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Abstract

The vast majority of PET radiopharmaceuticals
today are cyclotron produced. Carbon-11 (11C),
Nitrogen-13 (13N), Oxygen-15 (15O) products are
created for in-house use only due to their short
half-lives. The longer half-life of Fluorine-18
means that 18F-labeled PET radiotracers can be
widely distributed. Production of radiopharmaceu-
ticals is computer-controlled and automated. Auto-
mation increases both reliability and efficiency of
PET operations while decreasing the radiation dose
to the staff. For today, FDG remains the workhorse
of oncologic PET imaging. Additional 18F PET
radiotracers directed at a range of molecular
processes are being studied and should become
available in the future.

1 Introduction

Positron emission tomography (PET) has become a
powerful research and clinical imaging tool for
evaluating complex biochemical processes in cancer
patients. PET has developed rapidly as radiochemistry
and radiopharmacy have advanced. The oncologic
clinical applications of PET have increased dramati-
cally over the past decade because of the synthesis
and widespread distribution of one molecule,
18Fluorine-2-Fluoro-2-Deoxy-glucose (FDG). FDG
PET/CT has become essential in evaluating cancer
patients in major medical centers throughout the
world. Measurement of normal and altered biochem-
ical pathways noninvasively is routinely performed
with PET radiopharmaceuticals. The continued
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growth of PET will require the expansion of clinically
available positron emitting radiopharmaceuticals
(Vallabhajosula et al. 2011, Rice et al. 2011).

2 Positron Emitting Radionuclides

Of the more than 3,000 known neutron and proton
configurations, approximately 250 are stable and
more than 2,500 are radioactive. The majority of the
radioactive nuclides are artificially produced in
cyclotrons or reactors. Of these radioactive nuclides,
ten are major positron emitters (Table 1). PET
imaging makes use of these positron-emitting radio-
nuclides for clinical and research applications
(McCarthy and Welch 1998). There are three primary
methods to produce radioactive atoms for nuclear
imaging. Radioisotopes are either reactor produced
from fission by-products by chemical separation, or
by neutron irradiation of a specific target; or they are
produced in a cyclotron from bombardment of a target
material with charged particles.

2.1 Cyclotron Produced

Carbon-11 (11C), Nitrogen-13 (13N), Oxygen-15 (15O)
and Fluorine-18 (18F) are low-molecular-weight
radioisotopes produced in a cyclotron. One of the
great advantages of positron emission tomography is
the use of positron emitting radioisotopes that can be
easily added to biomolecules, especially 11C, 13N, 15O
and 18F. All 4 also possess simple decay schemes with
each emitting a single positron. Substituting 11C, 13N
and 15O for stable 12C, 14N and 16O does not alter the

function or configuration of the compound. 18F often
replaces a hydroxyl group, which only mildly affects
the biologic behavior of the molecule.

The disadvantage of 11C, 13N and 15O labeled
compounds is that their half-life is very short. The
2-minute half-life of 15O requires a tube direct from
the cyclotron and pumping the 15O labeled com-
pounds immediately into the scan room. The com-
plicated chemistry of 13N and its 10-min half-life
leaves too little time for radiopharmaceutical syn-
thesis and imaging. 11C with its 20-min half-life has
labeled a vast array of biological radiotracers in the
research realm to measure molecular kinetics and
function. 11C radiopharmaceuticals require rapid
synthesis and scanning, which make an on-site
cyclotron mandatory. Only 18F with its nearly 2-h
half-life allows time for complex syntheses or delayed
imaging and it can be transported significant distances
(Schlyer 2004).

