
2

Algorithmic Complexity

The most natural approach to defining the quantity of information is
clearly to define it in relation to the individual object (be it Homer’s
Odyssey or a particular type of dodo) rather than in relation to a set
of objects from which the individual object may be selected. To do so,
one could define the quantity of information in an object in terms of
the number of bits required to losslesly describe it. A description of an
object is evidently useful in this sense only if we can reconstruct the full
object from this description.

We aim at something different from C.E. Shannon’s theory of commu-
nication, which deals with the specific technological problem of data
transmission, that is, with the information that needs to be transmitted
in order to select an object from a previously agreed-upon set of alter-
natives; Section 1.11. Our task is to widen the limited set of alternatives
until it is universal. We aim at a notion of absolute information of indi-
vidual objects, that is, the information that by itself describes the object
completely.

Intuition tells us that some objects are complicated and some objects
are simple. For instance, a number like 21000 is certainly very simple (we
have just expressed it in a few bits); yet evidently there are numbers of
a thousand bits for which it is hard to see how we can find a descrip-
tion requiring many fewer than a thousand bits. Such hard-to-describe
numbers would be their own shortest descriptions.

We require both an agreed-upon universal description method and an
agreed-upon mechanism to produce the object from its alleged descrip-
tion. This would appear to make the information content of an object
depend on whether it is particularly favored by the description method

M. Li and P.M.B. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications, 101
DOI: 10.1007/978-0-387-49820-1_2, © Springer Science + Business Media, LLC 2008

102 2. Algorithmic Complexity

we have selected. By ‘favor’ we mean to produce short descriptions in
terms of bits.

For instance, it is well known that certain programming languages fa-
vor symbolic computations, while other programming languages favor
arithmetic computations, even though all of them are universal. The
notion of information content of individual objects can be useful only
if the quantity of information is an attribute of the object alone and
is independent of the means of description. It is a priori by no means
obvious that this is possible. Relatively recent advances resulting in the
great ideas of computability theory from the 1930s onward have made it
possible to design a universal description method that appears to meet
our goals.

Denote the set of objects by S, and assume some standard enumeration
of objects x by natural numbers n(x). We are interested in the fact that
n(x) may not be the most economical way to specify x. To compare
methods of specification, we view such a method as a partial function
over the nonnegative integers defined by n = f(p). We do not yet as-
sume that f is recursive, but maintain full generality to show to what
extent such a theory can also be developed with noneffective notions,
and at which point effectiveness is required. With each natural number
p associate the length of the finite binary string identified with p as in
Equation 1.3. Denote this length by l(p).

For each object x in S, the complexity of object x with respect to the
specifying method f is defined as

Cf (x) = min{l(p) : f(p) = n(x)},
and Cf (x) = ∞ if there are no such p. In computer science terminology
we would say that p is a program and f a computer, so that Cf (x) is
the minimal length of a program for f (without additional input) to
compute output x.

Considering distinct methods f1, f2, . . . , fr of specifying the objects of
S, it is easy to construct a new method f that assigns to each object x
in S a complexity Cf (x) that exceeds only by c (less than about log r)
the minimum of Cf1(x), Cf2 (x), . . . , Cfr (x). The only thing we have to
do is to reserve the first log r bits of p to identify the method fi that
should be followed, using as a program the remaining bits of p.

We say that a method f minorizes a method g (additively) if there is a
constant c such that for all x,

Cf (x) ≤ Cg(x) + c.

Above we have shown how to construct a method f that minorizes each
of the methods f1, . . . , fr with constant c ≈ log r. Two methods f and
g are called equivalent if each of them minorizes the other.

2. Algorithmic Complexity 103

Consider the hierarchy of equivalence classes of methods with respect
to minorization. Kolmogorov has remarked that the idea of ‘description
length’ would be useless if the constructed hierarchy did not have cer-
tain niceness properties. In particular, we would like such a hierarchy
to have a unique minimal element: the equivalence class of description
methods that minorize all other description methods. Some sets of de-
scription methods do have a unique minimal element, while other sets
of description methods don’t.

Definition 2.0.1 Let C be a subclass of the partial functions over the nonnegative integers.
A function f is additively optimal (a special type of universality) for C
if it belongs to C and if for every function g ∈ C there is a constant cf,g
such that Cf (x) ≤ Cg(x) + cf,g, for all x. (Here cf,g depends on f and
g, but not on x.) Replacing x by 〈x, y〉, with 〈·〉 the standard recursive
bijective pairing function, yields the definition for a class of two-variable
functions.

Clearly, all additively optimal methods f, g of specifying objects in S
are equivalent in the following way:

|Cf (x) − Cg(x)| ≤ cf,g,

for all x, where cf,g is a constant depending only on f and g. Thus,
from an asymptotic point of view, the complexity C(x) of an object x,
when we restrict ourselves to optimal methods of specification, does not
depend on accidental peculiarities of the chosen optimal method.

Example 2.0.1 Consider the class of description methods consisting of all partial func-
tions over the nonnegative integers. Every additively optimal function
f for this class must be unbounded. Take an infinite sequence x1, x2, . . .
such that Cf (xi) ≥ i. Define the function g by g(i) = xi. Clearly,
Cg(xi) = log i + O(1) ≪ Cf (xi). Therefore, f cannot be additively
optimal. Thus, there is no additively optimal partial function, and the
hierarchy of complexities with respect to the partial functions does not
have any minimal element.

The development of the theory of Kolmogorov complexity is made pos-
sible by the remarkable fact that the class of partial recursive functions
(defined in Section 1.7) possesses a universal element that is additively
optimal. Under this relatively natural restriction on the class of descrip-
tion methods (that is, to partial recursive functions) we obtain a well-
behaved hierarchy of complexities. 3

We begin by worrying about notation. There are several variants of
Kolmogorov complexity, with notations that are not used consistently
among different authors or even by the same author at different times.

104 2. Algorithmic Complexity

In the main text of this book we shall concentrate on two major variants
of Kolmogorov complexity. It seems educationally the right approach to
first study Kolmogorov complexity as originally defined by Solomonoff,
Kolmogorov, and Chaitin because it is intuitively clearer.

Some mathematical technicalities will naturally lead up to, and justify, the
less intuitive version of Kolmogorov complexity. The first type we call plain
Kolmogorov complexity, and the second type we call prefix Kolmogorov com-
plexity. We use C to denote the plain Kolmogorov complexity. We reserve K
for the prefix type. Fortunately, the majority of theorems we derive for plain
Kolmogorov complexity carry over unchanged and with the same proofs to
the prefix version. The difference is that the prefix version is tweaked to have
just the right quantitative properties for some desired uses and applications.

2.1

The

Invariance

Theorem

Identify an object x from a countably infinite sample space S with its
index n(x). Consider the class of description methods

{φ : φ is a partial recursive function}.

Consider the particular problem of describing objects consisting of nat-
ural numbers in terms of programs consisting of finite strings of 0’s and
1’s. Just as in information theory, Section 1.11, where the entropy and
information of a message over an alphabet of any size are expressed in
the normalized format of bits, the restriction of the programs to a binary
alphabet does not imply any loss of generality. In both cases, changing
alphabet size leaves all statements invariant up to an appropriate loga-
rithmic multiplicative factor related to the alphabet sizes involved; see
Exercise 2.1.9.

The invariance theorem, Theorem 2.1.1 below, is the cornerstone for
the subsequent development of the theory. In fact, for many later ap-
plications it embodies the entire theoretical foundation. Recall Defini-
tion 2.0.1 of a function that is additively optimal (a special type of
universality) for a class of functions. We give the unconditional version
as a preliminary lemma.

Lemma 2.1.1 There is an additively optimal universal partial recursive function.

Proof. Let φ0 be the function computed by a universal Turing machine
U . Machine U expects inputs of the format

〈n, p〉 = 11 . . .1
︸ ︷︷ ︸

l(n) times

0 np .

The interpretation is that the total program 〈n, p〉 is a two-part code of
which the first part consists of a self-delimiting encoding of Tn and the

2.1. The Invariance Theorem 105

second part is the literally rendered program p. In this way, U can first
parse the binary input into the Tn-part and the p-part, and subsequently
simulate the computation of Tn started with program p as its input
(Section 1.7). That is, φ0(〈n, p〉) = φn(p). What happens if U gets the
program 0p? By convention we can set U = T0 and therefore U(0p) =
U(p). Altogether, if Tn computes the partial recursive function φn, then

Cφ0(x) ≤ Cφn(x) + cφn ,

where cφn can be set to 2l(n) + 1. 2

For many applications we require a generalization to a conditional ver-
sion, as follows. The difficulty of specifying an object can be facilitated
when another object is already specified. We define the complexity of
an object x, given an object y. Fix an effective enumeration of Turing
machines T1, T2, . . . as in Section 1.7. The Turing machines use a tape
alphabet {0, 1, B}, and the input to a Turing machine is a program con-
sisting of a contiguous string of 0’s and 1’s, delimited by blanks B on
both sides. In this way, a Turing machine can detect the end of its pro-
gram. The effective enumeration of Turing machines induces an effective
enumeration of partial recursive functions φ1, φ2, . . . such that Ti com-
putes φi for all i. As above, 〈·〉 : N × N → N is a standard recursive
bijective pairing function mapping the pair (x, y) to the singleton 〈x, y〉.
We can iterate this as (x, y, z) = 〈x, 〈y, z〉〉.

Definition 2.1.1 Let x, y, p be natural numbers. Any partial recursive function φ, to-
gether with p and y, such that φ(〈y, p〉) = x, is a description of x. The
complexity Cφ of x conditional to y is defined by

Cφ(x|y) = min{l(p) : φ(〈y, p〉) = x},

and Cφ(x|y) = ∞ if there are no such p. We call p a program to compute
x by φ, given y.

Theorem 2.1.1 There is an additively optimal universal partial recursive function φ0 for
the class of partial recursive functions to compute x given y. Therefore,
Cφ0(x|y) ≤ Cφ(x|y) + cφ for all partial recursive functions φ and all x
and y, where cφ is a constant depending on φ but not on x or y.

Proof. Let φ0 be the function computed by a universal Turing machine
U such that U started on input 〈y, 〈n, p〉〉 simulates Tn on input 〈y, p〉
(Section 1.7). That is, if Tn computes the partial recursive function φn,
then φ0(〈y, 〈n, p〉〉) = φn(〈y, p〉). Hence, for all n,

Cφ0(x|y) ≤ Cφn(x|y) + cφn ,

where cφn = 2l(n) + 1. 2

106 2. Algorithmic Complexity

The key point is not that the universal description method necessarily
gives the shortest description in each case, but that no other description
method can improve on it infinitely often by more than a fixed constant.
Note also that the optimal complexity Cφ0(x|y) is defined for all x and
y. Namely, for each x and y we can find a Turing machine that computes
output x, given y, for some input p (such as the Turing machine that
outputs x for all inputs).

For every pair ψ, ψ′ of additively optimal functions, there is a fixed
constant cψ,ψ′ , depending only on ψ and ψ′, such that for all x, y we
have

|Cψ(x|y) − Cψ′(x|y)| ≤ cψ,ψ′ .

To see this, first substitute φ0 = ψ and φ = ψ′ in Theorem 2.1.1, then
substitute φ = ψ and φ0 = ψ′ in Theorem 2.1.1, and combine the two
resulting inequalities. While the complexities according to ψ and ψ′ are
not exactly equal, they are equal up to a fixed constant for all x and y.

Definition 2.1.2 Fix an additively optimal universal φ0 and dispense with the subscript
by defining the conditional Kolmogorov complexity C(·|·) by

C(x|y) = Cφ0(x|y).

This particular φ0 is called the reference function for C. We also fix a
particular Turing machine U that computes φ0 and call U the reference
machine. The unconditional Kolmogorov complexity C(·) is defined by

C(x) = C(x|ǫ).

Example 2.1.1 Programmers are generally aware that programs for symbolic manip-
ulation tend to be shorter when they are expressed in the LISP pro-
gramming language than if they are expressed in FORTRAN, while for
numerical calculations the opposite is the case. Or is it? The invariance
theorem in fact shows that to express an algorithm succinctly in a pro-
gram, it does not matter which programming language we use (up to
a fixed additive constant that depends only on the two programming
languages).

To see this, as an example consider the lexicographic enumeration of
all syntactically correct LISP programs λ1, λ2, . . . and the lexicographic
enumeration of all syntactically correct FORTRAN programs π1, π2,
With proper definitions we can view the programs in both enumerations
as computing partial recursive functions from their inputs to their out-
puts. Choosing reference machines in both enumerations, we can define
complexities CLISP(x) and CFORTRAN(x) completely analogous to C(x).
All of these measures of the descriptional complexity of x coincide up

2.1. The Invariance Theorem 107

to a fixed additive constant. Let us show this directly for CLISP(x) and
CFORTRAN(x).

It is well known and also easy to see that each enumeration contains
a universal program; the LISP enumeration contains a LISP interpreter
program that interprets any LISP program. But there is also a LISP pro-
gram λP that is a FORTRAN interpreter in the sense that it interprets
any FORTRAN program. Consequently, CLISP(x) ≤ CFORTRAN(x) +
l(λP). Similarly, there is a FORTRAN program πL that is a LISP in-
terpreter, which yields CFORTRAN(x) ≤ CLISP(x)+ l(πL). Consequently,
|CLISP(x) − CFORTRAN(x)| ≤ l(λP) + l(πL) for all x. 3

Example 2.1.2 In Theorem 2.1.1 we used a special type of universal partial recursive
function, called ‘additively optimal.’ There are other universal partial
recursive functions that are not additively optimal and for which the
theorem does not hold. For example, let φ be the function computed by
a universal Turing machine Uφ such that Uφ started on input 〈y, 〈n, pp〉〉
simulates Tn on input 〈y, p〉, and φ is not defined for inputs that are not
of the form 〈y, 〈n, pp〉〉. (That is, if Tn computes the partial recursive
function φn, then φ(〈y, 〈n, pp〉〉) = φn(〈y, p〉).) Then, for all x, y, n, we
have Cφ(x|y) ≥ 2Cφn(x|y). 3

2.1.1
Two-Part Codes

It is a deep and useful fact that the shortest effective description of an
object x can be expressed in terms of a two-part code, the first part
describing an appropriate Turing machine and the second part describ-
ing the program that interpreted by the Turing machine reconstructs
x. The essence of the invariance theorem is as follows: For the fixed
reference universal Turing machine U , the length of the shortest pro-
gram to compute x is min{l(p) : U(p) = x}. Looking back at the proof
of Lemma 2.1.1, we notice that U(0p) = U(p). From the definitions it
therefore follows that

C(x) = min{l(T) + l(p) : T (p) = x} +O(1),

where l(T) is the length of a self-delimiting encoding for a Turing ma-
chine T . This provides an alternative definition of Kolmogorov com-
plexity (similarly, for conditional Kolmogorov complexity). The above
expression for Kolmogorov complexity can be rewritten as

C(x) = min{l(T) + C(x|T) : T ∈ {T0, T1, . . .}} +O(1), (2.1)

which emphasizes the two-part-code nature of Kolmogorov complexity,
using the regular aspects of x to maximally compress. In the example

x = 10101010101010101010101010

108 2. Algorithmic Complexity

we can encode x by a small Turing machine that computes x from the
program 13. Intuitively, the Turing machine part of the code squeezes out
the regularities in x. What is left are irregularities, or random aspects,
of x relative to that Turing machine. The minimal-length two-part code
squeezes out regularity only insofar as the reduction in the length of
the description of random aspects is greater than the increase in the
regularity description.

The right model is a Turing machine T among those that reach the
minimum description length

min
T

{l(T) + C(x|T) : T ∈ {T0, T1, . . .}}.

This T embodies the amount of useful information contained in x. The
main remaining question is which such T to select among those that
satisfy the requirement. The problem is how to separate a shortest pro-
gram x∗ for x into parts x∗ = pq such that p represents an appropriate
T . This idea has spawned the ‘minimum description length’ principle in
statistics and inductive reasoning, Section 5.4; Kolmogorov’s structure
functions and algorithmic (minimal) sufficient statistic, Section 5.5; and
the notion of algorithmic entropy in Section 8.6.

2.1.2
Upper Bounds

Theorem 2.1.1 has a wider importance than just showing that the hier-
archy of Cφ complexity measures contains an additively optimal one. It
is also our principal tool in finding upper bounds on C(x). Such upper
bounds depend on the choice of reference function, and hence are proved
only to within an additive constant.

Intuitively, the Kolmogorov complexity of a binary string cannot exceed
its own length, because the string is obviously a (literal) description of
itself.

Theorem 2.1.2 There is a constant c such that for all x and y,

C(x) ≤ l(x) + c and C(x|y) ≤ C(x) + c.

Proof. The first inequality is supremely obvious: define a Turing machine
T that copies the input to the output. Then for all x, we have CT (x) =
l(x). By Theorem 2.1.1 the result follows.

To prove the second inequality, construct a Turing machine T that for
all y, z computes output x on input 〈z, y〉 iff the universal reference
machine U computes output x for input 〈z, ǫ〉. Then CT (x|y) = C(x).
By Theorem 2.1.1, there is a constant c such that C(x|y) ≤ CT (x|y)+c =
C(x) + c. 2

Note that the additive constants in these inequalities are fudge terms
related to the reference machine U . For example, we need to indicate

2.1. The Invariance Theorem 109

to the reference machine that a given description is the object itself,
and this information adds a number of bits to the literal description.
In Section 3.2 we will calculate the constants explicitly as 8 and 2, re-
spectively. Let us look at some more examples in order to develop our
intuition about the notion of complexity of description.

Example 2.1.3 For each finite binary string x we have C(xx) ≤ C(x)+O(1). Construct
a Turing machine V such that V (p) = U(p)U(p), for all programs p,
where U is the reference machine in the proof of Theorem 2.1.1. In
particular, if U(p) = x, then V (p) = xx. Let V = Tm in the standard
enumeration of Turing machines T1, T2, With m denoting the self-
delimiting description 1l(m)0m of m, we have U(mp) = Tm(p) = xx and
l(mp) = l(p) + 2l(m) + 1. Hence, C(xx) ≤ C(x) + 2l(m) + 1. From now
on we leave the more obvious details of this type of argument for the
reader to fill in. 3

Example 2.1.4 Recall that xR denotes the reverse of x. Clearly, the complexities of x
and xR can differ by at most a fixed constant c independent of x. That
is, |C(x) − C(xR)| < c holds for all x. We can generalize this example
as follows: For every total recursive function φ that is one-to-one there
is (another) constant c such that |C(φ(x)) − C(x)| < c for all x.

In fact, if φ is computed by Turing machine Tn and U(p) = x, then
there is a Turing machine V such that V (n̄p) = φ(x). If V = Tm, then
U(mn̄p) = φ(x), and therefore |C(φ(x)) − C(x)| < 2l(m) + 2l(n) + 2.
Similar relations hold for the conditional complexity C(x|y). 3

Example 2.1.5 Can the complexity of a pair of strings exceed the sum of the complexities
of the individual strings? In other words, is C subadditive? Let 〈·〉 :
N×N → N be the standard recursive bijection over the natural numbers
that encodes x and y as 〈x, y〉. Define C(x, y) = C(〈x, y〉). That is, up to
a fixed constant, C(x, y) is the length of the shortest program such that
U computes both x and y and a way to tell them apart. It is seductive
to conjecture C(x, y) ≤ C(x) + C(y) + O(1), the obvious (but false)
argument running as follows: Suppose we have a shortest program p
to produce x, and a shortest program q to produce y. Then with O(1)
extra bits to account for some Turing machine T that schedules the two
programs, we have a program to produce x followed by y. However, any
such T will have to know where to divide its input to identify p and q.
One way to do this is by using input l(p)pq or input l(q)qp. In this way,
we can show that for all x, y, we have

C(x, y) ≤ C(x) + C(y) + 2 log(min(C(x), C(y))). (2.2)

We cannot eliminate the logarithmic error term for the general case.
Namely, in Example 2.2.3 on page 118 we show that there is a constant

110 2. Algorithmic Complexity

c such that for all n there are x and y of length at most n such that

C(x, y) ≥ C(x) + C(y) + logn− c.

We can eliminate the logarithmic error term at the cost of entering the
length of one of the programs in the conditional,

C(x, y|C(x)) ≤ C(x) + C(y) +O(1).

Equation 2.2 also holds if we replace the left-hand side by the complex-
ity C(xy) of the unmarked concatenation xy. In the example already
referred to above, it is shown that we cannot eliminate the logarithmic
error in this case either. 3

Example 2.1.6 If we know C(x) and x, then we can run all programs of length C(x) in
parallel on the reference machine U in dovetail fashion (in stage k of the
overall computation execute the ith computation step of program k− i).
By definition of C(·), there must be a program of length C(x) that halts
with output x. The first such program is the first shortest program for x
in enumeration order, and is denoted by x∗.

Therefore, a program to compute C(x), given x, can be converted to a
program to compute x∗, given x, at the cost of a constant number of
extra bits. If we have computed x∗, then C(x) is simply its length, so
the converse is trivial. Furthermore, to describe C(x) from scratch takes
at least as many bits as to describe C(x) using x. Altogether we have,
up to additional constant terms,

C(x∗|x) = C(C(x)|x) ≤ C(C(x)) ≤ log l(x).

3

The upper bound on C(x∗|x) cannot be improved to O(1). If it could, then
one could show that C(x) is a recursive function. However, in Theorem 2.3.2
we shall show that C(x) is not partial recursive. It is a curious fact that for
some x, knowledge of x does not help much in computing x∗. In fact, the
upper bound is nearly optimal. In Theorem 3.8.1 we shall show that for some
x of each length n the quantity C(C(x)|x), and hence also C(x∗|x), is almost
log n.

Clearly, the information that an element belongs to a particular set can
severely curtail the complexity of that element. The following simple
observation, due to Kolmogorov, turns out to be very useful. We show
that for every easily describable set the conditional complexity of every
one of its elements is at most equal to the logarithm of the cardinality of
that set. (We will observe later, in Theorem 2.2.1, that the conditional
complexities of the majority of elements in a finite set cannot be signifi-
cantly less than the logarithm of the cardinality of that set: we will say
that they are ‘incompressible’ and have a small ‘randomness deficiency.’)

2.1. The Invariance Theorem 111

Theorem 2.1.3 Let A ⊆ N × N be recursively enumerable, and y ∈ N . Suppose Y =
{x : (x, y) ∈ A} is finite. Then, for some constant c depending only on
A, for all x in Y , we have C(x|y) ≤ l(d(Y)) + c.

Proof. Let A be enumerated without repetition as (x1, y1), (x2, y2), . . . by
a Turing machine T . Let (xi1 , yi1), . . . , (xik , yik) be the subsequence in
which the elements of Y are enumerated, k = d(Y). Using the fixed
y, modify T to Ty such that Ty, on input 1 ≤ p ≤ d(Y), outputs
xip , Ty(p) = xip . Therefore, we have by the invariance theorem, Theo-
rem 2.1.1, that C(x|y) ≤ CTy (x) + c ≤ l(d(Y)) + c, with c depending
only on A. 2

Let us illustrate the use of this theorem. Let A be a subset of N . Define
A≤n = {x ∈ A : l(x) ≤ n}. Let A be recursively enumerable and
d(A≤n) ≤ p(n), with p a polynomial. Then, for all x ∈ A of length at
most n we have C(x|n) ≤ l(p(n))+O(1), by Theorem 2.1.3. For all x of
length at most n we have C(x) ≤ C(x|n) + 2l(n) +O(1). Therefore, for
x ∈ A≤n we find that C(x) = O(log n).

2.1.3
Invariance of
Kolmogorov
Complexity

The complexity C(x) is invariant only up to a constant depending on
the reference function φ0. Thus, one may object, for every string x there
is an additively optimal recursive function ψ0 such that Cψ0(x) = 0. So
how can one claim that C(x) is an objective notion?

A mathematically clean solution to this problem is as follows: Call two
complexities Cφ and Cψ equivalent, Cφ ≡ Cψ , if there is a constant c
such that for all x,

|Cφ(x) − Cψ(x)| ≤ c.

Then the equivalence relation ≡ induces equivalence classes

[Cφ] = {Cψ : Cψ ≡ Cφ}.

We order the equivalence classes by [Cφ] ≤ [Cψ] if there is a constant
c ≥ 0 such that Cφ(x) ≤ Cψ(x) + c for every x. The resulting order on
the equivalence classes is a partial order with a single minimal element,
namely [Cφ0], such that for all Cψ,

[Cφ0] ≤ [Cψ].

We have somewhat glibly overlooked the fact that our definition of Kolmogorov
complexity is relative to the particular effective enumeration of Turing ma-
chines as used in the proof of the invariance theorem, Theorem 2.1.1. We have
claimed that the quantity of information in an object depends on itself alone.
That is, it should be independent of the particular enumeration of Turing
machines.

112 2. Algorithmic Complexity

Consider two different enumerations of all partial recursive functions, say
φ1, φ2, . . . and ψ1, ψ2, Assume that the φ enumeration is the enumer-
ation corresponding to our effective enumeration of Turing machines as used
in the proof of the invariance theorem.

Let the standard enumeration φ1, φ2, . . . and the other enumeration ψ1, ψ2, . . .
be related by ψi = φf(i) and φi = ψg(i), i = 1, 2, If both f and g
are partial recursive, then the enumerations are called recursively isomorphic
and are both acceptable numberings (Section 1.7, Exercise 1.7.6 on page 41).
Let C(x) be the complexity with respect to the reference function in the φ
enumeration, and let C′(x) be the complexity with respect to the reference
function in the ψ enumeration. It is an easy exercise to show that there is a
constant c such that |C(x) − C′(x)| < c for all x. (Hint: use the indexes of f
and g in the enumerations.)

Therefore, not only do additively optimal functions in the same acceptable
numberings yield complexities that are equal up to a fixed constant, but addi-
tively optimal functions in two different acceptable numberings do so as well.
Hence, Kolmogorov complexity is recursively invariant between acceptable
numberings, even though we have chosen to define it using the specific enu-
meration of Turing machines of Section 1.7. Using an analogy due to Hartley
Rogers, Jr., the fixed choice of effective enumeration of Turing machines can be
compared with using a particular coordinate system to establish coordinate-
free results in geometry.

A contradiction is possible only if there is no recursive isomorphism between
the φ enumeration and the ψ enumeration. We give an example of an enumer-
ation of all partial recursive functions for which an additively optimal function
yields a complexity C′(x) such that |C(x)−C′(x)| is unbounded. Let C(x) be
defined with respect to the φ enumeration as in Theorem 2.1.1. Define the ψ
enumeration as follows: The even functions ψ2i are defined by ψ2i(1) := yi for
some yi with C(y) ≥ i2 and ψ2i(x) := φi(x) for all x > 1. The odd functions
ψ2i+1 are given by ψ2i+1 := φi.

Clearly, the ψ enumeration contains all partial recursive functions. By way
of contradiction, assume that C′(·) is the Kolmogorov complexity in the ψ-
enumeration defined as in Theorem 2.1.1. Then, C′(yi) ≤ C′

ψ2i
(yi) + cψ2i . By

construction, C′
ψ2i

(yi) = 1 and cψ2i ≤ 2 log 2i + O(1). On the other hand,
C(yi) > i2 by construction. Hence, |C′(yi) −C(yi)| rises unboundedly with i.

2.1.4
Concrete
Kolmogorov
Complexity

It is possible to eliminate the indeterminacy of ‘equality up to a con-
stant’ everywhere by using a fixed domain of objects, a fixed effective
enumeration of Turing machines, and a fixed choice of additively opti-
mal function (rather the universal Turing machine that computes it).
Start from the enumeration of Turing machines in Section 1.7. Fix any
small universal machine, say U , with state–symbol product less than 30.
There exists at least one 7 × 4 universal Turing machine as mentioned
in the comment on page 31 following Example 1.7.4. In Section 3.2 we
exhibit a universal reference machine U to fix a concrete Kolmogorov
complexity with C(x|y) ≤ l(x) + 2 and C(x) ≤ l(x) + 8.

Exercises 113

For every x it is of course possible to choose a universal Turing machine
U ′ such that CU ′ (x) = 0 (in this notation identifying U ′ with the func-
tion it computes). For every such universal Turing machine U ′, we have
for all x that

C(x) ≤ CU ′(x) + C(U ′).

Here C(U ′) is at least the length of the shortest program p such that for
all programs q we have U(pq) = U ′(q). This means that if CU ′(x) = 0,
then C(U ′) ≥ C(x). That is, CU ′(x) = 0 unavoidably means that the
description of U ′ contains a description of x. Therefore, in order to assign
low complexity to a large and complicated object, a universal machine
has to be large and complicated as well.

Exercises 2.1.1. [15] (a) Show that C(0n|n) ≤ c, where c is a constant indepen-
dent of n.

(b) Show that C(π1:n|n) ≤ c, where π = 3.1415 . . . and c is some constant
independent of n.

(c) Show that we can expect C(a1:n|n) ≤ 1
4n, where ai is the ith bit in

Shakespeare’s Romeo and Juliet.

(d) What is C(a1:n|n), where ai is the ith bit in the expansion of the
fine structure constant a = e2/~c, in physics.

Comments. Hint: for Item (c) use known facts concerning the letter
frequencies (entropy) in written English. Source: T.M. Cover, The Im-
pact of Processing Technique on Communications, J.K. Skwirzynski, ed.,
Martinus Nijhof, 1985, pp. 23–33.

2.1.2. [10] Let x be a finite binary string with C(x) = q. What is the
complexity C(xq), where xq denotes the concatenation of q copies of x?

