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Chapter 2
Interaction of Electrons with Laser Fields

To describe the emission by electrons, it is necessary to first analyze their dynamics.
There are several theories available, as to how this task is to be accomplished. In this
chapter we are going to outline two fundamentally different approaches.Wewill start
by presenting the classical framework, in which an electron of charge e is viewed as
a point source of an electromagnetic field. The emission of such a classical current
in discussed in Sect. 2.1.

As discussed in Chap. 1, in the past century it emerged a quantum theory ofmatter.
In this theory, due to the intrinsic uncertainty of conjugate observables, in particular
position and momentum, no point particles can exist. Much rather, quantum elec-
trodynamics describes particles as exited states of quantized fields and describes a
scattering as the probability of a quantum state, formed in the far past, to go over
into another quantum state, observed in the far future. A short introduction into the
schemes and techniques of the according scattering theory of quantum electrody-
namics is given in Sect. 2.2.

2.1 Classical Electrodynamics

The basics of classical electrodynamics are the famous Maxwell equations, unifying
the electric andmagnetic interaction. In covariant form they state that a spatial charge
current j, which is combined with its charge density ρ to a four dimensional current
jμ = (cρ, j), will generate electromagnetic fields according to [1]

∂μFμν(x) = 4π

c
jν(x), (2.1)

where Fμν(x) = ∂μAν(x) − ∂νAμ(x) is the antisymmetric field strength tensor
derived from the four potential Aμ(x) = (φ(x), A(x)). This potential, however, is
not a measurable quantity as it is not uniquely defined by Eq. (2.1). In fact, applying
a gauge transformation to the four potential, the field strength tensor, entering the

K. F. Mackenroth, Quantum Radiation in Ultra-Intense Laser Pulses, 21
Springer Theses, DOI: 10.1007/978-3-319-07740-6_2,
© Springer International Publishing Switzerland 2014



22 2 Interaction of Electrons with Laser Fields

Maxwell equations, remains unchanged. The same current jμ(x) thus generates a
whole equivalence class of vector potentials, all connected by gauge freedom. The
electromagnetic quantities, uniquely defined by Eq. (2.1) are the three dimensional
vector fields of the electric and magnetic field E(x) and B(x), respectively, which
are derived from the four potential via the relations

E(x) = −∇φ(x) − ∂A(x)

∂t
(2.2a)

B(x) = ∇ × A(x). (2.2b)

For describing electromagnetic fields propagating in free space (jν ≡ 0) one usually
adopts the Lorenz gauge ∂μAμ(x) = ∂tφ(x) + ∇A(x) = 0, whence Eq. (2.1) turns
into a wave equation of the form

�Aμ(x) = 0, (2.3)

where the D’Alembert operator � = ∂μ∂μ = ∂2
t − ∇2 is introduced. As we wish

to describe physical fields propagating in free space, the employed solutions have to
satisfy Eq. (2.3). An important class of such solutions is given by plane waves, which
are defined by a wave vector kμ

L = ωL(1, nL), with the central angular frequency of
the electric field ωL , and depend on the spatial coordinates only via the so-called
invariant phase η = xμkμ

L [1]. Much of the discussion presented in this work will be
basedon linearly polarizedplanewave solutions ofEq. (2.3), forwhichwewill use the
notation Aμ

L(η) = ALε
μ
LψA(η), with the constant (positive) amplitude AL = −mξ/e,

the wave’s polarization four vector ε
μ
L and the shape function ψA(η) encoding the

temporal structure of the field. It is customary to consider plane waves, propagating
in free space, in a reference system, where the static potential vanishes (φ ≡ 0) and
all physical fields are derived from the vector potential AL(η). This corresponds to
a purely spatial polarization vector ε

μ
L = (0, εL). For a plane wave field the Lorenz

gauge condition reduces to ALkL = 0, whence with the above choices we find

εLkL = 0. (2.4)

A plane wave thus is always polarized perpendicularly to its propagation direction.
The shape function is an essential ingredient in obtaining specific results. It is cus-
tomary to model it by a function of the form ψA(η) = g(η) sin(η + η0), where g(η)

is the so-called pulse envelope, which has a peak value of unity. The validity of this
approach has been proven on the basis that the central carrying frequency is uniquely
defined by the envelope. In particular, it needs to be independent of the quantity η0,
which quantifies a relative phase shift between the carrier wave and the envelope
and is hence labeled carrier-envelope phase (CEP) [2]. Due to the importance of the
shape function, we wish to explicitly present two possible choices here. Here we are
going to present the shape functions as functions of the invariant laser phase η, but
also point out that by virtue of the relation η = k+

L x− any function F(η) is easily
translated to a function of the light cone coordinate x− according to
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F(x−) := F(k+
L x−). (2.5)

This equivalence is frequently used for the shape function and the corresponding
expression for the four potential Aμ

L(x−) = ALε
μ
LψA(x−) in the course of this thesis,

but for the sake of notational simplicity we are not going to introduce a separate
symbol for these two, rigorously speaking different, functions of Eq. (2.5). To model
a few-cycle pulse we use

ψA(η) =
{
sin4

(
η

2nC

)
sin(η + η0) if η ∈ [0, 2π nC]

0 else,
(2.6)

where nC is the number of cycles contained in the laser pulse. The favors of this
choice are its simple analytic structure alongside its smooth rise and fall of the
electric field, derived from Eq. (2.2a), which is well suited to model a laser pulse [3].
One drawback is that the average of the envelope function (2.6) is constantly smaller
than one, irrespective of the number of cycles contained in the laser pulse. This can
be seen by the computation

〈g〉 =

2π nC∫
0

dη sin4
(

η

2nC

)

2π nC
=

2π∫
0

dη′ sin4
(

η′

2

)

2π
= 3

8
. (2.7)

Despite the good applicability of Eq. (2.6) to model few-cycle pulses, due to the
sketched drawback, it is problematic, in case one wants to model a long laser pulse,
or particularly recover the monochromatic limit. This limit namely is recovered, if
the laser pulse can approximately be described by the sole oscillation frequency.
The amplitude variation over the whole pulse must accordingly be negligible, which
in turn, for a shape function normalized to unity, implies that Eq. (2.7) has to equal
unity. To recover the monochromatic limit or model a longer laser pulse we thus
employ the following, however more complicated envelope function

glong(η) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η
2π nswitch

if η ∈ [0, 2π nswitch]

1 if η ∈ [2π nswitch, 2π (nswitch + nflat)]
(2nswitch + nflat) − η/2π

nswitch
if η ∈ [2π (nswitch + nflat), 2π (2nswitch + nflat)]

0 else.
(2.8)

To obtain a proper shape function ψA(η), one has to multiply this envelope function
with the oscillating carrier function sin(η+η0), analogous to Eq. (2.6). That Eq. (2.8)
indeed allows to take the monochromatic limit, is seen in analogy to Eq. (2.7)
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〈glong〉 =

2π nC∫
0

dη glong(η)

2π (2nswitch + nflat)
= nflat + nswitch

2nswitch + nflat

nflat→∞−−−−−→ 1. (2.9)

In the light of the previous computations please note that, due to the relation EL(η) =
−∂tAL(η), the value of the four potential can be viewed as

AL(η) = −
η∫

−∞
dη′ dt

dη′EL(η′), (2.10)

where any integration constant can be chosen as zero by gauge freedom. The above
expression, however, for η → ∞ is proportional to the zero-frequency, i.e. constant
field, Fourier component of the laser’s electric field. Since such a constant fieldmode,
however, does not propagate, it is essential that for any choice of ψA(η) it holds
AL(η → ∞) = 0. Consequently, even though |AL(η → ∞)| > 0 would correspond
to a physically reasonable electric field vanishing at infinity, this possibility is ruled
out.

From here on the following discussion is again valid for arbitrary electromagnetic
fields fulfilling Eq. (2.3). To determine the dynamics of an electron moving inside
such an electromagnetic field, one has to solve its equation of motion. Any exter-
nal electromagnetic field described by its field strength tensor Fμν

L (x), obtained via
Eq. (2.3), exerts a force on the electron according to the Lorentz force equation [1]

dpμ(s)

ds
= e

m
Fμν

L (x)pν(s). (2.11)

In this expression s is the proper time of the electron and pμ(s) its kinetic momentum.
Integrating Eq. (2.11) together with the electron’s initial momentum pi and position
xi then yields the classical trajectory of the electron subjected to the electromagnetic
field in question. To be able to show a specific example, however, we first have
to specify the coordinate frame, in which we wish to investigate the interaction.
We introduce the reference frame, in which we will observe the interaction of a laser
pulse with an electron throughout this thesis in Fig. 2.1. We are going to consider the
laser’s propagation and polarization axes to be the z- and x-axis, respectively. This
corresponds to the representations kL = (0, 0, 1) and εL = (1, 0, 0). The coordinate
frame will be chosen such that the electron is initially counterpropagating to the laser
pulse (pi = εi(0, 0,−βi)), where βi is the electron’s initial velocity. The observation
direction of the electron radiation, observed in this reference framewill be denoted by
a direction vector n1 = (sin(ϑ1) cos(ϕ1), sin(ϑ1) sin(ϕ1), cos(ϑ1)), where ϑ1 is the
angle between n1 and nL andϕ1 is the angle between n1 and the x-z plane. Exemplary
electron trajectories, obtained via numerical integration of Eq. (2.11) and observed
in a reference frame according to Fig. 2.1, are shown in Fig. 2.2. The trajectory
inside a circularly polarized laser wave in Fig. 2.2b is shown for mere comparison,
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Fig. 2.1 Generic choice for the reference frame the scattering will be observed in

Fig. 2.2 Classical trajectories of an electron colliding head on with a laser pulse. a Exemplary
electron trajectory for propagation in a linearly polarized laser beam.bExemplary electron trajectory
for propagation in a circularly polarized laser beam

as we are going to consider exclusively linearly polarized laser pulses in this work.
As seen in Fig. 2.2a, in this case the classical trajectory is confined to the kL-εL-
plane. It is then sufficient to give the two dimensional electron trajectory within
this plane to fully describe the electron’s classical dynamics. From here on we will
adopt this simplified visualization scheme in the course of this work. Please note
that by employing Eq. (2.11) in this work, we are going to neglect any influence of
the electron’s self-field on its own dynamics. Such radiation reaction, however, was
shown to possibly significantly influence the dynamics [4], and is a matter of intense
scientific discourse [5–7].