2.1.1 Cyclotron
A medical cyclotron (Fig. 1) is a particle accelerator
that can produce PET radionuclides. It is composed of
two flat D-shaped hollow metal electrodes in the
vacuum chamber between the two poles of a large
electromagnet. In the center hydrogen (H2) or deute-
rium (D2) gas is introduced to yield the particles to be
accelerated (H- or D-). Under the effect of a strong
magnetic field, these anions gain energy from high-
frequency alternating voltage applied between the
electrodes. The magnetic field and the increasing
energy of the particles force the anions to travel in a
spiral path. The radius of the anion’s path increases
until the particles hit a stripping foil at the perimeter of
the vacuum chamber. The stripping foil removes the
electrons from the anions forming positively charged
particles, H+ or D+. The change in charge deflects the
particles out of the acceleration chamber to collide
with the contents of the target. The high-energy par-
ticle smashes into a stable isotope target, yielding
positron-emitting radionuclides (Shaiju et al. 2009).

2.1.2 Cyclotron Created Radionuclides
The synthesis of positron emitting biomolecules begins
from small precursor compounds that are generated
from a cyclotron target. There a limited number of
small precursors that can originate in a cyclotron. The
energy of the particle and density of the beam particle
as well as the nuclear reaction determines the quantity

Table 1 PET radionuclides

Radionuclide Half-life (min)

Carbon-11 20.4

Nitrogen-13 9.98

Oxygen-15 2.03

Fluorine-18 109.8

Copper-62 9.74

Gallium-68 68.3

Rubidium-82 1.25

Iodine-122 3.62

Iodine-124 6019.2
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and type of radionuclide produced. The specific
activity of the radionuclide produced is equal to the
activity per unit of material, often given in terms of the
activity per gram. The radionuclide purity is the per-
centage of the radioactive species that is the desired
isotope (Sharma et al. 2006).

Four major positron emitters are produced within a
medical cyclotron: Carbon-11 (11C), Nitrogen-13
(13N), Oxygen-15 (15O) and Fluorine-18 (18F). 11C is
produced by proton bombardment of natural nitrogen.
The proton interacts with stable 14N and produces a
neutron and 11C. The target typically contains 2 %
oxygen in the nitrogen and yields 11C-carbon dioxide.
13N is produced by proton bombardment of distilled
water. The proton interacts with stable 16O and pro-
duces an alpha particle and 13N. 15O is produced by
deuteron bombardment of natural nitrogen. The deu-
teron interacts with stable 14N and produces 15O.
Oxygen-15 is produced as either 15O-molecular oxy-
gen, 15O-water or 15O-carbon dioxide. Fluorine-18

(18F) is produced by proton bombardment of Oxygen-
18 enriched water. The proton interacts with the 18O
and produces a neutron and 18F (Schlyer 2004).

2.2 Generator Derived Radionuclides

The Molybdenum-99/Technetium-99m generator is
the major source for radionuclides in general nuclear
medicine practice. The Tc-99m used to label a wide
variety of compounds is eluted from the molybde-
num-99 generator. Similar generator systems exist for
positron emitting radionuclides (Table 2). Radionu-
clide generator systems consist of a parent radionu-
clide, which is a relatively long-lived radionuclide
that decays into a much shorter-lived and chemically
different daughter radionuclide. The system typically
has the parent nuclide in a column from which the
daughter is eluted when needed. The advantage of
generator-produced positron emitting radionuclides is

Fig. 1 This is the outside (a) and inside (b) of an upright PET
cyclotron with dual particle capability. Six target ports on the
left side of the cyclotron can be used for dual target irradiation.
The cyclotron (c) contains two major parts: a large electromag-
net and two semicircular, hollow electrodes called ‘‘dees’’
because of their D-shape. The ions are injected into the center of
the cyclotron and come under the affect of the alternating current
applied to the dees and the magnetic field supplied by the