2.1.3. [14] Show that there are infinite binary sequences ω such that
the length of the shortest program for reference Turing machine U to
compute the consecutive digits of ω one after another can be significantly
shorter than the length of the shortest program to compute an initial
n-length segment ω1:n of ω, for any large enough n.

Comments. Hint: choose ω a recursive sequence with shortest program
of length O(1). Then C(ω1:n) = C(n) +O(1), which goes to ∞ with n.

2.1.4. [12] Prove that for every x, there is an additively optimal func-
tion φ0 (as in Theorem 2.1.1) such that Cφ0(x) = 0. Prove the analogous
statement for x under condition y.

2.1.5. [07] Below, x, y, and z are arbitrary elements of N . Prove the
following:

114 2. Algorithmic Complexity

(a) C(x|y) ≤ C(x) +O(1).

(b) C(x|y) ≤ C(x, z|y) +O(1).

(c) C(x|y, z) ≤ C(x|y) +O(1).

(d) C(x, x) = C(x) +O(1).

(e) C(x, y|z) = C(y, x|z) + O(1).

(f) C(x|y, z) = C(x|z, y) +O(1).

(g) C(x, y|x, z) = C(y|x, z) +O(1).

(h) C(x|x, z) = C(x|x) +O(1) = O(1).

2.1.6. [14] Let φk be any partial recursive function in the effective
enumeration φ1, φ2, Let x, y, z be arbitrary elements of N . Prove
the following:

(a) C(φk(x)|y) ≤ C(x|y) + 2l(k) +O(1).

(b) C(y|φk(x)) ≥ C(y|x) − 2l(k) +O(1).

Assume that φk is also one-to-one. Show that

(c) |C(x) − C(φk(x))| ≤ 2l(k) + O(1).

(d) C(x|y, z) ≤ C(x|φk(y), z) + 2l(k) +O(1).

2.1.7. [12] Let x, y, z, and φk be as before. Prove the following.

(a) C(x, y) ≤ C(x) + 2l(C(x)) + C(y|x) +O(1).

(b) C(φk(x, y)) ≤ C(x) + 2l(C(x)) + C(y|x) + 2l(k) + O(1) ≤ C(x) +
2l(C(x)) + C(y) + 2l(k) +O(1).

2.1.8. [12] Show that if φ is a fixed one-to-one and onto recursive
function φ : {0, 1}∗ → {0, 1}∗, then for every x ∈ {0, 1}∗,

C(x) − C(x|φ(x)) = C(x) + O(1) = C(φ(x)) +O(1).

2.1.9. • [19] We investigate the invariance of C under change of pro-
gram representations from 2-ary to r-ary representations. Let Ar =
{0, 1, . . . , r − 1}∗, r ≥ 2, and A = N ∗ with N the set of natural num-
bers. A function φ : Ar × A → A is called an r-ary decoder. In order
not to hide too much information in the decoder, we want it to be a
simple function, a partial recursive one. Analogous to the definitions in
the main text, for any binary decoder φ and x, y in A,

Cφ(x|y) = min{l(p) : φ(p, y) = x},

or ∞ if such p does not exist.

(a) Prove Theorem 2.1.1 under this definition of C.

Exercises 115

(b) Define for each pair of natural numbers r, s ≥ 2 a standard encoding
E of strings x in base r to strings E(x) in base s such that l(E(x)) ≤
l(x) log r/ log s+ 1.

(c) Prove the invariance theorem, Theorem 2.1.1, for r-ary decoders φ.
First, let us define Cφ(x|y) = min{l(p) log r : φ(p, y) = x} and Cφ(x|y) =
∞ if such p does not exist. Then prove that there exists an additively
optimal (universal) r-ary decoder φ0 such that for all s, for all s-ary
decoders φ, there exists a constant cφ such that for all x, y ∈ A we have

Cφ0(x|y) ≤ Cφ(x|y) + cφ.

(d) Show that for any x ∈ Ar of length n, we have C(x) ≤ n log r +
2 log r + c for some fixed c, independent of x and r.

(e) Fix natural numbers r, s ≥ 2 and choose an additively optimal r-ary
decoder and an additively optimal s-ary decoder. Call the associated
canonical C measures respectively Cr and Cs. Show that there exists a
constant c such that for all x, y in A we have

|Cr(x|y) − Cs(x|y)| ≤ c,

where c is independent of x and y. Conclude that C2, the C measure
treated in the main text, is universal in the sense that neither the re-
striction to binary objects to be described nor the restriction to binary
descriptions (programs) results in any loss of generality.

Comments. In general, if we denote by Cr(x) the analogous complexity
of x in terms of programs over alphabets of r letters (C2(x) = C(x)
but for r > 2 without the log r normalizing multiplicative factor as in
Item (c)), then by the same analysis as of Item (c) we obtain Cr(x) ∼
C(x)/ log r. Source: P. Gács, Lecture Notes on Descriptional Complexity
and Randomness, Manuscript, Boston University, 1987.

2.1.10. [12] (a) Show that C(x + C(x)) ≤ C(x) +O(1).

(b) Show that if m ≤ n, then m+ C(m) ≤ n+ C(n) +O(1).

Comments. Hint for Item (a): if U(p) = x with l(p) = C(x), then p
also suffices to reconstruct x + l(p). Hint for Item (b): use Item (a).
Source: P. Gács, Lecture Notes on Descriptional Complexity and Ran-
domness, Manuscript, Boston University, 1987; result is attributed to
C.P. Schnorr.

2.1.11. [13] Let φ1, φ2, . . . be the standard enumeration of the partial
recursive functions, and let a be a fixed natural number such that the
set A = {x : φk(y) = 〈a, x〉 for some y ∈ N} is finite. Show that for each
x in A we have C(x|a) ≤ l(d(A)) + 2l(k) +O(1).

116 2. Algorithmic Complexity

2.1.12. [18] Define the function complexity of a function f : N → N ,
restricted to a finite domain D, as

C(f |D) = min{l(p) : ∀x∈D[U(p, x) = f(x)]}.

(a) Show that for all recursive functions f , there exists a constant cf
such that for all finite D ⊆ N , we have C(f |D) ≤ cf .

(b) Show that for all partial recursive functions, for all D = {i : i ≤ n},
we have C(f |D) ≤ logn+ cf , where cf depends on f but not on D.

Comments. Compare Theorem 2.7.2. Source: J.M. Barzdins, Soviet Math.
Dokl., 9(1968), 1251–1254.

2.2

Incompress-

ibility

It is easy to see that there are strings that can be described by programs
much shorter than themselves. For instance, the function defined by
f(1) = 2 and f(i) = 2f(i−1) for i > 1 grows very fast, f(k) is a stack
of k twos. Yet for each k it is clear that the string x = 1f(k), or the
integer y = 2f(k), has at most complexity C(k) + c for some constant c
independent of k.

Trivially, this simple argument can be generalized to prove the following
fact: for every recursive function φ, no matter how fast it grows, there
is a constant c such that for each value of n there is a string x such that
l(x) = φ(n) but C(x) ≤ n + c. That is, for an appropriate sequence of
strings, the ratio of string length to description length can increase as
fast as any recursive function—some strings are very compressible.

What about incompressibility? By a simple counting argument one can
show that whereas some strings can be greatly compressed, the majority
of strings cannot be compressed at all.

For each n there are 2n binary strings of length n, but only
∑n−1

i=0 2i =
2n − 1 possible shorter descriptions. Therefore, there is at least one
binary string x of length n such that C(x) ≥ n. We call such strings
incompressible. It also follows that for any length n and any binary
string y, there is a binary string x of length n such that C(x|y) ≥ n.

Definition 2.2.1 For each constant c we say that a string x is c-incompressible if C(x) ≥
l(x) − c.

Strings that are incompressible (say, c-incompressible with small c) are
patternless, since a pattern could be used to reduce the description
length. Intuitively, we think of such patternless sequences as being ran-
dom, and we use ‘random sequence’ synonymously with ‘incompressible
sequence.’ Later we give a formalization of the intuitive notion of a ran-
dom sequence as a sequence that passes all effective tests for randomness.

2.2. Incompressibility 117

How many strings of length n are c-incompressible? By the same count-
ing argument we find that the number of strings of length n that are
c-incompressible is at least 2n − 2n−c + 1. Hence there is at least one 0-
incompressible string of length n, at least one-half of all strings of length
n are 1-incompressible, at least three-fourths of all strings of length n are
2-incompressible, . . . , and at least the (1− 1/2c)th part of all 2n strings
of length n are c-incompressible. This means that for each constant c > 1
the majority of all strings of length n with n > c are c-incompressible.
We generalize this to the following simple but extremely useful incom-
pressibility theorem.

Theorem 2.2.1 Let c be a positive integer. For each fixed y, every finite set A of cardi-
nality m has at least m(1−2−c)+1 elements x with C(x|y) ≥ logm− c.

Proof. The number of programs of length less than logm− c is

logm−c−1
∑

i=0

2i = 2logm−c − 1.

Hence, there are at least m − m2−c + 1 elements in A that have no
program of length less than logm− c. 2

As an example, set A = {x : l(x) = n}. Then the cardinality of A is
m = 2n. Since Theorem 2.1.2 asserts that C(x) ≤ n+ c for some fixed c
and all x in A, Theorem 2.2.1 demonstrates that this trivial estimate is
quite sharp. The deeper reason is that since there are few short programs,
there can be only few objects of low complexity.

It is important to realize that Theorem 2.1.1 and Theorem 2.2.1, together
with the trivial upper bound of Theorem 2.1.2, give us already all we
need for most applications.

Example 2.2.1 Are all substrings of incompressible strings also incompressible? A string
x = uvw of length n can be specified by a short program p for v and the
string uw itself. Additionally, we need information on how to tell these
items apart. For instance, q = l(p)pl(u)uw is a program for x. There
exists a machine T that starting on the left end of q, first determines
l(p), then uses l(p) to delimit p, and computes v from p. Continuing on its
input, T determines l(u) and uses this to delimit u on the remainder of
its input. Subsequently, T reassembles x from the three pieces v, u, and
w it has determined. It follows that C(x) ≤ CT (x)+O(1) ≤ l(q)+O(1),
since l(q) ≤ C(v) + 2l(C(v)) + 2l(n) + n− l(v) + 2. Therefore,

C(x) ≤ C(v) + n− l(v) + 4 logn+O(1).

Hence, for c-incompressible strings x with C(x) ≥ n− c we obtain

C(v) ≥ l(v) −O(log n).

118 2. Algorithmic Complexity

Thus, we have shown that v is incompressible up to an additive term
logarithmic in n.

Can we hope to prove C(v) ≥ l(v) − O(1) for all x and v? If this were
true, then x could not contain long regular subsequences, for instance, a
subsequence of k zeros has complexity O(log k) and not k−O(1). How-
ever, the very restriction on x of not having long regular subsequences
imposes some regularity on x by making it a member of a relatively
small set. Namely, we can describe x by stating that it does not contain
certain subsequences, followed by x’s index in the set that is determined
by these constraints. But the set of which x is a member is so small
that C(x) drops below n− c, and x is compressible. Hence, the very in-
compressibility of x requires that it have compressible substrings. This
corresponds to a fact we know from probability theory: a random se-
quence must contain long runs of zeros. 3

Example 2.2.2 If p is a shortest program for x, so that C(x) = l(p), then we would like to
assert that p is incompressible. This time, our intuition corresponds with
the truth. There is a constant c > 0 such that for all strings x we have
C(p) ≥ l(p)−c. For suppose the contrary, and for every constant c there
is an x and a shortest program q that generates p with l(q) < l(p) − c.
Define a universal machine V that works just like the reference machine
U , except that V first simulates U on its input to obtain the output,
and then uses this output as input on which to simulate U once more.
Let V = Ti, the ith Turing machine in the standard enumeration. Then,
U with input 1i0q computes x, and therefore C(x) < l(p) − c + i + 1.
But this contradicts l(p) = C(x) for c ≥ i+ 1. 3

Example 2.2.3 We continue Example 2.1.5 on page 109 that C(x, y) is not subadditive
since the logarithmic term in Equation 2.2 cannot be eliminated. Namely,
there are (n + 1)2n pairs (x, y) of binary strings whose sum of lengths
is n. By Theorem 2.2.1 there is a pair (x, y) with l(x) + l(y) = n such
that C(x, y) ≥ n+ log n− 1. But Theorem 2.1.2 on page 108 states that
C(x) +C(y) ≤ l(x) + l(y) + c for some constant c independent of x and
y. Hence, for all n there are x and y of length at most n such that

C(x, y) > C(x) + C(y) + logn− c,

where c is a constant independent of x and y. For the unmarked con-
catenation xy with l(xy) = n, if C(xy) ≥ n, then xy contains a block of
0’s or 1’s of length at least logn−2 log logn−O(1) (follows from Exam-
ple 2.2.1 but is more precisely derived in Corollary 2.6.2 om page 172).
We can choose the concatenation xy so that x ends with this longest
run of 0’s or 1’s. This means that C(x) ≤ l(x)− logn+2 log logn. Then,
C(xy) ≥ C(x) + C(y) + logn− 2 log logn− c. 3

2.2. Incompressibility 119

There is a particular use we had in mind in defining conditional Kol-
mogorov complexity. Namely, we often want to speak about the com-
plexity of x given its length n. This is because a string x of length n
carries in a sense two quantities of information, one associated with the
irregularity of the pattern of 0’s and 1’s in x, and one associated with
the length n of x.

Example 2.2.4 One effect of the information quantity associated with the length of
strings is that C(x) is nonmonotonic on prefixes. This can be due to the
information contained in the length of x. That is, for m < n we can still
have C(m) > C(n). But then C(y) > C(x) for x = 1n and y = 1m,
notwithstanding that y is a proper prefix of x. For example, if n = 2k,
then C(1n) ≤ log logn + O(1), while Theorem 2.2.1 shows that there
exist m with 1

2n ≤ m < n such that C(1m) ≥ logn − O(1). Therefore,
the complexity of a part can turn out to be bigger than the complexity
of the whole. In an initial attempt to solve this problem we may try to
eliminate the effect of the length of the string on the complexity measure
by treating the length as given. 3

Definition 2.2.2 The length-conditional Kolmogorov complexity of x is C(x|l(x)).

Roughly speaking, this means that the length of the shortest program for
x may save up to log l(x) bits in comparison with the shortest program
in the unconditional case. Clearly, there is a constant c such that for
all x,

C(x|l(x)) ≤ C(x) + c.

While on the face of it the measure C(x|l(x)) gives a pure estimate of
the quantity of information in solely the pattern of 0’s and 1’s of x, this
is not always true. Namely, sometimes the information contained in l(x)
can be used to determine the pattern of zeros and ones of x. This effect
is noticeable especially in the low-complexity region.

Example 2.2.5 For each integer n, the n-string is defined by n0n−l(n) (using the binary
string n). There is a constant c such that for all n, if x is the n-string,
then C(x|n) ≤ c. Namely, given n we can find the nth binary string ac-
cording to Equation 1.3 and pad the string with zeros up to overall length
n. We use n-strings to show that unfortunately, like the original C(x),
the complexity measure C(x|l(x)) is not monotonic over the prefixes.
Namely, if we choose n such that its pattern of 0’s and 1’s is very irreg-
ular, C(n) ≥ l(n), then for x = n0n−l(n), we still obtain C(x|l(x)) ≤ c.
But clearly C(n|l(n)) ≥ C(n) − C(l(n)) ≥ logn− 2 log logn. 3

120 2. Algorithmic Complexity

Example 2.2.6 Consider the complexity of a string x, with x an element of a given set
A. Clearly, the information that an element belongs to a particular set
severely curtails the complexity of that element if that set is small or
sparse. The following is a simple application of the very useful Theo-
rem 2.1.3. Let A be a subset of N and A≤n = {x ∈ A : l(x) ≤ n} We
call A meager if lim d(A≤n)/2n = 0 for n → ∞. For example, the set
of all finite strings that have twice as many 0’s as 1’s is meager. We
show that meagerness may imply that almost all strings in the meager
set have short descriptions.

Claim 2.2.1 If A is recursive and meager, then for each constant c there are only
finitely many x in A that are c-incompressible (C(x) ≥ l(x) − c).

Proof. Consider the lexicographic enumeration of all elements of A. Be-
cause A is recursive, there is a total recursive function φi that enumer-
ates A in increasing order. Hence, for the jth element x of A we have
C(x) ≤ C(j)+2l(i)+1. If x has length n, then the meagerness of A im-
plies that for each constant c′, no matter how large, n−C(j) > c′ from
some n onward. Hence, C(x) < n− c′ +2l(i). The proof is completed by
setting c′ = c+ 2l(i). 2 3

2.2.1
Randomness
Deficiency

If we know that x belongs to a subset A of the natural numbers, then
we can consider its complexity C(x|A). For instance, C(x) = C(x|N),
because it is understood that x is a natural number. If x is an element
of a finite set A, then Theorem 2.1.3 asserts that C(x|A) ≤ l(d(A)) + c
for some c independent of x but possibly dependent on A. For instance,
the infinite meager sets of Example 2.2.6 contain finitely many incom-
pressible strings only.

Definition 2.2.3 The randomness deficiency of x relative to A is defined as δ(x|A) =
l(d(A)) −C(x|A). It follows that δ(x|A) ≥ −c for some fixed constant c
independent of x.

If δ(x|A) is large, then this means that there is a description of x with
the help of A that is considerably shorter than just giving x’s serial
number inA. There are comparatively few objects with large randomness
deficiency—this is the substance of Martin-Löf’s notion of a statistical
test in Section 2.4. Quantitatively this is expressed as follows:

Theorem 2.2.2 Assume the discussion above. Then, d({x : δ(x|A) ≥ k}) ≤ d(A)/2k−1.

Proof. There are fewer than 2l+1 descriptions of length at most l. 2

Exercises 121

By Theorem 2.1.3, the complexity of a string x in a given finite section
of a recursively enumerable set is bounded above by the logarithm of the
cardinality of that finite section. Let 〈·〉 : N 2 → N be the standard re-
cursive bijective pairing function. Let R = {(x, y) : φ(i) = 〈x, y〉, i ≥ 1}
with φ a partial recursive function, say φ = φr in the standard enumer-
ation of partial recursive functions. Then R is recursively enumerable.
Let the set A = {x : (x, y) ∈ R} be finite. We can assume that A is
enumerated without repetition, and that j ≤ d(A) is the position of x
in this enumeration. Clearly,

C(x|y) ≤ log d(A) + log r + 2 log log r +O(1).

As above, define C(x|A) = C(x|y) with the obvious interpretation. The
randomness deficiency of x relative to y is

δ(x|y) = log d(A) − C(x|y).

The randomness deficiency measures the difference between the maximal
complexity of a string in A and the complexity of x in A. Now, the defect
of randomness is positive up to a fixed constant independent of x and
A (but dependent on r). We may consider x to be random in the set
A iff δ(x|y) = O(1). If A is the set of binary strings of length n, or
equivalently, R is the set {(x, n) : l(x) = n} and A = {x : l(x) = n},
then we note that

δ(x|n) = n− C(x|n) +O(1).

That is, x is a random finite string in our informal sense iff δ(x|n) =
O(1). It will turn out that this coincides with Martin-Löf’s notion of
randomness in Section 2.4.

Exercises 2.2.1. [08] Prove the following continuity property of C(x). For all
natural numbers x, y we have |C(x+ y) − C(x)| ≤ 2l(y) +O(1).

2.2.2. [15] Let x satisfy C(x) ≥ n−O(1), where n = l(x).

(a) Show that C(y), C(z) ≥ 1
2n−O(1) for x = yz and l(y) = l(z).

(b) Show that C(y) ≥ n/3 − O(1) and C(z) ≥ 2n/3 − O(1) for x = yz
and l(z) = 2l(y).

(c) Let x = x1 . . . xlog n with l(xi) = n/ logn for all 1 ≤ i ≤ logn. Show
that C(xi) ≥ n/ logn−O(log logn) for all 1 ≤ i ≤ logn.

2.2.3. [21] Let x satisfy C(x) ≥ n− O(1), where n = l(x). Show that
for all divisions x = yz we have n− logn−2 log logn ≤ C(y)+C(z) and
for some divisions we have C(y) + C(z) ≤ n− logn+ log logn.

122 2. Algorithmic Complexity

2.2.4. [23] Assume that the elements of {1, . . . , n} are uniformly dis-
tributed with probability 1/n. Compute the expected value of C(x) for
1 ≤ x ≤ n.

Comments. Hint:
∑n

x=1
C(x)
n ≥∑logn

i=1 2−i(1 − i
log n) = logn+O(1).

2.2.5. [14]We call x an n-string if x has length n and x = n00 . . .0.

(a) Show that there is a constant c such that for all n, every n-string
x has complexity C(x|n) ≤ c. (Of course, c depends on the reference
Turing machine U used to define C.)

(b) Show there is a constant c such that for all n, C(x|n) ≤ c for every
x in the form of the n-length prefix of nn . . . n.

(c) Let c be as in Item (a). Consider some n and some string x of length n
with C(x|n) ≫ c. Prove that the extension of x to a string y = x00 . . . 0
of length x has complexity C(y|x) ≤ c. Conclude that there is a constant
c such that each string x, no matter how high its C(x|l(x)) complexity,
can be extended to a string y with C(y|l(y)) ≤ c.

Comments. The C(x) measure contains the information about the pat-
tern of 0’s and 1’s in x and information about the length n of x. For
random such n, the complexity C(n) = l(n) + O(1) is about logn. In
this case, about logn bits of the shortest program p for x will be used
to account for x’s length. For n’s that are easy to compute, this is much
less. This seems a minor problem at high complexities, but becomes an
issue at low complexities, as follows. If the quantities of information re-
lated to the pattern only is low, say less than logn, for two strings x and
y of length n, then distinctions between these quantities for x and y may
get blurred in the comparison between C(x) and C(y) if the quantity of
information related to length n dominates in both. The C(x|l(x)) com-
plexity was meant to measure the information content of x apart from
its length. However, as the present exercise shows, in that case l(x) may
contain already the complete description of x up to a constant number
of bits. Source: D.W. Loveland, Inform. Contr., 15(1969), 510–526.

2.2.6. [19] (a) Show that there is a constant d > 0 such that for every
n there are at least ⌊2n/d⌋ strings x of length n with C(x|n) ≥ n and
C(x) ≥ n.

(b) Show that there are constants c, d′ > 0 such that for every large
enough n there are at least ⌊2n/d′⌋ strings x of length n− c ≤ l(x) ≤ n
with C(x|n) > n and C(x) > n.

(c) Assume that we have fixed a reference universal turing machine such
that for every n, we have C(x), C(x|n) ≤ n+1 for all strings x of length
n. Show that in this case Item (b) holds with l(x) = n.

Exercises 123

Comments. Hint for Item (a): There is a constant c > 0 such that for
every n and every x of length l(x) ≤ n − c we have C(x|n) ≤ n by
Theorem 2.1.2. Therefore, there are at most 2n − 2n−c+1 programs of
length < n available as shortest programs for the strings of length n.
Hence there is at least one x of length n with C(x|n) ≥ n. Let there be
m ≥ 1 such strings. Given m and n we can enumerate all 2n−m strings
x of length n and complexity C(x|n) < n by dovetailing the running of
all programs of length < n. The lexicographic first string of length n
not in the list satisfies logm + O(1) ≥ C(x|n) ≥ n. The unconditional
result follows similarly by padding the description of x up to length n.
Hint for Item (b): For every n there are equally many strings of length
≤ n to be described and potential programs of length ≤ n to describe
them. Since some programs do not halt (Lemma 1.7.5 on page 34) for
every large enough n, there exists a string x of length at most n that
has C(x|n), C(x) > n (and C(x|n), C(x) ≤ l(x) + c). The remaining
argument is similar to that of Item (a). Source: H. Buhrman, T. Jiang,
M. Li, P.M.B. Vitányi, Theoret. Comput. Sci., 235:1(2000), 59–70. Also
reported by M. Kummer and L. Fortnow. Compare with the similar
Exercise 3.3.1 for prefix Kolmogorov complexity on page 213. In the
source of that exercise, some form of the result of the current exercise is
attributed to G.J. Chaitin in the early 1970s.

2.2.7. [14] We can extend the notion of c-incompressibility as follows
(all strings are binary): Let g : N → N be unbounded. Call a string x
of length n g-incompressible if C(x) ≥ n− g(n). Let I(n) be the number
of strings x of length at most n that are g-incompressible. Show that
limn→∞ I(n)/2n+1 = 1.

Comments. Thus, the g-incompressible finite strings have uniform prob-
ability going to 1 in the set of strings of length n for n→ ∞.

2.2.8. [19] Prove that for each binary string x of length n there is a y
equal to x except for one bit such that C(y|n) ≤ n− logn+O(1).

Comments. Hint: the set of binary strings of length n constituting a
Hamming code has 2n/n elements and is recursive. Source: personal
communication, I. Csiszár, May 8, 1993.

2.2.9. [12] A Turing machine T computes an infinite sequence ω if
there is a program p such that T (p, n) = ω1:n for all n. Define C(ω) =
min{l(p) : U(p, n) = ω1:n for all n}, or ∞ if such a p does not exist.
Obviously, for all ω either C(ω) <∞ or C(ω) = ∞.

(a) Show that C(ω) < ∞ iff 0.ω is a recursive real number as in Exer-
cise 1.7.22 on page 47. For the mathematical constants π and e, C(π) <
∞ and C(e) <∞.

124 2. Algorithmic Complexity

(b) Show that the reals 0.ω with C(ω) < ∞ form a countably infinite
set and that the reals 0.ω with C(ω) = ∞ have uniform measure one in
the total set of reals in the interval [0, 1).

2.2.10. [27] We consider how information about x can be dispersed.
Let x ∈ N with l(x) = n and C(x) = n + O(1). Show that there are
u, v, w ∈ N such that

(i) l(u) = l(v) = l(w) = 1
2n, C(u) = C(v) = C(w) = 1

2n (+O(1)), and
they are pairwise independent: C(y|z) = 1

2n + O(1) for y, z ∈ {u, v, w}
and y 6= z;

(ii) x can be reconstructed from any two of them: C(x|y, z) = O(1),
where y, z ∈ {u, v, w} and y 6= z.

Can you give a general solution for finding m+k elements of N such that
each of them has length and complexity n/m, and x can be reconstructed
from any m distinct elements?

Comments. It is surprising that x can be reconstructed from any two
out of three elements, each of one-half the complexity of x. This shows
that the identity of the individual bits is not preserved in the division.
Hint: assume n = 2m and x = x1 . . . x2m, u = u1 . . . um, v = v1 . . . vm,
and w = w1 . . . wm with ui = x2i−1, vi = x2i, and wi = vi ⊕ ui. (Recall
that a⊕ b = 1 iff a 6= b.) This solution apparently does not generalize. A
general solution to distribute x over m+k elements such that any group
of m elements determines x can be given as follows: Compute the least
integer y ≥ x1/m. Let pi be the ith prime, with p1 = 2. Distribute x over

u1, . . . , um+k, where ui ≡ x mod p
α(i)
i , with α(i) = ⌈y logpi

2⌉. Using the
Chinese remainder theorem we find that we can reconstruct x from any
subset of m elements ui. Source: A. Shamir, Comm. ACM, 22:11(1979),
612–613; M.O. Rabin, J. ACM, 36:2(1989), 335–348.

2.2.11. [26] Show that there are strings x, y, z such that C(x|y) +
C(x|z) > C(x) + C(x|y, z) + O(1). For convenience prove this first for
strings of the same length n; but it also holds for some strings x, y, z with
l(x) = logn and l(y) = l(z) = n. Comments. This is a counterintuitive
result. Hint: prove there are pairwise random strings x, y, z such that
each string results from ⊕-ing the other two.

2.2.12. [18] Let A be the set of binary strings of length n. An element
x in A is δ-random if δ(x|A) ≤ δ, where δ(x|A) = n − C(x|A) is the
randomness deficiency. Show that if x ∈ B ⊆ A, then

log
d(A)

d(B)
− C(B|A) ≤ δ(x|A) +O(log n).

Comments. That is, no random elements of A can belong to any subset
B of A that is simultaneously pure (which means that C(B|A) is small)

Exercises 125

and not large (which means that d(A)/d(B) is large). Source: A.N. Kol-
mogorov and V.A. Uspensky, Theory Probab. Appl., 32(1987), 389–412.

2.2.13. [27] Let x ∈ A, with d(A) < ∞. Then in Section 2.2 the
randomness deficiency of x relative to A is defined as δ(x|A) = l(d(A))−
C(x|A). (Here C(x|A) is defined as C(x|χ) with χ the characteristic
sequence of A and l(χ) <∞.) If δ(x|A) is large, this means that there is
a description of x with the help of A that is considerably shorter than
just giving x’s serial number in A. Clearly, the randomness deficiency of
x with respect to sets A and B can be vastly different. But then it is
natural to ask whether there exist absolutely nonrandom objects, objects
having large randomness deficiency with respect to any appropriate set.

Prove the following: Let a and b be arbitrary constants; for every suf-
ficiently large n, there exists a binary string x of length n such that
δ(x|A) ≥ b logn for any set A containing x for which C(A) ≤ a logn.

Comments. Source: A.K. Shen, Soviet Math. Dokl., 28(1983), 295–299.
Compare with Kamae’s theorem, Exercise 2.7.5. Let us give some in-
terpretation of such results bearing on statistical inference. Given an
experimental result, the statistician wants to infer a statistical hypoth-
esis under which the result is typical. Mathematically, given x we want
to find a simple set A that contains x as a typical element. The above
shows that there are outcomes x such that no simple statistical model
of the kind described is possible. The question remains whether such
objects occur in the real world.

