics: how can one devise an appropriate framework of
lines representing parallels and meridians to give the illusion of a part of a
spherical surface?10 Ptolemy takes for granted many elementary perspective
consequences of the hypothesis of rectilinear visual rays. In one passage con-
cerning the relation between the appropriate size of a map and the expected
distance of the spectator from it, Ptolemy invokes the Euclidean gaps, which
suggests that at this stage in his career (not long after the Almagest and Tetra-
biblos), if he had any opinion at all about the physical nature of vision, it was
not far removed from the Peripatetic notion of discrete material emanations.

When he came to write his Optics (a work that I suspect was among his
last writings), Ptolemy had changed his mind.11 He now speaks of the eye
as emitting an entity conventionally translated as the “visual flux,” a cone
comprising a geometrical continuum of rectilinear rays that are stronger or
weaker in perceptive power both to the extent that they have to extend a
shorter or longer distance from eye to object, and to the extent that they are
nearer to or further from the central axis of the cone.12 It is to this weakening
of the rays, rather than any supposed gaps between them, that fuzzy vision
of distant or peripheral objects is due. Thus Ptolemy’s geometrical treatment
of visual phenomena thus preserves the parts of the Euclidean scheme that
depend on the rectilinearity of the visual rays (namely, perspective phenom-
ena, reflections, and refractions) but replaces the somewhat clumsy Euclidean
handling of visual resolution with a more flexible and powerful hypothesis.

Unfortunately the entire first book of the Optics is lost, and with it
Ptolemy’s discussion of the physical makeup of the visual flux. Obviously
he cannot have thought of it as a body, at least not the kind that displaces
other bodies that formerly occupied its space, which is the only kind of body

9The Peripatetic texts and their possible relation to the Euclidean model are
discussed in Jones 1994.

10Berggren and Jones 2000.
11The Optics survives, lacking its beginning and end, only in a medieval Latin

translation of an Arabic translation, a circumstance that causes great difficulties of
interpretation. The French translation in Lejeune 1989 and the English one in Smith
1996 are both useful, though under the circumstances neither can claim to represent
Ptolemy’s meaning exactly throughout.

12The Latin term rendered as “visual flux” is uisus, which almost certainly repre-
sents the same Greek word opsis that, in Euclidean optics, refers to the single visual
rays; but Ptolemy used a different word when he meant an individual line of sight.
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that is envisioned in Aristotle’s or in Peripatetic physics. It seems likely that
Ptolemy resorted to ideas from Stoic physics, which allowed for having distinct
elements occupy the same space as if in layers. In this manner the Stoics could
hypothesise that the entire cosmos was pervaded and regulated by pneuma.
Ptolemy may have suggested that the eye issues the visual flux as an over-
lapping layer of matter in the space between eye and object; or perhaps more
likely, he could have attributed to the eye a faculty of radiating a tensing
power, creating the flux by means of the pneuma already present in the inter-
vening space. We recall that in the Planetary Hypotheses he asserted a kinship
between the motive power of the heavenly bodies and the analogous power in
living things. As it happens, one of the very few references to Ptolemy’s Optics
in other authors that appear to pertain to its lost first book is a sentence in
a work on physical topics by the eleventh-century Byzantine writer Simeon
Seth: “Ptolemy says in his Optics that the visual pneuma is etherial and com-
posed of the fifth element.” This “visual pneuma” is probably the substance of
the cone of the visual flux, and so we have a remarkable fusion of Aristotelian
and Stoic element theory. The sixth-century philosopher Simplicius gives us
a further clue when he writes:

It should be noted that Ptolemy in his book On the Elements and in
his Optics, and the great Plotinus, and Xenarchus in his Difficulties
Addressing the Fifth Element, assert that motion in a straight line
belongs to the elements when they are still in a place that is not
natural to them, but (such motion) no longer belongs to them when
they have assumed their natural place.... Manifestly they do not move
when they are completely in their natural state, but, as the aforesaid
men, i.e., Ptolemy, Xenarchus, and Plotinus, say, when they are in
their natural state and in their proper places the elements either stand
still or move in a circle.