electromagnet. The current is carefully timed so that the
polarization of the dees changes as the particles dart from side
to side. This accelerates the ions propelling them in a spiral
faster and faster. At the maximum radius of the spiral, the ions
hit the stripping foil and exit the cyclotron. The charged
particles exiting the cyclotron impact the target to produce PET
radionuclides. The cyclotron is computer controlled (d), allow-
ing easy and efficient production of PET radiopharmaceuticals
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the increased availability of short-lived radionuclides
without an on-site cyclotron (Breeman and Verbrug-
gen 2007; Williams et al. 2005; Zhernosekov et al.
2007; Zweit et al. 1992). The Rubidium-82 from a
Strontium-82 generator is FDA approved for myocar-
dial perfusion imaging. Gallium-68 and Copper-62 are
not available for clinical use in the US. These metal
radionuclides can label peptides and proteins coupled
by a chelating agent. A number of 68Ga-somatostatin
analogs are being studied for tumor imaging (Rufini
et al. 2007).

3 PET Radiotracer Production

3.1 Synthesis

Within the radiochemistry lab, quality assurance and
quality control are of paramount importance. Quality
control includes chemical and radiochemical purity
determination and radiopharmaceutical validation.
Time dominates all aspects of a PET study, particu-
larly in the production of PET radionuclides. PET
tracers must be synthesized and imaged rapidly taking
into account the half-life of the radioisotope. For
Carbon-11 labeled tracers with a 20-min half-life, this
typically means 10 min for isotope production,
40 min for synthesis and 60–90 min for PET imaging.
Since radiotracers are typically administered intrave-
nously, procedures must be developed to produce
high yield radiotracers that are chemically, radio-
chemically and biologically pure (Schlyer 2004).

3.2 Quality Control

Each radiolabeling procedure is validated by testing
batches for sterility, presence of endotoxins, heavy metal
contamination, pH, chemical purity, radionuclide

identification, and radionuclide purity. Since time is vital
for a PET radiopharmaceuticals, only initial validation is
performed prior to release of the radiopharmaceutical.
Subsequent testing on each batch ensures the continued
safety of the manufacturing process. PET radiophar-
maceutical testing is often automated with thin layer
chromatography, high performance liquid chromatog-
raphy or gas chromatography (Sharma et al. 2006).

3.3 Automated Production

Routine production of PET radiopharmaceuticals is
computer controlled and automated. These automated
synthesis units allow regular production of PET
tracers with speed and efficiency, but without signif-
icant radiation exposure to laboratory personnel.
These modules allow a series of reactions to occur
under computer control. The operator guides the
computer software to perform the complex synthetic
procedures required to make PET tracers. Automated
synthesis units can produce different radiotracers with
the same or similar equipment. Indeed, the modular
approach has been extended to the point that sterile
disposable cartridges are now available to produce
pure and pyrogen-free PET radiotracers for clinical
use. High-yield production of FDG has been validated
and cartridges for other PET radiopharmaceuticals are
now available (Gatley 2003; Schlyer 2004).

3.4 Dispensing

Originally, PET radiopharmaceuticals were dispensed
and administered as unit doses by hand. As with so
much else in busy PET practices, FDG dosing is now
automated. An FDG-filled tungsten-shielded multi-
dose vial is placed inside the shielded cart and each
dose is automatically measured and calibrated
(Fig. 2). The FDG dose measured by an ionization
chamber is automatically delivered directly to the
patient. An easy-to-use touch screen initiates the
injection and clearly shows prescribed and actual
activity. The touch screen interface controls delivery
of a specific dose for each patient that is consistently
within 2 % of the prescribed dose. The equipment cart
is mobile allowing easy movement to patient location.
By eliminating manual unit dose preparation and

Table 2 Generator produced positron emitting radionuclides

Parent Daughter

Strontium-82 (half-life
25 days)

Rubidium-82 (half-life
1.25 min)

Germanium-68 (half-life
275 days)

Gallium-68 (half-life
68.3 min)

Zinc-62 (half-life 9.13 h) Copper-62 (half-life
9.74 min)
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injection, radiation exposure to both radiopharmacy
and imaging personnel decreases more than 20 %
(Carolan et al. 2012).