2.2.14. [31] Consider two complexity measures for infinite binary se-
quences ω. Let C∞(ω) be the minimal length of a program p such
that p(n) = ω1:n for all sufficiently large n. Let Ĉ∞(ω) be defined as
lim supn→∞ C(ω1:n|n). Prove that C∞(ω) ≤ 2Ĉ∞(ω) + O(1), and that
this bound is tight (the constant 2 cannot be replaced by a smaller one).

Comments. Source: B. Durand, A.K. Shen, N.K. Vereshchagin. Theoret.
Comput. Sci., 171(2001), 47–58.

2.2.15. [37] Consider Clim(x) = min{l(p) : p(n) = x for all but finitely
many n} and Clim sup(x) = min{m : for all but finitely many n there
exists a p with l(p) ≤ m and p(n) = x}. Let C′(x) denote the plain
Kolmogorov complexity relativized to 0′ (that is, the program is allowed
to ask an oracle whether a given Turing machine terminates on given
input).

(a) Prove that Clim(x) = C′(x) +O(1).

(b) Prove that Clim sup(x) = C′(x) +O(1).

Comments. Source: N.K. Vereshchagin Theoret. Comput. Sci., 271(2002),
59–67. Item (b) is the more difficult one; Item (a) is attributed to An.A.
Muchnik, S.Y. Positselsky.

126 2. Algorithmic Complexity

2.3

C as an

Integer

Function

We consider C as an integer function C : N → N , and study its be-
havior, Figure 2.1. First we observe that Theorem 2.1.2 gives an upper
bound on C: there exists a constant c such that for all x in N we have
C(x) ≤ l(x) + c, and by Theorem 2.2.1 this estimate is almost exact for
the majority of x’s. This is a computable monotonic increasing upper
bound that grows to infinity. It is also the least such upper bound. It
turns out that the greatest monotonic nondecreasing lower bound also
grows to infinity but does so incomputably slowly.

Theorem 2.3.1 (i) The function C(x) is unbounded.

(ii) Define a function m by m(x) = min{C(y) : y ≥ x}. That is, m is
the greatest monotonic increasing function bounding C from below. The
function m(x) is unbounded.

(iii) For any partial recursive function φ(x) that goes monotonically to
infinity from some x0 onward, we have m(x) < φ(x) except for finitely
many x. In other words, although m(x) goes to infinity, it does so more
slowly than any unbounded partial recursive function.

Proof. (i) This follows immediately from (ii).

(ii) For each i there is a least xi such that for all x > xi, the smallest
program p printing x has length greater than or equal to i. This follows
immediately from the fact that there are only a finite number of pro-
grams of each length i. Clearly, for all i we have xi+1 ≥ xi. Now observe
that the function m has the property that m(x) = i for xi < x ≤ xi+1.

(iii) Assume the contrary: there is a monotonic nondecreasing unbounded
partial recursive function φ(x) ≤ m(x) for infinitely many x. The do-
main A = {x : φ(x) <∞} of φ is an infinite recursively enumerable set.
By Lemma 1.7.4, A contains an infinite recursive subset B. Define

ψ(x) =

{
φ(x) for x ∈ B,
φ(y) with y = max{z : z ∈ B, z < x}, otherwise.

This ψ is total recursive and goes monotonically to infinity, and ψ(x) ≤
m(x) for infinitely many x.

Now define M(a) = max{x : C(x) ≤ a}. Then, M(a) + 1 = min{x :
m(x) > a}. It is easy to verify that

max{x : ψ(x) ≤ a+ 1} ≥ min{x : m(x) > a} > M(a),

for infinitely many a’s, and the function F (a) = max{x : ψ(x) ≤ a +
1} is obviously total recursive. Therefore, F (a) > M(a) for infinitely
many a’s. In other words, C(F (a)) > a for infinitely many a’s. But by
Theorem 2.1.1,

C(F (a)) ≤ CF (F (a)) +O(1) ≤ l(a) +O(1).

2.3. C as an Integer Function 127

FIGURE 2.1. The graph of the integer function C(x)

This implies that there exists a constant c such that l(a) + c ≥ a for
infinitely many a, which is impossible. 2

Notice that Items (ii) and (iii) of Theorem 2.3.1 do not hold for the
length-conditional complexity C(x|l(x)). Namely, although C(x|l(x)) is
unbounded, it drops infinitely often to constant level. In other words,
there is no unbounded monotonic function that is a lower bound on
C(x|l(x)) by Example 2.2.5. This phenomenon is further explored in the
exercises.

The second cornerstone of the theory (millstone around its neck is prob-
ably more apt) is the incomputability theorem.

Theorem 2.3.2 The function C(x) is not recursive. Moreover, no partial recursive func-
tion φ(x) defined on an infinite set of points can coincide with C(x) over
the whole of its domain of definition.

Proof. This proof is related to that of Theorem 2.3.1, Item (iii). We prove
that there is no partial recursive φ as in the statement of the theorem.
Every infinite recursively enumerable set contains an infinite recursive
subset, Lemma 1.7.4. Select an infinite recursive subset A in the domain
of definition of φ. The function ψ(m) = min{x : C(x) ≥ m,x ∈ A} is
(total) recursive (since C(x) = φ(x) on A), and takes arbitrarily large
values, Theorem 2.3.1. Also, by definition of ψ, we have C(ψ(m)) ≥ m.
On the other hand, C(ψ(m)) ≤ Cψ(ψ(m)) + cψ by definition of C,
and obviously Cψ(ψ(m)) ≤ l(m). Hence, m ≤ logm up to a constant
independent of m, which is false from some m onward. 2

That was the bad news; the good news is that we can approximate C(x).

Theorem 2.3.3 There is a total recursive function φ(t, x), monotonic decreasing in t,
such that limt→∞ φ(t, x) = C(x).

log x

C(x)

m(x)

x

128 2. Algorithmic Complexity

Proof. We define φ(t, x) as follows: For each x, we know that the shortest
program for x has length at most l(x) + c, Theorem 2.1.2. Run the
reference Turing machine U in the proof of Theorem 2.1.1 for t steps on
each program p of length at most l(x) + c. If for any such input p the
computation halts with output x, then define the value of φ(t, x) as the
length of the shortest such p, otherwise equal to l(x)+ c. Clearly, φ(t, x)
is recursive, total, and monotonically nonincreasing with t (for all x,
φ(t′, x) ≤ φ(t, x) if t′ > t). The limit exists, since for each x there exists
a t such that U halts with output x after computing t steps starting
with input p with l(p) = C(x). 2

One cannot decide, given x and t, whether φ(t, x) = C(x). Since φ(t, x) is
nondecreasing and goes to the limit C(x) for t → ∞, if there were a decision
procedure to test φ(t, x) = C(x), given x and t, then we could compute C(x).
But Theorem 2.3.2 tells us that C is not recursive.

Let g1, g2, . . . be a sequence of functions. We call f the limit of this sequence
if f(x) = limt→∞ gt(x) for all x. The limit is recursively uniform if for every
rational ǫ > 0 there exists a t(ǫ), where t is a total recursive function, such
that |f(x)−gt(ǫ)(x)| ≤ ǫ, for all x. Let the sequence of one-argument functions
ψ1, ψ2, . . . be defined by ψt(x) = φ(t, x), for each t for all x. Clearly, C is the
limit of the sequence of ψ’s. However, by Theorem 2.3.2, the limit is not
recursively uniform. In fact, by the halting problem in Section 1.7, for each
ǫ > 0 and t > 0 there exist infinitely many x such that |C(x) − ψt(x)| > ǫ.
This means that for each ǫ > 0, for each t there are many x’s such that our
estimate φ(t, x) overestimates C(x) by an error of at least ǫ.

We describe some other characteristics of the function C.

Continuity: The function C is continuous in the sense that there is a
constant c such that |C(x) − C(x ± h)| ≤ 2l(h) + c for all x and
h. (Hint: given a program that computes x we can change it into
another program that adds (or subtracts) h from the output.)

Logarithmic: The function C(x) mostly hugs log x. It is bounded above
by log x+ c, Theorem 2.1.2, page 108. On the other hand, by Theo-
rem 2.2.1, page 117, for each constant k, the number of x of length
n (about log x) such that C(x) < log x− k is at most 2n−k.

Fluctuation: The function C(x) fluctuates rapidly. Namely, for each
x there exist two integers x1, x2 within distance

√
x of x (that is,

|x − xi| ≤ √
x for i = 1, 2) such that C(x1) ≥ l(x)/2 − c and

C(x2) ≤ l(x)/2 + c. (Hint: change the low-order half of the bits
of x to some incompressible string to obtain x1, and change these
bits to a very compressible string (such as all zeros) to obtain x2.)
Therefore, if x is incompressible with C(x) = l(x) − O(1), then
there is an x2 nearby where C(x2) equals about C(x)/2, and if x is
compressible with C(x) = o(l(x)), then there is an x1 nearby where

2.3. C as an Integer Function 129

C(x1) equals about l(x)/2. These facts imply many fluctuations
within small intervals because, for instance, C(x), C(x + log x),
C(x+

√
x), C(cx), C(x2), and C(2x) all have about the same value.

Long high-complexity runs: For each c there is a d such that there
are no runs of d consecutive c-incompressible numbers. However,
conversely, for each d there is a c such that there are runs of d
consecutive c-incompressible numbers. (Hint: for the nonexistence
part use numbers x of the form i2j for which C(i2j) ≤ l(i) + l(j) +
c < l(i2j) − d; for the existence part use the continuity property
and the nearly logarithmic property above.)

Example 2.3.1 It is not difficult to see that Theorems 2.3.1, Item (i), 2.3.2, and 2.3.3,
Theorem 2.1.2, and the above properties hold for the length-conditional
complexity measure C(x|l(x)). By the existence of n-strings, Exam-
ple 2.2.5, the greatest monotonic lower bound on C(x|l(x)) is a fixed
constant, and therefore Items (ii) and (iii) of Theorem 2.3.1 do not hold
for this complexity measure. Theorems 2.1.1, 2.2.1 are already proved
for C(x|l(x)) in their original versions. Namely, either they were proved
for the conditional complexity in general, or the proof goes through as
given for the length-conditional complexity. Thus, the general contour of
the graph of C(x|l(x)) looks very roughly similar to that of C(x), except
that there are dips below a fixed constant infinitely often, Figure 2.2.

Let us make an estimate of how often the dips occur. Consider the n-
strings of Example 2.2.5. For each integer n there is an extension of
the corresponding binary string with n − l(n) many 0’s such that the
resulting string x has complexity C(x|l(x)) ≤ c for a fixed constant c. It
is easy to see that log x ≈ n, and that for all n′ < n the corresponding
x′ is less than x. Hence, the number of x′ < x such that C(x′|l(x′)) ≤ c
is at least log x. 3

FIGURE 2.2. The graph of the integer function C(x|l(x))

C(x|l(x))

log x

m(x)

x

130 2. Algorithmic Complexity

Exercises 2.3.1. [15] Let φ(t, x) be a recursive function and limt→∞ φ(t, x) =
C(x), for all x. For each t define ψt(x) = φ(t, x) for all x. Then C is the
limit of the sequence of functions ψ1, ψ2, Show that for each error
ǫ and all t there are infinitely many x such that ψt(x) − C(x) > ǫ.

Comments. C(x) is the uniform limit of the approximation above if for
each ǫ > 0, there exists a t such that for all x, ψt(x) − C(x) ≤ ǫ. Item
(a) implies that C(x) is not the uniform limit of the above sequence of
functions.

2.3.2. [23] Let φ1, φ2, . . . be the effective enumeration of partial recur-
sive functions in Section 1.7. Define the uniform complexity of a finite
string x of length n with respect to φ (occurring in the above enu-
meration) as Cφ(x;n) = min{l(p) : φ(m, p) = x1:m for all m ≤ n} if
such a p exists, and ∞ otherwise. We can prove an invariance theorem
to the effect that there exists a universal partial recursive function φ0

such that for all φ there is a constant c such that for all x, n we have
Cφ0(x;n) ≤ Cφ(x;n) + c. We choose a reference universal function φ0

and define the uniform Kolmogorov complexity as C(x;n) = Cφ0(x;n).

(a) Show that for all finite binary strings x we have C(x) ≥ C(x; l(x)) ≥
C(x|l(x)) up to additive constants independent of x.

(b) Prove Theorems 2.1.1 to 2.3.3, with C(x) replaced by C(x; l(x)).

(c) Show that in contrast to the measure C(x|l(x)), no constant c exists
such that C(x; l(x)) ≤ c for all n-strings (Example 2.2.5).

(d) Show that in contrast to C(x|l(x)), the uniform complexity is mono-
tonic in the prefixes: if m ≤ n, then C(x1:m;m) ≤ C(x1:n;n), for all x.

(e) Show that there exists an infinite binary sequence ω and a constant
c such that for infinitely many n, C(ω1:n;n) − C(ω1:n|n) > logn− c.

Comments. Item (b) shows that the uniform Kolmogorov complexity sat-
isfies the major properties of the plain Kolmogorov complexity. Items (c)
and (d) show that at least two of the objections to the length-conditional
measure C(x|l(x)) do not hold for the uniform complexity C(x; l(x)).
Hint for Item (c): this is implied by the proof of Theorem 2.3.1 and
Item (a). Item (e) shows as strong a divergence between the measures
concerned as one could possibly expect. Source: D.W. Loveland, Inform.
Contr., 15(1969), 510–526.

2.3.3. [27] Let BB ′ be a variant of the busy beaver function defined in
Exercise 1.7.19, page 45, where BB ′(n) is defined as the maximal num-
ber of steps in a halting computation of the reference universal Turing
machine when started on an n-bit input.

Show that C(BB ′(n)) = n+O(log n). Use this to provide an alternative
proof for Theorem 2.3.1, Item (iii).

Exercises 131

Comments. Hint: Knowing n and the index j ≤ 2n of the input that
achieves BB ′(n), we can compute BB ′(n). Hence, C(BB ′(n) | n) ≤
n + O(1). On the other hand, Knowing n and BB ′(n), we can run all
programs of n bits for at most BB ′(n) steps; the programs that have
not halted after BB ′(n) steps will never halt. This resolves the halt-
ing problem for all programs of n bits, and yields the halting sequence
χ1 . . . χ2n for the first 2n programs. By an application of the later The-
orem 2.7.2, known as Barzdins’s lemma, Item (ii), we conclude that
C(BB ′(n), n) ≥ C(χ1 . . . χ2n) −O(1) ≥ n−O(1).

2.3.4. • [35] Let ω be an infinite binary string. We call ω recursive
if there exists a recursive function φ such that φ(i) = ωi for all i > 0.
Prove the following:

(a) If ω is recursive, then there is a constant c such that for all n,

C(ω1:n;n) < c,

C(ω1:n|n) < c,

C(ω1:n) − C(n) < c.

This is easy. The converses also hold but are less easy to show. They
follow from Items (b), (e), and (f).

(b) For each constant c, there are only finitely many ω such that for all
n, C(ω1:n;n) ≤ c, and each such ω is recursive.

(c) For each constant c, there are only finitely many ω such that for
infinitely many n, C(ω1:n;n) ≤ c, and each such ω is recursive.

(d) There exists a constant c such that the set of infinite ω that satisfy
C(ω1:n|n) ≤ c for infinitely many n, has the cardinality of the continuum.

(e) For each constant c, there are only finitely many ω such that for all
n, C(ω1:n|n) ≤ c, and each such ω is recursive.

(f) For each constant c, there are only finitely many ω with C(ω1:n) ≤
C(n) + c for all n, and each such ω is recursive.

(g) For each constant c, there are only finitely many ω with C(ω1:n) ≤
l(n) + c for all n, and each such ω is recursive.

(h) There exist nonrecursive ω for which there exists a constant c such
that C(ω1:n) ≤ C(n) + c for infinitely many n.

Comments. Clearly Item (c) implies Item (b). In Item (d) conclude
that not all such ω are recursive. In particular, the analogue of Item
(c) for C(ω1:n|n) does not hold. Namely, there exist nonrecursive ω for
which there exists a constant c such that for infinitely many n we have
C(ω1:n|n) ≤ c. Hint for Item (d): exhibit a one-to-one coding of sub-
sets of N into the set of infinite binary strings of which infinitely many

132 2. Algorithmic Complexity

prefixes are n-strings—in the sense of Example 2.2.5. Item (e) means
that in contrast to the differences between the measures C(·; l(·)) and
C(·|l(·)) exposed by the contrast between Items (c) and (d), Item (b)
holds also for C(·|l(·)). Items (f) and (g) show a complexity gap, be-
cause C(n) can be much lower than l(n). Hint for Item (h): use Item
(d). Source: for Items (b) through (e), and (h), D.W. Loveland, In-
form. Contr., 15(1969), 510–526. Loveland attributes Item (e) to A.R.
Meyer. The equivalence between bounded length-conditional complexity
and bounded uniform complexity for prefixes of infinite strings is stated
by A.K. Zvonkin and L.A. Levin, Russ. Math. Surv., 25:6(1970), 83–
124. Source of Items (f) and (g) is G.J. Chaitin, Theoret. Comput. Sci.,
2(1976), 45–48. For the prefix complexity K introduced in Chapter 3,
there are nonrecursive ω such that K(ω1:n) ≤ K(n) + O(1) for all n by
a result of R.M. Solovay in Exercise 3.6.9 on page 231.

2.3.5. [HM35] We want to show in some precise sense that the real line
is computationally a fractal. (Actually, one is probably most interested in
Item (a), which can be proved easily and elementarily from the following
definition.) The required framework is as follows: Each infinite binary
sequence ω = ω1ω2 . . . corresponds to a real number 0 ≤ 0.ω < 1. Define
the normalized complexity Cn(ω) = limn→∞ C(ω1:n)/n. If the limit does
not exist, we set Cn(ω) to half the sum of the upper and lower limits.

(a) Show that for all real ω in [0, 1), for every ǫ > 0 and all real r,
0 ≤ r ≤ 1, there exist real ζ in [0, 1) such that |ω−ζ| < ǫ and Cn(ζ) = r.
(For each real r, 0 ≤ r ≤ 1, the set of ω’s with Cn(ω) = r is dense on
the real line [0, 1).)

(b) Show that for all real ω, all rational r and s, we have Cn(rω + s) =
Cn(ω) (both ω and rω + s in [0, 1)). Similarly, show that Cn(f(ω)) =
Cn(ω) for all recursive functions f .

B. Mandelbrot defined a set to be a fractal if its Hausdorff dimension is
greater than its topological dimension [B. Mandelbrot, The Fractal Ge-
ometry of Nature, W.H. Freeman, 1983; for definitions of the dimensions
see W. Hurewicz and H. Wallman, Dimension Theory, Princeton Univ.
Press, 1974].

(c) Show that for any real numbers 0 ≤ a < b ≤ 1, the Hausdorff
dimension of the set {(ω,Cn(ω))}⋂([0, 1) × [a, b]) is 1 + b.

(d) Show that the set G = {(ω,Cn(ω)) : ω ∈ [0, 1)} has Hausdorff
dimension 2 and topological dimension 1. (That is, G is a fractal.)

Comments. Source: J.-Y. Cai and J. Hartmanis, J. Comput. System
Sci., 49:3(1994), 605–619. Other relationships among the Hausdorff di-
mension, Lutz’s constructive dimension, and Kolmogorov complexity
have been investigated by L. Staiger in [Inform. Comput., 102(1993),
159-194; Theor. Comput. Syst. 31(1998), 215-229], B.Ya. Ryabko in [J.

2.4. Random Finite Sequences 133

Complexity, 10(1994) 281–295]; J.H. Lutz in [Proc. 27th Int. Colloq. Aut.
Lang. Prog., 2000, pp. 902–913; Inform. Comput., 187(2003), pp. 49-79;
SIAM J. Comput. 32(2003), 1236-1259], and E. Mayordomo in [Inform.
Process. Lett., 84:1(2002), 247–356].

2.3.6. [M34] To investigate repeating patterns in the graph of C(x) we
define the notion of a ‘shape match.’ Every function from the integers
to the integers is a shape. A shape f matches the graph of C at j with
span c if for all x with j− c ≤ x ≤ j+ c we have C(x) = C(j)+f(x− j).
(a) Show that every matching shape has f(0) = 0. Thus, a matching
shape is a template of which we align the center f(0) with j to see to
what extent it matches C’s graph around the point of interest. We wish
to investigate shapes that can be made to match arbitrarily far in each
direction.

(b) A shape f is recurrent if for all c there exists a j such that f matches
the graph of C at j with span c. Show that there exists a recurrent shape.

(c) Show that there exists a constant c such that there are no runs
C(n) = C(n+ 1) = · · · = C(n+ c) for any n.

(d) Prove that no recurrent shape is a recursive function.

Comments. The notion of ‘shape match’ is different from that of ‘follow-
ing the shape’ in Definition 5.5.8 on page 407. Hints: for Item (b) use
König’s infinity lemma. Item (c) means that the graph of C has no arbi-
trarily long flat spots. For Item (c), prove for sufficiently large c that for
each integer i, for all n with C(n) = i, the runC(n), C(n+1), . . . , C(n+c)
contains an element less than i. For Item (d) use a case analysis, and
use in one case the proof of Item (c) and in the other cases the recursion
theorem, Exercises 1.7.20, page 46. Source: H.P. Katseff and M. Sipser,
Theoret. Comput. Sci., 15(1981), 291–309.

2.4

Random

Finite

Sequences

One can consider those objects as nonrandom in which one can find
sufficiently many regularities. In other words, we would like to identify
incompressibility with randomness. This is proper if the sequences that
are incompressible can be shown to possess the various properties of
randomness (stochasticity) known from the theory of probability. That
this is possible is the substance of the celebrated theory developed by
the Swedish mathematician Per Martin-Löf.

There are many properties known that probability theory attributes to
random objects. To give an example, consider sequences of n tosses with
a fair coin. Each sequence of n zeros and ones is equiprobable as an
outcome: its probability is 2−n. If such a sequence is to be random in
the sense of a proposed new definition, then the number of ones in x

134 2. Algorithmic Complexity

should be near to 1
2n, the number of occurrences of blocks 00 should be

close to 1
4n, and so on.

It is not difficult to show that each such single property separately holds
for all incompressible binary strings. But we want to demonstrate that
incompressibility implies all conceivable effectively testable properties of
randomness (both the known ones and the as yet unknown ones). In this
way, the various theorems in probability theory about random sequences
carry over automatically to incompressible sequences.

In the case of finite strings we cannot hope to distinguish sharply between
random and nonrandom strings. For instance, considering the set of binary
strings of a fixed length, it would not be natural to fix an m and call a string
with m zeros random and a string with m+ 1 zeros nonrandom.

Let us borrow some ideas from statistics. We are given a certain sample
space S with an associated distribution P . Given an element x of the
sample space, we want to test the hypothesis “x is a typical outcome.”
Practically speaking, the property of being typical is the property of
belonging to any reasonable majority. In choosing an object at random,
we have confidence that this object will fall precisely in the intersection
of all such majorities. The latter condition we identify with x being
random.

To ascertain whether a given element of the sample space belongs to a
particular reasonable majority, we introduce the notion of a test. Gener-
ally, a test is given by a prescription that for every level of significance ǫ,
tells us for what elements x of S the hypothesis “x belongs to majority
M in S” should be rejected, where ǫ = 1 − P (M). Taking ǫ = 2−m,
m = 1, 2, . . ., we achieve this by saying that we have a description of the
set V ⊆ N × S of nested critical regions

Vm = {x : (m,x) ∈ V },
Vm ⊇ Vm+1, m = 1, 2, . . . ,

while the condition that Vm be a critical region on the significance level
ǫ = 2−m amounts to requiring, for all n,
∑

x

{P (x|l(x) = n) : x ∈ Vm} ≤ ǫ.

The complement of a critical region Vm is called the (1 − ǫ) confidence
interval. If x ∈ Vm, then the hypothesis “x belongs to majority M ,”
and therefore the stronger hypothesis “x is random,” is rejected with
significance level ǫ. We can say that x fails the test at the level of critical
region Vm.

Example 2.4.1 A string x1x2 . . . xn with many initial zeros is not very random. We
can test this aspect as follows. The special test V has critical regions

2.4. Random Finite Sequences 135

FIGURE 2.3. Test of Example 2.4.1

V1, V2, Consider x = 0.x1x2 . . . xn as a rational number, and each
critical region as a half-open interval Vm = [0, 2−m) in [0, 1), m =
1, 2, Then the subsequent critical regions test the hypothesis “x
is random” by considering the subsequent digits in the binary expansion
of x. We reject the hypothesis on the significance level ǫ = 2−m provided
x1 = x2 = · · · = xm = 0, Figure 2.3. 3

Example 2.4.2 Another test for randomness of finite binary strings rejects when the
relative frequency of ones differs too much from 1

2 . This particular test
can be implemented by rejecting the hypothesis of randomness of x =
x1x2 . . . xn at level ǫ = 2−m provided |2fn − n| > g(n,m), where fn =
∑n

i=1 xi, and g(n,m) is the least number determined by the requirement
that the number of binary strings x of length n for which this inequality
holds be at most 2n−m. Thus, in this case the critical region Vm is
{x ∈ {0, 1}n : |2fn − n| > g(n,m)}. 3

2.4.1
Randomness
Tests

In practice, statistical tests are effective prescriptions such that we can
compute, at each level of significance, for what strings the associated
hypothesis should be rejected. It would be hard to imagine what use it
would be in statistics to have tests that are not effective in the sense of
computability theory (Section 1.7).

Definition 2.4.1 Let P be a recursive probability distribution on sample space N . A total
function δ : N → N is a P -test (Martin-Löf test for randomness) if

1. δ is lower semicomputable (the set V = {(m,x) : δ(x) ≥ m} is
recursively enumerable); and

2.
∑

x{P (x|l(x) = n, δ(x) ≥ m} ≤ 2−m, for all n.

0

0

3

2

1

0V

V

V

V

0

0

1

1/2

1/4

1/8

136 2. Algorithmic Complexity

The critical regions associated with the common statistical tests are
present in the form of the sequence V1 ⊇ V2 ⊇ · · · , where Vm = {x :
δ(x) ≥ m}, for m ≥ 1. Nesting is ensured, since δ(x) ≥ m + 1 implies
δ(x) ≥ m. Each set Vm is recursively enumerable because of Item 1.

Consider the important case of the uniform distribution, defined by
L(x) = 2−2l(x)−1. The restriction of L to strings of length n is defined
by Ln(x) = 2−n for l(x) = n and 0 otherwise. (By definition, Ln(x) =
L(x|l(x) = n).) Then Item 2 can be rewritten as

∑

x∈Vm
Ln(x) ≤ 2−m,

which is the same as

d({x : l(x) = n, x ∈ Vm}) ≤ 2n−m.

In this case we often speak simply of a test, with the uniform distribution
L understood.

In Definition 2.4.1, the integer function δ is total and the set of points V
of its graph is recursively enumerable. But the totality of δ implies that the
recursively enumerable set V is actually recursive, and therefore we can require
δ to be a total recursive function without changing the notion of P -test.

In statistical tests, membership of (m,x) in V can usually be determined in
time polynomial in l(m) + l(x).

Note that
∑

x

P (x)δ(x) =
∑

m

P{x : δ(x) ≥ m} ≤
∑

m

2−m = 2.

Therefore, δ′(x) = log δ(x) is almost a sum-P test, Definition 4.3.8 on page 278.

Example 2.4.3 The previous test examples can be rephrased in terms of Martin-Löf
tests. Let us try a more subtle example. A real number such that all bits
in odd positions in its binary representation are 1’s is not random with
respect to the uniform distribution. To show this we need a test that
detects sequences of the form x = 1x21x41x61x8 Define a test δ by

δ(x) = max{i : x1 = x3 = · · · = x2i−1 = 1},
and δ(x) = 0 if x1 = 0. For example: δ(01111) = 0; δ(10011) = 1;
δ(11011) = 1; δ(10100) = 2; δ(11111) = 3. To show that δ is a test we
have to show that δ satisfies the definition of a test. Clearly, δ is lower
semicomputable (even recursive). If δ(x) ≥ m where l(x) = n ≥ 2m− 1,
then there are 2m−1 possibilities for the (2m−1)-length prefix of x, and
2n−(2m−1) possibilities for the remainder of x. Therefore, d{x : δ(x) ≥
m, l(x) = n} ≤ 2n−m. 3

Definition 2.4.2 A universal Martin-Löf test for randomness with respect to a distribution
P , a universal P-test for short, is a test δ0(·|P) such that for each P -test
δ, there is a constant c such that for all x we have δ0(x|P) ≥ δ(x) − c.

2.4. Random Finite Sequences 137

We say that δ0(·|P) (additively) majorizes δ. Intuitively, δ0(·|P) constitutes a
test for randomness that incorporates all particular tests δ in a single test. No
test for randomness δ other than δ0(·|P) can discover more than a constant
amount of greater deficiency of randomness in any string x. In terms of critical
regions, a universal test is a test such that if a binary sequence is random with
respect to that test, then it is random with respect to any conceivable test,
neglecting a change in significance level. Namely, with δ0(·|P) a universal P -
test, let U = {(m,x) : δ0(x|P) ≥ m}, and for any test δ, let V = {(m,x) :
δ(x) ≥ m}. Then, defining the associated critical zones as before, we obtain

Vm+c ⊆ Um, m = 1, 2, . . . ,

where c is a constant (dependent only on U and V).

It is a major result that there exists a universal P -test. The proof goes
by first showing that the set of all tests is enumerable. This involves the
first example of a type of construction we shall use over and over again
in different contexts in Chapters 2, 3, and 4. The idea is as follows:

Lemma 2.4.1 We can effectively enumerate all P -tests.