This is precisely the notion that we have seen Ptolemy putting forward
in the Planetary Hypotheses—which Simplicius does not cite here. It is ob-
vious why Ptolemy would have repeated it in a (no longer extant) work on
the elements; but what relevance can it have had in the Optics? I suspect
that Ptolemy was invoking it here for a purpose converse to his purpose in
the Planetary Hypotheses. There, the point was that etherial bodies in the
heavens can spin freely and effortlessly even if their revolution is not concen-
tric with the centre of the cosmos; in the Optics, perhaps Ptolemy claimed
that the etherial matter of the visual flux, connected with our sight and thus
displaced from its natural place in the heavens, travels in straight lines. A final
observation worth making is that the Xenarchus cited by Simplicius as sharing
this idea was active about the late first century B.C., so that here we may be
able to identify the source of a principle that, in Ptolemy’s hands, simultane-
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ously accounts for the geometrical properties of the models of astronomy and
of optics.13

I have saved for last what may have been Ptolemy’s first major effort at
mathematical modelling, the Harmonics.14 The subject of this work calls for
some explanation. Ancient Greek music was essentially melodic unison melody,
occasionally employing singing or playing at the octave or the sounding of
simultaneous distinct notes as an effect, but free of harmony in the modern
sense. There existed numerous systems of relative pitches (i.e., scales) in which
melodies could be composed, none of which involved a sequence of intervals
quite like the diatonic scales on which most modern Western music is based.
The science of harmonics, as Ptolemy presents it, investigates models that
explain why certain intervals and combinations of intervals are esthetically
pleasing and hence exist as constituents of the music actually produced in
Ptolemy’s time.

Unlike the kinematic models of the Almagest and the visual rays of the
Optics, the models of the Harmonics are not geometrical but arithmetical. The
model for any interval between musical pitches is a ratio of whole numbers,
the question at issue being what rules determine the whole-number ratios
that correspond to the intervals of existing musical scales. Ptolemy credits
the ratio model to the Pythagoreans, though he disagrees with what he sees
as their tendency to develop a priori modelling principles that are not referred
to empirical evidence in an appropriate manner. In the course of criticizing
the Pythagoreans (and the more fundamentally wrong-headed Aristoxeneans)
and evolving his own models, Ptolemy makes more explicit pronouncements
about the interplay between a priori and empirical reasoning in science than
in any of his other works.

Ptolemy’s harmonic models are built up from three kinds of esthetically
satisfying intervals: (a) homophones, i.e., intervals between notes that sound
nearly alike, being identical in pitch or separated by one or more octaves,
modelled by ratios always of the type m : 1, e.g., 1 : 1 or 2 : 1 or 4 : 1; (b)
concords, i.e., intervals between notes that sound different but akin, and that
form the more stable larger intervals in scales, modelled by ratios of the type
m : n such that m is often but not always equal to n + 1, e.g., 3 : 2 or 4 : 3
or 8 : 3; and (c) the smaller melodic intervals between consecutive notes of a
scale, which are almost always modelled by ratios of the type (n + 1) : n, e.g.,
9 : 8.

The ratios are observable through the devices or instruments that make
the notes. This is clearest in cases where the difference between notes follows
from a difference between lengths in an instrument. For example, in wind

13The “fragments” of the lost part of Ptolemy’s Optics (there are only four
known) are collected in Lejeune 1989, 271. On Xenarchus, see Falcon 2001, 272,
s.v. “Senarco.”