Solving Eq. (2.11) results in a given trajectory for the electron rμ(t) = (t, r(t))
with a velocity uμ(t) = ∂srμ(t) = γ(t)βμ(t), where γ(t) = ε(t)/m is the electron’s
relativistic factor, s its proper time and βμ(t) = (1,β(t)). From this quantity one
defines the classical charge current of an electron jμ(x) = eβμ(t)δ(x−r(t)). The elec-
tron’s emission can then be computed by means of the Lienard Wiechert potentials
[1, 8]. According to this formalism the energy emitted by an accelerated point-like
electron into the observation direction n per unit frequency and solid angle element
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is given by

dE

dωd�
= e2ω2

4π2

∣∣∣∣∣∣
∞∫

−∞
dt n × (n × β(t)) eiω (t−nr(t))

∣∣∣∣∣∣
2

. (2.12)

The integrand is simplified through

n × (n × β(t)) = n (nβ(t)) − β(t). (2.13)

To simplify the term containing the factor nβ(t) one writes

∞∫
−∞

dt (1 − nβ(t)) eiω (t−nr(t)) =
∞∫

−∞
dt

(
d

dt

eiω
∫ t
−∞ dt′ (1−nβ(t′))

iω

)
= 0. (2.14)

The transformed integral has to vanish since its integrand is the total differential of an
expression, which does not contribute at t = ±∞. Hence, for Eq. (2.12) one obtains

dE

dωd�
= e2ω2

4π2

∣∣∣∣∣∣
∞∫

−∞
dt (n − β(t))eiω (t−nr(t))

∣∣∣∣∣∣
2

. (2.15)

Taking the square in this expression results in

dE

dωd�
= e2ω2

4π2

∞∫
−∞

dtdt′ (1 − nβ(t) − nβ(t′) + β(t)β(t′))

× eiω (t−nr(t))eiω (t′−nr(t′))

= e2ω2

4π2

∞∫
−∞

dtdt′ (β(t)β(t′) − 1)eiω (t−nr(t))eiω (t′−nr(t′)), (2.16)

where, for obtaining the second line, Eq. (2.14) is used. Now, Eq. (2.16) is easily
written in a covariant form, recalling the four velocity uμ(t) = pμ(t)/m. Plugging this
into Eq. (2.16) we find the covariant expression [9]

dE

dωd�
=e2ω2

4π2

∣∣∣∣∣∣
∞∫

−∞
dt

pμ(t)

ε(t)
eikr(t)

∣∣∣∣∣∣
2

, (2.17)
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where we defined kμ = ω(1, n) in the exponential. Please note that the appearance
of ε(t) does not make this expression change under Lorentz transformation since it
is integrated over the time t, which compensates the transformation of the energy.

We finally wish to discuss some qualitative features of the angular and frequency
distribution that is expected in the radiation from an electron scattered from a laser
field (see [1, 8]). The former distribution is dominated by the properties of the
Lorentz transformations, as we wish to briefly sketch. Consider an electron which
propagates with the instantaneous velocity four vector βμ = (1, 0, 0,βz), observed
in a laboratory frame according to Fig. 2.1. In a reference frame, copropagating with
the electron at βz, the radiation emitted by the electron will feature a wave vector
k′μ = ω′(1, sin(ϑ′), 0, cos(ϑ′)), where ϑ′ is the angle between k′ and the negative
z-axismeasured in the copropagating reference frame.Additionally the perpendicular
axes are chosen such that the emission is confined to the x-z-plane. Transforming
this four vector into the laboratory frame, where the emitted radiation is observed,
one obtains

kμ = ω

⎛
⎜⎜⎝

1
sin(ϑ)

0
cos(ϑ)

⎞
⎟⎟⎠ = ω′

m

⎛
⎜⎜⎝

ε(1 + βz cos(ϑ′))
m sin(ϑ′)

0
ε(βz + cos(ϑ′))

⎞
⎟⎟⎠ , (2.18)

where ε is the electron’s energy, measured in the laboratory frame. The angle between
the wave vector and the electron’s propagation direction in the laboratory frame thus
becomes

sin(ϑ) = m

ε

sin(ϑ′)
(1 + βz cos(ϑ′))

∼ m

ε
(2.19)

One concludes that the emission of an electron in highly relativistic motion (ε � m)
is confined to a narrow cone of opening angle �ϑ ∼ m/ε around its velocity vector
at the time of emission. Any observer detecting the emission from the electron will
then detect only a short burst of radiation, whenever the electron’s velocity points
into his observation direction. Over such short times the change of the electron’s
propagation direction can be approximated by a circular orbit with the instantaneous
radius of curvature ρ. The time in the highly relativistic electron’s rest frame, over
which its emission cone will accordingly illuminate a detector, then scales as

�s ∼ mρ

ε
. (2.20)

The transformation of this illumination time to the observation time t, measured in
the laboratory in which the radiation is observed, requires the Lorentz transformation
factor

dt

ds
= 1 − nβ ∼

(m

ε

)2
, (2.21)



28 2 Interaction of Electrons with Laser Fields

wheren again is a unit vector, pointing along thedirectionof observation.A laboratory
detector will thus detect a radiation flash of the approximate duration

�t ∼ ρ
(m

ε

)3
, (2.22)

whenever the electron points in its direction. According to the general theory of
Fourier transformation, a field flash of such short duration has to contain frequencies
up to

ωc ∼ 1

ρ

( ε

m

)3
. (2.23)

One thus expects the radiation of an electron scattered by an intense laser pulse to
scale as the cube of its instantaneous energy.

2.1.1 Electron Radiation in a Plane Wave

The classical equation of motion was solved analytically for the momentum in the
case of an electronmoving in a planewave laser field exactly by solving theHamilton-
Jacobi equation [10–12] as well as by direct integration [13, 14]. In the former case
the phase dependent position of the electron is found directly as derivative of the
action (or alternatively principal function) of an electron entering a plane wave field
Aμ

L(η) with a momentum pi = p(η → −∞) [1]

Spi(x) = −pix −
η∫

0

dφ

(
e

piAL(φ)

pikL
− e2A2

L(φ)

2(pikL)2

)
. (2.24)

In the latter approach it is obtained by another integration of the equation of motion
(2.11) and uμ(t) = drμ(t)/ds. An advantage of the latter computation is that its results
are given in an explicitly covariant manner which is why we sketch this way of
solving the classical equations of motion. As a first step we note that for a plane
wave electromagnetic field the field strength tensor satisfies Fμν

L (η) = kμ
L ∂ηAν(η)−

kν
L∂ηAμ(η). From the classical equation of motion (2.11) one concludes

dpμ(s)

ds
= e

m

(
kμ

L (ALp(s)) − Aμ
L(p(s)kL)

)
∂ηψA(η). (2.25)

Multiplying Eq. (2.25) with the constant plane wave’s wave vector we conclude

d(p(η)kL)

ds
= 0, (2.26)
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where we utilized the gauge condition kLAL = 0 and whence we conclude that
p(s)kL = pikL is a constant of motion and can thus be set to its initial value. Further-
more, for the laser’s invariant phase one finds

dη

ds
= kμ

L
dxμ

ds
= pikL

m
. (2.27)

It is then advantageous to parameterize the electron’s kinetic momentum by η and
one can change the variable in Eq. (2.25) according to

dpμ(η)

dη
= ds

dη

dpμ(s)

ds

= e

pikL

(
kμ

L (ALp(η)) − Aμ
L(pikL)

)
∂ηψA(η). (2.28)

Multiplying Eq. (2.28) with the constant plane wave’s amplitude vector Aμ
L we find

d(ALp(η))

dη
= −eAμ

L∂ηAμ
L(η)

⇒ (ALp(η)) = (ALpi) − eA2
LψA(η). (2.29)

Inserting now Eq. (2.26) and (2.29) into Eq. (2.28) we find

dpμ(η)

dη
= e

(
kμ

L

(ALpi) − eA2
LψA(η)

pikL
− Aμ

L

)
∂ηψA(η), (2.30)

which is readily integrated to give the covariant form of an electron’s momentum in
the presence of a plane wave laser field as

pμ(η) = pμ
i − eAμ(η) + kμ

L

[
e

piAL(η)

pikL
− e2A2

L(η)

2(pikL)

]
(2.31a)

rμ(η) = ri +
η∫

−∞
dη′ pμ

i − eAμ(η′)
pikL

+ kμ

η∫
−∞

dη′ e(AL(η′)pi) − e2A2
L

2

(pikL)2
. (2.31b)

The latter line is obtained by a direct integration of the former analogous to Eq. (2.28).
The results of [11, 12], in contrast to Eqs. (2.31a) and (2.31b), are given in a chosen
reference frame but their generalization to a covariant form is straightforward and
the results agree with Eqs. (2.31a) and (2.31b), as it must be.