Proof. We start with the standard enumeration φ1, φ2, . . . of partial re-
cursive functions from N into N ×N , and turn this into an enumeration
δ1, δ2, . . . of all and only P -tests. The list φ1, φ2, . . . enumerates all and
only recursively enumerable sets of pairs of integers as {φi(x) : x ≥ 1} for
i = 1, 2, In particular, for any P -test δ, the set {(m,x) : δ(x) ≥ m}
occurs in this list. The only thing we have to do is to eliminate those φi
whose range does not correspond to a P -test.

First, we effectively modify each φ (we drop the subscript for conve-
nience) to a function ψ such that range φ equals range ψ, and ψ has the
special property that if ψ(n) is defined, then ψ(1), ψ(2), . . . , ψ(n−1) are
also defined. This can be done by dovetailing the computations of φ on
the different arguments: in the first phase, do one step of the computa-
tion of φ(1); in the second phase, do the second step of the computation
of φ(1) and the first step of the computation of φ(2). In general, in the
nth phase we execute the n1th step of the computation of φ(n2), for all
n1, n2 satisfying n1 + n2 = n. We now define ψ as follows. If the first
computation that halts is that of φ(i), then set ψ(1) := φ(i). If the sec-
ond computation that halts is that of φ(j), then set ψ(2) := φ(j), and
so on.

Secondly, use each ψ to construct a test δ by approximation from below.
In the algorithm, at each stage of the computation the local variable
array δ(1 : ∞) contains the current approximation to the list of function
values δ(1), δ(2), This is doable because the nonzero part of the
approximation is always finite.

138 2. Algorithmic Complexity

Step 1. Initialize δ by setting δ(x) := 0 for all x; and set i := 0. {If
the range of ψ is empty, then this assignment will not be changed
in the remainder of the procedure, that is, δ stays identically zero
and it is trivially a test}

Step 2. Set i := i+ 1; compute ψ(i) and let its value be (m,x).

Step 3. If δ(x) ≥ m then go to Step 2 else set δ(x) := m.

Step 4. If
∑{P (y|l(y) = l(x)) : δ(y) ≥ k} > 2−k for some k, k =

1, . . . ,m {since P is a recursive function we can effectively test
whether the new value of δ(x) violates Definition 2.4.1 on page 135}
then set δ(x) := 0 and terminate {the computation of δ is finished}
else go to Step 2.

With P the uniform distribution, for i = 1 the conditional in Step 4
simplifies to m > l(x). In case the range of ψ is already a test, then
the algorithm never finishes but forever approximates δ from below. If
ψ diverges for some argument then the computation goes on forever and
does not change δ any more. The resulting δ is a lower semicomputable
test. If the range of ψ is not a test, then at some point the conditional in
Step 4 is violated and the approximation of δ terminates. The resulting δ
is a test, even a recursive one. Executing this procedure on all functions
in the list φ1, φ2, . . ., we obtain an effective enumeration δ1, δ2, . . . of all
P -tests (and only P -tests). We are now in a position to define a universal
P -test. 2

Theorem 2.4.1 Let δ1, δ2, . . . be an enumeration of the above P -tests. Then δ0(x|P) =
max{δy(x) − y : y ≥ 1} is a universal P -test.

Proof. Note first that δ0(·|P) is a total function on N because of Item 2
in Definition 2.4.1, page 135.

(1) The enumeration δ1, δ2, . . . in Lemma 2.4.1 yields an enumeration of
recursively enumerable sets:

{(m,x) : δ1(x) ≥ m}, {(m,x) : δ2(x) ≥ m},
Therefore, V = {(m,x) : δ0(x|P) ≥ m} is recursively enumerable.

(2) Let us verify that the critical regions are small enough: for each n,
∑

l(x)=n

{P (x|l(x) = n) : δ0(x|P) ≥ m}

≤
∞∑

y=1

∑

l(x)=n

{P (x|l(x) = n) : δy(x) ≥ m+ y}

≤
∞∑

y=1

2−m−y = 2−m.

2.4. Random Finite Sequences 139

(3) By its definition, δ0(·|P) majorizes each δ additively. Hence, it is
universal. 2

By definition of δ0(·|P) as a universal P -test, any particular P -test δ can
discover at most a constant amount more regularity in a sequence x than
does δ0(·|P), in the sense that for each δy we have δy(x) ≤ δ0(x|P) + y
for all x.

For any two universal P -tests δ0(·|P) and δ′0(·|P), there is a constant
c ≥ 0 such that for all x we have |δ0(x|P) − δ′0(x|P)| ≤ c.

2.4.2
Explicit Universal
Randomness
Test

We started out with the objective to establish in what sense incom-
pressible strings may be called random. In Section 2.2.1 we considered
the randomness deficiency δ(x|A) of a string x relative to a finite set
A. With A the set of strings of length n and x ∈ A we find that
δ(x|A) = δ(x|n) = n− C(x|n).

Theorem 2.4.2 The function δ0(x|L) = l(x)−C(x|l(x))− 1 is a universal L-test with L
the uniform distribution.

Proof. (1) We first show that f(x) = δ0(x|L) is a test with respect to
the uniform distribution. The set {(m,x) : f(x) ≥ m} is recursively
enumerable by Theorem 2.3.3.

(2) We verify the condition on the critical regions. Since the number of
x’s with C(x|l(x)) ≤ l(x)−m−1 cannot exceed the number of programs
of length at most l(x)−m−1, we have d({x : f(x) ≥ m}) ≤ 2l(x)−m−1.

(3) We show that for each test δ, there is a constant c such that f(x) ≥
δ(x)−c. The main idea is to bound C(x|l(x)) by exhibiting a description
of x, given l(x). Fix x. Let the set A be defined as

A = {z : δ(z) ≥ δ(x), l(z) = l(x)}.

We have defined A such that x ∈ A and d(A) ≤ 2l(x)−δ(x). Let δ = δy
in the standard enumeration δ1, δ2, . . . of tests. Given y, l(x), and δ(x),
we have an algorithm to enumerate all elements of A. Together with
the index j of x in enumeration order of A, this suffices to find x. We
pad the standard binary representation of j with nonsignificant zeros
to a string s = 00 . . . 0j of length l(x) − δ(x). This is possible since
l(s) ≥ l(d(A)). The purpose of changing j to s is that now the number
δ(x) can be deduced from l(s) and l(x). In particular, there is a Turing
machine that computes x from input ȳs, when l(x) is given for free.
Consequently, by Theorem 2.1.1, C(x|l(x)) ≤ l(x) − δ(x) + 2l(y) + 1.
Since y is a constant depending only on δ, we can set c = 2l(y) + 2. 2

140 2. Algorithmic Complexity

Definition 2.4.3 Let us fix δ0(x|L) = l(x) − C(x|l(x)) − 1 as the reference universal test
with respect to the uniform distribution L. A string x is called c-random
if δ0(x|L) ≤ c.

Randomness of a string is related to its incompressibility. It is easy to
see that

C(x|l(x)) ≤ C(x) ≤ C(x|l(x)) + 2C(l(x) − C(x|l(x))),

up to fixed additive constants. (We can reconstruct l(x) from the length
of a shortest program p for x and the quantity l(x) − l(p).) This makes
C(x) and C(x|l(x)) about equal for the special case of x being incom-
pressible. (However, for compressible x, such as x = 0n, the difference
between C(x) and C(x|n) can rise to logarithmic in n.) Together with
Theorem 2.4.2, this provides the relation between the outcome of the ref-
erence universal L-test and incompressibility. Fix a constant c. If string
x is c-incompressible, then δ0(x|L) ≤ c′, where c′ is a constant depending
on c but not on x. Similarly, if δ0(x|L) ≤ c, then x is c′-incompressible,
where c′ is a constant depending on c but not on x. Roughly, x is random,
or incompressible, if l(x) − C(x|l(x)) is small with respect to l(x).

Example 2.4.4 It is possible to directly demonstrate a property of random binary strings
x = x1x2 . . . xn related to Example 2.4.2: the number of ones, fn =
x1 + · · ·+xn, must satisfy |2fn−n| = O(

√
n). Assume that x is a binary

string of length n that is random in the sense of Martin-Löf. Then, by
Theorem 2.4.2, x is also c-incompressible for some fixed constant c. Let
fn = k. The number of strings satisfying this equality is

(
n
k

)
. By simply

giving the index of x in the lexicographic order of such strings, together
with n, and the excess of ones, d = |2k − n|, we can give a description
of x. Therefore, using a short self-delimiting program for d, we have

C(x|n) ≤ log

(
n

k

)

+ C(d) + 2l(C(d)).

For x given n to be c-incompressible for a constant c, we need C(x|n) ≥
n− c. Then,

n− log

(
n

k

)

− C(d) − 2l(C(d)) ≤ c,

which can be satisfied only if d = O(
√
n) (estimate the binomial coef-

ficient by Stirling’s formula, Exercise 1.5.4 on page 17). Curiously, if d
given n is easily describable (for example d = 0 or d =

√
n), then x given

n is not random, since it is not c-incompressible. 3

Randomness in the sense of Martin-Löf means randomness insofar as it can
be effectively certified. In other words, it is a negative definition. We look at

Exercises 141

objects through a special filter, which highlights some features but obscures
others. We can perceive some qualities of nonrandomness through the lim-
ited sight of effective tests. Everything else we then call by definition random.
This is a matter of a pragmatic, expedient, approach. It has no bearing on the
deeper question about what properties real randomness, physically or mathe-
matically, should have. It just tells us that an object is random as far as we
will ever be able to tell, in principle and not just as a matter of practicality.

Exercises 2.4.1. [20] For a binary string x of length n, let f(x) be the number
of ones in x. Show that δ(x) = log(2n−1/2|f(x) − 1

2n|) is a P -test with
P the uniform measure.

Comments. Use Markov’s inequality to derive that for each positive λ,
the probability of 2n−1/2|f(x) − 1

2n| > λ is at most 1/λ. Source: T.M.
Cover, P. Gács, and R.M. Gray, Ann. Probab., 17(1989), 840–865.

2.4.2. [23] Let x1x2 . . . xn be a random sequence with C(x|n) ≥ n.

(a) Use a Martin-Löf test to show that x10x20 . . . 0xn is not random
with respect to the uniform distribution.

(b) Use a Martin-Löf test to show that the ternary sequence y1y2 . . . yn
with y1 = xn + x1 and yi = xi−1 + xi for 1 < i ≤ n is not random with
respect to the uniform distribution.

Comments. Hint: in Item (b) in the y-string the blocks 02 and 20 do
not occur. Extend the definition of random sequences from binary to
ternary. Source: R. von Mises, Probability, Statistics and Truth, Dover,
1981.

2.4.3. [35] Let x be a finite binary sequence of length n with fj =
x1 +x2 + · · ·+xj for 1 ≤ j ≤ n. Show that there exists a constant c > 0
such that for all m ∈ N , all ǫ > 0, and all x,

C(x|n, fn) > log

(
n

fn

)

− log(mǫ4) + c

implies

max
m≤j≤n

∣
∣
∣
∣

fj
j

− fn
n

∣
∣
∣
∣
< ǫ.

Comments. This result is called Fine’s theorem. This is an instance of
the general principle that high probability of a computable property
translates into the fact that high complexity implies that property. (For
infinite sequences this principle is put in a precise and rigorous form in
Theorem 2.5.5.) Fine’s theorem shows that for finite binary sequences
with high Kolmogorov complexity, given the length and the number of

142 2. Algorithmic Complexity

ones, the fluctuations of the relative frequencies in the initial segments
is small. Since we deal with finite sequences, this is called apparent con-
vergence. Since virtually all finite binary strings have high complexity
(Theorem 2.1.3), this explains why in a typical sequence produced by
random coin throws the relative frequencies appear to converge or sta-
bilize. Apparent convergence occurs because of, and not in spite of, the
high irregularity (randomness or complexity) of a data sequence. Con-
versely, the failure of convergence forces the complexity to be less than
maximal. Source: T.L. Fine, IEEE Trans. Inform. Theory, IT-16(1970),
251–257; also R. Heim, IEEE Trans. Inform. Theory, IT-25(1979), 557–
566.

2.4.4. [36] (a) Consider a finite sequence of zeros and ones generated
by independent tosses of a coin with probability p (0 < p < 1) for
1. Let x = x1x2 . . . xn be a sequence of outcomes of length n, and let
fn = x1 + x2 + · · ·+ xn. The probability of such an x is pfn(1− p)n−fn .
If p is a recursive number, then the methods in this section can be used
to obtain a proper definition of finite Bernoulli sequences, sequences
that are random for this distribution. There is, however, no reason to
suppose that in physical coins p is a recursive real. This prompts another
approach whereby we disregard the actual probability distribution, but
follow more closely the combinatorial spirit of Kolmogorov complexity.
Define a finite Bernoulli sequence as a binary sequence x of length n
whose only regularities are given by fn and n. That is, x is a Bernoulli
sequence iff C(x|n, fn) = log

(
n
fn

)
up to a constant independent of x.

Define a Bernoulli test as a test with the condition that the number of
sequences with fn ones and n− fn zeros in Vm be ≤ 2−m

(
n
fn

)
for all m,

n, and fn. Show that there exists a universal Bernoulli test δ0. Finite
Bernoulli sequences are those sequences x such that δ0(x) is low. Show
that up to a constant independent of x,

δ0(x) = log

(
n

fn

)

− C(x|n, fn),

for all x (with n and fn as above).

(b) We continue Item (a). In the current interpretation of probability,
not only should the relative frequency of an event in a large number of
experiments be close to the probability, but there is an obscure secondary
stipulation. If the probability of success is very small, we should be prac-
tically sure that the event should not occur in a single trial [A.N. Kol-
mogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, Berlin, 1933;
English translation: Chelsea, 1956]. If x is a Bernoulli sequence (result
of n independent coin tosses) with a very low relative success frequency
fn/n (the coin is heavily biased), then, almost necessarily, x1 = 0. That
is, the assumption that 1 occurs as the very first element implies sub-
stantial regularity of the overall sequence.

2.5. *Random Infinite Sequences 143

Show that there is a constant c such that δ0(x) ≤ logn/fn − c implies
x1 = 0.

Comments. Hint for Item (b): construct the test that rejects at level
2−m when x1 = 1 and fn ≤ n2−m. Show that this is a Bernoulli test.
Compare this test with δ0 in Item (a). For sequential Bernoulli tests
for infinite sequences see Exercise 2.5.17. Source: P. Martin-Löf, Inform.
Contr., 9(1966), 602–619.

2.5

*Random

Infinite

Sequences

Consider the question of how C behaves in terms of increasingly long ini-
tial segments of a fixed infinite binary sequence (or string) ω. Is it mono-
tone in the sense that C(ω1:m) ≤ C(ω1:n), or C(ω1:m|m) ≤ C(ω1:n|n),
for all infinite binary sequences ω and all m ≤ n? We have already seen
that the answer is negative in both cases. A similar effect arises when
we try to use Kolmogorov complexity to solve the problem of finding a
proper definition of random infinite sequences (collectives) according to
the task already set by von Mises in 1919, Section 1.9.

2.5.1
Complexity
Oscillations

It is seductive to call an infinite binary sequence ω random if there is
a constant c such that for all n, the n-length prefix ω1:n has C(ω1:n) ≥
n − c. However, such sequences do not exist. We shall show that for
high-complexity sequences, with C(ω1:n) ≥ n− logn− 2 log logn for all
n, this results in so-called complexity oscillations, where for every ǫ > 0,

n− C(ω1:n)

logn

oscillates between 0 and 1+ǫ for large enough n. First, we show that the
C complexity of prefixes of each infinite binary sequence drops infinitely
often unboundedly far below its own length.

Theorem 2.5.1 Let f : N+ → N be a total recursive function satisfying
∑∞

n=1 2−f(n) =
∞ (such as f(n) = logn). Then for all infinite binary sequences ω, we
have C(ω1:n|n) ≤ n− f(n) infinitely often.

Proof. In order to get rid of an O(1) term in the final argument, we first
change f into something that gets arbitrarily larger yet still diverges in
the same way as f . Define

F (n) =

⌊

log

(
n∑

i=1

2−f(i)

)⌋

.

144 2. Algorithmic Complexity

Note that
∑

F (n)=m 2−f(n) ≥ 2m − 1. Now let g, also total recursive, be

defined as g(n) = f(n) + F (n). It follows that

∞∑

n=1

2−g(n) =

∞∑

m=1

∑

F (n)=m

2−f(n)−m

≥
∞∑

m=1

2−m(2m − 1) = ∞.

Now we come to the real argument. Consider the unit interval [0, 1]
laid out in a circle so that 0 and 1 are identified. The partial sums
Gn =

∑n
i=1 2−g(i) mark off successive intervals In ≡ [Gn−1, Gn) mod 1

on this circle. We exploit the fact that a point on the circle will be
contained in many of these intervals.

For each x ∈ {0, 1}∗, the associated cylinder is the set

Γx = {ω ∈ {0, 1}∞ : ω1:l(x) = x}.

The geometric interpretation is Γx = [0.x, 0.x+ 2−l(x)). Let

An =
{

x ∈ {0, 1}n : Γx
⋂

In 6= ∅

}

.

It follows from the divergence of Gn that for any ω there is an infinite
set N ⊆ N consisting of the infinitely many n such that prefixes ω1:n

belong to An. Describing a prefix ω1:n ∈ An by its index in the set, we
have

C(ω1:n|n) ≤ log |An| +O(1) ≤ log
Gn −Gn−1

2−n
+O(1)

= n− g(n) +O(1) ≤ n− f(n).

2

Corollary 2.5.1 Let f(n) be as in Theorem 2.5.1. Then C(ω1:n) ≤ n − f(n) infinitely
often, provided C(n|n− f(n)) = O(1) (such as f(n) = logn).

Proof. This is a slightly stronger statement than Theorem 2.5.1. Let p
be a description of ω1:n, given n, of length C(ω1:n|n). Let f(), g() be
as in the proof of Theorem 2.5.1, and let q be an O(1)-length program
that retrieves n from n − f(n). Then l(q̄p) ≤ n − f(n), since l(p) ≤
n−g(n) and g(n)−f(n) rises unboundedly. We pad q̄p to length n−f(n),
obtaining q̄1n−f(n)−l(q̄p)−10p. This is a description for ω1:n. Namely, we
first determine q̄ to find q. The length of the total description is n−f(n).
By assumption, q computes n from this. Given n we can retrieve ω1:n

from p. 2

2.5. *Random Infinite Sequences 145

In [P. Martin-Löf, Z. Wahrsch. Verw. Geb., 19(1971), 225–230], Corollary 2.5.1
is stated to hold without the additional condition of n being retrievable from
n − f(n) by an O(1)-bit program. The proof of this fact is attributed to [P.
Martin-Löf, On the oscillation of the complexity of infinite binary sequences
(Russian), unpublished, 1965].

There is a simple proof that yields a result only slightly weaker than this. We
first prove the result with the particular function log n substituted for f(n)
in the statement of the theorem. We then iterate the construction to prove a
version of the theorem with a particular function g(n) substituted for f(n).
Our result is almost tight, since for functions h(n) that are only slightly larger
than g(n) the sum

∑
2−h(n) is finite. Moreover, the proof is explicit in that

we exhibit g(n).

Let ω be an infinite binary sequence, and ω1:m an m-length prefix of ω. If ω1:m

is the nth binary string in the lexicographic order 0, 1, 00, . . . , that is, n =
ω1:m, m = l(n), then C(ω1:n) ≤ C(ωm+1:n)+ c, with c a constant independent
of n and m. Namely, with O(1) additional bits of information, we can trivially
reconstruct the nth binary string ω1:m from the length n− l(n) of ωm+1:n. By
Theorem 2.1.2, we find that C(ωm+1:n) ≤ n − l(n) + c for some constant c
independent of n, whence the claimed result with f(n) = log n follows.

It is easy to see that we get a stronger result by iteration of the above argu-
ment. There are infinitely many n such that the initial segment y = ω1:n can be
divided as y = y1y2 . . . yk, where l(y1) = 2, y1 = l(y2), y2 = l(y3), . . . , yk−1 =
l(yk). Use the usual pairing between natural numbers and binary strings.
Clearly, given yk we can easily compute all of ω1:n, by determining yk−1 as the
binary representation of l(yk), yk−2 as the binary representation of l(yk−1),
and so on until we obtain l(y1) = 2. (If ω1:24 = 010011101100000110100001,
then y1 = 01, which corresponds to natural number 4, so y2 = 0011, which
corresponds to the natural number 18, and finally y3 = 101100000110100001.
Hence, given y3, we can easily determine all of ω1:24.) Then, for infinitely
many n,

C(ω1:n) ≤ κ+ c,

for κ determined by n = κ+ l(κ) + l(l(κ)) + · · ·+ 2, all terms greater than or
equal to 2. If we put g(n) = n− κ, then it can be shown that

∑
2−g(n) = ∞

but that for only slightly larger functions h(n) > g(n) the sum converges (for
example h(n) = g(n)+ the number of terms in g(n)). There is an interesting
connection with prefix codes, Section 1.11.1.

Our approach in this proof makes it easy to say something about the frequency
of these complexity oscillations. Define a wave function w by w(1) = 2 and
w(i) = 2w(i−1). Then the above argument guarantees that there are at least k
values n1, n2, . . . , nk less than n = w(k) such that C(ω1:ni) ≤ ni − g(ni) + c
for all i = 1, 2, . . . , k. Obviously, this can be improved.

In Figure 2.4 we display the complexity oscillations of initial segments
of high-complexity sequences as they must look according to Theo-
rems 2.5.1, 2.5.4, 2.5.5. The upper bound on the oscillations, C(ω1:n) =
n + O(1), is reached infinitely often for almost every high-complexity

146 2. Algorithmic Complexity

FIGURE 2.4. Complexity oscillations of initial segments of high–complexity

infinite sequences

sequence. Furthermore, the oscillations of all high-complexity sequences
stay above n− logn−2 log logn, but dip infinitely often below n− logn.

Having shown that the complexity of prefixes of each infinite sequence
drops infinitely often unboundedly below the maximum value, we now
want to show that Theorem 2.5.1 is optimal. But let’s first discuss what
this means. Clearly, Theorem 2.5.1 is nontrivial only for very irregular
sequences x. It holds trivially for regular sequences such as ω = 0∞,
where the complexity of the initial segments ω1:n is about logn. We
will prove that it is sharp for those ω that are maximally random. To
make this precise, we must define rigorously what we mean by a random
infinite sequence. It is of major significance that in so doing we also
succeed in completing in a satisfactory way the program outlined by
von Mises.

Due to the complexity oscillations, the idea of identifying random infinite
sequences with those such that C(ω1:n) ≥ n−c, for all n, is trivially infea-
sible. That is the bad news. In contrast, a similar approach in Section 2.4
for finite binary sequences turned out to work just fine. Its justification
was found in Martin-Löf’s important insight that to justify any proposed
definition of randomness one has to show that the sequences that are
random in the stated sense satisfy the several properties of stochasticity
we know from the theory of probability. Instead of proving each such
property separately, one may be able to show, once and for all, that
the random sequences introduced possess, in an appropriate sense, all
possible properties of stochasticity.

The naive execution of the above ideas in classical mathematics is infeasible
as shown by the following example: Consider as sample space S the set of all
one-way infinite binary sequences. The cylinder Γx = {ω : ω = x . . .} consists
of all infinite binary sequences starting with the finite binary sequence x. For

n-log(n)

n-log(n)-2log(log(n))

n

n

2.5. *Random Infinite Sequences 147

instance, Γǫ = S. The uniform distribution λ on the sample space is defined
by λ(Γx) = 2−l(x). That is, the probability of an infinite binary sequence ω
starting with a finite initial segment x is 2−l(x). In probability theory it is
general practice that if a certain property, such as the law of large numbers,
or the law of the iterated logarithm, has been shown to have probability one,
then one calls this a law of randomness. For example, in our sample space the
law of large numbers says that limn→∞(ω1 + · · · + ωn)/n = 1

2
. If A is the set

of elements of S that satisfy the law of large numbers, then it can be shown
that λ(A) = 1.

Generalizing this idea for S with measure µ, one may identify any set B ⊆ S
such that µ(B) = 1 with a law of randomness, namely, “to be an element of
B.” Elements of S that do not satisfy the law “to be an element of B” form a
set of measure zero, a null set. It is natural to call an element of the sample
space ‘random’ if it satisfies all laws of randomness. Now we are in trouble.
For each element ω ∈ S, the set Bω = S − {ω} forms a law of randomness.
But the intersection of all these sets Bω of probability one is empty. Thus, no
sequence would be random if we require that all laws of randomness that exist
be satisfied by a random sequence.

It turns out that a constructive viewpoint enables us to carry out this program
mathematically without such pitfalls. In practice, all laws that are proved in
probability theory to hold with probability one are effective in the sense of
Section 1.7. A straightforward formalization of this viewpoint is to require a
law of probability to be partial recursive in the sense that we can effectively
test whether it is violated. This suggests that the set of random infinite se-
quences should not be defined as the intersection of all sets of measure one,
but as the intersection of all sets of measure one with a recursively enumer-
able complement. The latter intersection is again a set of measure one with
a recursively enumerable complement. Hence, there is a single effective law of
randomness that can be stated as the property “to satisfy all effective laws of
randomness,” and the infinite sequences have this property with probability
one.

2.5.2
Sequential
Randomness
Tests

As in Section 2.4, we define a test for randomness. However, this time
the test will not be defined on the entire sequence (which is impossible
for an effective test and an infinite sequence), but for each finite binary
string. The value of the test for an infinite sequence is then defined as
the maximum of the values of the test on all prefixes. Since this suggests
an effective process of sequential approximations, we call it a sequential
test. Below, we need to use notions of continuous sample spaces and
measures as treated in Section 1.6.

Definition 2.5.1 Let µ be a recursive probability measure on the sample space {0, 1}∞. A
total function δ : {0, 1}∞ → N ⋃{∞} is a sequential µ-test (sequential
Martin-Löf µ-test for randomness) if

148 2. Algorithmic Complexity

1. δ(ω) = supn∈N {γ(ω1:n)}, where γ : N → N is a (total) lower
semicomputable function (V = {(m, y) : γ(y) ≥ m} is a recursively
enumerable set); and

2. µ{ω : δ(ω) ≥ m} ≤ 2−m, for each m ≥ 0.

If µ is the uniform measure λ, then we often use simply the term se-
quential test.

We can require γ to be a recursive function without changing the notion of
a sequential µ-test. By definition, for each lower semicomputable function γ
there exists a recursive function φ with φ(x, k) nondecreasing in k such that
limk→∞ φ(x, k) = γ(x). Define a recursive function γ′ by γ′(ω1:n) = φ(ω1:m, k)
with 〈m,k〉 = n. Then, supn∈N{γ′(ω1:n)} = supn∈N {γ(ω1:n)}.

Example 2.5.1 Consider {0, 1}∞ with the uniform measure λ(x) = 2−l(x). An example
of a sequential λ-test is to test whether there is some 1 in an even position
of ω ∈ {0, 1}∞. Let

γ(ω1:n) =

{
1
2n if

∑n/2
i=1 ω2i = 0,

0 otherwise.

The number of x’s of length n such that γ(x) ≥ m is at most 2n/2 for
any m ≥ 1. Therefore, λ{ω : δ(ω) ≥ m} ≤ 2−m for m > 0. For m = 0,
λ{ω : δ(ω) ≥ m} ≤ 2−m holds trivially. A sequence ω is random with
respect to this test if δ(ω) <∞. Thus, a sequence ζ with 0’s in all even
locations will have δ(ζ) = ∞ and it will fail the test, and hence ζ is not
random with respect to this test. Notice that this is not a very strong
test of randomness. For example, a sequence η = 010∞ will pass δ and
be considered random with respect to this test. This test filters out only
some nonrandom sequences with all 0’s at the even locations and cannot
detect other kinds of regularities. 3

We continue the general theory of sequential testing. If δ(ω) = ∞, then
we say that ω fails δ, or that δ rejects ω. Otherwise, ω passes δ. By
definition, the set of ω’s that are rejected by δ has µ-measure zero, and
conversely, the set of ω’s that pass δ has µ-measure one.

Suppose that for a test δ we have δ(ω) = m. Then there is a prefix y of ω,
with l(y) minimal, such that γ(y) = m for the γ used to define δ. Then
obviously, each infinite sequence ζ that starts with y has δ(ζ) ≥ m. The
set of such ζ is Γy = {ζ : ζ = yρ, ρ ∈ {0, 1}∞}, the cylinder generated by
y. Geometrically speaking, Γy can be viewed as the set of all real numbers
0.y . . . corresponding to the half-open interval Iy = [0.y, 0.y + 2−l(y)).
For the uniform measure, λ(Γy) is equal to 2−l(y), the common length
of Iy .

2.5. *Random Infinite Sequences 149

In terms of common statistical tests, the critical regions are formed by
the nested sequence V1 ⊇ V2 ⊇ · · · , where Vm is defined as Vm = {ω :
δ(ω) ≥ m}, for m ≥ 1. We can formulate the definition of Vm as

Vm =
⋃

{Γy : (m, y) ∈ V }.

In geometric terms, Vm is the union of a set of subintervals of [0, 1).
Since V is recursively enumerable, so is the set of intervals whose union
is Vm. For each critical section we have µ(Vm) ≤ 2−m (in the measure
we count overlapping intervals only once).

Now we can reformulate the notion of passing a sequential test δ with
associated set V :

δ(ω) <∞ iff ω 6∈
∞⋂

m=1

Vm.