4 Oncologic PET
Radiopharmaceuticals

In the last 30 years, several thousand PET radiotracers
for oncologic imaging have been developed in more
than 600 PET radiopharmacies worldwide. Despite
the availability of so many PET radiopharmaceuticals
for oncologic imaging, FDG remains the primary
agent. Approximately 95 % of all PET studies for
patients with cancer are performed with FDG.

4.1 FDA Approved

4.1.1 18F-2-Fluoro-2-Deoxy-Glucose
Warburg first reported increased glucose consumption
by cancer cells compared to normal cells (Warburg
1956). In 1960 2-Deoxy-D-glucose was developed as a
chemotherapeutic agent but it blocked glucose use by
both normal and cancer cells (Laszlo et al. 1960). In
1976, 18F-2-fluoro-2-deoxy-glucose (FDG) was first
synthesized at Brookhaven National Laboratory (Ido
et al. 1978; Pacák and Cerny 2002) (Fig. 3). Initially
FDG PET was used to image cerebral glucose
metabolism. Oncologic imaging began with brain
tumors in part because of the small aperture in the
early PET scanners. FDG was investigated in animal
models with a wide range of malignancies. Clinical
oncologic imaging was limited to the brain until PET
body scanners became available (Nutt 2002).

Energy-dependent transmembrane transport proteins
(GLUT) pump glucose into cells (Fig. 3). These GLUT
receptors are over-expressed on the surface of malignant
cells in proportion to the rate of increased glucose
metabolism. GLUT-1 is hypoxia responsive, insulin
independent and the most common on cancer cells. FDG
uptake in tumor cells requires a sufficient blood supply
for nutrients to reach the cell. The number of viable
tumor cells within a lesion determines the intensity of
FDG uptake. Hypoxia-inducible factor-1-alfa up-regu-
lates GLUT-1 by increasing tumoral FDG uptake. Rapid
cell proliferation in tumors, evident by the high mitotic
rate, also increases glucose utilization (Avril et al. 2001;
Mochizuki et al. 2001; Bos et al. 2002).

Tumor cells have increased intracellular hexoki-
nase levels, which phosphorylate glucose and FDG,
trapping them within the cell (Smith 2000). FDG is
phosphorylated by hexokinase into FDG-6-phosphate.
Phosphorylated glucose rapidly undergoes glycolysis
but the presence of 18F on FDG-6-phosphate blocks
binding of enzymes leading to glycolytic pathways.
Unlike normal cells, Tumor cells show reduced levels
of glucose-6-phosphatase, the enzyme that dephos-
phorylates D-glucose or FDG-6-phosphate, aiding
accumulation of intracellular FDG. FDG accumula-
tion in malignant cells is generally proportional to the
glycolytic rate of malignant cells, which allows their
detection with PET FDG imaging (Coleman 1999;
Delbeke 1999; Ak et al. 2000).

Fig. 2 This is an example of a mobile FDG administration
device. From the shielded multidose vial within the machine,
the individual patient’s FDG activity is measured and admin-
istered. FDG dosing is controlled via computer to provide
efficient delivery consistently within 2 % of the requested
amount
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Unfortunately, FDG is not a cancer-specific agent
and accumulates avidly in inflammatory and infectious
diseases, especially sarcoidosis, tuberculosis, fungal
infection, and pneumonia. The increased FDG uptake
is due to a marked increase in the glycolytic rate when
leukocytes are activated. The increased expression of
GLUT receptors and elevated hexokinase activity in
activated leukocytes is very similar to tumor cells
(Zhao et al. 2001; Higashi et al. 2002).