To find now the classical emission formula for an electron moving in a plane wave
field, these solutions are inserted into Eq. (2.17). To simplify the exponential phase,
one writes it in the form
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k1r(t) =
t∫

−∞
dt′kμ

1
uμ

γ(t′)
=

η∫
−∞

dη′ dt′

dη′ kμ
1

pμ

mγ(t′)
. (2.32)

Now one may use the relation between the invariant phase of the incident laser pulse
and the laboratory time

dη

dt
= kμ

L
drμ(t)

dt
= kμ

L
pμ(t)

mγ(t)
. (2.33)

The numerator in this expression is given by the constant of motion k+
L p−

i . Inserting
furthermore Eqs. (2.31a) and (2.31b) we find

k1r(t) = kμ
1

pikL

η∫
−∞

dη′pμ(η′)

=
η∫

−∞
dη′ k1pi

pikL
− e

k1AL

pikL
ψA(η′) − e2A2

L(k1kL)

2(pikL)2
ψ2
A(η′). (2.34)

Finally, since it is customary to formulate all quantities in the interaction with a plane
wave as functions of the wave’s invariant phase η or equally the light-cone coordinate
x−, by virtue of Eq. (2.33) we reformulate Eq. (2.17) to yield

dE

dωd�
= e2ω2

4π2p− 2
i

∣∣∣∣∣∣
∞∫

−∞
dx−pμ(x−)eik1r(x−)

∣∣∣∣∣∣
2

. (2.35)

2.1.2 Interaction with a Monochromatic Plane Laser Wave

If the temporal duration of a laser pulse τL is much larger than its cycle periodω−1
L , its

spectrum will be very narrowly confined around ωL . It is then a good approximation
to model the spectrum as monochromatic, i.e. by a δ-spike in frequency space. The
temporal structure of this type of fields is strictly periodic and allows for significant
simplifications in the calculations. For instance, the trajectory of an electron inside a
monochromatic planewavefield, reduces to a simple form.Observing it in a reference
frame, in which the electron is on average at rest, it moves on a trajectory with a
well-known figure-8 shape [11, 12]. Due to this strictly monochromatic motion, the
computation of the energy spectra can be largely simplified and central features of
a QED computation of the scattering from a monochromatic laser field are already
found in this classical analysis.
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The following discussion largely follows [15] and summarizes the results of that
work. For reasons of convenience and without loss of generality, however, we will
analyze the interaction in a reference framewhere the laserwave propagates along the
positive z-direction (kL = ωL(0, 0, 1)) and the electron’s energy and velocity in the
absence of the field reduce to the free values εi and βi = βi(0, 0,−1), respectively.
It was shown that in such a reference frame for a monochromatic laser field of the
form Aμ

L(η) = ALε
μ
L cos(η) Eq. (2.17) can be written as

dE2

dωd�
= e2ω2

4π2

[
(1 − n2x)K

2
x − 2nxnyKxKy + (1 − n2z )K

2
z

]
(2.36)

where ni are the components of the vector n pointing in the observation direction
and it was defined the vector function

K =
∞∫

−∞
dη

dr(η)

dη
exp

[
i
ω

ωL
(η + ωL(z − nr(η)))

]
. (2.37)

For the assumed monochromatic potential the trajectory, given by the spatial com-
ponents of Eq. (2.31b), is found to be

r(η) = aη + b sin(η) + c sin(2η), (2.38)

where the following constant vectors are defined

a = 1

ωL

[(
mξ

2εi

)2 nL

(1 − nLβi)
2 + βi

(1 − nLβi)

]
(2.39a)

b = εL

mξ
εi

ωL(1 − nLβi)
(2.39b)

c = kL

(
mξ
2εi

)2
2(ωL(1 − nLβi))

2 . (2.39c)

The exponential factors in Eq. (2.37) containing trigonometric functions can then be
transformed to Bessel functions of integer order Jn via their generating function

eiu sin(η) =
∞∑

n=−∞
Jn(u)einη. (2.40)

This relation has been widely employed in problems involving intense
monochromatic laser fields [11] and also takes an important role in respective
QED analyses to assign photon numbers to an actually unquantized laser field [16].
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The resulting expression of the integrals K then allows to perform the integration in
η, yielding δ-functions of the form

K ∝
∞∑

n=−∞
. . . δ

(
ω − n

ωL

1 − a(n − nL)

)
. (2.41)

The explicit form of the integrals is rather involved [15] but is not needed here.
Taking the square of this δ-function, as is required for evaluating Eq. (2.36), by usual
methods employed in S-Matrix calculations one obtains an expression for the overall
emitted power in the form

dP

d�
∝

∞∑
n=0

dP(n)

d�
. (2.42)

The nth term in this series represents the power emitted into the nth harmonic, whose
frequencies according to the conservation law of Eq. (2.41) are equidistantly distrib-
uted and given by

ωn = n
ωL

1 − ωLa(n − nL)
. (2.43)

This result is not equivalent to Eq. (1.8), because of the radiation pressure of the laser
field, which may reduce the Doppler shift. In fact, we note that in the limit ξ → 0
Eq. (2.43) for n = 1 goes over to the expression

ω = ωL
(1 − nLβi)

(1 − nLβi) − βi(n − nL)
= ωL

1 − nLβi

1 − nβi
, (2.44)

which in fact is equivalent to the ordinary Doppler shift of Eq. (1.8). This result
of the scattered harmonic frequencies alongside the utilization of the generating
function of the Bessel functions according to Eq. (2.40) will enable us to compare
the presented classical calculations to the QED analyses for monochromatic laser
waves (see Eq. (2.40)).

2.1.3 Interaction with a Focused Laser

The assumption of plane wave, though often justified to a good extent, is never
complete [17]. This is easily seen by recalling that any function f (t − x‖), where
x‖ is the propagation direction of the laser, is a plane wave solution of the wave
equation Eq. (2.3). This solution, however, does not feature a dependence on the two
transversal coordinates x⊥. Consequently, at every phase value η = kLx the field is
constant in a plane stretching infinitely in the x⊥-plane (hence the label plane wave).
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Fig. 2.3 Gaussian beam focus in a coordinate system according to Fig. 2.1

Though this is of course, rigorously speaking, unphysical, in many cases it is still a
valid approximation, as we will see. To treat a laser beam consistently, however, it
would much rather be necessary to include the natural transversal extent of the beam.
The standard formalism of describing the field distribution of a monochromatic laser
wave focused to a perpendicular spot size w0 (see Fig. 2.3) is due to Davis [18].
Once analytic expressions for the laser fields are found, it is a straightforward task
in classical electrodynamics to obtain the electron’s trajectory from Eq. (2.11) and
thus via Eq. (2.17) its emission pattern. We wish to briefly sketch the concept of this
treatment. Assume the laser pulse’s vector potential to be given by

Aμ
L(x) = ALε

μ
L�L(x)e−ikLx + ε

μ
φφ(x). (2.45)

In this expression the space dependent factor �L(r) is introduced to describe the
spatial focusing of the laser pulse, εμ

L = (0, εL) is the well known polarization vector
of the laser pulse and εφ = (1, 0, 0, 0) denotes that the second term introduces a
nontrivial scalar potential into Aμ

L(x). One can no longer assume the vector poten-
tial to be purely spatially polarized, since the Lorenz gauge condition could not be
fulfilled in that case. To circumvent this difficulty it is customary to incorporate a
nonzero scalar potential, as indicated in Eq. (2.45). The introduced scalar potential
is connected with the spatial components of Aμ

L(x) via the Lorenz gauge condition

∂tφ(x) = ∇
(

ALεL�L(x)e−ikLx
)
. (2.46)

Thus, the four potential still obeys the Lorenz gauge condition ∂μAμ
L(x) = 0. Due to

Eq. (2.46) the problem is fully determined if we find a solution of the wave equation
for the spatial vector potentialAL(x).Wewill thus restrict the following discussion to
this quantity. The electric and magnetic fields, derived from Eq. (2.1), then of course
also are no longer linearly polarized, but will exhibit longitudinal field components,
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typical of a focused beam. Inserting Eq. (2.45), the Lorenz gauge wave equation
�AL(x) = 0 reduces to

∇2�L(x) − 2iωL
∂�L(x)

∂x‖ = 0. (2.47)

Solving Eq. (2.47) exactly for�L(x)would mean to find the class of electromagnetic
potentials, that vary in time like e−iωLt and fulfill the wave Eq. (2.3). Unfortunately
such a complete solution has not been reported up to today, whence a perturbative
ansatz for Eq. (2.47) is called for. Such an ansatz is found from the consideration that
a laser beam cannot be focussed to spot sizes w0 smaller than its central wavelength
λL = 2π/ωL < w0. A dimensionless and always small parameter, characterizing the
focusing of the laser beam, is then given by

sL = 1

ωLw0
= λL

2πw0
. (2.48)

In addition to this perpendicular confinement, a laser focus also exhibits a character-
istic longitudinal spreading length lR = w0/sL = ωLw2