Definition 2.5.2 Let V be the set of all sequential µ-tests. An infinite binary sequence
ω, or the binary-represented real number 0.ω, is called µ-random if it
passes all sequential µ-tests:

ω 6∈
⋃

V ∈V

∞⋂

m=1

Vm.

For each sequential µ-test V , we have µ(
⋂∞
m=1 Vm) = 0, by Defini-

tion 2.5.1. We call
⋂∞
m=1 Vm a constructive µ-null set . Since there are

only countably infinitely many sequential µ-tests V , it follows from stan-
dard measure theory that

µ

(
⋃

V ∈V

∞⋂

m=1

Vm

)

= 0,

and we call the set U =
⋃

V ∈V

⋂∞
m=1 Vm the maximal constructive µ-null

set.

In analogy to Section 2.4, we construct a lower semicomputable function
δ0(ω|µ), the universal sequential µ-test that incorporates (majorizes) all
sequential µ-tests δ1, δ2, . . . and that corresponds to U .

Definition 2.5.3 A universal sequential µ-test f is a sequential µ-test such that for each
sequential µ-test δi there is a constant c ≥ 0 such that for all ω ∈ {0, 1}∞,
we have f(ω) ≥ δi(ω) − c.

Theorem 2.5.2 There is a universal sequential µ-test (denoted by δ0(·|µ)).

150 2. Algorithmic Complexity

Proof. Start with the standard enumeration φ1, φ2, . . . of partial recursive
functions from N into N ×N . In this way, we enumerate all recursively
enumerable sets of pairs of integers in the form of the ranges of the
φi’s. In particular, we have included any recursively enumerable set V
associated with a sequential µ-test. The only thing we have to do is to
eliminate those φi’s that do not correspond to a sequential µ-test.

First, effectively modify each φ (we drop the subscript for convenience)
to a function ψ such that range φ equals range ψ, and ψ has the special
property that if ψ(n) <∞, then also ψ(1), ψ(2), . . . , ψ(n− 1) <∞.

Second, use each ψ to construct a function δ : {0, 1}∞ → N by approx-
imation from below. In the algorithm, at each stage of the computation
the arrays γ and δ contain the current approximation to the function
values of γ and δ. This is doable because the nonzero part of the ap-
proximation is always finite.

Step 1. Initialize γ and δ by setting δ(ω) := γ(ω1:n) := 0, for all ω ∈
{0, 1}∞, n ∈ N , and set i := 0.

Step 2. Set i := i+ 1; compute ψ(i) and let its value be (y,m).

Step 3. If γ(y) ≥ m then go to Step 2 else set γ(y) := m.

Step 4. If µ(
⋃

γ(z)≥k Γz) > 2−k for some k, k = 1, . . . ,m {since µ is a
recursive function we can effectively test whether the new assign-
ment violates Definition 2.5.1} then terminate {the computation
of δ is finished} else set δ(ω) := max{m, δ(ω)}, for all ω ∈ Γy, and
go to Step 2.

For the uniform measure λ(Γx) = 2−l(x), the conditional in Step 4 sim-
plifies for i = 1 to m > l(y). In case the range of ψ is already a sequential
µ-test, then the algorithm never finishes but approximates δ from below.
If the range of ψ is not a sequential µ-test, then at some point the con-
ditional in Step 4 is violated and the computation of δ terminates. The
resulting δ is a sequential µ-test, even a recursive one. If the conditional
in Step 4 is never violated, but the computation of ψ diverges for some
argument, then δ is trivially a lower semicomputable sequential µ-test.

Executing this procedure on all functions in the list φ1, φ2, . . ., we obtain
an effective enumeration δ1, δ2, . . . of all sequential µ-tests (and only
sequential µ-tests). The function δ0(·|µ) defined by

δ0(ω|µ) = sup
i∈N

{δi(ω) − i}

is a universal sequential µ-test.

2.5. *Random Infinite Sequences 151

First, δ0(ω|µ) is a lower semicomputable function, since the set {(m,ω) :
δ0(ω|µ) ≥ m} is recursively enumerable. The proof that δ0(·|µ) is a
sequential µ-test, and majorizes all other sequential µ-tests additively,
is completely analogous to the proof for the similarly defined universal
P -test in Section 2.4. 2

Any other sequential µ-test δi can discover at most a constant additional
amount randomness in a sequence ω than does δ0(·|µ). That is, δi(ω) ≤
δ0(ω|µ) + i, for all ω.

The difference between any two universal sequential µ-tests δ0(·|µ) and
δ′0(·|µ) is bounded by a constant: |δ0(ω|µ) − δ′0(ω|µ)| ≤ c, with c in-
dependent of ω. We are now ready to separate the random infinite
sequences from the nonrandom ones.

Definition 2.5.4 Let the sample space {0, 1}∞ be distributed according to µ, and let
δ0(·|µ) be a universal sequential µ-test. An infinite binary sequence ω
is µ-random in the sense of Martin-Löf if δ0(ω|µ) < ∞. We call such a
sequence simply random, where both µ and Martin-Löf are understood.
(This is particularly interesting for µ is the uniform measure.)

Note that this definition does not depend on the choice of the particular
universal sequential µ-test with respect to which the level is defined.
Hence, the line between random and nonrandom infinite sequences is
drawn sharply without dependence on a reference µ-test. Clearly, the
set of infinite sequences that are not random in the sense of Martin-Löf
forms precisely the maximal constructive µ-null set of µ-measure zero
we have constructed above. Therefore, we have the following result.

Theorem 2.5.3 Let µ be a recursive measure. The set of µ-random infinite binary se-
quences has µ-measure one.

We say that the universal sequential µ-test δ0(·|µ) rejects an infinite se-
quence with probability zero, and we conclude that a randomly selected
infinite sequence passes all effectively testable laws of randomness with
probability one.

The main question remaining is the following: Let λ be the uniform measure.
Can we formulate a universal sequential λ-test in terms of complexity? In
Theorem 2.4.2 the universal (nonsequential) test is expressed in that way.
The most obvious candidate for the universal sequential test would be f(ω) =
supn∈N {n− C(ω1:n)}, but it is improper. To see this, it is simplest to notice
that f(ω) would declare all infinite ω to be nonrandom, since f(ω) = ∞, for
all ω, by Theorem 2.5.1. The same would be the case for f(ω) = supn∈N {n−
C(ω1:n|n)}, by about the same proof. It is difficult to express a universal
sequential test precisely in terms of C-complexity. But in Chapter 3 we show
that it is easy to separate the random infinite sequences from the nonrandom
ones in terms of prefix complexity.

152 2. Algorithmic Complexity

2.5.3
Characterization
of Random
Sequences

How accurately can we characterize the set of infinite random sequences
in complexity terms? It turns out that we can sandwich them between a
proper superset in Theorem 2.5.4, page 152, and a proper subset in The-
orem 2.5.5, page 153. First we bound the amplitude of the oscillations
of random sequences.

Definition 2.5.5 The infinite series
∑

2−f(n) is recursively convergent if there is a recur-
sive sequence n1, n2, . . . such that

∞∑

n=nm

2−f(n) ≤ 2−m, m = 1, 2,

Theorem 2.5.4 Let f(n) be a recursive function such that
∑∞

n=1 2−f(n) < ∞ is recur-
sively convergent. If an infinite binary sequence ω is random with respect
to the uniform measure, then C(ω1:n|n) ≥ n−f(n), from some n onward.

Proof. We define a sequential test that is passed only by the ω’s satisfying
the conditions in the theorem. For each m, let the critical section Vm
consist of all infinite binary sequences ω such that there exists an n ≥ nm
for which C(ω1:n|n) < n−f(n). In other words, Vm consists of the union
of all intervals [0.ω1:n, 0.ω1:n+2−n) satisfying these conditions. We have
to show that this is a sequential test. We can recursively enumerate the
intervals that constitute Vm, and therefore V1, V2, . . . is a sequence of
recursively enumerable sets. Obviously, the sequence is nested. For every
large enough n, at most 2n−f(n) strings y of length n satisfy C(y|n) <
n− f(n) (Theorem 2.2.1). Hence, with λ the uniform measure, we have,
for all m,

λ(Vm) ≤
∞∑

n=nm

2n−f(n)2−n ≤ 2−m.

Therefore, the sequence of critical regions forms a sequential test, and
λ(
⋂∞
m=1 Vm) = 0. That is,

⋂∞
m=1 Vm is a constructive λ-null set associ-

ated with a sequential test. Consequently, it is contained in the maximal
constructive λ-null set, which consists precisely of the sequences that are
not random according to Martin-Löf. 2

We can say fairly precisely which functions f satisfy the condition in
Theorem 2.5.4. Examples are f(n) = 2 logn and f(n) = log n+2 log logn.
In fact, the function g(n) used in the proof of Theorem 2.5.1 is about
the borderline. It is almost sufficient that f(n) − g(n) be unbounded
for a recursive function f(n) to satisfy the condition in Theorem 2.5.4.
A precise form of the borderline function is given in Exercise 3.6.7 on
page 231.

2.5. *Random Infinite Sequences 153

With Theorem 2.5.4 we have shown that Theorem 2.5.1 is optimal in
the sense that it gives the deepest complexity dips to be expected from
sequences that are random with respect to the uniform measure (in the
sense of Martin-Löf). But also, we have found a property of infinite
sequences in terms of C that is implied by randomness with respect
to the uniform measure. Is there also a property of infinite sequences
in terms of complexity C that implies randomness with respect to the
uniform measure?

Theorem 2.5.5 Let ω be an infinite binary sequence.

(i) If there exists a constant c such that C(ω1:n) ≥ n − c, for infinitely
many n, then ω is random in the sense of Martin-Löf with respect to the
uniform measure.

(ii) The set of ω for which there exists a constant c and infinitely many
n such that C(ω1:n) ≥ n− c has uniform measure one.

Proof. We first prove the following claim:

Claim 2.5.1 Let ω ∈ {0, 1}∞. There exists a positive constant c such that C(ω1:n|n) ≥
n− c for infinitely many n iff there exists a positive constant c such that
C(ω1:n) ≥ n− c for infinitely many n.

Proof. (Only if) This is the easy direction, since conditional information
does not increase complexity. Hence, for all ω, n, we have C(ω1:n|n) ≤
C(ω1:n) up to a fixed additive constant.

(If) For some fixed constant c1, we have for all ω, n that C(ω1:n) ≤
C(ω1:n|n)+2l(n−C(ω1:n|n))+c1. (The right-hand side of the inequality
is the length of a description of ω1:n.) Since in the ‘If’ direction we assume
that C(ω1:n) ≥ n − c for some c and infinitely many n, we obtain n −
C(ω1:n|n) ≤ c+c1+2l(n−C(ω1:n|n)) for this infinite sequence of n’s. But
that is possible only if there is a constant c2 such that n−C(ω1:n|n) ≤ c2
for the same infinite sequence of n’s, which finishes the proof. 2

(i) Below, a ‘test’ is a ‘λ-test’ with λ the uniform measure. We denote
sequential tests by δ’s, and (nonsequential) tests of Section 2.4 by γ’s. Let
δ0(·|λ) denote the universal sequential test with respect to the uniform
measure λ, and let γ0(·|L) denote the universal test with respect to the
uniform distribution L.

Since a sequential test is a fortiori a test, there is a constant c such that
δ0(ω1:n|λ) ≤ γ0(ω1:n|L) + c, for all ω and n. By choosing the specific
universal test of Theorem 2.4.2, we have δ0(ω1:n|λ) ≤ n− C(ω1:n|n) up
to a constant. Since δ0 is monotonic nondecreasing,

lim
n→∞

δ0(ω1:n|λ) ≤ lim inf
n→∞

(n− C(ω1:n|n)) +O(1).

154 2. Algorithmic Complexity

For those ω’s satisfying the assumption in the statement of the theorem,
by Claim 2.5.1 the right-hand side of the inequality is finite. By Theo-
rem 2.4.2, therefore, such ω’s are random with respect to the uniform
measure.

(ii) For each c and n, let Vc,n denote the union of the set of intervals
associated with prefixes ω1:n of infinite binary sequences ω such that
C(ω1:n|n) ≥ n − c. Let λ be the uniform measure. There are at most
2n−c strings of length less than n − c and therefore at least 2n − 2n−c

strings x of length n satisfying C(x|n) ≥ n − c. Hence, for each m and
c we have

λ

(∞⋃

n=m

Vc,n

)

≥ λ (Vc,m) ≥ (2m − 2m−c)2−m = 1 − 2−c.

Since the right-hand term is independent of m, we also have

λ

(∞⋂

m=1

∞⋃

n=m

Vc,n

)

≥ 1 − 2−c.

Since

∞⋂

m=1

∞⋃

n=m

Vc,n ⊆
∞⋂

m=1

∞⋃

n=m

Vc+1,n

for all positive integers c, we obtain

λ

(∞⋃

c=1

∞⋂

m=1

∞⋃

n=m

Vc,n

)

= lim
c→∞

λ

(∞⋂

m=1

∞⋃

n=m

Vc,n

)

≥ lim
c→∞

(1 − 2−c) = 1.

The formula
⋃∞
c=1

⋂∞
m=1

⋃∞
n=m Vc,n denotes precisely the set of infinite

sequences ω for which there exists a positive integer constant c such that
for infinitely many n, C(ω1:n|n) ≥ n−c holds. A fortiori, the same holds
without the conditional up to an additive constant. 2

We conclude that the set of sequences satisfying the condition in Theo-
rem 2.5.4 contains the set of sequences that are random with respect to
the uniform measure (in Martin-Löf’s sense), and the latter contains the
set of sequences satisfying the condition in Theorem 2.5.5; see Figure 2.5.
There, the inner oval is the set of sequences satisfying Theorem 2.5.5;
the middle oval is the set of Martin-Löf random sequences; the outer
oval is the set of sequences satisfying Theorem 2.5.4. Containment is
always proper. The outer oval in its turn is properly contained in the set
defined by Exercise 2.5.5 on page 159. Although the differences between

2.5. *Random Infinite Sequences 155

ML-random

Theorem 2.5.5

Theorem 2.5.4

FIGURE 2.5. Three notions of ‘chaotic’ infinite sequences

each pair of the three sets are nonempty, they are not large, since all
three sets have uniform measure one. For instance, the set of random
sequences not satisfying the condition of Theorem 2.5.5 has uniform
measure zero. In Example 3.6.19 on page 237 it is shown that the con-
dition involved precisely characterizes a stronger notion of randomness
than Martin-Löf randomness.

The combination of Theorems 2.5.4 and 2.5.5 enables us to give a relation
between the upward and downward oscillations of the complexity of pre-
fixes of the random sequences satisfying the property in Theorem 2.5.5
as follows:

Corollary 2.5.2 If f is a recursive function such that
∑

2−f(n) converges recursively and
C(ω1:n) ≥ n − c for some constant c and for infinitely many n, then
C(ω1:n) ≥ n− f(n) from some n onward.

The universal sequential µ-test characterizes the set of infinite random
sequences. There are other ways to do so. We give an explicit characteri-
zation of infinite random sequences with respect to the uniform measure
in Theorem 3.6.1 and its corollary, page 222. This characterization is an
exact expression in terms of the prefix complexity developed in Chap-
ter 3.

Apart from sequential tests as developed above there are other types
of tests for randomness of individual infinite sequences. The extended
theory of randomness tests can be given only after we have treated lower
semicomputable semimeasures in Sections 4.5.7 and 4.5.6. There we give
exact expressions for µ-tests for randomness, for arbitrary recursive µ.

We recall von Mises’s classic approach to obtaining infinite random sequences
ω as treated in Section 1.9, which formed a primary inspiration to the work
reported in this section. It is of great interest whether one can, in his type of
formulation, capture the intuitively and mathematically satisfying notion of
infinite random sequence in the sense of Martin-Löf. According to von Mises,
an infinite binary sequence ω is random (a collective) if

1. ω has the property of frequency stability with limit p; that is, if fn =
ω1 + ω2 + · · · + ωn, then the limit of fn/n exists and equals p.

156 2. Algorithmic Complexity

2. Any subsequence of ω chosen according to an admissible place-selection
rule has frequency stability with the same limit p as in condition 1.

One major problem was how to define ‘admissible,’ and one choice was to
identify it with Church’s notion of selecting a subsequence ζ1ζ2 . . . of ω1ω2 . . .
by a partial recursive function φ by ζn = ωm if φ(ω1:r) = 0 for precisely
n − 1 instances of r with r < m − 1 and φ(ω1:m−1) = 0. We called these φ
‘place-selection rules according to von Mises–Wald–Church,’ and the resulting
sequences ζ Mises–Wald–Church random.

Definition 2.5.6 Mises–Wald–Church stochastic sequences are Mises–Wald–Church random se-
quences with limiting frequency 1

2
.

In Section 1.9 we stated that there are Mises–Wald–Church stochastic se-
quences that do not satisfy effectively testable properties of randomness such
as the law of the iterated logarithm or the infinite recurrence property. (Such
properties are by definition satisfied by sequences that are Martin-Löf ran-
dom.) In fact, the distinction between the Mises–Wald–Church stochastic se-
quences and the Martin-Löf random ones is quite large, since there are Mises–
Wald–Church stochastic sequences ω such that C(ω1:n) = O(f(n) log n) for
every unbounded, nondecreasing, total recursive function f ; see also Exer-
cise 2.5.13 on page 161. Such Mises–Wald–Church stochastic sequences are
very nonrandom sequences from the viewpoint of Martin-Löf randomness,
where one requires that C(ω1:n) be asymptotic to n. See R.P. Daley, Math.
Systems Theory, 9(1975), 83–94. Note, that although a Mises–Wald–Church
stochastic sequence may have very low Kolmogorov complexity, it in fact
has very high time-bounded Kolmogorov complexity. See Exercise 7.1.7 on
page 546.

If we consider also sequences with limiting frequencies different from 1
2
, then

it is obvious that there are sequences that are random according to Mises–
Wald–Church, but not according to Martin-Löf. Namely, any sequence ω with
limiting relative frequency p has complexity C(ω1:n) ≤ H(p)n+ o(n), where
H(p) = p log 1/p+(1−p) log 1/(1−p) (H(p) is Shannon’s binary entropy). This
means that for each ǫ > 0 there are Mises–Wald–Church random sequences ω
with C(ω1:n) < ǫn for all but finitely many n.

On the other hand, clearly all Martin-Löf random sequences are also Mises–
Wald–Church stochastic (each admissible selection rule is an effective sequen-
tial test).

This suggests that we have to liberate our notion of admissible selection rule
somewhat in order to capture the proper notion of an infinite random sequence
using von Mises’s approach. A proposal in this direction was given by A.N.
Kolmogorov [Sankhyā, Ser. A, 25(1963), 369–376] and D.W. Loveland [Z.
Math. Logik Grundl. Math. 12(1966), 279–294].

Definition 2.5.7 A Kolmogorov–Loveland admissible selection function to select an infinite sub-
sequence ζ1ζ2 . . . from ω = ω1ω2 . . . is a partial recursive function φ : {0, 1}∗ →
N ×{0, 1} from binary strings to (index, bit) pairs (not necessarily defined on
all of {0, 1}∗). The subsequence selection is a two-phase process. First we select
an intermediate sequence z of elements of ω. Initially, z = ǫ. If z = z1z2 . . . zm is
the intermediate sequence selected afterm steps, and φ(z) = (i, a) (a ∈ {0, 1}),

2.5. *Random Infinite Sequences 157

then zωi is the intermediate sequence selected after m + 1 steps. However, φ
is partial, so φ(z) may not be defined. Moreover, we are not allowed to select
the same bit position more than once. If for some z either φ(z) is undefined, or
φ(z) = (i, ·) while φ(z′) = (i, ·) for some proper initial segment z′ of z, then the
process terminates with finite z; otherwise z is infinite. If z = ωi1ωi2 . . ., se-
lected by the sequence of associated φ-values φ(ǫ) = (i1, a1), φ(ωi1) = (i2, a2),
. . ., then we obtain the target selected subsequence ζ by erasing every ωij
in z with associated aj = 0. The resulting ζ may be finite or infinite, but
it is only the infinite ζ in which we are interested. If ω is such that for ev-
ery Kolmogorov–Loveland admissible selection function the selected sequence
ζ1ζ2 . . .—if infinite—has the same limiting frequency as the original ω, and
we assume the limiting frequency 1

2
, then ω is called a Kolmogorov–Loveland

stochastic sequence.

The term ‘Kolmogorov–Loveland random sequence’ is currently used for infi-
nite binary sequences for which there is no computable nonmonotonic betting
strategy that succeeds on it. The strategy has success if it obtains unbounded
gain in the limit while betting successively on the nonmonotonically selected
bits of the sequence. This is in contrast to the above ‘stochastic’ definition,
which expresses the weaker requirement that there be no computable non-
monotonic selection rule that selects an infinite biased sequence from the
original sequence. For more details, see [W. Merkle, J.S. Miller, A. Nies, J.
Reimann, F. Stephan, Ann. Pure Appl. Logic, 138(2006), 183–210].

As compared to the Mises–Wald–Church approach, the liberation of the se-
lection rule mechanism is contained in the fact that the order of succession
of the terms in the subsequence chosen is not necessarily the same as that
of the original sequence. Thus, the Kolmogorov–Loveland selection rules are
called nonmonotonic. In comparison, it is not obvious whether a subsequence
ζ1ζ2 . . . selected from a Kolmogorov–Loveland stochastic sequence ω1ω2 . . . by
a Kolmogorov–Loveland place-selection rule is itself a Kolmogorov–Loveland
stochastic sequence. Note that the analogous property necessarily holds for
Mises–Wald–Church stochastic sequences. This matter was resolved in [W.
Merkle, J. Symbol. Logic, 68(2003), 1362–1376], where it was shown that
there is a Kolmogorov–Loveland stochastic sequence from which one can se-
lect effectively (and in fact monotonically) a subsequence that is no longer
Kolmogorov–Loveland stochastic.

Clearly, the set of Kolmogorov–Loveland stochastic sequences is contained
in the set of Mises–Wald–Church stochastic sequences. In turn, the set of
Kolmogorov–Loveland stochastic sequences contains the set of Martin-Löf ran-
dom sequences. If ω1ω2 . . . is Kolmogorov–Loveland stochastic, then clearly
ζ1ζ2 defined by ζi = ωσ(i), with σ being a recursive permutation, is also
Kolmogorov–Loveland stochastic. The Mises–Wald–Church notion of stochas-
ticity does not have this important property of randomness of staying invariant
under recursive permutation. Loveland gave the required counterexample in
the cited reference. Hence, the containment of the set of Kolmogorov–Loveland
stochastic sequences in the set of Mises–Wald–Church stochastic sequences is
proper. This follows also from the cited result that the Kolmogorov–Loveland
stochastic sequences are not closed under monotonic effective selection rules,
earlier observed by A.K. Shen; see the acknowledgments in [W. Merkle, Ibid.].

158 2. Algorithmic Complexity

This leaves the question whether the containment of the set of Martin-Löf
random sequences in the set of Kolmogorov–Loveland stochastic sequences is
proper. Kolmogorov has stated in [Problems Inform. Transmission, 5(1969), 3–
4] without proof that there exists a Kolmogorov–Loveland stochastic sequence
ω such that C(ω1:n) = O(log n). But An.A. Muchnik (1958–2007)—not to be
confused with his father A.A. Muchnik—showed that this is false, since no ω
with C(ω1:n) ≤ cn +O(1) for a constant c < 1 can be Kolmogorov–Loveland
stochastic. Nonetheless, containment is proper, since A.K. Shen [Soviet Math.
Dokl., 38:2(1989), 316–319] has shown that there exists a Kolmogorov–Loveland
stochastic sequence that is not random in Martin-Löf’s sense. Therefore, the
problem of giving a satisfactory definition of infinite Martin-Löf random se-
quences in the form proposed by von Mises has not yet been solved. See also
[A.N. Kolmogorov and V.A. Uspensky, Theory Probab. Appl., 32(1987), 389–
412; V.A. Uspensky, A.L. Semenov, and A.K. Shen, Russ. Math. Surveys,
45:1(1990), 121–189; An.A. Muchnik, A.L. Semenov, V.A. Uspensky, Theoret.
Comput. Sci., 2:207(1998), 1362–1376].

Exercises 2.5.1. [13] Consider {0, 1}∞ under the uniform measure. Let ω =
ω1ω2 . . . ∈ {0, 1}∞ be random in the sense of Martin-Löf.

(a) Show that ζ = ωnωn+1 . . . is Martin-Löf random for each n.

(b) Show that ζ = xω is Martin-Löf random for each finite string x.

Comments. Source: C. Calude, I. Chitescu, Bolletino U.M.I., (7) 3-
B(1989), 229–240.

2.5.2. [21] Consider {0, 1}∞ under the uniform measure. Let ω =
ω1ω2 . . . ∈ {0, 1}∞.

(a) Show that if there is an infinite recursive set I such that either for
all i ∈ I we have ωi = 0 or for all i ∈ I we have ωi = 1, then ω is not
random in the sense of Martin-Löf.

(b) Show that if the set {i : ωi = 0} contains an infinite recursively
enumerable subset, then ω is not random in the sense of Martin-Löf.

Comments. Source: C. Calude and I. Chitescu, Ibid.

2.5.3. [21] Let ω = ω1ω2 . . . be any infinite binary sequence. Define
ζ = ζ1ζ2 . . . by ζi = ωi + ωi+1, i ≥ 1. This gives a sequence over the
alphabet {0, 1, 2}. Show that ζ is not random in the sense of Martin-Löf
under the uniform measure (extend the definition from binary to ternary
sequences).

Comments. Hint: the blocks 02 and 20 do not occur in ζ. Source: R. von
Mises, Probability, Statistics and Truth, Dover, 1981.

2.5.4. [23] Let ω be any infinite binary sequence. Show that for all
constants c there are infinitely many m such that for all n with m ≤
n ≤ 2m, C(ω1:n) ≤ n− c.

Exercises 159

Comments. We are guaranteed to find long complexity oscillations (of
length m) in an infinite binary sequence ω relatively near the beginning
(namely ωm:2m), even if ω is Martin-Löf random. Source: H.P. Katseff
and M. Sipser, Theoret. Comput. Sci., 15(1981), 291–309.

2.5.5. [M19] Let f be such that
∑

2−f(n) < ∞. Show that the set of
infinite binary sequences ω satisfying C(ω1:n|n) ≥ n − f(n) for all but
finitely many n has uniform measure 1.

Comments. Hint: The number of y with l(y) = n such that C(y) <
n− f(n) is less than 2n−f(n). This implies that the probability that this
inequality is satisfied is less than 2−f(n), and the result follows by the
Borel–Cantelli lemmas; see Exercise 1.10.2 on page 64. This set of ω’s
properly contains the set defined by Theorem 2.5.4. Source: P. Martin-
Löf, Z. Wahrsch. Verw. Geb., 19(1971), 225–230.

2.5.6. [09] Consider infinite binary sequences ω with respect to the
uniform measure. Show that with probability one there exists a constant
c such that C(ω1:n|n) ≥ n− c for infinitely many n.

Comments. Hint: use Theorem 2.5.5, Item (ii), and Claim 2.5.1. Source:
P. Martin-Löf, Z. Wahrsch. Verw. Geb., 19(1971), 225–230. .

2.5.7. [19] Consider infinite binary sequences ω with respect to the
uniform measure. Show that if f is a recursive function and

∑
2−f(n)

converges recursively and C(ω1:n) ≥ n − c for some constant c and
infinitely many n, then C(ω1:n) ≥ n− f(n) for all but finitely many n.

Comments. This formulation establishes a connection between upward
and downward oscillations of the complexity of prefixes of almost all
(random) infinite binary sequences. For f we can take f(n) = 2 logn, or
f(n) = logn+2 log logn, and so on. Hint: combine Theorems 2.5.4, 2.5.5.
Source: P. Martin-Löf, Z. Wahrsch. Verw. Geb., 19(1971), 225–230.

2.5.8. [19] Show that there exists an infinite binary sequence ω and
a constant c > 0 such that lim infn→∞ C(ω1:n|n) ≤ c, but for any un-
bounded function f we have lim supn→∞ C(ω1:n|n) ≥ n− f(n).

Comments. The oscillations can have amplitude Ω(n). Hint: use the n-
strings defined above. Construct ω = y1y2 . . . from finite strings yi. Let c
be a fixed independent constant. For odd i choose yi such that y1 . . . yi is
an n-string, which implies that C(y1:i|l(y1:i)) < c. For even i choose yi as
a long enough random string so that C(y1:i|l(y1:n)) ≥ l(y1:n)−f(l(y1:n)).
Source: H.P. Katseff and M. Sipser, Theoret. Comput. Sci., 15(1981),
291–309.

2.5.9. [39] Consider the Lebesgue measure λ on the set of intervals
contained in [0, 1) defined by λ(Γy) = 2−l(y). (Recall that for each finite

160 2. Algorithmic Complexity

binary string y the cylinder Γy is the set of all infinite strings ω start-
ing with y.) Let ω be an infinite binary sequence such that for every
recursively enumerable sequence A1, A2, . . . of sets of intervals with the
property that the series

∑

i λ(Ai) <∞ converges, ω is contained in only
finitely many Ai. Show that for the ω’s defined this way, the Solovay
random sequences are precisely the infinite binary sequences that are
random in the sense of Martin-Löf with respect to the uniform measure.