Glucose and FDG are freely filtered by the glo-
merulus. Glucose is then reabsorbed in the proximal
convoluted tubule. The glucose transporters in the
proximal convoluted tubule (SGLT1 and 2) have a
limited affinity for FDG because of the 18F on the 2-
carbon. Only about half of the filtered FDG undergoes
reuptake in the nephron. The FDG excreted in the
urine leads to intense activity within the urinary sys-
tem, which is normal. This normal urinary excretion
of FDG clears the background activity and is benefi-
cial for imaging. Rapid urinary excretion allows ear-
lier imaging and lower plasma levels of FDG

diminish the radiation dose to the patient (Gatley
2003).

4.1.2 18F-Sodium Fluoride
18F-Sodium Fluoride (NaF) is a bone-imaging agent
first introduced in 1962 and used with early gamma
cameras (Blau et al.1962). NaF was the first FDA
approved radiopharmaceutical. 18F-NaF has a bio-
distribution similar to 99mTc-polyphosphonates, but
with less protein binding. Following intravenous
administration, NaF is rapidly removed from the
plasma and either bound to bone or excreted by the
kidneys. At 60 min only 10 % of the injected dose
remains in the plasma. The fluoride ion is exchanged
for a hydroxyl group on the hydroxyapatite crystal to
form fluorapatite and is incorporated into the bone
matrix. Fluoride is firmly attached at sites of osteo-
blastic activity and remains in the bone. NaF uptake
has twice the target-to-background ratio of Tc-99m-
MDP and accumulation is higher at sites of new bone
formation due to the greater availability of binding

Fig. 3 18F-2-fluoro-2-deoxy-glucose (FDG) is a glucose ana-
logue, which differs from D-glucose by the 18F on the 2-carbon.
Glucose and FDG are pumped into cells via the GLUT
transporters on the plasma membranes. Once inside the cell,
both glucose and FDG are immediately phosphorylated under

the control of hexokinase. Glucose-6-phosphate can enter
glycolytic pathways but the FDG-6-phosphate does not degrade
because the enzyme-binding site is blocked by the 18F. FDG
accumulates within cancer cells in proportion to their acceler-
ated glycolytic rate
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sites and regional hyperemia (Schiepers et al. 1997;
Blake et al. 2001; Even-Sapir et al. 2004, 2006; Even-
Sapir 2005) (Fig. 4).

NaF PET is very sensitive for the detection of both
lytic and sclerotic bone lesions and combining it with
CT increases specificity. NaF PET has a spatial res-
olution of 4–6 mm versus 10–15 mm for Tc-MDP
imaging. NaF PET/CT has been shown to be more
sensitive for detecting skeletal metastases than planar
or SPECT Tc-99m-MDP skeletal imaging. Benign
bone lesions like fractures, Paget disease, enchon-
droma, and osteoid osteomas also demonstrate
increased NaF uptake. NaF PET/CT detects skeletal
metastases from tumors that are typically sclerotic or
have low FDG activity. FDG PET/CT is more likely
to detect bone marrow metastases or small osteolytic
lesions (Schirrmeister et al. 2001; Hetzel et al. 2003;
Even-Sapir et al. 2004, 2006; Even-Sapir 2005).

4.2 Non-FDA Approved

The sensitivity and specificity of FDG are not optimal
in all cancer types. FDG PET/CT images can not
adequately differentiate between post-therapy
inflammation and residual tumor, poor uptake in
slow-growing tumors, and high uptake in normal cells
such as the brain, which obscure tumor deposits. In
the last decade, research has focused on new PET

radiopharmaceuticals directed at a wide range of
molecular targets including membrane synthesis,
hypoxia, protein synthesis and DNA replication.