0, often called Rayleigh length.
At a distance z = lR/2 from the focal plane the laser’s intensity has dropped to half
its value at z = 0, whence lR is often referred to as the longitudinal extent of the
focal spot. It is then useful to transform Eq. (2.47) to the dimensionless variables
ρ = (ρ‖, ρ⊥

1 , ρ⊥
2 ) with ρ‖ = x‖/lR and ρ⊥ = x⊥/w0, resulting in

(
∂2

∂2ρ⊥
1

+ ∂2

∂2ρ⊥
2

)
�L(ρ) + s2L

∂2�L

∂ρ‖2 − 2i
∂�L(ρ)

∂ρ‖ = 0. (2.49)

From this equation we can guess the correct way of a perturbative ansatz for the
solution. In fact, assuming that the focus parameter would vanish (sL = 0), Eq. (2.49)
is solved by the function [18]

�0
L(ρ) =

(
w2
0

w2(ρ‖)
+ i

lR
2R(ρ‖)

)
exp

[
−

(
w2
0

w2(ρ‖)
+ i

lR
2R(ρ‖)

)
ρ2⊥

]
, (2.50)

where the following definitions are used

w(ρ‖) = w0

√
1 + 4ρ‖2 (2.51a)

R(ρ‖) = lRρ‖
(
1 + 1

4ρ‖2

)
. (2.51b)

FromEq. (2.50)we readoff thatw(ρ‖)gives the perpendicular extent of the laser focus
in dependence of the longitudinal position (note that at |ρ⊥| = w(ρ‖) the function
�0

L(ρ) is always damped by at least a factor e−1). The factor R(ρ‖) gives the radius
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of curvature of the non-plane wavefront going through the laser-axis at x‖ = lRρ‖.
The meaning of the quantity lR is also apparent. Its half (corresponding to ρ‖ = 1/2)
indicates the distance from the origin ρ‖ = 0 along the laser’s propagation direction,
after which the focus’ perpendicular extent has increased to w(ρ‖ = 1/2) = √

2w0,
as indicated in Fig. 2.3. In this sense lR can be interpreted as a measure of the overall
longitudinal extent of the laser focus. Having now found a lowest order perturbative
solution ofEq. (2.49)we can readily guess the proper formof a perturbative expansion
of the complete focusing function to be [18]

�L(ρ) =
∞∑

n=0

s2n
L �2n

L (ρ). (2.52)

Inserting this ansatz into Eq. (2.49) we find as determining equation for the second
term in this series(

∂2

∂2ρ⊥
1

+ ∂2

∂2ρ⊥
2

− 2i
∂

∂ρ‖

)
�2

L(ρ) = −∂2�0
L(ρ)

∂ρ‖2 , (2.53)

and all higher orders accordingly. From the thusly found vector potential Eq. (2.45)
it is simple to derive the electromagnetic field strength tensor Fμν

L (x) and hence, via
e.g. numerical integration of Eq. (2.11), an electron’s trajectory in the focused laser
beam (compare Fig. 2.2). The procedure just outlined, however, is not applicable for
pulsed laser fields, since it is found assuming a time variation of the form e−iωLt

for all times t ∈ [−∞,∞] with a fixed laser frequency ωL . To describe a focused
laser pulse the ansatz for the spatial vector potential of Eq. (2.45) can be modified
according to [17]

AL(x) = g(η)εL�L(x)e−ikLx, (2.54)

where the function g(η) is used to introduce an arbitrary temporal shaping of the
laser pulse, depending only on the invariant phase η = ωL(t − x‖). The determining
equation for the focusing function then turns into

∇2�L(x) − 2iωL
∂�L(x)

∂x‖

(
1 − i

∂ηg(η)

g(η)

)
= 0. (2.55)

It is then usual to assume, that the envelope function’s derivative is small compared
to its function value ∂ηg(η) � g(η), which is a valid approximation for a long laser
pulse. This is also called slowly varying envelope approximation [19, 20]. For the case
of few-cycle laser pulses, however, the approximation of a slowly varying envelope
is not a good one. In fact, for few-cycle laser pulses, which are well described
by the model Eq. (2.6) we find the assumedly small fraction to be ∂ηg(η)/g(η) =
−(2cot(η/2nC))/nC ∝ n−1

C . For nC ∼ 1, corresponding to a few-cycle laser pulse, this
quantity is non-negligible, and for η → 2πnC it even diverges. Consequently, for
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few-cycle pulses a new approximation scheme is called for, to describe a focused
laser pulse.

To properly account for spatial focusing of a few-cycle laser pulse we propose a
scheme which is based on the idea to impose a spatial focusing on a previously plane
wave laser potential. Before doing so, however, we suggest to decompose the plane
wave potential into its Fourier components and then consider the focusing of each
separate (monochromatic) mode to the same focal spot size. In spirit of this idea, we
note that any shape function which vanishes outside of a finite interval [0, τL] has a
finite Fourier sum according to

ψA(η) =
N∑

n=−N

cne
in ω0(t−x‖) (2.56)

with the fundamental frequency ω0 = 2πωL/τL. The factors cn are the usual Fourier
series coefficients

cn = 1

τL

τL∫
0

dη ψA(η)e−inω0η/ωL . (2.57)

From here on we will outline the proposed method for the specific model of a
few-cycle pulse Eq. (2.6) and we note that in this case it is τL = 2πnC and we
thus find the simple relation ω0 = ωL/nC . Employing Eq. (2.56) instead of Eq. (2.54),
the ansatz for the vector potential becomes

AL(x) = εL

N∑
n=−N

cn�L,n(x)ein ω0(t−x‖). (2.58)

Plugging this expression into the wave equation we arrive at a differential equation
for the determination of the �L,n(x) analogous to Eq. (2.47)

N∑
n=−N

cn

(
∇2�L,n(x) − 2i

(
n
ωL

nC

)
∂�L,n(x)

∂x‖

)
= 0. (2.59)

Since the separate frequency components represented by the single terms of this
series do not mix, a solution of the above equation can be readily written down in
terms of solutions of Eq. (2.47). We accordingly find that the focusing functions for
the Fourier modes of the vector potential Eq. (2.58) are given by

�0
L,n(ρn) =

(
w2
0

w2
n(ρ

‖
n)

+ i
lR,n

2Rn(ρ
‖
n)

)
exp

[
−

(
w2
0

w2
n(ρ

‖
n)

+ i
lR,n

2Rn(ρ
‖
n)

)
ρ2⊥

]
. (2.60)
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(a) (b)

Fig. 2.4 Fourier frequency component foci of a pulse derived from insertingEq. (2.6) into Eq. (2.56)
for nC = 2. The only non-vanishing Fourier components are n = 1 (blue), n = 2 (red), n = 3
(green), n = 4 (gray). a Surfaces of constant w(ρ‖), all coinciding with w0 at ρ‖ = 0. b Surfaces
of constant intensity, all featuring the same peak intensity

It is now essential that for all n the same w0 enters the equation, corresponding
to a focusing to the same spot size. The definitions of the remaining variables are
analogous to the presented monochromatic analysis

lR,n = n
ωL

nC
w2
0

ρ‖
n = x‖

lR,n

wn(ρ
‖
n) = w0

√
1 + 4ρ‖

n
2

Rn(ρ
‖
n) = lR,nρ

‖
n

(
1 + 1

4ρ‖
n
2

)
.

The computation of higher order terms is carried out according to Eq. (2.53).
Essentially the found behaviour is explained by the observation that the focusing to
a Gaussian beam is a linear operation on the laser field and doesn’t mix its frequency
components. Accordingly one can picture the focused laser beam as a superposition
of frequency components focused to the same focal spot as sketched in Fig. 2.4. We
wish to point out that Eqs. (2.58) and (2.60) are exact in the temporal focusing of the
plane wave field. There was no need for a slowly varying envelope approximation
∂ηg(η)/g(η) � 1. In such a short laser pulse, focussed to small spot sizes, the classical
electron trajectory may be significantly changed, as can be traced in Fig. 2.5, where
we show the trajectory only within the εL-kL plane, as was motivated below Fig. 2.2.
From that figure we also conclude that the plane wave approximation gives useful
results for the trajectory already for a focusing as small as w0 ≥ 2λL.
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Fig. 2.5 Trajectories of an
electron colliding head on
with a laser pulse with shape
derived from Eq. (2.6) with
nC = 2 and central wave-
length λL = 800 nm for
a focusing of w0 = 2λL
(red), w0 = λL (green) and
w0 = λL/2 (blue, corresponds
to a focal spot size of λL). For
comparison the plane wave
trajectory is shown in gray
dashes

p ikL

pol[arb.units]

[arb.units]

2.2 Quantum Electrodynamics

It is in order to shortly review the fundamental concepts of QED. The basic concept
of this highly successful theory is, that all electrically charged elementary particles,
as well as the gauge particles mediating the electromagnetic interaction between
them, have to be interpreted as excitations of quantum fields. The fundamental quan-
tity of the accordingly required field theory for the coupling of a charged spinor
field �(x) with an electromagnetic potential Aμ(x) is the Lagrangian of quantum
electrodynamics [21, 22]. The Lagrangian is not unique, since due to gauge invari-
ance several expressions will lead to equivalent equations of motion of the described
fields. One may take advantage of this freedom and employ an expression of the
QED Lagrangian, which circumvents several problems such as the vanishing of the
conjugate momentum of the photon field [23, 24]. To enable a canonical quantization
scheme for the photon field, we will employ the so-called Fermi-Lagrangian [25] for
its description, turning the QED Lagrangian into the expression