Comments. In Martin-Löf’s definition of randomness (with respect to
the uniform measure) of infinite binary sequences, he required that
λ(Ai) ≤ 2−i. That definition is equivalent to stipulating the existence
of some regulator of convergence f(i) → ∞ that is recursive and nonde-
creasing such that λ(Ai) ≤ 2−f(i). Solovay’s definition has the advantage
that it does not require such a regulator. Source: R.M. Solovay, Lecture
Notes, 1975, unpublished; and G.J. Chaitin, Algorithmic Information
Theory, Cambridge University Press, 1987; A. K. Shen, Soviet Math.
Dokl., 38:2(1989), 316–319.

2.5.10. [35] (a) Show that for every positive constant c there is a
positive constant c′ such that {ω1:n : C(ω1:n;n) ≥ n − c} ⊆ {ω1:n :
C(ω1:n|n) ≥ n− c′}.
(b) Use the observation in Item (a) to show that Theorem 2.5.4 holds
for the uniform complexity measure C(·; l(·)).
(c) Show that if f is a recursive function and

∑
2−f(n) = ∞, then for all

infinite ω we have C(ω1:n;n) ≤ n − f(n) for infinitely many n. Hence,
Theorem 2.5.1 holds for uniform complexity.

Comments. Hint for Item (a): define the notion of a (universal) uniform
test as a special case of Martin-Löf’s (universal) test. Compare this
result with the other exercises to conclude that whereas the uniform
complexity tends to be higher in the low-complexity region, the length-
conditional complexity tends to be higher in the high-complexity region.
Source: D.W. Loveland, Inform. Contr., 15(1969), 510–526.

2.5.11. • [31] Show that the following statements are equivalent for an
infinite binary sequence ω: For some constant c and infinitely many n,
possibly different in each statement,

C(ω1:n|n) ≥ n− c,

C(ω1:n;n) ≥ n− c,

C(ω1:n) ≥ n− c.

Comments. Hint: use Claim 2.5.1 and Exercise 2.5.10. In view of The-
orem 2.5.5 these conditions equivalently imply that ω is random in the
sense of Martin-Löf. Source: R.P. Daley, pp. 113–122 in: Computational
Complexity, ed. R. Rustin, Courant Comput. Sci. Symp. 7(1971).

Exercises 161

2.5.12. [30] (a) Show that the following statements are equivalent for
an infinite binary sequence ω: There exists a c such that for infinitely
many n, possibly different in each statement,

C(ω1:n|n) ≤ c,

C(ω1:n;n) ≤ l(n) + c,

C(ω1:n) ≤ l(n) + c.

The sequences thus defined are called pararecursive sequences.

(b) Show that no pararecursive sequence is random in the sense of
Martin-Löf.

Comments. Comparison with the other exercises shows that the recur-
sive sequences are contained in the pararecursive sequences. It also shows
that the pararecursive sequences have the cardinality of the continuum,
so this containment is proper. R.P. Daley [J. Symb. Logic, 41(1976),
626–638] has shown that the lower semicomputable sequences sequences
(which properly include the characteristc sequences of recursively enu-
merable sets) are pararecursive, and this containment is proper by the
same argument as before. Hint for Item (b): use Theorem 2.5.4. Despite
Item (b), there are pararecursive sequences that are close to being ran-
dom. For any unbounded function f , there is a pararecursive sequence
ω such that for infinitely many n we have C(ω1:n|n) ≥ n − f(n); see
Exercise 2.5.8 on page 159. Source: H.P. Katseff and M. Sipser, Theoret.
Comput. Sci., 15(1981), 291–309.

2.5.13. [43] Let A be the set of Mises–Wald–Church stochastic se-
quences (with p = 1

2). The admissible place-selection rules are the partial
recursive functions.

(a) Show that there is an ω ∈ A such that for each unbounded, non-
decreasing, total recursive function f , we have C(ω1:n;n) ≤ f(n) logn
from some n onward.

(b) Show that for all ω ∈ A, there is a constant c such that C(ω1:n;n) ≥
logn− c from some n onward.

Consider the larger class B ⊃ A that is defined just like A but with the
admissible place-selection rules restricted to the total recursive functions.

(c) Show that there is an ω ∈ B such that C(ω1:n;n) ≤ f(n) from some
n onward, for each f as in Item (a).

(d) Show that for each ω ∈ B, for each constant c, we have C(ω1:n;n) ≥ c
from some n onward.

Comments. Compare this with the text following Definition 2.5.6 on
page 156. This shows that there are Mises–Wald–Church stochastic se-
quences of quite low complexity, and that it makes a difference whether

162 2. Algorithmic Complexity

the admissible place-selection rules are partial recursive or total recur-
sive. Source: R.P. Daley, Math. Systems Theory, 9 (1975), 83–94. Item
(a) is proved using Item (c), which is attributed to D.W. Loveland, and
uses a construction (LMS algorithm) in D.W. Loveland, Z. Math. Logik,
12(1966), 279–294. Compare with Exercise 7.1.7, page 546, to see what
happens when we impose a total recursive time bound on the decoding
process.

2.5.14. [35] Show that there is no Mises–Wald–Church stochastic se-
quence ω (with limiting frequency 1

2) and with C(ω1:n) = O(log n).

Comments. This exercise was open in the second edition of this book,
solved in [W. Merkle, J. Comput. Syst. Sci., 74:3(2008), 350–357]. Com-
pare Exercise 2.5.13.

2.5.15. [33] (a) Show that there exists an infinite binary sequence ω
that is random with respect to the uniform measure, but for each con-
stant c there are only finitely many n such that C(ω1:n|n) > n− c (the
condition of Theorem 2.5.5 does not hold).

(b) Show that there exists an infinite binary sequence ω satisfying (i)
C(ω1:n) > n− f(n) from some n onward and

∑
2−f(n) converges recur-

sively (the condition in Theorem 2.5.4 holds), and (ii) ω is not random
with respect to the uniform measure.

Comments. Thus, each containment in the nested sequence of sets of in-
finite binary sequences that satisfy the condition in Theorem 2.5.4, ran-
domness according to Martin-Löf, and the condition in Theorem 2.5.5,
as in Figure 2.5, is proper. Source, C.P. Schnorr, Math. Systems Theory,
5(1971), 246–258.

2.5.16. [21] (a) Show that none of the variants of algorithmic complex-
ity, such as C(x), C(x|l(x)), and C(x; l(x)), is invariant with respect to
cyclic shifts of the strings.

(b) Show that all these variants coincide to within the logarithm of the
minimum of all these measures.

Comments. Hint: use the idea in the proof of Theorem 2.5.4. This in-
variance cannot be expected from any complexity measure in this book
at all. Source: C.P. Schnorr, pp. 193–211 in: R.E. Butts and J. Hintikka,
eds., Basic Problems in Methodology and Linguistics, D. Reidel, 1977.

2.5.17. [36] (a) Consider an infinite sequence of zeros and ones gen-
erated by independent tosses of a coin with probability p (0 < p < 1)
for 1. Define sequential Bernoulli tests (in analogy with Section 2.5 and
Exercise 2.4.4 on page 142). Show that there exists a universal sequential
Bernoulli test δ0. An infinite binary sequence ω is a Bernoulli sequence
if δ0(ω) < ∞. Show that the set of Bernoulli sequences has measure

Exercises 163

one with respect to the measure induced in the set of infinite binary
sequences interpreted as independent (p, 1 − p) Bernoulli trials.

(b) In our definition of infinite Bernoulli sequences no restrictions were
laid on the limiting behavior of the relative frequency, such as, for in-
stance, required in Condition 1 of Definition 1.9.1 of an infinite random
sequence (collective) ω, where we require that limn→∞ fn/n = p for
some p (0 < p < 1) (Section 1.9). The relative frequency fn/n of ones in
increasingly longer prefixes ω1:n of a collective ω does not oscillate in-
definitely, but converges to a definite limit. Show that remarkably, this
is also the case for an infinite Bernoulli sequence ω.

(c) By the law of large numbers, all real numbers p in [0, 1] occur as limit
frequencies limn→∞ fn/n for infinite random binary sequences ω, and
not only the recursive ones. Show that in contrast, for infinite Bernoulli
sequences ω, the limit relative frequency cannot vanish, limn→∞ fn/n =
0, unless ωn = 0 for all n.

Comments. Hint for Item (b): for an arbitrary rational ǫ > 0 construct
a sequential Bernoulli test that rejects at level 2−m if |fi/i− fj/j| > ǫ,
for some i, j ≥ h(m), for some suitable nondecreasing total recursive
function. Compare with the universal Bernoulli test of Exercise 2.4.4
on page 142. Hint for Item (c): this is the infinite analogue of the phe-
nomenon in Item (b) of Exercise 2.4.4 on page 142. From Item (c) we
conclude that an event with vanishing limit frequency is actually im-
possible. This is in stark contrast with von Mises’s explicit statement
of the opposite for his conception of random sequences (collectives) [R.
von Mises, Probability, Statistics and Truth, Dover, 1981 (Reprinted)].
Source: P. Martin-Löf, Inform. Contr., 9(1966), 602–619. Additionally
we mention the following result [L.A. Levin, Sov. Math. Dokl. , 14(1973),
1413–1416]. Suppose we are given a constructively closed family M of
measures (this notion is defined naturally on the space of measures). Let
a test f be called uniform for M if for all measures in M, for all positive
integers k, the measure of outcomes ω where f(ω) > k is at most 2−k.
There exists a universal uniform test.

2.5.18. [37] Let µ be a recursive measure on the sample space {0, 1}∞.
Recall from Section 2.5 Martin-Löf’s construction of a constructive µ-
null set using a notion of sequential test V with associated critical regions
V1 ⊇ V2 ⊇ · · · of measures µ(Vi) ≤ 2−i, for i ≥ 1. A constructive µ-null
set is a total recursive µ-null set if additionally, f(i) = µ(Vi) is a total
recursive function. Call an infinite sequence µ-random in the sense of
Schnorr if it is not contained in any total recursive µ-null set.

(a) Show that there is no universal total recursive µ-null set that contains
all others.

164 2. Algorithmic Complexity

(b) Show that the set of sequences that are µ-random in the sense of
Martin-Löf is a subset of the set of sequences that are µ-random in the
sense of Schnorr.

(c) An ω ∈ {0, 1}∞ is an atom with respect to µ if µ(ω) > 0. A measure
µ is called discrete if the set of atoms of µ has µ-measure one. (Obviously
all atoms of recursive µ are recursive sequences.) Show that the Schnorr-
µ-random sequences coincide with the Martin-Löf-µ-random sequences
iff µ is discrete.

Comments. Item (c) implies that for continuous µ (such as the uniform
measure), Schnorr randomness is weaker than Martin-Löf randomness.
The notion of total recursive null sets is the recursive analogue of the in-
tuitionistic notion of sets of measure zero by L.E.J. Brouwer [A. Heyting,
Intuitionism, an Introduction, North-Holland, 1956]. Sometimes the fol-
lowing statement is called Schnorr’s thesis: “A sequence behaves within
all effective procedures like a µ-random sequence iff it is µ-random in
the sense of Schnorr.” Source: C.P. Schnorr, pp. 193–211 in: R.E. Butts
and J. Hintikka, eds., Basic Problems in Methodology and Linguistics,
D. Reidel, 1977.

2.5.19. [M42] We abstract away from levels of significance and concen-
trate on the arithmetic structure of statistical tests. Statistical tests are
just Π0

n null sets, for some n (Exercise 1.7.21, page 46). The correspond-
ing definition of randomness is defined as, “an infinite binary sequence is
Π0
n-random with respect to a recursive measure µ if it is not contained in

any Π0
n set V with µ-measure zero.” Has the set of Π0

n-random sequences
µ-measure one?

Comments. Source: H. Gaifman and M. Snir, J. Symb. Logic, 47(1982),
495–548.

2.5.20. [M43] We assume familiarity with the unexplained notions be-
low. We leave the arithmetic hierarchy of Exercise 2.5.19 and consider
hyperarithmetic sets. Define an infinite binary sequence to be hyperarith-
metically random if it belongs to the intersection of all hyperarithmetic
sets of measure one. (A hyperarithmetic set can be regarded as a con-
structive version of the restriction to Borel sets that is usually accepted
in probability theory—Section 1.6. The specific Borel sets considered
there are always obtained by applying the Borelian operations to re-
cursive sequences of previously defined sets, which means precisely that
they are hyperarithmetical.)

(a) Show that the set of sequences that are hyperarithmetically random
is a Σ1

1 set of measure one (Σ1
1 in the analytic hierarchy).

(b) Show that a hyperarithmetic sequence is not hyperarithmetically
random.

2.6. Statistical Properties of Finite Sequences 165

(c) Show that the set of hyperarithmetically random sequences is not
hyperarithmetical.

Comments. Already A. Wald proposed to sharpen von Mises’s notion of
randomness by defining a sequence to be random if it possesses all prop-
erties of probability one that are expressible within a certain formalized
logic such as that of Principia Mathematica. This exercise is a variation
on this idea. Just as here, Wald’s proposal can be expected to define
a set of random strings that is no longer expressible in the language
with which we started. (This does not happen for Martin-Löf random
sequences as defined in Section 2.5 because of the existence of a univer-
sal sequential test.) However, with the present proposal, the resulting
class of random strings, while escaping the hyperarithmetic hierarchy,
does not escape us completely but belongs to a class of sets that can
still be handled constructively. Source: P. Martin-Löf, pp. 73–78 in: In-
tuitionism and Proof Theory, A. Kino et al., eds., North-Holland, 1970.
For related work more in the direction of Wald’s ideas, see [P.A. Be-
nioff, J. Math. Phys., 17:5(1976), 618–628, 629–640; L. Longpré and V.
Kreinovich, “Randomness as incompressibility: a non-algorithmic ana-
logue,” Tech. Rept. UTEP-CS-96-19, Univ. Texas El Paso, 1996]

2.6

Statistical

Properties of

Finite

Sequences

Each individual infinite sequence generated by a (1
2 ,

1
2) Bernoulli process

(flipping a fair coin) has (with probability 1) the property that the rela-
tive frequency of zeros in an initial n-length segment goes to 1

2 as n goes
to infinity. Such randomness-related statistical properties of individual
(high)-complexity finite binary sequences are often required in applica-
tions of incompressibility arguments. The situation for infinite random
sequences is better studied, and therefore we look there first.

Definition 2.6.1 E. Borel has called an infinite sequence of zeros and ones normal in the
scale of two if for each k, the frequency of occurrences of each block y of
length k in the initial segment of length n goes to limit 2−k as n grows
unboundedly.

It is known that normality is not sufficient for randomness, since Cham-
pernowne’s sequence 123456789101112 . . . is normal in the scale of ten.
On the other hand, it is universally agreed that a random infinite se-
quence must be normal. (If not, then some blocks occur more frequently
than others, which can be used to obtain better than fair odds for pre-
diction.)

We know from Section 2.5 that each infinite sequence that is random
with respect to the uniform measure satisfies all effectively testable prop-
erties of randomness: it is normal, it satisfies the so-called law of the
iterated logarithm, the number of 1’s minus the number of 0’s in an

166 2. Algorithmic Complexity

initial n-length segment is positive for infinitely many n and negative
for another infinitely many n, and so on. While the statistical properties
of infinite sequences are simple corollaries of the theory of Martin-Löf
randomness, for finite sequences the situation is less simple. Here, we
determine the frequencies of occurrence of substrings in strings of high
Kolmogorov complexity. In Section 6.4.1 the similar question is treated
for subgraphs of high-Kolmogorov-complexity graphs.

2.6.1
Statistics of 0’s
and 1’s

In the finite case, randomness is a matter of degree, because it would
be clearly unreasonable to say that a sequence x of length n is random
and to say that a sequence y obtained by flipping the first bit 1 in x is
nonrandom. What we can do is to express the degree of incompressibil-
ity of a finite sequence in the form of its Kolmogorov complexity, and
then analyze the statistical properties of the sequence—for example, the
number of 0’s and 1’s in it.

Since almost all finite sequences have about maximal Kolmogorov com-
plexity, each individual maximal-complexity sequence must possess ap-
proximately the expected (average) statistical properties of the overall
set. For example, we can a priori state that each high-complexity finite
binary sequence is normal in the sense that each binary block of length
k occurs about equally frequently for k relatively small. In particular,
this holds for k = 1. However, in many applications we need to know
exactly what ‘about’ and the ‘relatively small’ in this statement mean.
In other words, we are interested in the extent to which Borel normality
holds in relation to the complexity of a finite sequence.

Let x have length n. By Example 2.4.4, if C(x|n) = n+O(1), then the
number of zeros it contains is

n

2
+O(

√
n).

Notation 2.6.1 The quantity K(x|y) in this section satisfies

C(x|y) ≤ K(x|y) ≤ C(x|y) + 2 logC(x|y) + 1.

We can think of it as roughly the length of a self-delimiting version of a
program p of length l(p) = C(x|y). In Chapter 3 it is defined as ‘prefix
complexity.’

Definition 2.6.2 The class of deficiency functions is the set of functions δ : N → N satis-
fying K(n, δ(n)|n−δ(n)) ≤ c1 for all n. (Hence, C(n, δ(n)|n−δ(n)) ≤ c1
for all n.)

In this way, we can retrieve n and δ(n) from n−δ(n) by a self-delimiting
program of at most c1 bits. We choose c1 so large that each monotone

2.6. Statistical Properties of Finite Sequences 167

sublinear recursive function that we are interested in, such as logn,
√
n,

log logn, is such a deficiency function. The constant c1 is a benchmark
that stays fixed throughout this section.

We denote the number of 1’s in a binary string x ∈ {0, 1}∗ by #ones(x).

Lemma 2.6.1 There is a constant c such that for all deficiency functions δ, for each n
and x ∈ {0, 1}n, if C(x) ≥ n− δ(n), then

∣
∣
∣#ones(x) − n

2

∣
∣
∣ ≤

√

3

2
(δ(n) + c)n/ log e. (2.3)

Proof. A general estimate of the tail probability of the binomial dis-
tribution, with sn the number of successful outcomes in n experiments
with probability of success 0 < p < 1, is given by Chernoff’s bounds,
Lemma 1.10.1 on page 61:

Pr(|sn − pn| > m) ≤ 2e−m
2/3pn. (2.4)

Let sn be the number of 1’s in the outcome of n fair coin flips, which
means that p = 1

2 . Define A = {x ∈ {0, 1}n : |#ones(x)− 1
2n| > m} and

apply Equation 2.4 to obtain

d(A) ≤ 2n+1e−2m2/3n.

We choose m such that for some constant c to be determined later,

2m2 log e

3n
= δ(n) + c.

We can compress any x ∈ A in the following way:

1. Let s be a self-delimiting program to retrieve n and δ(n) from n−
δ(n), of length at most c1.

2. Given n and δ(n), we can effectively enumerate A. Let i be the
index of x in such an effective enumeration of A. The length of the
(not necessarily self-delimiting) description of i satisfies

l(i) ≤ log d(A) ≤ n+ 1 − (2m2 log e)/3n

= n+ 1 − δ(n) − c.

The string si is padded to length n+ 1 − δ(n) − c+ c1. From si we can
reconstruct x by first using l(si) to compute n− δ(n), then computing n
and δ(n) from s and n−δ(n), and subsequently enumerating A to obtain
the ith element. Let T be the Turing machine embodying the procedure
for reconstructing x. Then by Theorem 2.1.1,

C(x) ≤ CT (x) + cT ≤ n+ 1 − δ(n) − c+ c1 + cT .

168 2. Algorithmic Complexity

Choosing c = c1 + cT +2, we obtain C(x) < n− δ(n), which contradicts
the condition of the theorem. Hence, |#ones(x) − 1

2n| ≤ m. 2

It may be surprising at first glance, but there are no maximally complex
sequences with about an equal number of zeros and ones. Equal numbers
of zeros and ones is a form of regularity, and therefore lack of complexity.
That is, for x ∈ {0, 1}n, if |#ones(x)− 1

2n| = O(1), then the randomness
deficiency δ(n) = n− C(x) is nonconstant (order logn).

Lemma 2.6.2 There is a constant c such that for all n and all x ∈ {0, 1}n, if
∣
∣
∣#ones(x) − n

2

∣
∣
∣ ≤ 2−δ(n)−c√n,

then C(x) ≤ n− δ(n).

Proof. Let m = 2−δ(n)−c√n, with c a constant to be determined later.
Let A = {x ∈ {0, 1}n : |#ones(x) − 1

2n| ≤ m}. There is a constant c2
such that there are only

d(A) ≤ (2m+ 1)

(
n

n/2

)

≤ c2
2nm√
n

(2.5)

elements in A (use Stirling’s approximation, Exercise 1.5.4 on page 17).
Thus, for each x ∈ A, we can encode x by its index in an enumeration
of A. We can find A from n and δ(n). We can find n and δ(n) from
n− δ(n) by a self-delimiting program of size at most c1. Altogether, this
description takes log d(A) + c1 = n− δ(n)− c+ c1 + log c2 bits. Let this
process of reconstructing x be executed by Turing machine T . Choosing
c = c1 + log c2 + cT we obtain by Theorem 2.1.1,

C(x) ≤ CT (x) + cT ≤ n− δ(n).

2

Example 2.6.1 We consider some particular values of δ(n). Set δ1(n) = 1
2 logn−log logn.

If |#ones(x) − 1
2n| = O(log n), then C(x) ≤ n − δ1(n) + O(1). Set

δ2(n) = 1
2 logn. If

∣
∣
∣#ones(x) − n

2

∣
∣
∣ = O(1),

then C(x) ≤ n−δ2(n)+O(1). That is, if the number of 1’s is too close to
the number of 0’s, then the complexity of the string drops significantly
below its maximum. 3

An incompressible string of length n cannot have precisely or almost 1
2n

ones by Lemma 2.6.2. Then how many ones should an incompressible
string contain? The next lemma shows that for an incompressible x
having j + 1

2n ones, K(j|n) must be at least about order logn.

2.6. Statistical Properties of Finite Sequences 169

Lemma 2.6.3 There is a constant c such that for all n and all x ∈ {0, 1}n, if

∣
∣
∣#ones(x) − n

2

∣
∣
∣ = j,

then C(x|n) ≤ n− 1
2 logn+K(j|n) + c.

Proof. Let A = {x ∈ {0, 1}n : |#ones(x)− 1
2n| = j}. There is a constant

c3 such that there are

d(A) ≤
(
n

n/2

)

≤ c3
2n√
n

(2.6)

elements in A (use Stirling’s approximation, Exercise 1.5.4 on page 17).
In order to enumerate elements in A, we need only to describe j and
n. Thus, for any x ∈ A, we can encode x by its index i (in log d(A)
bits) in an enumeration of A. With n given, we can recover x from an
encoding of j in K(j|n) bits, followed by i. This description of x, given
n, takes log d(A) + K(j|n) ≤ n − 1

2 logn + log c3 + K(j|n) bits. Let T
be the Turing machine embodying this procedure to recover x given n.
Choosing c = log c3 + cT , we have

C(x|n) ≤ CT (x|n) + cT ≤ n− 1

2
logn+K(j|n) + c.

2

Example 2.6.2 For j = O(1) we have C(x|n) ≤ n − 1
2 log n + O(1), which is slightly

stronger than the statement about unconditional C(x) in Example 2.6.1.
For j = O(

√
n) and j incompressible (K(j|n) ≥ 1

2 logn), we have
C(x|n) ≤ n − O(1). Only for such j’s is it possible that a number x
is incompressible. 3

2.6.2
Statistics of
Blocks

The analysis up till now has been about the statistics of 0’s and 1’s.
But in a normal infinite binary sequence, according to Definition 2.6.2
on page 166, each block of length k occurs with limiting frequency 2−k.
That is, blocks 00, 01, 10, and 11 should occur about equally often,
and so on. Finite sequences will generally not be exactly normal, but
normality will be a matter of degree. We investigate the block statistics
for finite binary sequences.

Definition 2.6.3 Let x = x1 . . . xn be a binary string of length n, and y a much smaller
string of length l. Let p = 2−l and #y(x) be the number of (possibly
overlapping) distinct occurrences of y in x. For convenience, we assume
that x wraps around, so that an occurrence of y starting at the end of
x and continuing at the start also counts.

170 2. Algorithmic Complexity

Theorem 2.6.1 Assume the notation of Definition 2.6.3 with l ≤ logn. There is a con-
stant c such that for all n and x ∈ {0, 1}n, if C(x) ≥ n− δ(n), then

|#y(x) − pn| ≤ √
αpn,

with α = [K(y|n) + log l + δ(n) + c]3l/ log e.

Proof. We prove by contradiction. Assume that n is divisible by l. (If it is
not, then we can put x on a Procrustean bed to make its length divisible
by l at the cost of having the above frequency estimate #y(x) plus or
minus an error term of at most l/2.) There are l ways of dividing (the
ring) x into N = n/l contiguous equal-sized blocks, each of length l. For
each such division i ∈ {0, 1, . . . , l−1}, let #y(x, i) be the number of (now
nonoverlapping) occurrences of block y. We apply the Chernoff bound,
Equation 2.4, again. With A = {x ∈ {0, 1}n : |#y(x, i)− pN | > m} this

gives d(A) ≤ 2n+1e−m
2/3pN . We choose m such that for some constant

c to be determined later,

m2 log e

3pN
= K(〈y, i〉|n) + δ(n) + c.

To describe an element x in A, we now need only to enumerate A and
indicate the index of x in such an enumeration. The description contains
the following items:

1. A description used to enumerate A. Given n− δ(n), we can retrieve
n and δ(n) using a self-delimiting description of at most c1 bits.
To enumerate A, we also need to know i and y. Therefore, given
n− δ(n), the required number of bits to enumerate A is at most

K(〈y, i, δ(n), n〉|n− δ(n)) ≤ K(〈y, i〉|n) + c1.

2. A description of the index of x. The number of bits to code the
index j of x in A is

log d(A) ≤ log
(

2n+1e−m
2/3pN

)

= n+ 1 − m2 log e

3pN

= n+ 1 −K(〈y, i〉|n) − δ(n) − c.

This total description takes at most n + 1 − δ(n) − c + c1 bits. Let T
be a Turing machine reconstructing x from these items. According to
Theorem 2.1.1, therefore

C(x) ≤ CT (x) + cT ≤ n+ 1 − δ(n) − c+ c1 + cT .

2.6. Statistical Properties of Finite Sequences 171

With c = c1 + cT + 2 we have C(x) < n − δ(n), which contradicts the
assumption of the theorem. Therefore, |#y(x, i) − pN | ≤ m, which in
turn implies

|#y(x, i) − pN | ≤
√

K(〈y, i〉|n) + δ(n) + c

log e
3pN.

For each division i (0 ≤ i ≤ l − 1) this inequality follows from the
δ(n) incompressibility of x. Notwithstanding the fact that occurrences
of substrings in different divisions are dependent, the inequality holds for
each division separately and independently. The theorem now follows by
noting that |#y(x)−pn| =

∑l−1
i=0 |#y(x, i)−pN |, K(〈y, i〉|n) ≤ K(y|n)+

K(i|n) +O(1) and K(i|n) ≤ log l +O(1). 2

Similar to the analysis of blocks of length 1, the complexity of a string
drops below its maximum in case some block y of length l occurs in one of
the l block divisions, say i, with frequency exactly pN (p = 1/2l). Then
we can point out x by giving n, y, i, and its index in a set of cardinality

(
N

pN

)

(2l − 1)N−pN = O

(

2Nl
√

p(1 − p)N

)

.

Therefore,

C(x|〈n, y〉) ≤ n− 1

2
logn+

1

2
(l + 3 log l) +O(1).

2.6.3
Length of Runs

It is known from probability theory that in a randomly generated finite
sequence the expectation of the length of the longest run of zeros or ones
is pretty high. For each individual finite sequence with high Kolmogorov
complexity we are certain that it contains each block (say, a run of zeros)
up to a certain length.

Theorem 2.6.2 Let x of length n satisfy C(x) ≥ n− δ(n). Then for sufficiently large n,
each block y of length

l = logn− log log n− log(δ(n) + logn) −O(1)

occurs at least once in x.

Proof. We are sure that y occurs at least once in x if
√
αpn in Theo-

rem 2.6.1 is less than pn. This is the case if α < pn, that is,

K(y|n) + log l + δ(n) +O(1)

log e
3l < pn.

172 2. Algorithmic Complexity

K(y|n) is majorized by l+ 2 log l +O(1) (since K(y|n) ≤ K(y) +O(1))
and p = 2−l with l set at

l = logn− log(3δ(n) logn+ 3 log2 n)

(which equals l in the statement of the theorem up to an additive con-
stant). Substitution yields

l + 3 log l + δ(n) +O(1)

log e
3l < 3(δ(n) logn+ log2 n),

and it is easy to see that this holds for sufficiently large n. 2

Corollary 2.6.1 If δ(n) = O(log n), then each block of length logn − 2 log logn − O(1)
occurs at least once in x.

In Lemma 6.9.1 we show that if C(x|n, p) ≥ n then no substring of length
greater than 2 log n occurs (possibly overlapping) twice in x. Here, n = l(x),
and p is some fixed program used to reconstruct x from a description of length
C(x|n, p) and n.

Analyzing the proof of Theorem 2.6.2, we can improve the corollary for
low values of K(y|n).

Corollary 2.6.2 If δ(n) = O(log logn), then for each ǫ > 0 and every large enough n,
every string x of length n contains an all-zero run y (for which K(y|n) =
O(log l)) of length l = logn− (1 + ǫ) log logn+O(1).

Since there are 2n(1 − O(1/ log n)) strings x of length n with C(x) ≥ n −
log log n+ O(1), the expected length of the longest run of consecutive zeros if
we flip a fair coin n times is at least l as in Corollary 2.6.2.