4.2.1 Membrane Synthesis
Phosphatidylcholine is an essential element of phos-
pholipids of the cell membrane. Choline is its pre-
cursor. Choline enters most cells using specific
energy-independent cell membrane transporters. Upon
entering the cell, choline is phosphorylated in a reac-
tion catalyzed by the enzyme choline kinase. The
malignant transformation of cells elevates levels of
choline kinase activity and phosphatidylcholine pro-
duction (Howard and Howard 1975; Jackowski 1994).
PET imaging with 11C-choline was first evaluated in
brain tumors because the normal brain has no signifi-
cant phospholipid metabolism. (Hara et al. 1997) In
prostate cancer 11C-choline PET/CT is superior to
FDG PET and conventional imaging for identifying
nodal and bony metastases in patients with increasing
PSA levels. (Roivainen et al. 2000; Picchio et al. 2003)
The advantages of 11C-choline PET imaging were
apparent after initial studies, but 11C-compunds have a
significant logistical limitation–their half-life is only
20.4 min. Methods to label choline with fluorine-18
have been established: 18F-fluoroethylcholine (FECH)
is phosphorylated in vivo by choline kinase. (DeGrado
et al. 2001; Hara et al. 2002) FECH (Fig. 5) is now

Fig. 4 18F-Sodium Fluoride
(NaF) is a PET bone tracer
used for evaluating osseous
metastasis. NaF PET/CT is an
extremely sensitive method
for detecting bony metastases
in patients with known
malignancy. NaF normally
accumulates in the bones and
areas of active soft tissue
calcification with renal
excretion into the bladder

Fig. 5 18F-fluoroethylcholine (FECH) is a hypoxia tracer used
for evaluating rapidly growing tumors. FECH PET/CT is
extremely useful in restaging prostate cancer patients with
biochemical recurrence. FECH normally accumulates in the
salivary glands, pancreas, liver and intestines with renal
excretion into the bladder
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distributed widely for PET/CT imaging in Europe
where it is used primarily for imaging prostate cancer.
FECH is also useful in PET imaging of hepatocellular
carcinoma and primary and metastatic brain tumors
(Hara et al. 1997; Mertens et al. 2010).

4.2.2 Hypoxia
18F-Fluoromisonidazole (FMISO) is a tracer used for
evaluating tumor hypoxia. Hypoxia occurs in rapidly
growing tumors as their need for oxygen exceeds the
supply available from blood and tissue diffusion. The
anoxic center of tumors typically undergoes cell death
and necrosis (Fig. 6). In the borderline zones of the
tumor, hypoxia inhibits cell growth and division but
often leads to adaptive changes as the tumor cells
struggle to survive in the harsh environment (Vaupel
et al. 1992). Tumor hypoxia is a key factor in tumor
progression and therapy resistance (Lee and Scott
2007). FMISO (Fig. 6) enters cells by passive diffusion
and under hypoxic conditions forms a charged mole-
cule, which binds to cellular macromolecules. FMISO
is not retained in necrosis (Rasey et al. 1987; Foo et al.
2004). PET/CT with FMISO is able to assess the
evolving hypoxia level in tumors during radiotherapy.
Hypoxic cells are less sensitive to the cytotoxic effects
of ionizing radiation than well-oxygenated cells (Koh
et al. 1995). Studies in sarcoma and head and neck
cancer have demonstrated a correlation of FMISO
uptake with poor outcomes for radiation and chemo-
therapy. (Hicks et al. 2005; Rajendran et al. 2006)
Other hypoxia agents include: 18F-fluoroerythronitro-
imidazole, 18F-fluoroetanidazole, and 62Cu-diacetyl-
bis(N (4)-methylthiosemicarbazone (62-Cu-ATSM)
(Beck et al. 2007; Mees et al. 2009).

4.2.3 Protein Synthesis
11C-methionine is an amino acid that has been widely
studied as a substrate for protein synthesis. Amino
acids can freely diffuse into the cells, but the bulk of
their transport depends on membrane glycoprotein
transport. These transport systems in tumor cells can
be energy-dependent, like glucose, or energy-inde-
pendent. Amino acids are pumped into tumor cells in
proportion to their metabolic activity. Malignant
transformation drives the use of amino acids for
protein synthesis as well as energy production.