LQED = �(x) (i /D − m) �(x) − 1

8π
∂νAμ(x)∂μAν(x). (2.61)

Here Dμ(x) = ∂μ + ieAμ(x) is the so-called gauge covariant derivative [22]. The
equations of motion for the involved fields�(x) ∈ [

�(x),�(x), Aμ(x)
]
are obtained

as extremal points of the variation of the action with respect to the corresponding
fields, as is usual inLagrangianfield theory, resulting in theEuler-Lagrange equations

∂μ

(
∂L

∂(∂μφ(x))

)
− ∂L

∂φ(x)
= 0. (2.62)
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This procedure results in the Dirac equation and its conjugate for the spinor field, its
conjugate and the photon field, respectively [26]

(i /D(x) − m)�(x) = 0 (2.63a)

�(x)(i /D(x) + m) = 0 (2.63b)

�Aμ(x) = 4πejμDirac(x) = 4πe�(x)γμ�(x). (2.63c)

Given in this form the fields �(x),�(x), Aμ(x) are classical unquantized quanti-
ties. Since one is now interested in a relativistic theory of interacting particles, one
naturally has to consider a multi-particle theory, since particles may be created or
annihilated taking or providing the amount of energy corresponding to their rest
masses, respectively [22]. The fields will then be represented by operators, acting on
a space of physical quantum states, representing the number of existing particles. To
quantize the theory one introduces conjugate momenta for the fields according to

π�(x) = ∂L
∂(∂t�(x))

= i�(x)γ0 = i�†(x) (2.64a)

π�(x) = ∂L
∂(∂t�(x))

= 0 (2.64b)

π
μ
A(x) = ∂L

∂(∂tAμ(x))
= − 1

4π
∂tA

μ(x). (2.64c)

The problem that in these equations the conjugate momentum of the conjugate spinor
field � vanishes, can be resolved by symmetrizing the Lagrangian (2.61) and does
not cause any particular difficulties [21]. The Hamiltonian of the theory is formed in
the standard way

H(t) =
∫

dx
(
π�(x)∂t�(x) + π

μ
A(x)∂tAμ(x) − L(�(x),�(x), Aμ(x))

)
= HDirac(t) + HMaxwell(t) + Hint(t), (2.65)

HDirac(t) =
∫

dx �(x)(−iγ∇ + m)�(x)

HMaxwell(t) = 1

8π

∫
dx

(−π
μ
A(x)πA,μ(x) + ∂νAμ(x)∂μAν(x)

)
Hint(t) = e

∫
dx jμDirac(x)Aμ(x).

To now quantize the theory one interprets the above fields, as well as the derived
Hamiltonian, as Schrödinger picture operators, indicated by a superscript S, and
subjects them to the anti-commutation and commutation relations for the fermionic
and bosonic fields, respectively
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[
�̂S

r (x), �̂S†
q (x′)

]
+ = δrqδ

(3)(x − x′) (2.66a)[
ÂSμ(x), π̂Sν

A (x′)
]
− = igμνδ(3)(x − x′) (2.66b)[

�̂S
r (x), �̂q(x′)

]
+ =

[
�̂S†

r (x), �̂S†
q (x′)

]
+ = 0[

ÂSμ(x), ÂSν(x′)
]
− =

[
π̂

Sμ
A (x), π̂Sν

A (x′)
]
− = 0.

where we have written the spin indices of the spinor fields �̂S, �̂
S
explicitly. In the

Schrödinger picture operators do not carry a dynamic time dependency, whence the
time dependency in Eq. (2.65) can be only due to an explicitly time dependent field,
as e.g. an external electromagnetic current. The dynamical evolution of quantum sys-
tems is governed by the evolution of the quantum states, which obey the Schrödinger
equation

i
d

dt

∣∣�, A; (t)〉S = ĤS
∣∣�, A; (t)〉S, (2.67)

where ĤS is the Schrödinger picture Hamiltonian from Eq. (2.65), with the entering
fields understood as operators. For the sake of simplicity we do not consider an
explicit time dependence of the Hamiltonian. Eq. (2.67) can formally be integrated
by defining a time evolution operator

∣∣�, A; (t)〉S = ÛS(t, t0)
∣∣�, A; (t0)〉S (2.68)

ÛS(t, t0) = T̂ exp

⎡
⎣−i

t∫
t0

dtĤS

⎤
⎦ , (2.69)

where T̂ denotes time ordering [21, 25]. Even thoughwe do not consider an explicitly
time dependent Hamiltonian at this point, we introduce this general notion already
for later convenience. For Eq. (2.69), however, no exact solution is known. It is thus
customary to transform the quantum states and operators to the interaction picture
of quantum dynamics. To this end one splits up the full Hamiltonian into its free and
its interaction part

ĤS = ĤS
0 + ĤS

int (2.70a)

ĤS
0 = ĤS

Dirac + ĤS
Maxwell. (2.70b)

The transition from the Schrödinger to the interaction picture is accomplished by the
unitary transformation
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ÔI(t) = ÛS†
0 (t, t0)ÔSÛS

0 (t, t0) (2.71a)∣∣�, A; (t)〉I = ÛS†
0 (t, t0)

∣∣�, A; (t)〉S (2.71b)

ÛS
0 (t, t0) = T̂ exp

⎡
⎣−i

t∫
t0

dtĤS
0

⎤
⎦ , (2.71c)

where the superscript I denotes states and operators in the interaction picture. In
this picture both states and operators carry a dynamic time evolution, however, with
different governing equations. For the evolution of states in the interaction picture, we
find a Schrödinger-type, whereas the time dependence of the operators is determined
by a Heisenberg-type equation

i
d

dt
ÔI(t) =

[
ÔI , ĤI

0

]
(2.72a)

i
d

dt

∣∣�, A; (t)〉I = ĤI
int

∣∣�, A; (t)〉I . (2.72b)

We note that due to the transformation law (2.71a) it holds ĤI
0 ≡ ĤS

0 . Evaluating
Eq. (2.72a) for the field operators �̂(x) and Âμ(x) we recover wave equations for-
mally equivalent to the classical equations of motion for the field modes Eqs. (2.63).
To describe all degrees of freedom of the theory, we have to expand the full field
operator in a complete basis of solutions of the wave equation with operator-valued
coefficients. We have to pay attention that the wave Eqs. (2.63) allow positive and
negative energy solutions for the photon and the spinor fields (see Appendix B).
Both contributions have to be included in a complete basis, whence the expanded
field operators read

Âμ(x) =
∫

dk
[
âkAμ

k (x) + â†kA∗μ
k (x)

]
(2.73a)

�̂(x) =
∫

dp
[
ĉp�p(x) + d̂†

p�−p(x)
]

(2.73b)

�̂(x) =
∫

dp
[
ĉ†p�p(x) + d̂p�−p(x)

]
. (2.73c)

In this expression Aμ
k (x) are the solutions of the photon field wave equation to the

spatial wave vector k and âk, â†k are creation and annihilation operators of this field
mode. In the fermionic field operators �±p(x) and �±p(x) are positive and negative
energy solutions of the free wave equation for the fermionic fields to the spatial
momenta ±p and the coefficients ĉp and ĉ†p (d̂p, d̂†

p ) are the according electronic
(positronic) creation and annihilation operators, respectively.

The Schrödinger-type Eq. (2.72b), governing the time evolution of quantum states
in the interaction picture, can be formally integrated out, in analogy to Eq. (2.68),
yielding an explicit time evolution of the form
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∣∣�, A; (t)〉I = ÛI(t, t0)
∣∣�, A; (t0)〉I (2.74)

ÛI(t, t0) = T̂ exp

⎡
⎣−i

t∫
t0

dtĤI
int

⎤
⎦ ,

Although also for Eq. (2.74) no closed analytical solution has been found so far,
this type of time evolution is well suited for a perturbative approach, due to the
smallness of the coupling constant |e| ≈ 137−1/2 at low energies (recall Hint ∝ e). In
fact, it is possible to truncate the exponential series, as which the operator ÛI(t, t0)
is defined, at a desired order of accuracy of perturbation theory. Every interaction
between the fermionic and photon fields is then treated as a small perturbation of
the free theories. The result of this procedure are the well-known Feynman diagrams
of free QED (see Sect. 2.2.2 and [21, 22]). As a fixed basis for the space of states
evolving according to Eq. (2.74), one chooses the Fock representation, with each
state

∣∣ . . . nk . . . ; . . . np . . . 〉 corresponding to a given number of photons nk in the
momentum mode k and a number of massive fermions np in the mode p. The ground
state of this basis is then the vacuum state

∣∣0〉 defined by the action of the field
annihilators on it

âk
∣∣0〉 = ĉp〈|0〉 = d̂p

∣∣0〉 = 0. (2.75)

A particular Fock state representing l k-mode photons and m(n) electrons with
momentum pe− (positrons with momentum pe+), is then formed from this vacuum
state by the action of field construction operators on it

∣∣lγk . . . ; . . . mpe− . . . ; . . . npe+ 〉 ∝
(

â†k

)l
. . .

(
ĉ†pe−

)m
. . .

(
d̂†

pe+

)n
. . .