We show in what sense Theorem 2.6.2 is sharp. Let x = uvw, l(x) = n,
and C(x) ≥ n− δ(n). We can describe x by giving

1. A description of v in K(v) bits;

2. The literal representation of uw;

3. A description of l(u) in logn+ log logn+2 log log logn+O(1) bits.

Then, since we can find n by n = l(v) + l(uw),

C(x) ≤ n− l(v) +K(v) + logn (2.7)

+ (1 + o(1)) log logn+O(1).

Exercises 173

Substitute C(x) = n−δ(n) and K(v) = o(log logn) (choose v to be very
regular) in Equation 2.7 to obtain

l(v) ≤ δ(n) + logn+ (1 + o(1)) log logn.

This means that for instance, for each ǫ > 0, no maximally complex
string x with C(x) = n + O(1) contains a run of zeros (or the initial
binary digits of π) of length logn + (1 + ǫ) log logn for n large enough
and regular enough. By Corollary 2.6.2, on the other hand, such a string
x must contain a run of zeros of length logn− (1 + ǫ) log logn+O(1).

Exercises 2.6.1. [24] The great majority of binary strings of length n have a
number of 0’s in between 1

2n − √
n and 1

2n +
√
n. Show that there are

x’s of length n with 1
2n+ Ω(

√
n) 0’s, with C(x) = n+O(1).

2.6.2. [29] Let limn→∞ 1
n

∑n
i=1 ωi = p for an infinite binary sequence

ω = ω1ω2 . . ., for some p between 0 and 1 (compare Section 1.9).

(a) Show that if C(ω1:n) ∼ n, then p = 1
2 .

(b) Show that if p = 1
4 , then C(ω1:n) ≤ 0.82n asymptotically.

(c) Show that in general, if c = p log 1/p + (1 − p) log 1/(1 − p), then
C(ω1:n) ≤ cn+ o(n). If p is about 1

4 , then C(ω1:n) ≤ 0.80n+ o(n).

Comments. Source: P. Gács, Lecture Notes on Descriptional Complexity
and Randomness, Manuscript, Boston University, 1987; attributed to
A.N. Kolmogorov. Hint: Item (a), use Lemma 2.6.2.

2.6.3. [M35] A finite binary string x of length n is called δ-random if
C(x|n) ≥ n−δ. A Turing machine place-selection rule R is a Turing ma-
chine that selects and outputs a (not necessarily consecutive) substring
R(x) from its input x. If R is the kth Turing machine in the standard
enumeration, then C(R) = C(k).

Show that for any ǫ > 0, there exist numbers n0 and µ > 0 such that if
l(x) = n, l(R(x)) = r ≥ n0,

∑

1≤i≤r R(x)i = m, and (δ+C(R|n))/r < µ,
then
∣
∣
∣
∣

m

r
− 1

2

∣
∣
∣
∣
<

(
δ + C(R|n) + 2.5 log r

(2 log e− ǫ)r

)1/2

.

Comments. δ-random sequences were introduced by A.N. Kolmogorov,
Lect. Notes Math., Vol. 1021, Springer-Verlag, 1983, 1–5. He noted that
“sequences satisfying this condition have for sufficiently small δ the par-
ticular property of frequency stability in passing to subsequences.” In
this exercise we supply some quantitative estimates of frequency stabil-
ity. Source: E.A. Asarin, SIAM Theory Probab. Appl., 32(1987), 507–
508. This exercise is used by Asarin to show that δ-random elements of

174 2. Algorithmic Complexity

certain finite sets obey familiar probability-theoretic distribution laws.
In particular, for some particular finite sets each δ-random element is
ǫ-normal; see also E.A. Asarin, Soviet Math. Dokl., 36(1988), 109–112.

2.7

Algorithmic

Properties of

C

By algorithmic properties of C we mean properties with a recursion-
theoretic flavor as in Section 1.7. We have already met a few of these.
By Theorem 2.3.1, the greatest monotonic lower bound on C(n) is
unbounded, but goes to infinity more slowly than any monotonic un-
bounded partial recursive function. By Theorem 2.3.2 the integer func-
tion C(n) is not recursive. Nonetheless, by Theorem 2.3.3 the integer
function C(n) can be approximated arbitrarily closely from above; it is
upper semicomputable. Unfortunately, at each stage of such an approx-
imation process, for each size of error, there are infinitely many x such
that the approximation of C(x) and its real value are at least this error
apart.

In fact, a much stronger statement holds: For each total recursive func-
tion f with limx→∞ f(x) = ∞ the set of x for which we can prove
C(x) > f(x) is finite (Theorem 2.7.1 Item (iii) below). Thus, if we
choose f(x) ≪ l(x), then we know that C(x) ≫ f(x) for almost all x
of each length, Theorem 2.2.1, yet we can prove this only for finitely
many x.

Theorem 2.7.1 (i) The set A = {(x, a) : C(x) ≤ a} is recursively enumerable, but not
recursive.

(ii) Every partial recursive function φ(x) that is a lower bound on C(x)
is bounded.

(iii) Let f(x) be a total recursive function with g(x) ≤ f(x) ≤ l(x) for
all x and some unbounded monotonic function g. Then the set B = {x :
C(x) ≤ f(x)} is simple. That is, B is recursively enumerable and the
complement of B is infinite but does not contain an infinite recursively
enumerable subset.

Proof. (i) That A is recursively enumerable follows immediately from
Theorem 2.3.3. However, A is not recursive. Namely, if A is recur-
sive, then we can compute C(x) by asking the consecutive questions
“is C(x) ≤ a?” for a := 0, 1, . . . , contradicting Theorem 2.3.2.

(ii) Let φ be a partial recursive function and define D = {x : φ(x) ≤
C(x)}. If D is finite, there is nothing to prove. Assume that D is infinite
and φ is unbounded, by way of contradiction. Recursively enumerate the
domain of definition of φ without repetition, and define a total recursive
function g by g(n) that equals the least x in this enumeration such that
φ(x) ≥ n. For each n there is such an x, by the contradictory assumption.

2.7. Algorithmic Properties of C 175

If φ = φk in the standard effective enumeration φ1, φ2, . . . of the partial
recursive functions, as in Section 1.7, then n ≤ C(x) ≤ l(n) + l(k̄), up
to a constant. For n large enough we have a contradiction.

(iii) That B is recursively enumerable follows from Item (i). The com-
plement of B is infinite by Theorem 2.2.1. We prove that B is simple.
Let D be an infinite recursively enumerable set contained in the com-
plement of B. The restriction fD(x) of f(x) to D is a partial recursive
lower bound for C(x). By Item (ii), therefore fD(x) is bounded. Since
f(x) rises unboundedly with x this is possible only if D is finite. 2

Corollary 2.7.1 The set RAND defined by {x : C(x) ≥ l(x)} is immune—it is infinite
and has no infinite recursively enumerable subset. In fact, the proofs
support stronger results in that the set B above is effectively simple and
RAND is effectively immune (Exercise 2.7.6).

2.7.1
Undecidability by
Incompressibility

This approach allows us to give a result similar to Lemma 1.7.6 on
page 35, but with examples of undecidable statements that differ from
the ones given by Gödel. Namely, for each formal system T , there is a
constant cT such that no formula of form “C(x) ≥ cT ” is provable in T .

Example 2.7.1 If T is an axiomatizable sound theory whose axioms and rules of inference
require about k bits to describe, then T cannot be used to prove the
randomness of any number much longer than k bits. If the system could
prove randomness for a number much longer than k bits, then the first
such proof (first in an unending enumeration of all proofs obtainable
by repeated application of axioms and rules of inference) could be used
to derive a contradiction: an approximately k-bit program to find and
print out the specific random number mentioned in this proof, a number
whose smallest program is by assumption considerably larger than k
bits. Therefore, even though most strings are random, we will never be
able to explicitly exhibit a string of reasonable size that demonstrably
possesses this property. Formally,

• Let T be an axiomatizable theory (T is a recursively enumerable
set consisting of axioms and provable formulas). Hence, there is a
k such that T is describable in k bits: C(T) ≤ k.

• Let T be sound: all formulas in T are true (in the standard model
of the natural numbers).

• Let Sc(x) be a formula in T with the meaning “x is the lexicograph-
ically least binary string of length c with C(x) ≥ c.” Here x is a
formal parameter and c an explicit constant, so C(Sc) ≤ log c up
to a fixed constant independent of T and c.

176 2. Algorithmic Complexity

For each c, there exists an x such that Sc(x) = true is a true statement
by a simple counting argument (Theorem 2.3.1). Moreover, Sc expresses
that this x is unique. It is easy to see that combining the descriptions of
T , Sc, we obtain a description of this x. Namely, for each candidate string
y of length c, we can decide Sc(y) = true (which is the case for y = x)
or ¬Sc(y) = true (which is the case for y 6= x) by simple enumeration of
all proofs in T . (Here we use the soundness of T .) We need to distinguish
the descriptions of T and Sc. We can do this by coding T ’s description
in self-delimiting format; see Equation 1.4. This takes not more than
2k bits. Hence, for some fixed constant c′ independent of T and c, we
obtain C(x) ≤ 2k+ log c+ c′, which contradicts C(x) > c for all c > cT ,
where cT = 3k + c′ for another constant c′. (A minor improvement of
the argument shows that cT = k + 2 log k + c′ suffices.) 3

Corollary 2.7.2 There is a recursively enumerable set B with an infinite complement
such that for every axiomatizable sound theory T there are only finitely
many n for which the formula “n 6∈ B” is both true and provable in T .
(But with finitely many exceptions, all infinitely many such formulas are
true.)

Proof. Let B be the simple set in Theorem 2.7.1, Item (iii), and let B̄
be its complement. Clearly, the set D ⊆ B̄ of elements n that can be
proved in T to belong to B̄ is recursively enumerable. Since B is simple,
its complement B̄ does not contain an infinite recursively enumerable
subset. Therefore, D is finite, which proves the theorem. 2

We have formulated Corollary 2.7.2 so as to bring out some similarities
and differences with Lemma 1.7.6 as clearly as possible. As pointed out
in Section 1.7, the set K0 used in Lemma 1.7.6 is complete, whereas the
set B used in Corollary 2.7.2 is simple. According to generally accepted
viewpoints in recursion theory, the set K0 is different from the set B in
an essential way. Therefore, we can regard the proofs of the existence
of undecidable statements in sufficiently rich axiomatizable theories by
Lemma 1.7.6 and Corollary 2.7.2 as essentially different.

The set K0 is not only complete in the sense of Turing reducibility, it is also
complete in the sense of many-to-one reducibility. A set A is many-to-one
reducible to a set B if there exists a recursive function f such that for all
x, x ∈ A iff f(x) ∈ B. A set A is complete in the sense of many-to-one
reducibility, m-complete for short, if A is recursively enumerable and all re-
cursively enumerable sets B are many-to-one reducible to A. As it turns out,
m-complete sets are nonrecursive. This raises the question, are all nonrecur-
sive recursively enumerable sets m-complete? The answer was given by E.
Post in 1944 by introducing simple sets as the first examples of nonrecursive
recursively enumerable sets that are not m-complete. (For the notions of re-
ducibility, completeness, and simple sets, see the exercises in Section 1.7, in
particular Exercises 1.7.16 and 1.7.15.)

2.7. Algorithmic Properties of C 177

The set B used in Corollary 2.7.2 is a simple set and hence not m-complete.
Therefore, although B is many-to-one reducible to K0, the set K0 is not many-
to-one reducible to B. This shows that K0 is of a so-called higher degree of
unsolvability with respect to many-to-one reducibility than B, which is the
substance of the viewpoint that they differ in an essential way.

In less formal terms the approaches are different because the first one can
be viewed as a form of Russell’s paradox and the other one as a form of the
Richard–Berry paradox. Both paradoxes are described in [B. Russell and A.N.
Whitehead, Principia Mathematica, Oxford, 1917]. While the first paradox
formed the original incentive for the authors to supply the sophisticated logical
foundation for set theory in the Principia, in a footnote they state that the
second paradox “was suggested to us by Mr. G.G. Berry of the Bodleian
Library.”

The paradox due to Bertrand Russell (1872–1970) arises when the collection
of all sets that are not members of themselves is considered as a set. If this
collection is a member of itself, then it contradicts the set definition, but if it
is not a member of itself, then by the set definition it is a member of itself
(which is a contradiction as well). There is a close connection between Russell’s
paradox and the result of Gödel cited as Lemma 1.7.6 on page 35. We have
seen that this result was proved by reducing the halting problem in the form
of K0 to the decision problem in a sufficiently strong, sound, axiomatized
theory. Since K0 is m-complete, this shows that any problem shown to be
unsolvable in this way must have a degree of unsolvability at least as high as
the maximal degree of unsolvability with respect to many-to-one reducibility
as any recursively enumerable set.

The Richard–Berry paradox is the definition of a number as “the least number
that cannot be defined in fewer than twenty words.” Formalizing the notion of
‘definition’ as the shortest program from which a number can be computed by
the reference machine U , it turns out that the quoted statement (reformulated
appropriately) is not an effective description. This was essentially what we did
in the proof of Corollary 2.7.2, by reducing the set B to the decision problem
in a sufficiently strong, sound, axiomatizable theory. But B is of a lesser
degree of unsolvability with respect to many-to-one reducibility than is K0.
Therefore, showing undecidability of sufficiently rich axiomatizable theories
using Kolmogorov complexity in this way is essentially different from Gödel’s
original approach.

Gödel’s first incompleteness theorem entails an explicit construction of a
statement s, associated with each sufficiently strong, sound, axiomatized
theory T , that is undecidable in T . Formula s simply says of itself “I am
unprovable in T .” In contrast, the construction in Corollary 2.7.2 says
that for any sound axiomatized system T there is a constant cT < ∞
such that all true statements with the meaning “C(x) ≥ cT ” are unprov-
able in T . By Theorem 2.3.1 there are infinitely many such statements.
Now suppose we have an effective procedure to find such constants for
given theories, that is, a total recursive function φ such that φ(T) ≥ cT
for all T . Then, unfortunately, Theorem 2.7.1, Item (ii), tells us that
no effective procedure can determine for more than finitely many pairs

178 2. Algorithmic Complexity

(x, T) whether C(x) ≥ φ(T). This shows that in general, although the
undecidable statements based on Kolmogorov complexity are plentiful
for each theory, we cannot explicitly construct them. Thus, the new
approach entails loss of constructivity.

2.7.2
Barzdins’s
Lemma

Using Kolmogorov complexity one can quantify the distinction between
recursively enumerable sets and recursive sets. Let A be a set of natural
numbers.

Definition 2.7.1 The characteristic sequence of A ⊆ N is an infinite binary sequence
χ = χ1χ2 . . . defined by

χi =

{
1 if i ∈ A,
0 otherwise.

If A is recursively enumerable, and also its complement consisting of the
i’s such that χi = 0 is recursively enumerable, then f(i) = χi is recursive,
and the conditional complexity C(χ1:n|n) is bounded by a fixed constant
for all n. (The converse also holds, Exercise 2.3.4 on page 131.) But
in the general case of recursively enumerable sets A, the complexity
C(χ1:n|n) can grow unboundedly with n. However, this growth is at
best logarithmically slow, which shows that such characteristic sequences
are very nonrandom. For instance, they are not random in the sense of
Martin-Löf according to Theorem 2.5.4. The result below is known as
Barzdins’s lemma. (Actually, J.M. Barzdins proved the sharper version
of Exercise 2.7.2 on page 180.)

Theorem 2.7.2 (i) Any characteristic sequence χ of a recursively enumerable set A sat-
isfies C(χ1:n|n) ≤ logn+ c for all n, where c is a constant dependent on
A (but not on n).

(ii) Moreover, there is a recursively enumerable set such that its charac-
teristic sequence χ satisfies C(χ1:n) ≥ logn for all n.

Proof. (i) Since A is recursively enumerable, there is a partial recursive
function φ such that A = {x : φ(x) < ∞}. Dovetail the computations
of φ(1), φ(2), In this way, we enumerate A without repetitions in
the order in which the computations of the φ(i)’s terminate. The prefix
χ1:n can be reconstructed from the number m of 1’s it contains. For if
we know m, then it suffices to use φ to enumerate the elements of A
until we have found m distinct such elements less than or equal to n. If
the set of these elements is B = {a1, a2, . . . , am}, then by assumption
these are all elements in A that do not exceed n. Hence, from B we can
reconstruct all 1’s in χ1:n, and the remaining positions must be the 0’s.
In this way, we can reconstruct χ1:n, given n, from a description of φ
and m. Since m ≤ n and C(φ) <∞, we have proved (i).

2.7. Algorithmic Properties of C 179

(ii) Let φ0 be the additively optimal function φ0 of Theorem 2.1.1. Define
χ = χ1χ2 . . . by

χi =

{
1 if φ0(i, i) = 0,
0 if φ0(i, i) 6= 0 or φ0(i, i) = ∞.

Obviously, χ is the characteristic sequence of a recursively enumerable
subset of the natural numbers. We prove that χ satisfies the property
stated in the theorem. For suppose to the contrary that C(χ1:n) < logn
for some n. This means that there is a short program p, of length less
than logn, that computes χ1:n. Since p < n this implies that φ0(p, p) =
χp, which contradicts the definition of χp. 2

The converse of Theorem 2.7.2, Item (i), does not hold in general. This follows
by the construction of a meager set that is not recursively enumerable. For
instance, let χ be the characteristic sequence of a set A and C(χ1:n|n) ≥
n − c for infinitely many n and a fixed constant c. By Theorem 2.5.5 such
strings are abundant, and by Theorem 2.7.2, Item (i), we find that A is not
recursively enumerable. Construct a sequence ζ by ζ = χ1α1χ2α2 . . . with
αi = 0f(i), where f(i) is some fast-growing total recursive function with an
inverse. Obviously, if ζ is the characteristic sequence of set B, then B is not
recursively enumerable. But also there is now another constant c such that
C(ζ1:n|n) ≤ f−1(n) + c for all n. Choosing f such that log log f(n) = n gives

C(ζ1:n|n) ≤ log log n+O(1).

Theorem 2.7.2, Item (i), cannot be improved to the unconditional “C(χ1:n) ≤
log n+ c for all n and some c,” since all χ’s satisfying this are recursive (and
hence the corresponding sets A are recursive) by Exercise 2.3.4 on page 131.

Theorem 2.7.2, Item (ii), cannot be improved to the conditional “C(χ1:n|n) ≥
log n for all n” by Exercise 2.7.3 on page 181.

Example 2.7.2 Diophantine equations are algebraic equations of the form X = 0, where
X is built up from nonnegative integer variables and nonnegative integer
constants by a finite number of additions (A + B) and multiplications
(A×B). The best-known examples are xn+yn = zn, where n = 1, 2,

Pierre de Fermat (1601–1665) stated that this equation has no solution in
positive integers x, y, and z for n an integer greater than 2. (For n = 2 there
exist solutions, for instance 32 + 42 = 52.) However, he did not supply a proof
of this assertion, often called Fermat’s last theorem. After 350 years of with-
standing concerted attempts to come up with a proof or disproof, the problem
had become a celebrity among unsolved mathematical problems. However, A.
Wiles [Ann. of Math., 141:3(1995), 443–551] has finaly settled the problem by
proving Fermat’s last theorem. Let us for the moment disregard Wiles’s proof
and reason naively. Suppose we substitute all possible values for x, y, z with
x + y + z ≤ n, for n = 3, 4, In this way, we recursively enumerate all
solutions of Fermat’s equation. Hence, such a process will eventually give a
counterexample to Fermat’s conjecture if one exists, but the process will never
yield conclusive evidence if the conjecture happens to be true.

180 2. Algorithmic Complexity

In his famous address to the International Congress of Mathematicians
in 1900, D. Hilbert proposed twenty-three mathematical problems as
a program to direct the mathematical efforts in the twentieth century.
The tenth problem asks for an algorithm that given an arbitrary Dio-
phantine equation, produces either an integer solution for this equation
or indicates that no such solution exists. After a great deal of prelimi-
nary work by other mathematicians, the Russian mathematician Yu.V.
Matijasevich finally showed that no such algorithm exists. Suppose we
weaken the problem as follows. First, effectively enumerate all Diophan-
tine equations, and consider the characteristic sequence ∆ = ∆1∆2 . . . ,
defined by ∆i = 1 if the ith Diophantine equation is solvable, and 0 oth-
erwise. Then C(∆1:n) ≤ n + O(1). But the theorem above shows that
C(∆1:n|n) ≤ logn + c, for some fixed constant c. The nonrandomness
of the characteristic sequence means that the solvability of Diophan-
tine equations is highly interdependent—it is impossible for a random
sequence of them to be solvable and the remainder unsolvable. 3

Example 2.7.3 In the proof of Theorem 2.7.2, Item (ii), we used a set recursively isomor-
phic to the halting set K0 = {〈x, y〉 : φx(y) <∞}. In fact, almost every
recursively enumerable set that is complete under the usual reducibili-
ties would have done. We can use this to obtain natural examples for
incompressible finite strings. Let d be the number of elements in K0

that are less than 2n. Then by running all the computations of all φx(y)
with z < 2n, z = 〈x, y〉, in parallel until d of them have halted, we ef-
fectively find all computations among them that halt. That is, if χ is
the characteristic sequence of K0, then we can effectively compute χ1:m

(where m = 2n) from d. The program p for this computation has length
l(p) ≤ l(d) + c ≤ n + c, for some fixed constant c independent of n.
By Theorem 2.7.2, Item (ii), the shortest program from which we can
compute χ1:m has length at least n. Hence, there is another constant c
such that p is c-incompressible. 3

Exercises 2.7.1. [10] Show that there exists a constant c such that C(0n|n) ≤ c
for all n, and C(0n) ≥ logn− c for infinitely many n.

2.7.2. • [26] Let A ⊆ N be a recursively enumerable set, and let χ =
χ1χ2 . . . be its characteristic sequence. We use the uniform complexity
C(χ1:n;n) of Exercise 2.3.2 on page 130.

(a) Show that C(χ1:n;n) ≤ logn+O(1) for all A and n.

(b) Show that there exists an A such that C(χ1:n;n) ≥ log n for all n.

Comments. This implies Theorem 2.7.2. It is the original Barzdins’s
lemma. Source: J.M. Barzdins, Soviet Math. Dokl., 9(1968), 1251–1254.

Exercises 181

2.7.3. [27] Is there a symmetric form of Theorem 2.7.2 (Barzdins’s
lemma) using only conditional complexities? The answer is negative.
Show that there is no recursively enumerable set such that its charac-
teristic sequence χ satisfies C(χ1:n|n) ≥ logn+O(1) for all n.

Comments. Hint: let χ be the characteristic sequence of a recursively
enumerable set A. Consider C(χ1:f(n)|f(n)), with χ1:f(n) containing ex-

actly 22n

ones. Then, log f(n) ≥ 2n. But using the partial recursive
function enumerating A, we can compute χ1:f(n), given f(n), from just
the value of n. Hence, we have a program of logn+O(1) bits for χ1:f(n).
Compare this to Barzdins’s lemma (Theorem 2.7.2) and Exercise 2.7.2.
Source: R.M. Solovay, sci.logic electronic newsgroup, 24 November 1989.

2.7.4. [34] Is there a symmetric form of Theorem 2.7.2 (Barzdins’s
lemma) using only unconditional complexities? The answer is negative.
Show that there is a recursively enumerable set A ⊆ N and a constant
c such that its characteristic sequence χ satisfies C(χ1:n) ≥ 2 logn − c
for infinitely many n.

Comments. First note the easy fact that the Kolmogorov complexity of
χ1:n is at most 2 logn + O(1) for all n (≤ logn bits to specify n and
≤ log n bits to specify k =

∑n
i=1 χi). Hint: partition N into exponen-

tially increasing half-open intervals Ik = (tk, 2
tk] with t0 = 0. Note that

log(2tk − tk) = 2 log tk+1 − 2− o(1) for k → ∞. Use increasingly precise
approximations of C(χ1:n) for n ∈ Ik for increasing k to enumerate A.
Source: R.M. Solovay, sci.logic electronic newsgroup, 24 November 1989;
posed as open problem [O39] in the first printing of this book; solved by
M. Kummer [SIAM J. Comput., 25:6(1996), 1123–1143].

2.7.5. [25] Prove the following strange fact (Kamae’s theorem). For
every natural number m there is a string x such that for all but finitely
many strings y, C(x) − C(x|y) > m.

Comments. There exist strings x such that almost all strings y contain
a large amount of algorithmic information about x. Hint: x must be
such that almost all large numbers contain much information about x.
Let c be a large enough fixed constant. Let A be a recursively enumer-
able set of integers, and let α1α2 . . . be the characteristic sequence of
A. Set x = x(k) = α1α2 . . . αh, where h = 2k. By Barzdins’s lemma,
Theorem 2.7.2, we can assume C(x(k)) ≥ k. Enumerate A without rep-
etition as b1, b2, Let m(k) = max{i : bi ≤ 2k}. Then for any integer
y ≥ m(k) we have C(x(k)|y) ≤ log k+c. Namely, using y we can enumer-
ate b1, b2, . . . , bt, and with log k extra information describing k we can
find x(k). Therefore, C(x) − C(x|y) ≥ k − log k − c. Source: T. Kamae,
Osaka J. Math., 10(1973), 305–307. See also Exercise 2.2.13.

2.7.6. [25] Consider an enumeration W1,W2, . . . of all recursively enu-
merable sets. A simple set A is effectively simple if there is a recursive

182 2. Algorithmic Complexity

function f such that Wi ⊆ Ā implies that d(Wi) ≤ f(i) (where Ā is the
complement of A). The set Ā is called effectively immune.

(a) Show that the set B defined in Theorem 2.7.1 is effectively simple.

(b) Show that the set RAND defined by {x : C(x) ≥ l(x)} is effectively
immune.

(c) Show that Item (a) implies that B is Turing complete for the recur-
sively enumerable sets.

Comments. Hint: the proof of Theorem 2.7.1, Item (iii), showing that B
is simple actually shows that B is also effectively simple, which demon-
strates Item (a). For Item (c), see for example P. Odifreddi, Classical
Recursion Theory, North-Holland, 1989.

2.7.7. [32] Let φ1, φ2, . . . be the standard enumeration of partial recur-
sive functions. The diagonal halting set is {x : φx(x) <∞} (also denoted
by K). The Kolmogorov set is {(x, y) : C(x) ≤ y}. We assume familiarity
with notions in Exercise 1.7.16. To say that a set A is recursive in a set
B is the same as saying that A is Turing reducible to B.

(a) Show that the diagonal halting set is recursive in the Kolmogorov
set.

(b) Show that the Kolmogorov set is recursive in the diagonal halting
set.

(c) Show that the Kolmogorov set is Turing-complete for the recursively
enumerable sets.

Comments. This means that if we can solve the halting problem, then
we can compute C, and conversely. Hint for Item (a): given x we want
to know whether x ∈ K, that is, whether Tx(x) halts. Let l(〈x, Tx〉) = n.
Now use the Kolmogorov set to recursively find the least number t such
that for all y with l(y) = 2n and C(y) < 2n the reference universal
machine U computes y from some program of length less than 2n in
at most t steps. Note that t is found with some organized dovetail-
ing. Claim: Tx(x) halts iff Tx(x) halts within t steps (hence we can see
whether Tx(x) halts). If not, then we can use Tx(x) as a clock and run
the same dovetailing process as above, but now we produce a string of
complexity 2n via a description of length n. Source: Attributed to P.
Gács by W. Gasarch, personal communication February 13, 1992.

2.7.8. [42] We can express the nonrecursivity of C(x) in terms of
C(C(x)|x), which measures what we may call the complexity of the com-
plexity function. Denote l(x) by n.

(a) Prove the upper bound C(C(x)|x)) ≤ logn+O(1).

Exercises 183

(b) Prove the following lower bound: For each length n there are strings
x such that

C(C(x)|x) ≥ logn− log logn−O(1).

Comments. This means that x only marginally helps to compute C(x);
most information in C(x) is extra information related to the halting
problem. Hint for Item (b): same proof as in Section 3.8. Source: P.
Gács, Soviet Math. Dokl., 15(1974), 1477–1480.

2.7.9. [44] Show that every infinite sequence is Turing-reducible (Ex-
ercise 1.7.16, page 43, with sets replaced by characteristic sequences of
sets) to an infinite sequence that is random with respect to the uniform
measure.

Comments. C.H. Bennett raised the question whether every infinite bi-
nary sequence can be obtained from an incompressible one by a Turing
machine. He proved this for a special case. Philosophically, the result im-
plied in the exercise allows us to view even very pathological sequences
as the result of two relatively well understood notions, to wit, the com-
pletely chaotic outcome of coin-tossing and a Turing machine transducer
algorithm. Source: P. Gács, Inform. Contr., 70(1986), 186–192. See also
[W. Merkle, N. Mihailovic, J. Symb. Logic, 69(2004), 862–878].

2.7.10. [30] This exercise assumes knowledge of the notion of Turing
degree, Exercise 1.7.16. Every Turing degree contains a set A such that
if χ is the characteristic sequence of A, then C(χ1:n|n) ≤ logn for all n.

Comments. Hence, a high degree of unsolvability of a set does not imply
a high Kolmogorov complexity of the associated characteristic sequence.
Hint: call a set B semirecursive if there exists a recursive linear ordering
<B of N such that there exists a lower cut element y such that B = {x :
x ≤B y}. For any set A there is a semirecursive set B such that B ≡T A
[C.G. Jockusch, Trans. AMS 131(1968), 420–436]. Every semirecursive
set B has a characteristic sequence χ of (N , <B) such that C(χ1:n|n) ≤
logn + c, by the same proof as Theorem 2.7.2, Item (i). Since <B is
recursive, the same property holds for the usual characteristic sequence
of B. Source: W. Gasarch, Letter, August 1988. See also R.P. Daley, J.
Comput. System Sci., 9(1974), 151–163; Math. Systems Theory, 9(1975),
83–94; Inform. Contr., 44(1980), 236–244.