Protein synthesis accelerates in proportion to the
tumor mass and growth. C-methionone does not

accumulate in normal brain tissue but over expressed
amino acid transporters in gliomas allow visualization
PET/CT. 11C-methionine brain PET is useful for
detection of primary tumors, evaluating suspected
recurrence, predicting histopathologic grade, radio-
sensitivity and prognosis, guiding stereotactic brain
biopsy, planning radiotherapy and assessing treatment
response. (Kaschten et al. 1998; Nuutinen et al. 2000;
Ribom et al. 2002; Jacobs et al. 2005; Ceyssens et al.
2006; Galldiks et al. 2006) 11C-methionine PET/CT
can also be used to measure increased protein synthesis
in lung cancer and breast cancer (Buck et al. 2003).

3,4-Dihydroxy-18F-6-fluoro-L-phenylalanine
(FDOPA) was initially developed to examine the
transport of a dopamine precursor in Parkinson’s
disease (Luxen et al. 1992). FDOPA Fig. 7 which
enters the brain via a neutral amino acid carrier, is
similar structurally to tyrosine but cannot be used in
protein synthesis (Fig. 7). These amino acid carriers
are commonly over-expressed on the plasma mem-
branes of melanoma cells. FDOPA is extremely use-
ful in staging and restaging of medullary thyroid
carcinoma, gastrointestinal cancers, pheochromocy-
tomas and other neuroendocrine tumors (Hoegerle
et al. 1999, 2001a, b, 2002; Becherer et al. 2004).
FDOPA PET/CT has greater diagnostic accuracy for
detecting serotonin-expressing tumors than 111In-
Octreotide SPECT or FDG PET/CT (Hoegerle et al.
2001a, b; Ilias et al. 2008). Other radiolabeled amino

Fig. 6 18F-Fluoromisonidazole (FMISO) is a hypoxia tracer
used for evaluating rapidly growing tumors. FMISO PET/CT is
extremely useful in head and neck cancer patients treated with
radiotherapy. FMISO normally accumulates in the liver with
renal excretion into the bladder
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acid analogs include 18F-L-tyrosine and 18F-fluoro-
cyclo-butane-1-carboxylic acid (FACBC) (Val-
labhajosula 2007; Schuster et al. 2007).

4.2.4 DNA Replication
18F-3-fluoro-3-deoxy-thymidine (FLT) is a pyrimi-
dine analogue used to measure tumor cell prolifera-
tion (Fig. 8). Increased mitotic rate, cell
multiplication and lack of differentiation are charac-
teristics of the tumors. The accelerated growth of
malignant tissue is the best measure of DNA repli-
cation. FLT is actively transported into the cell and
phosphorylated similarly to thymidine (Sherley and
Kelly 1988). FLT is trapped in the cell in proportion
to the amount of DNA and RNA synthesis (Shields
et al. 1996, 1998). There is a strong correlation
between FLT uptake and the proliferation rate as
determined by the Ki-67 index in lung, colorectal and
breast cancer, melanoma, soft tissue sarcoma and
brain tumors. (Vesselle et al. 2002; Francis et al.
2003; Cobben et al. 2003, 2004; Smyczek-Gargya
et al. 2004; Chen et al. 2005) FLT uptake can dif-
ferentiate between benign and malignant tissues and
helps with tumor grading. PET/CT with FLT is useful
for assessing tumor aggressiveness and early predic-
tion of treatment response. FLT uptake does not
increase with infection or inflammation like FDG.

FLT, as a proliferative marker, is less affected by
radiation inflammation and can detect response as
early as 1 week after treatment. FLT PET/CT has a
higher specificity for early therapy assessment than
FDG PET/CT (Shields 2003). FLT offers more in
vivo utility than FDG for evaluating patient response
to novel therapies and to predict patient outcomes.
Other proliferative tracers include 18F-fluorouridine
and 18F-FMAU (Vallabhasojula 2007; Bading et al.
2008).
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