∣∣0〉. (2.76)

2.2.1 Quantization in the Presence of a Strong External Field

A perturbative expansion, as outlined in the last section is no longer possible, if
the coupling between the spinor and the electromagnetic fields, mediated by the
coupling term−e

∫
dt jμAμ in the Lagrange function (2.61), can no longer be treated

as a small perturbation. As was pointed out in Chap.1, the expansion parameter of
the perturbation series of the interaction between an electron and several photons
from a strong laser field is the intensity parameter ξ. Hence, a laser field exceeding
ξ � 1 cannot be accounted for perturbatively. Similarly, there are other strong fields
imaginable, that do not lend themselves to a perturbative treatment. In this case the
spinor field has to be quantized in the presence of the electromagnetic background
field. This task is canonically reached by investigating the quantum dynamics in the
so-called Furry picture of quantum dynamics [21, 24, 27]. We will see, however,
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that large bits of the simpler discussion of the free theory still maintain their validity
with slightly changed definitions

The essential concept of the Furry picture is to employ a split up of the
QED-Hamiltonian differing from Eq. (2.70). To this end, one takes advantage of
the physical fact, that electromagnetic fields, which are sufficiently strong to render
the perturbative approach disfavorable, usually fulfill two assumptions: All pho-
tons in the field stem from one coherent source, realized by e.g. an atomic nucleus
or a laser field. Secondly due to the tremendous photon-flux densities present in
high-intensity laser fields, these fields can be treated as unquantized, neglecting the
single photons’ quantum dynamics. To obtain the Furry picture one can then split up
the electromagnetic potential entering the Hamiltonian Eq. (2.65) into two separate
components

Aμ(x) = Aμ
ext(x) + Aμ

rad(x), (2.77)

whereAμ
ext(x) is the explicitly time dependent strong external electromagnetic poten-

tial. To treat the potential Aμ
ext(x) as an unquantized field, one must not raise it to an

operator level and impose no commutation relations on its components. Hence any
contribution to the Hamiltonian operator, depending solely on Aμ

ext(x) can be omit-
ted. The second contribution Aμ

rad(x) is the total of all remaining electromagnetic
field modes, not belonging to the strong external field. In particular all single emitted
(or absorbed) photons are excitations of this field term, hence the index referring to
radiation. Inserting this expansion into Eq. (2.65), we find that the QEDHamiltonian
takes the form

H(t) = HDirac(t) + Hext
int (t) + Hrad

Maxwell(t) + Hrad
int (t). (2.78)

The term HDirac(t) is the same as in Eq. (2.65), the terms Hext,rad
Maxwell(t) are derived

from that equation by replacing Aμ → Aμ
ext,rad. In Eq. (2.78) terms coupling the two

four potentials Aμ
ext to Aμ

rad were already dropped, since they do not influence the
equations of motion of these fields. In the Furry picture the above Hamiltonian is
split up according to

H(t) = HFurry
0 (t) + HFurry

int (t) (2.79)

HFurry
0 (t) = HDirac + Hext

int (t) + Hrad
Maxwell

HFurry
int = Hrad

int , (2.80)

where the explicit time dependence of the free Hamiltonian of the Furry picture
HFurry
0 (t) is indicated. The transition from the Schrödinger to the Furry picture is

accomplished by the unitary transformation

ÔF(t) =
(

ÛFurry
0 (t, t0)

)†
ÔSÛFurry

0 (t, t0) (2.81a)
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∣∣�, A; (t)〉F =
(

ÛFurry
0 (t, t0)

)† ∣∣�, A; (t)〉 (2.81b)

ÛFurry
0 (t, t0) = T̂ exp

⎡
⎣−i

t∫
t0

dtĤFurry
0 (t)

⎤
⎦ . (2.81c)

Due to the explicit time dependence of ĤFurry
0 (t), caused by the external electromag-

netic current, the time ordering is indispensable in the definition of the time evolution
operator of the Furry picture ÛFurry

0 (t, t0). We can then largely adopt the discussion
subsequent to Eq. (2.70), albeit, respecting the changed definitions of the free and
interaction Hamiltonian. In particular, the quantization schemes of the fermionic
fields and the field Aμ

rad are analogous to the discussion of the previous section. The

intricacies of the fact that now the free Hamilton operator ĤFurry
0 (t) is explicitly time

dependent can be found e.g. in [24]. We do not repeat those discussions but directly
turn to discussing the dynamic evolutions of the quantized fermionic field operators.
Analogous to Eq. (2.72) we find the dynamic evolution of operators and states in the
Furry picture to be governed by the equations

i
d

dt
ÔF(t) =

[
ÔF , ĤFurry

0

]
(2.82a)

i
d

dt

∣∣�, A; (t)〉F = ĤF
int

∣∣�, A; (t)〉F . (2.82b)

Please note that the interaction Hamiltonian in the Furry picture is given by the
expression

ĤF
int =

(
ÛFurry
0 (t, t0)

)†
ĤFurry
int ÛFurry

0 (t, t0) = e
∫

dx �̂
F

/̂A
F
rad �̂F . (2.83)

Solving the operator equation Eq. (2.82a), we find the wave equation

(
/∂ − e/̂A

F
ext − m

)
�̂F(x) = 0, (2.84)

which is just the Dirac equation in the presence of the assumedly strong external
potential Aμ

ext. We find that the operators of the fermionic fields are given by an
expression analogous to Eq. (2.73)

�̂Aext(x) =
∫

dp
[
ĉp�p,Aext(x) + d̂†

p�−p,Aext(x)
]

(2.85a)

�̂Aext(x) =
∫

dp
[
ĉ†p�p,Aext(x) + d̂p�−p,Aext(x)

]
, (2.85b)
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where only in this case the wave functions �±p,Aext(x) need to fulfill the Dirac
equation in the presence of Aext, analogous to Eq. (2.84) and the coefficients ĉp and
ĉ†p (d̂p, d̂†

p ) are the creation and annihilation operators of these field modes.
Summarizing the above discussion we state that, to obtain the Furry picture, the

potential term Aμ
ext is attributed to the free Hamiltonian H0 of the interaction picture.

Hence it becomes clear, why this contribution to the electromagnetic potential is
labeled external: It enters the equation of motion of the spinor field as an additional
term, independent of the interaction of the spinors with the radiation field. Further-
more, since Aμ

ext is not written as an operator term, it is obvious that in the Furry
picture the external potential is not quantized, but treated as a classical current. The
dynamic evolution of the Furry picture states, given by Eq. (2.82b), is determined by
the radiation field modes. The interaction with these - assumedly weak - field modes,
however, is again of order αQED and thus accessible to a perturbative expansion as
we wish to outline in the following section.

2.2.2 The S-Matrix Expansion

A key role in the investigation of QED is taken by scattering experiments. A typ-
ical experiment of this kind would be the respective scattering of an electron and
an intense laser pulse. To describe such scenarios theoretically, one relies on the
S -Matrix formalism, where the S can be understood to mean scattering. The idea
underlying this formalism is, that the interaction is confined to a small region in
space and time, as is reasonable for a realistic laboratory experiment. The particles
entering and leaving the interaction region can then be considered to origin from
and propagate to an infinitely remote past and future, respectively, without further
interaction. In the Furry picture the evolution equation for the states (Eq. (2.82b)) can
be formally integrated in analogy to Eq. (2.74) resulting in an equation of the form

∣∣�, A; (t)〉F = ÛF(t, t0)
∣∣�, A; (t0)〉F (2.86a)

ÛF(t, t0) = T̂ exp

⎡
⎣−i

t∫
t0

dtĤF
int

⎤
⎦ . (2.86b)

A given initial state, formed at a time ti and subsequently evolved by ÛF can then
be projected onto a complete basis of states, formed at a time tf , after the scattering
took place [21]

∑
f

|�f , Af ; (tf )〉F F 〈�f , Af ; (tf )|ÛF(tf , ti)|�, Ai; (ti)〉F

=
∑

f

|�f , Af ; (tf )〉FÛF
fi (tf , ti), (2.87)
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where we defined the evolution operator matrix elements

ÛF
fi (tf , ti) = F〈�f , Af ; (tf )|ÛF(tf , ti)|�, A; (ti)〉F . (2.88)

The subscripts refer to the initial and final state, respectively. To capture an experi-
mental scattering scenario as described above, one then has to consider states formed
at ti → −∞ and observed at tf → ∞. The scattering matrix in the Furry picture is
thus recovered by the limit

SF
fi = UF

fi (tf → ∞, ti → −∞)

= F〈�f , Af ; (tf → ∞)|ŜF |�i, Ai; (ti → −∞)〉F , (2.89)

in analogy to the ordinary QED result, obtained in the interaction picture [21]. The
entries of the infinitely dimensional S-Matrix can then be understood as amplitudes
of a given initial state to evolve into a specific final state. The scattering operator in
the Furry picture is then in accordance with Eq. (2.74)

ŜF = T̂ exp

⎡
⎣−i

∞∫
−∞

dtHF
int(t)

⎤
⎦ = T̂ exp

[
−ie

∫
d4x �̂

F
/̂A

F
rad �̂F

]
, (2.90)

The scatteringoperator in theFurry picture thus only describes the interactionwith the
quantized radiation field. From Eq. (2.90) one then constructs the usual perturbation
series in orders of the exponential operator function. This perturbation series can
then also be represented by Feynman graphs. However, all electron states in the Furry
picture perturbation series are formed in the presence of the strong electromagnetic
potential Aμ

ext(x). This particularity is conventionally indicated in the Feynman graph
representation of the Furry picture, by drawing double lines for the electron states
and propagators. This convention is adopted in the thesis and we will explicitly call
attention to Feynman graphs which are drawnwith single lines for the electron states,
which are then ordinary perturbative QED graphs.