14Barker 1989, 270-391 provides the best of the existing translations. West 1992
is a splendidly lucid introduction to all aspects of Greek music.
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instruments one can measure the length of the pipe, say from the reed of an
aulos (conventionally rendered by tin-eared classicists as “flute,” but actually
a double reed like an oboe or shawm) to one of the finger-holes. For his
harmonic demonstrations, Ptolemy prescribes instruments involving tensed
strings, since these allow the maximum control and precision in the tunings
and measurements. Thus it is by dividing a tensed string with a bridge into
two parts in the ratio 4 : 3 that Ptolemy establishes the association of this
ratio with the tetrachord, the principal fixed interval in the Greek scales (in
modern terminology, a “fourth”).

But Ptolemy knows that length is not the only factor contributing to pitch.
Thickness and density, among other characteristics of the bodies that produce
the notes, are other variables that determine pitch; for this reason, before
allowing us to try out ratios on a tensed string, Ptolemy instructs us to conduct
a careful check of each part of the string to ensure that equal short lengths
sound equal notes. Hence it is not at all easy to give a physical interpretation
to the numbers in the modelling ratios that fully explains the musical intervals.
Somehow a multiplicity of quantitative properties of a sounding body, some
of them more straightforwardly measurable than others, give rise to a single
abstract magnitude in the air in which the sound subsists.

In the chapters where he discusses the nature of sound and musical tone
(Harmonics 1.3-4), Ptolemy does not try to explain the nature of sound more
deeply than his initial definition that it is “a modification (pathos) of air when
it is struck” (Harmonics 1.1), except for the conclusion that differences in
pitch (“sharpness” and “heaviness”) are a form of quantity. He does, however,
restrict the scope of harmonic science to the study of sequences of discrete
sounds, each of which has a constant pitch, so that one may speak of stable
relations or “ratios” between the notes. The special status of whole-number ra-
tios enters the discussion circuitously, by way of the review of the Pythagorean
model, and although Ptolemy uses divisions of a tensed string to provide em-
pirical justification that the homophones and concords are modelled by ratios
of small whole numbers, he provides no a priori justification of this fact.

But patience is rewarded. When Ptolemy has completed his set task of
deducing a more or less complete set of models to describe the systems of
tuning current in his time (Harmonics 3.2), he embarks on a new project of
describing how harmonic theory illuminates our understanding of aspects of
the cosmos that have no direct connection with sound, namely the behaviour
of human beings and of the heavens. It turns out that harmonics is not really
a science concerning sound at all. It is a science that discovers far deeper and
more general truths about our world, exploiting one specific part of it that
happens to be exceptionally well adapted to the interplay between sensory
observation and rational deduction that, for Ptolemy, constitutes scientific
method. The true subject of harmonics is harmonia, “the form of rational
causation (i.e., causation arising from reason and intellect) that concerns good
ratios of motions,” and this is necessarily present in all things that can move
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themselves, and above all in the most rational self-movers, namely, people and
celestial spheres.

What this means is that the special status of whole-number ratios is a man-
ifestation of the Good (in the Platonic sense) that the intellect apprehends and
puts into action. One way that our intellects do this is by constructing musical
instruments to produce sounds that fit the ideal ratios (since, after all, the
sounds spontaneously produced by natural objects would not be recognized
as music). Because of the close correspondence between measurable quantities
in the instruments and the notes that we hear (which we can compare but not
measure), we can discover the laws governing the order that our souls impose
on this external matter. But these same laws are also recognizable, Ptolemy
maintains, in the arrangement, motions, and powers of the heavenly bodies,
which we discover through astronomy and astrology, and they must exist in
our own characters, virtues, and emotions, where the quantitative relations
are not apparent to our senses.15

These closing chapters of the Harmonics have received faint praise from
modern readers, and it is undoubtedly true that the identification of detailed
correspondences between the elements of his theory of musical tunings and an
assortment of ethical, astronomical and astrological concepts is not Ptolemy’s
forte. But there can be no doubt that the principle motivating this péché de
jeunesse was close to Ptolemy’s heart, the conviction that the mathematical
behaviour that we find here and there in the cosmos is structure imposed for
the sake of the Good by minds upon a world that would otherwise be governed
by disorder.
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