2.2.2.1 The Volkov Solution

According to the theory outlined in the previous section,we can take arbitrary external
fields analytically into account in QED, as long as we can provide an exact solution
of the Dirac equation (2.63a) in the given electromagnetic field. Unfortunately there
exists only a fairly limited class of electromagnetic fields, the Dirac equation has
been solved for analytically so far. One such known solution is given for the case of
the external potential being a plane wave [21, 28]. For many applications, treating
a laser field as a plane wave is a sufficiently good approximation. Furthermore, the
plane wave solution is the leading order approximation to the electron state function,
even for the external field being a focused Gaussian beam (see Appendix C). To
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obtain a solution of the Dirac equation one multiplies Eq. (2.63a) from the left with

the operator
(
/̂p − e/AL + m

)
to arrive at the second order differential equation

[(
/̂p − e/AL

)2 − m2 − i

2
eFμνσ

μν

]
�(x) = 0, (2.91)

wherewe used the antisymmetric tensor of theDiracmatrices defined inAppendix B.
Eq. (2.91) is usually the starting point of the derivation. Recalling the Lorenz gauge
condition we have ∂μAμ

L = 0 and /p/p = p2, the square operator term is evaluated to

(
/̂p − e/AL

)2 = −∂μ∂μ − 2ie
(
Aμ

L∂μ

) + e2A2
L, (2.92)

where the four dimensional unit matrix is not written explicitly. Due to the known
plane wave solutions of the free Dirac equation (see Appendix B) it is sensible to
expect the change in the wave function due to the external field to be summable in a
prefactor, leading to the ansatz

�p(x) = e−ipxFp(η). (2.93)

Inserting this expression into Eq. (2.91) and expanding the square operator term as
shown above one arrives at the equation

2i(pkL)F ′
p(η) +

[
−2e (pAL) + e2A2

L − ie/kL
(
∂η/A(η)

)]
Fp(η) = 0. (2.94)

This equation, however, is a simple first order differential equation for the prefactor
Fp(η) which is readily integrated to yield the expression

�p(x) = e−ipx exp

⎡
⎣−i

η∫
0

dφ

(
e(pAL(φ))

pkL
− e2A2

L(φ)

2(pkL)

)
+ e

/kL/AL A(η)

2(pkL)

⎤
⎦ up√

2εV
.

(2.95)

with a yet arbitrary spinor up and normalization factor (2εV)−1/2. The exponential
series involvingDiracmatrices is seen to vanish after its linear term, due to the relation
(/kL/AL)2 = 0. To eliminate all solutions of the second order Eq. (2.91), which are
not solutions of the original first order Dirac Eq. (2.63a), we demand the solution to
fulfill this first order equation at any point in space. For an arbitrarily small damping
in the field AL(η) this request at |r| → ∞ goes over into

(
/̂p − m

)
up = 0, (2.96)
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whence we conclude that the request of the constant spinor in Eq. (2.95) to be a
solution of the free Dirac equation (see Appendix B) is already sufficient to ensure
that the following wave functions are solutions of the Dirac equation in the presence
of a plane wave

�p(x) =
[
1 + e

/kL/AL(η)

2(pkL)

]
up√
2εV

eiSp(η). (2.97)

This wave function is called Volkov function after D. Volkov who first published its
derivation. The exponential phase given by

Sp(η) = −px − gp(η) (2.98)

gp(η) =
η∫

0

dφ

(
e(pAL(φ))

pkL
− e2A2

L(φ)

2(pkL)

)
.

It is noteworthy that Eq. (2.98) is equivalent to the action of a classical electron
in a plane wave fields given in Eq. (2.24) rendering the Volkov solution explicitly
quasiclassical. It is further customary to assign a separate symbol to the combined
matrix and exponential prefactors according to [29]

Ep(x) =
[
1 + e

/kL/AL(η)

2(pkL)

]
eiSp(η), (2.99)

which is called the Ritus matrix. To obtain the Dirac current associated with the
Volkov functions we need the Dirac conjugate of Eq. (2.97)

�p(x) = ūp√
2εV

Ep(x), (2.100)

with the conjugate of the Ritus matrix defined in accordance with Eq. (2.99)

Ep(x) =
[
1 + e

/AL(η)/kL

2(pkL)

]
e−iSp(x). (2.101)

In Eq. (2.102) we summarize the action of the Dirac operator on the Ritus matrices,
the resulting explicit commutation relation with the contraction of the momentum
with theDiracmatrices aswell as the fact that the Ritusmatrix and its Dirac conjugate
are their respective inverse

(i/∂ − e/AL) Ep(x) = Ep(x)/p (2.102a)

Ep(x) (i/∂ − e/AL) = −/p Ep(x) (2.102b)[
E(p, x), /p

] = [
/p, E(p, x)

] = e/A(x) − e
A(x)p

kLp
/kL (2.102c)
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Ep(x)Ep(x) = 14. (2.102d)

We stress that the Ritus matrices depend nontrivially only on the laser phase η or
equivalently the x−-coordinate. For later convenience we write the part of Ep(x),
depending solely on x− explicitly

Ep(x
−) =

[
1 + e

/kL/AL(x−)

2(pkL)

]
e−i(p+x−+gp(x−)), (2.103a)

Ep(x
−) =

[
1 + e

/AL(x−)/kL

2(pkL)

]
ei(p+x−+gp(x−)), (2.103b)

where we recall the discussion in connection to Eq. (2.5). The Volkov current is
accordingly found to be

jμp (η) = �pγ
μ�p = 1

εV

(
pμ − eAμ

L(η) + kμ
L

[
e

pAL(η)

pkL
− e2A2

L(η)

2(pkL)

])
. (2.104)

We note that the expression in round brackets is equivalent to the classical electron
momentum in a plane wave from Eq. (2.31a). If we consider the external plane
wave field to be confined in time such that AL(η → ±∞) → 0, we infer that
Volkov solutions, formed in the far past and future, are normalized to one particle per
volume V . Hence, we can employ the usual state statistics for computing scattering
probabilities for a pulsed field entering the Volkov solutions. Finally, owing to some
discussion that was had on the topic, we state that the Volkov solutions are orthogonal
and normalized according to [1, 29–31]

V

(2π)3

∫
dx �p′(x)γ0�p(x) = δ(3)(p′ − p). (2.105)

It has recently been proven that the Volkov solutions fulfill the completeness
relation [32]

V

(2π)3

∫
dp �p(x)γ

0�p(y) = δ(3)(x − y). (2.106)

For the Ritus matrices Eqs. (2.99) and (2.101) this implies the orthogonality and
completeness relations

∫
d4p

(2π)4
Ep(x)Ep(y) = δ(4)(x − y),

∫
d4x

(2π)4
Ep′(x)Ep(x) = δ(4)(p′ − p). (2.107)

Having established the mentioned properties of the Volkov solutions we may feel
free to use them as a basis for building a SF-QED field theory.
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2.2.2.2 The Volkov Propagator

Irrespective of the picture in which the quantum dynamics are described, in addition
to wave functions for the incoming and outgoing particles, in QED one is in need of
the two-point Green’s function or the propagator of the involved quantum fields. By
virtue of the above given argument, that in tree level QED electromagnetic potentials
do not interact, the dressed photon Green’s function equals its free counterpart. The
Green’s function of a charged spinor field, on the other hand, is altered by including
an external potential. In fact, the defining equation of the Green’s function of the
Dirac equation to an external plane wave potential AL(η) is [21]

(i/∂ − e/A − m) G(x, y) = δ(4)(x − y). (2.108)

The Green’s function solving this equation can be expressed as [29, 33]

G(x, y) = lim
ε→0

∫
d4p

(2π)4
Ep(x)

/p + m

p2 − m2 + iε
Ep(y), (2.109)

as can be checked by employing Eqs. (2.102a) and (2.102b). The pole prescription
of Eq. (2.109) is the Feynman prescription of the free propagator [22]

Gfree(x, y) = lim
ε→0

∫
d4p

(2π)4

/p + m

p2 − m2 + iε
e−ip(x−y), (2.110)

to which the given dressed propagator reduces in the limit AL → 0. This prescription
for bypassing the poles of Eq. (2.109) ensures that for x0 < y0, corresponding to
propagation forward in time, only positive energy solutions (ε > 0) of Eq. (2.63a)
enter Eq. (2.109), whereas in the opposite case x0 > y0, corresponding to propagation
backwards in time, the negative energy components (ε < 0) are described.

Separating these two cases ab initio, we can split up the time ordered product
T̂ {. . . } in the definition of the dressed propagator [21] into its respective forms

G(x, y) = −i〈0|T̂
{
�̂(y)�̂(x)

}
|0〉 =

{
−i〈0|�̂(x)�̂(y)|0〉 if x0 > y0

i〈0|�̂(y)�̂(x)|0〉 if x0 < y0
,

(2.111)

using the Dirac field operators Eqs. (2.73b) and (2.73c) expanded in the basis of
Volkov functions. By virtue of the commutation relations Eq. (2.66a) one then finds
a result equivalent to Eq. (2.109), as it has to be.

In a monochromatic external plane wave field the dressed electron propagator
of SF-QED features infinitely many singularities depending on the number of pho-
tons absorbed from the external field [34, 35]. These resonances were addressed
in numerous work employing the dressed electron propagator in monochromatic
fields to compute numerous physical quantities such as lepton pair creation [36–39],
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lepton-lepton scattering [40, 41], resonant lepton-photon scattering (e.g. bremsstr-
ahlung if the external photon is a nuclear Coulomb field photon) [42, 43] and, on
a more fundamental level, those resonances were also investigated in the study of
the electron self-energy [44]. These poles are located at the dressed mass m∗, which
is discussed in the following section. In contrast to those previous works, there has
been some effort to study SF-QED processes involving the dressed electron propa-
gator in pulsed plane wave fields [45, 46]. There the authors, however, considered
the strongly restrictive condition of temporally only mildly focussed (ωτ � 1) and
low intense (ξ � 1) fields.

2.2.3 Interaction with a Monochromatic Laser Wave

In this chapter we outline the quantum analysis of the scattering of an
electron from amonochromatic laserwave, in analogy to the discussion of Sect. 2.1.2.
As discussed there, modeling the laser field as monochromatic allows for great sim-
plifications in the calculations. In fact, most of the theoretical works on nonlinear
Compton scattering, performed before this thesis was started, considered a mono-
chromatic laser wave [29, 47–51]. There had been some work on electron scattering
from a laser pulse of duration τL and frequency ω [19], but there the authors consid-
ered a pulse explicitly violating Eq. (1.9), i.e. a pulse containing many cycles of the
carrier field. In this case, as one can see from Eq. (2.31a, 2.31b), the classical elec-
tron trajectory is strictly monotonic. Comparable to the Fourier decomposition of the
radiation formula Eq. (2.17) it is possible to expand the Volkov states, and equally the
dressed propagator in a Fourier series. To this endwe consider amonochromatic laser
wave of the form ψA(η) = sin(η) (the discussion for ψA(η) = cos(η) is analogous),
whence the Volkov solutions becomes analytically integrable, yielding

�p(x) =
[
1 + e

/kL/AL(η)

2(pkL)

]
up√
2εV

e−iSm.c.
p (η), (2.112)

with the monochromatic exponential Sm.c.
p (η) = α cos(η) + β sin(2η) + qx. In this

expression we defined the quantities

qμ = pμ + m2ξ2

4(pkL)
kμ

L (2.113a)

α = −e
pAL

pkL
(2.113b)

β = −e2A2
L

8pkL
. (2.113c)

The so-called dressed momentum qμ contains an additional momentum component
along the laser’s wave vector kL , which arises due to the non-vanishing average over
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the square contribution of the laser wave in the classical action and is thus attributed
to the wiggling motion of the electron in the laser wave. The square of the dressed
momentum yields the dressed mass m∗ at which the poles of the electron propagator
in a monochromatic laser wave are located

q2 = m2
(
1 + m2ξ2

2

)
=: m∗2. (2.114)

This dressed mass exceeds a free electron’s rest mass by an intensity dependent term
m∗2−m2 = m2ξ2/2. This mass increase is caused by the periodic wiggling motion the
electron undergoes inside the strong laser wave providing it with additional energy,
which translates to an increased mass. We will find that when considering a laser
pulse, the divergences from Eq. (2.109) are naturally regularized and the dressed
mass loses its unambiguous meaning. Though this observation does not render the
concept of a dressed mass obsolete, it is clear that it will definitely need further
investigation (see Sect. 3.5 and [52]). The expression for the Volkov states (2.112)
allows for the deployment of the generating function of Bessel functions analogous
to Eq. (2.40) from classical electrodynamics. Utilizing the relation

sini(η)e−i(α sin(η)+β sin(2η)) =
∞∑

n=−∞
Ci,ne

−inη (2.115)

where the coefficients are defined according to [29]

Ci,n = 1

2π

∫
dη′ sin(η′)ei(α sin(η′)+β sin(2η′)−nη′) (2.116)

allows then for a Fourier expansion of Eq. (2.112) resulting in

�p(x) =
∞∑

n=−∞

[
C0,n + e

/kL/AL

2(pkL)
C1,n

]
up√
2q0V

e−i(q+nkL)x. (2.117)

The replacement ε → q0 in the normalization of the monochromatic wave function
is due to the special form of an infinitely stretched external laser field. The wave
functions are required to be normalized to one particle per normalization volume
and as in the monochromatic case one cannot perform the limit Aμ

L(η → ±∞) = 0,
one has to average this quantity over one laser cycle, yielding

j̄μp (η) = 1

q0V

(
pμ − kμ

L
m2ξ2

4(pkL)

)
= qμ

q0V
, (2.118)

which again corresponds to one particle per volume V . Equation (2.117) is now well
suited for computing scattering matrix elements, since the exponential factors will
always cancel the four dimensional space-time integration, to give a momentum
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conserving δ-function of the form δ(4)(
∑

in q − ∑
out q), i.e., where in the sums for

spinor particles there have to be inserted the dressed momenta q, whereas uncharged
particles, such as photons, enter with their ordinary free momentum. Illustrating
this concept at the exemplary process of an electron of initial momentum pi being
scattered by a monochromatic laser wave, described by AL(η) into a final momentum
state qf upon emission of a single photon with wave vector k1, the scattering matrix
amplitude is given by [29]

Sfi = −i

√
2πe√
ω1V

∫
d4x �pf (x)/ε

∗
1e

ik1x�pi(x), (2.119)

where for the emitted photon the free wave function

Aμ
1 =

√
4π√

2ω1V
ε
μ
1 e

ik1x (2.120)

solving Eq. (2.1) is employed with the polarization index not written explicitly.
Expanding this expression now into a Fourier series analogously to Eq. (2.117) one
obtains the expression

Sfi = −i

√
πe(2π)4√

2ω1q0i q0f V3

∞∑
n=−∞

ūpf Mnupiδ
(4)(qi + nkL − k1 − qf ), (2.121)

with the reduced matrix elements given by

Mn =
[
/ε∗
1C0,n + e

(
/AL/kL

2(pf kL)
+ /kL/AL

2(pikL)

)
C1,n − e2A2

L(kLε∗
1)

2(pikL)(pf kL)
/kLC2,n

]
. (2.122)

The scattering matrix element is then easily translated into an emission probability
per unit time by taking its modulus square, summing and averaging over all outgoing
and incoming particles’ spins and polarizations, respectively, and multiplying the
result by the phase space of the final state’s particles. The result of this procedure is
given by

1

T
dWm.c. = 1

2

∑
{σ,λ}

∣∣Sfi
∣∣2 dk1V

(2π)3
dpf V

(2π)3

= e2

16πω1q0i q0f

∑
{σ,λ}

∞∑
n=−∞

∣∣∣ūpf Mnupi

∣∣∣2 dk1dpf δ
(4)(qi + nkL − k1 − qf ),

(2.123)
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where the square of the four dimensional δ-function yielded the customary factor
(VT)/(2π)4,

∑
{σ,λ} means the summation over all incoming and outgoing polarization

and spin quantum numbers and the additional factor 1/2 turns the sum over the initial
state’s electron spins into an average. In Eq. (2.123) the three spatial δ-functions
fix the final electron’s spatial momentum, fixing final electron’s energy to the value

q0f
2 = q0i

2 + nω2
L + ω2

1 + 2
(
qikL − qik1 − nkLk1

)
. This procedure introduces a

conversion factor
∣∣∂qf/∂pf

∣∣−1 =
∣∣∣∂q‖

f/∂p‖
f

∣∣∣−1
into Eq. (2.123). The fourth δ-function

is customarily used to fix the outgoing photon’s energy to the harmonic frequencies

ωm.c.
1,n = n(pikL)

(qi + nkL)n1
, (2.124)

with an integer n ∈ [0,∞]. In the classical limit k1kL � pikL this expression goes
over to the classical harmonic formula (2.43), whence one concludes that the ordinary
Doppler shift can be recovered only in the limit ξ � 1. Using the fourth δ-function
in Eq. (2.123) to fix ω1 to the values of Eq. (2.124), introduces an additional factor
of the form [29, 53] ∣∣∣∣∣

d(q0f + ω1)

dω1

∣∣∣∣∣ = (qi + nkL)n1
q0f

. (2.125)

As a result of the described steps we obtain the final expression for the single photon
emission probability of an electron scattered from a monochromatic laser field per
unit time and solid angle

1

T

dWm.c.

d�1
= e2ω1

16πq0i q0f

∣∣∣∣ d(q0f +ω1)

dω1

∣∣∣∣
∑
{σ,λ}

∞∑
n=−∞

∣∣ūpf Mnupi

∣∣2 . (2.126)

In the same fashion one can easily obtain expressions for higher order SF-QED
processes in a monochromatic laser wave.

2.2.4 Interaction with a Laser Pulse

Concerning temporal compression, there has been an increasingly fast growing num-
ber ofworks analyzingQEDamplitudes of electrons interactingwith planewave laser
fields of arbitrary strength. These works, which are applicable to the realm of pulse
durations distinguished by Eq. (1.9), were performed for single photon emission
[20, 51, 54–58] and recently also for two photon emission [59, 60]. This family of
calculations, applicable to the rapidly evolving regime of few-cycle laser pulses, is
a research field of swiftly increasing interest and importance.

It is this research field the present thesis is dedicated to.
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