2.7.11. [42] Use Kolmogorov complexity to prove the existence of Tur-
ing degrees of unsolvability (Exercise 1.7.16) between the recursive sets
and Turing-complete sets (such as K0).

Comments. Source: R.P. Daley, J. Symb. Logic, 46(1981), 460–474; In-
form. Contr., 52(1982), 52–67.

184 2. Algorithmic Complexity

2.7.12. [39] We assume familiarity with the notion of truth-table re-
ducibility. Let χ be the characteristic sequence of a recursively enumer-
able set A. Here C(χ1:n;n) is the uniform complexity of Exercise 2.3.2.

(a) Show that A is complete under weak truth-table reducibility iff for
some unbounded total recursive function f(n), we have C(χ1:n;n) ≥
f(n).

(b) Show that A is complete under Turing reducibility iff C(χ1:n;n) ≥
f(n) for some unbounded total function f recursive in A.

Comments. For resource-bounded versions of Kolmogorov complexity
the situation is quite different. Source: M.I. Kanovich, Soviet Math.
Dokl., 10(1969), 700–701; 11(1970), 1224–1228.

2.7.13. [20] Define the state complexity S(x) of a finite binary string
x as the least n such that there is a Turing machine with n states that
started in the standard initial conditions of empty tape and distinguished
start state will eventually halt with x on its output tape. All machines
considered are of the original model as in Section 1.7. DefineB = {〈x, y〉 :
S(x) ≤ y}.
(a) Prove that B is recursively enumerable but not recursive.

(b) Prove that B is Turing complete (in the sense of Exercise 1.7.16).

Comments. Suppose our Turing machines use an m-letter alphabet. Let
Tm(x) denote the complexity of x in terms of the minimal number of
internal states of a Turing machine. Then

Tm(x) ∼ C(x)/ (m− 1) logC(x).

Source: problem by J. Andrews, electronic news, June 24, 1988; solutions
by V.R. Pratt, R.M. Solovay, electronic news, June 1988.

2.7.14. [22] Show that the set K0 used in Lemma 1.7.6 on page 35 is
not many-to-one reducible to the set B featured in Corollary 2.7.2 on
page 176, while B is many-to-one reducible to K0.

Comments. Hint: Use Exercise 1.7.16. K0 is m-complete, while B is
simple and hence not m-complete. The set K0 is of a higher degree of
unsolvability with respect to many-to-one reducibility than B.

2.7.15. [32] Show that there exists an immune set I (a set without an
infinite recursively enumerable subset, for instance the complement of a
set B as in Theorem 2.7.1, Item (iii)), such that there is a probabilistic
machine that computes the characteristic function of some infinite subset
of I.

Comments. Hint: Use Theorems 2.5.4, 2.7.1, and the following frame-
work. A probabilistic machine is just like a deterministic machine except

Exercises 185

that at some steps there are several actions (instead of a single action)
that the machine can perform with given probabilities. For simplicity as-
sume that there are exactly two possible actions, each with probability
1
2 . (That is, at each such choice the machine flips a coin.) That a prob-
abilistic machine computes a function φ with probability p means that
the machine with input x halts with output φ(x) with probability p. We
usually assume p > 1

2 . It can be shown that a machine with any value p
between zero and one can be simulated by a machine with value p close
to one. It turns out that φ is computable by a probabilistic machine iff φ
is partial recursive [K. de Leeuw, et al., pp. 183–212 in: Automata Stud-
ies, C.E. Shannon and J. McCarthy, eds., Princeton Univ. Press, 1956].
This result is often interpreted as showing that probabilistic machines
cannot perform tasks that are impossible for deterministic machines.
But a task may not consist only in finding an unambiguous value, but
may consist in finding some value out of a set of possible values. In this
form there are obviously tasks that deterministic machines cannot do
that probabilistic machines can do, such as the construction of a nonre-
cursive sequence or to output the characteristic function of some infinite
subset of a fixed immune set. The probabilistic machine computes such
a characteristic sequence or set if it outputs the sequence or set with
positive probability. Source: A.K. Zvonkin and L.A. Levin, Russ. Math.
Surv., 25:6(1970), 83–124, attributed to J.M. Barzdins.

2.7.16. [37] A set H of natural numbers is called hyperimmune if there
is no total recursive function f such that f(i) > hi for all i, where
hi is the ith element of H in increasing order. That is, H is immune
(Exercise 2.7.15, page 184) but the variety of immunity ofH is due to the
fact that the function that enumerates H ’s elements in increasing order
of size grows faster than any recursive function. Prove the following:

(a) Every hyperimmune set H contains an infinite subset whose charac-
teristic sequence is not computable by a probabilistic machine.

(b) However, there is a probabilistic machine that computes the charac-
teristic sequence of some hyperimmune set.

Comments. Source: A.K. Zvonkin and L.A. Levin, Russ. Math. Surv.,
25:6(1970), 83–124, attribute Item (a) to V.N. Agafonov and L.A. Levin,
and Item (b) to N.V. Petri. Hint: Item (a) follows from the fact that if a
fixed set is computable by a probabilistic machine then it is recursively
enumerable. Theorems 2.2 and 2.3 in P. Gács, [Theoret. Comput. Sci.,
22(1983), 71–93], cover related issues.

2.7.17. [19] We define a variant of the busy beaver function BB(n)
in Exercise 1.7.19 on page 45. Let BC(n) be the largest natural num-
ber m such that C(m) ≤ n. Let φ1, φ2, . . . be the standard effective
enumeration of partial recursive functions.

186 2. Algorithmic Complexity

(a) Show that BC(n) > φ(n), where φ = φk, for all n ≥ C(k) − 4 logn.

(b) Show that BC(n) is not a recursive function.

(c) Show that the nonrecursiveness of BC(n) can be used to prove the
unsolvability of the halting problem (Lemma 1.7.5 on page 34) and vice
versa.

(d) Let F be an axiomatizable sound formal theory that can be de-
scribed completely (axioms, inference rules, . . .) in m bits. Show that
no provable true statement in F asserts “BC(n) = x” for BC(n) = x
with any n > m+O(1).

Comments. Hint for Item (a): C(φ(n)) ≤ C(k, n)+O(1). Then, C(φ(n)) ≤
n− logn. Hence, BC(n) > φ(n). Hint for Item (b): It grows faster than
any recursive function. Hint for Item (c): If the halting problem were
solvable, we could compute BC(n) from the outputs of all halting pro-
grams of length at most n. Conversely, every halting program p halts
within BC(n) steps, for n ≥ l(p) + O(1). So recursiveness of BC im-
plies the solvability of the halting problem. This exercise is an applica-
tion of Theorem 2.3.1, Item (iii). In fact, BC(n) is some sort of inverse
function of m(n), the greatest monotonic increasing function bounding
C(n) from below. Source: G.J. Chaitin, pp. 108–111 in: Open Problems
in Communication and Computation, T.M. Cover, B. Gopinath, eds.,
Springer-Verlag, 1988.

2.8

Algorithmic

Information

Theory

One interpretation of the complexity C(x) is as the quantity of infor-
mation needed for the recovery of an object x from scratch. Similarly,
the conditional complexity C(x|y) quantifies the information needed to
recover x given only y. Hence the complexity is ‘absolute information’ in
an object. Can we obtain similar laws for complexity-based ‘absolute in-
formation theory’ as we did for the probability-based information theory
of Section 1.11?

If C(x|y) is much less than C(x), then we may interpret this as an
indication that y contains a lot of information about x.

Definition 2.8.1 The algorithmic information about y contained in x is defined as

IC(x : y) = C(y) − C(y|x).

Choosing reference function φ0 in Theorem 2.1.1 with φ0(x, ǫ) = x yields

C(x|x) = 0 and IC(x : x) = C(x).

By the additive optimality of φ0, these equations hold up to an additive
constant independent of x, for any reference function φ0. In this way we

2.8. Algorithmic Information Theory 187

can view the complexity C(x) as the algorithmic information about itself
contained in an object. For applications, this definition of the quantity
of information has the advantage that it refers to individual objects, and
not to objects treated as elements of a set of objects with a probability
distribution given on it, as in Section 1.11.

Does the new definition have the desirable properties that hold for the
analogous quantities in classic information theory? We know that equal-
ity and inequality can hold only up to additive constants, according to
the indeterminacy in the invariance theorem, Theorem 2.1.1. Intuitively,
it is reasonable to require that

IC(x : y) ≥ 0,

up to an additive fixed constant independent of x and y. Formally, this
follows easily from the definition of IC(x : y), by noting that C(y) ≥
C(y|x) up to an independent additive constant.

2.8.1
Entropy,
Information, and
Complexity

The major point we have to address is the relation between the Kol-
mogorov complexity and Shannon’s entropy as defined in Section 1.11.
Briefly, classic information theory says that a random variable X dis-
tributed according to P (X = x) has entropy (complexity) H(X) =
∑
P (X = x) log 1/P (X = x), where the interpretation is that H(X)

bits are on average sufficient to describe an outcome x. Algorithmic
complexity says that an object x has complexity, or algorithmic infor-
mation, C(x) equal to the minimum length of a binary program for x. It
is a beautiful fact that these two notions turn out to be much the same.
The statement below may be called the theorem of equality between
stochastic entropy and expected algorithmic complexity. (The theorem
actually gives an inequality, but together with the simple argument in
Example 2.8.1 on page 188 this turns into an asymptotic equality.)

Theorem 2.8.1 Let x = y1y2 . . . ym be a finite binary string with l(y1) = · · · = l(ym) =
n. Let the frequency of occurrence of the binary representation of k =
1, 2, 3, . . . , 2n as a y-block be denoted by pk = d({i : yi = k})/m. Then
up to an independent additive constant,

C(x) ≤ m(H + ǫ(m)),

with H =
∑
pk log 1/pk, the sum taken for k from 1 to 2n, and ǫ(m) =

2n+1l(m)/m. Note that ǫ(m) → 0 as m→ ∞ with n fixed.

Proof. Denote 2n by N . To reconstruct x it suffices to know the number
sk = pkm of occurrences of k as a yi in x, k = 1, 2, . . . , N , together
with x’s serial number j in the ordered set of all strings satisfying these
constraints. That is, we can recover x from s1, . . . , sN , j. Therefore, up

188 2. Algorithmic Complexity

to an independent fixed constant, C(x) ≤ 2l(s1) + · · · + 2l(sN) + l(j).
By construction,

j ≤
(

m

s1, . . . , sN

)

,

a multinomial coefficient (Exercise 1.3.4 on page 10). Since also each
sk ≤ m, we find that

C(x) ≤ 2n+1l(m) + l

(
m

s1, . . . , sN

)

.

Writing the multinomial coefficient in factorials, and using Stirling’s ap-
proximation, Exercise 1.5.4 on page 17, to approximate j, the theorem
is proved. 2

In Theorem 2.8.1 we have separated the frequency regularities from
the remaining regularities. The entropy component mH measures the
frequency regularities only, while the remaining component mǫ(m) ac-
counts for all remaining factors.

Example 2.8.1 For x representing the sequence of outcomes of independent trials, the
inequality in Theorem 2.8.1 can be replaced by asymptotic equality with
high probability.

We give a simple example to show the relation between the entropy H of
a stochastic source X , emitting n-length binary words with probability
P (X = x) of outcome x, and the complexity C. Let P (X = x) = 2−n

be the uniform probability distribution on the outcomes of length n.
The entropy H in Theorem 2.8.1 is, according to Section 1.11, especially
designed to measure frequency regularities. We show that it is asymp-
totically equal to the expected complexity of a string. By Theorem 2.2.1
almost all x are c-incompressible, that is, there are 2n(1− 2−c+1) many
x’s that have C(x) ≥ n−c. A simple computation shows that the entropy
H(X) =

∑

l(x)=n P (X = x) log 1/P (X = x) is asymptotically equal to

the expected complexity E =
∑

l(x)=n P (X = x)C(x) of an n-length
word. Namely, we obtain

n

n+O(1)
≤ H(X)

E
<

n

(1 − 2−c+1)(n− c)
.

Substitute c = logn to obtain

lim
n→∞

H(X)

E
= 1.

3

2.8. Algorithmic Information Theory 189

In Section 4.3.5 we prove the following generalization: Let p be a recursive
probability distribution on N , that is, there is a Turing machine computing
the function p. Let, moreover, K(x) be the prefix complexity as defined in
Chapter 3. Then log 1/P (x) and K(x) are close to each other with high prob-
ability. Since |K(x) − C(x)| ≤ 2 logC(x) by Example 3.1.4 on page 203, also
log 1/P (x) and C(x) are close to each other with high probability.

In particular, the entropy H =
∑

l(x)=n
P (x) log 1/P (x) of the distribution

P is asymptotically equal to the expected complexity
∑

l(x)=n
P (x)K(x) of

words of length n; see Section 8.1.1.

Because we saw a few lines above that K(x) and C(x) are equal up to a
logarithmic additive term, the expected plain complexity C(·) is also asymp-
totically equal to the entropy,

∑

x

P (x)C(x) ∼
∑

x

P (x) log
1

P (x)
.

Thus, the intended interpretation of complexity C(x) as a measure of the infor-
mation content of an individual object x is supported by a tight quantitative
relationship to Shannon’s probabilistic notion.

2.8.2
Symmetry of
Information

Is algorithmic information symmetric? In Section 1.11 we noted that
in Shannon’s information theory, the mutual information in one random
variable about another one is symmetric. While the equation IC(x : y) =
IC(y : x) cannot be expected to hold exactly, a priori it can be expected
to hold up to a constant related to the choice of reference function φ0 in
Theorem 2.1.1. However, with the current definitions, information turns
out to be symmetric only up to a logarithmic additive term.

Example 2.8.2 By Theorem 2.2.1, there is a binary string x of each length n such that
C(x|n) ≥ n. Similarly, there are infinitely many n such that C(n) ≥ l(n).
Choosing x such that its length n is random in this sense yields, up to
independent constants,

IC(x : n) = C(n) − C(n|x) ≥ l(n),

IC(n : x) = C(x) − C(x|n) ≤ n− n = 0.

3

This example shows that the difference (the asymmetry of algorithmic
information) |IC(x : y)− IC(y : x)| can be of order the logarithm of the
complexities of x and y. However, it cannot be greater, as we proceed to
show now. This may be called the theorem of symmetry of algorithmic
information for C-complexity. As usual, C(x, y) = C(〈x, y〉) is the length
of the least program of U that prints out x and y and a way to tell them
apart.

190 2. Algorithmic Complexity

Theorem 2.8.2 For all x, y ∈ N , C(x, y) = C(x) + C(y|x) +O(logC(x, y)).

Since C(x, y) = C(y, x) up to an additive constant term, the following
symmetry of information property follows immediately.

Corollary 2.8.1 Up to an additive term O(logC(x, y)),

C(x) − C(x|y) = C(y) − C(y|x).
Therefore,

|IC(x : y) − IC(y : x)| = O(logC(x, y)).

Theorem 2.8.2 cannot be improved in general, since in Example 2.8.2 we
have seen that the difference |IC(x : y) − IC(y : x)| is at least logC(x)
for some nontrivial x and y. The proof of Theorem 2.8.2 follows.

Proof. (≤) We can describe 〈x, y〉 by giving a description of x, a de-
scription of y given x, and an indication of where to separate the two
descriptions. If p is a shortest program for x and q is a shortest pro-
gram for y, with l(p) ≤ l(q), then there is a Turing machine for which
l(p)pq is a program to compute 〈x, y〉. Invoking the invariance theorem,
Theorem 2.1.1, we obtain C(x, y) ≤ C(x) + C(y|x) + 2l(C(x)) +O(1).

(≥) Recall that the implied constant in the O(logC(x, y))-notation can
be both positive and negative. Thus, we need to prove that there is a
constant c ≥ 0 such that C(x, y) ≥ C(x)+C(y|x)−c logC(x, y). Assume
to the contrary that for every constant c ≥ 0, there are x and y such
that

C(y|x) > C(x, y) − C(x) + cl(C(x, y)). (2.8)

Let A = {〈u, z〉 : C(u, z) ≤ C(x, y)}. Given C(x, y), the set A can be
recursively enumerated. Let Ax = {z : C(x, z) ≤ C(x, y)}. Given C(x, y)
and x, we have a simple algorithm to recursively enumerate the set Ax.
One can describe y, given x, using its serial number in enumeration order
of Ax and C(x, y). Therefore,

C(y|x) ≤ l(d(Ax)) + 2l(C(x, y)) +O(1). (2.9)

By Equations 2.8, 2.9,

d(Ax) > 2e, e = C(x, y) − C(x) + (c− 2)l(C(x, y)) −O(1). (2.10)

But now we can obtain a too short description for x as follows. Given
C(x, y) and e, we can recursively enumerate the strings u that are can-
didates for x by satisfying

Au = {z : C(u, z) ≤ C(x, y)}, (2.11)

2e < d(Au).

Exercises 191

Denote the set of such u by U . Clearly, x ∈ U . Also,

{〈u, z〉 : u ∈ U, z ∈ Au} ⊆ A. (2.12)

The number of elements in A cannot exceed the available number of
programs that are short enough to satisfy its definition:

d(A) ≤ 2C(x,y)+O(1). (2.13)

Combining Equations 2.11, 2.12, and 2.13, we obtain

d(U) ≤ d(A)

min{d(Au) : u ∈ U} <
d(A)

2e
≤ 2C(x,y)+O(1)

2e
.

Hence, we can reconstruct x from C(x, y), e, and the serial number of x
in enumeration order of U . Therefore,

C(x) < 2l(C(x, y)) + 2l(e) + C(x, y) − e+O(1).

Substituting e as given in Equation 2.10, this yields a contradiction,
C(x) < C(x), for large enough c. 2

Exercises 2.8.1. [17] The following equality and inequality seem to suggest that
the shortest descriptions of x contain some extra information besides the
description of x.

(a) Show that C(x,C(x)) = C(x) +O(1).

(b) Show that C(x|y, i− C(x|y, i)) ≤ C(x|y, i) +O(1).

Comments. These (in)equalities are in some sense pathological and may
not hold for all reasonable descriptional complexities. However, these
phenomena also hold for the prefix complexity K introduced in Chap-
ter 3. Source: P. Gács, Lecture Notes on Descriptional Complexity and
Randomness, Manuscript, Boston University, 1987.

2.8.2. [27] Let x be a string of length n.

(a) Show that the equality C(x,C(x)) = C(C(x)|x) + C(x) +O(1) can
be satisfied only to within an additive term of about logn.

(b) Prove that C(x, y) = C(x|y) + C(y) can hold only to within an
additive logarithmic term without using Exercise 2.8.1, Item (a), and
Exercise 2.7.8.

Comments. Hint for Item (a): use Exercise 2.8.1, Item (a), and Exer-
cise 2.7.8. Hint for Item (b): additivity is already violated on random
strings of random length. Source: P. Gács, Ibid.; A.K. Zvonkin and L.A.
Levin, Russ. Math. Surv., 25:6(1970), 83–124.

192 2. Algorithmic Complexity

2.8.3. [12] Show that given x, y, and C(x, y), one can compute C(x)
and C(y) up to an additive logarithmic term O(logC(x, y)).

Comments. Hint: use symmetry of information and upper semicom-
putability. Suggested by L. Fortnow.

2.8.4. [28] Let ω = ω1ω2 . . . be an infinite binary sequence. The en-
tropy function H(p) is defined by H(p) = p log 1/p+(1−p) log1/(1−p).
Let limn→∞ 1

n

∑n
i=1

1
nωi = p.

(a) Show that

C(ω1:n|n) ≤ nH

(

1

n

n∑

i=1

ωi

)

+ logn+ c.

(b) Prove the following: If the ωi’s are generated by coin flips with prob-
ability p for outcome 1 (a Bernoulli process with probability p), then for
all ǫ > 0,

Pr

{

ω :

∣
∣
∣
∣

C(ω1:n|n)

n
−H(p)

∣
∣
∣
∣
> ǫ

}

→ 0,

as n goes to infinity.

2.8.5. [26] Show that 2C(a, b, c) ≤ C(a, b)+C(b, c)+C(c, a)+O(logn).

Comments. For an application relating the 3-dimensional volume of a
geometric object in Euclidean space to the 2-dimensional volumes of its
projections, see the discussion in Section 6.13 on page 530. Hint: use the
symmetry of information, Theorem 2.8.2. Source: D. Hammer and A.K.
Shen, Theor. Comput. Syst., 31:1(1998), 1–4.

2.9

History and

References

The confluence of ideas leading to Kolmogorov complexity is analyzed
in Section 1.8 through Section 1.12. Who did what, where, and when,
is exhaustively discussed in Section 1.13. The relevant documents are
dated R.J. Solomonoff, 1960/1964, A.N. Kolmogorov, 1965, and G.J.
Chaitin, 1969. According to L.A. Levin, Kolmogorov in his talks used
to give credit also to A.M. Turing (for the universal Turing machine).
The notion of nonoptimal complexity (as a complexity based on shortest
descriptions but lacking the invariance theorem) can be attributed, in
part, also to A.A. Markov [Soviet Math. Dokl., 5(1964), 922–924] and
G.J. Chaitin [J. ACM, 13(1966), 547–569], but that is not a very crucial
step from Shannon’s coding concepts.

The connection between incompressibility and randomness was made
explicit by Kolmogorov and later by Chaitin. Theorem 2.2.1 is due to
Kolmogorov. The idea to develop an algorithmic theory of information

2.9. History and References 193

is due to Kolmogorov, as is the notion of deficiency of randomness. Uni-
versal a priori probability (also based on the invariance theorem) is due
to Solomonoff. This is treated in more detail in Chapter 4. (Solomonoff
did not consider descriptional complexity itself in detail.)

In his 1965 paper, Kolmogorov mentioned the incomputability of C(x)
in a somewhat vague form: “[. . .] the function Cφ(x|y) cannot be effec-
tively calculated (generally recursive) even if it is known to be finite
for all x and y.” Also Solomonoff suggests this in his 1964 paper: “it is
clear that many of the individual terms of Eq. (1) are not ‘effectively
computable’ in the sense of Turing [. . . but can be used] as the heuristic
basis of various approximations.” Related questions were considered by
L. Löfgren [Automata Theory, E. Caianiello, ed., Academic Press, 1966,
251–268; Computer and Information Sciences II, J. Tou, ed., Academic
Press, 1967, 165–175]. Theorem 1 in the latter reference demonstrates
in general that for every universal function φ0, Cφ0(x) is not recursive
in x. (In the invariance theorem we considered only universal functions
using a special type of coding.)

Despite the depth of the main idea of Kolmogorov complexity, the tech-
nical expression of the basic quantities turned out to be inaccurate in
the sense that many important relationships hold only to within an error
term such as the logarithm of complexity. For instance, D.W. Loveland
introduced n-strings in [Inform. Contr., 15(1969), 510–526; Proc. ACM
1st Symp. Theory Comput., 1969, 61–65] and proved that the length-
conditional C(x1:n|n) measure is not monotonic in n, Example 2.2.5,
page 119. He proposed a uniform complexity to solve this problem,
and relationships between these complexities are the subject of Exer-
cises 2.3.2, 2.3.4, 2.5.10, 2.5.11, 2.5.12, and 2.5.13.

In the subsequent development of this chapter we have used time and
again the excellent 1970 survey by L.A. Levin and A.K. Zvonkin [Russ.
Math. Surv., 25:6(1970), 83–124], which describes mainly the research
performed in the former USSR. We have drawn considerably on and
profited from the point of view expressed in P. Gács’s [Komplexität und
Zufälligkeit, Ph.D. thesis, J.W. Goethe Univ., Frankfurt am Main, 1978,
unpublished; Lecture Notes on Descriptional Complexity and Random-
ness, Manuscript, Boston University, 1987]. Another source for the Rus-
sian school is the survey by V.V. Vyugin, Selecta Mathematica, formerly
Sovietica, 13:4(1994), 357–389 (translated from the Russian Semiotika
and Informatika, 16(1981), 14–43).

In [A.K. Zvonkin and L.A. Levin, Russ. Math. Surv., 25:6(1970), 83–
124], Theorems 2.2.1 through 2.3.2 are attributed to Kolmogorov. The
result on meager sets in Section 2.2 is from [M. Sipser, Lecture Notes
on Complexity Theory, MIT Lab Computer Science, 1985, unpublished].
We avoided calling such sets ‘sparse’ sets because we need to reserve

194 2. Algorithmic Complexity

the term for sets that contain a polynomial number of elements for each
length. The approximation theorem, Theorem 2.3.3, is stated in some
form in [R.J. Solomonoff, Inform. Contr., 7(1964), 1–22, 224–254], and
is attributed also to Kolmogorov by Levin and Zvonkin. Some other
properties of the integer function C we mentioned were observed by
H.P. Katseff and M. Sipser [Theoret. Comput. Sci., 15(1981), 291–309].

The material on random strings (sequences) in Sections 2.4 and 2.5 is
primarily due to P. Martin-Löf [Inform. Contr., 9(1966), 602–619; Z.
Wahrsch. Verw. Geb., 19(1971), 225–230]. The notions of random fi-
nite strings and random infinite sequences, complexity oscillations, lower
semicomputable (sequential) Martin-Löf tests and the existence of uni-
versal (sequential) tests, the use of constructive measure theory, The-
orems 2.4.2, and 2.5.1 through 2.5.5, are taken from P. Martin-Löf’s
papers. Weaker oscillations are mentioned by G.J. Chaitin [J. ACM,
16(1969), 145–159]. We also used [A.K. Zvonkin and L.A. Levin, Russ.
Math. Surv., 25:6(1970), 83–124; P. Gács, Lecture Notes on Descriptional
Complexity and Randomness, Manuscript, Boston University, 1987].

As noted in the main text, the complexity oscillations of infinite se-
quences prevent a clear expression of randomness in terms of complex-
ity. This problem was investigated by L.A. Levin in [A.K. Zvonkin and
L.A. Levin, Russ. Math. Surv., 25:6(1970), 83–124] and independently
by C.P. Schnorr [Lect. Notes Math., Vol. 218, Springer-Verlag, 1971].
As a part of the wider issue of (pseudo) random number generators
and (pseudo) randomness tests, the entire issue of randomness of in-
dividual finite and infinite sequences is thoroughly reviewed by D.E.
Knuth, Seminumerical Algorithms, Addison-Wesley, 1981, pp. 142–169;
summary, history, and references: pp. 164–166. The whole matter of
randomness of individual finite and infinite sequences of zeros and ones
is placed in a wider context of probability theory and stochastics, and
is analyzed in [A.N. Kolmogorov and V.A. Uspensky, Theory Probab.
Appl., 32(1987), 389–412; V.A. Uspensky, A.L. Semenov and A.K. Shen,
Russ. Math. Surv., 45:1(1990), 121–189; V.A. Uspensky, A.L. Semenov,
An.A. Muchnik, A.L. Semenov, V.A. Uspensky, Theoret. Comput. Sci.,
2:207(1998), 1362–1376]. Developments in the theory, at the crossroads
of notions of individual randomness, Kolmogorov complexity, and re-
cursion theory have blossomed in the last decades. Such work has been
partially incorporated in the main text, and in the exercises, of Chap-
ters 2 through 4. Detailed treatment is beyond the scope and physical
size of this book, and is the subject of more specialized treatment, as in
R.G. Downey, D.R. Hirschfeldt, Algorithmic Randomness and Complex-
ity, Springer-Verlag, New York, to appear; A.K. Shen, V.A. Uspensky,
N.K. Vereshchagin, Kolmogorov Complexity and Randomness, Elsevier,
Amsterdam, to appear; A. Nies, Computability and Randomness, Oxford
Univ. Press, to appear.

2.9. History and References 195

Section 2.6, which analyzes precisely the relative frequencies of 0’s and
1’s and k-length blocks in individual infinite and finite sequences in terms
of their Kolmogorov complexity, is from [M. Li and P.M.B. Vitányi,
Math. Systems Theory, 27(1994), 365–376].

The recursion-theoretic properties we treat in Section 2.7 are related to
Gödel’s famous incompleteness theorem. Theorem 2.7.1 is attributed to
J.M. Barzdins in [A.K. Zvonkin and L.A. Levin, Russ. Math. Surv.,
25:6(1970), 83–124]. The proof of Corollary 2.7.2 was given by G.J.
Chaitin [J. ACM, 21(1974), 403–423; Scientific American, 232:5(1975),
47–52]. This application and some philosophical consequences have been
advocated with considerable eloquence by G.J. Chaitin and C.H. Ben-
nett [C.H. Bennett and M. Gardner, Scientific American, 241:5(1979),
20–34].

We also used the insightful discussion in [P. Gács, Lecture Notes on De-
scriptional Complexity and Randomness, Manuscript, Boston Univer-
sity, 1987]. These results are analyzed and critically discussed from a
mathematical logic point of view by M. van Lambalgen [J. Symb. Logic,
54(1989), 1389–1400]. Theorem 2.7.2, Barzdins’s lemma, occurs both
in [J.M. Barzdins, Soviet Math. Dokl., 9(1968), 1251–1254] and [D.W.
Loveland, Proc. ACM 1st Symp. Theory Comput., 1969, 61–65]. Exam-
ples in Section 2.7 are due to Kolmogorov, 1970, published much later
as [Russ. Math. Surv., 38:4(1983), 27–36] and a footnote in [L.A. Levin,
Problems Inform. Transmission, 10:3(1974), 206–210].

The treatment of the relation between plain Kolmogorov complexity
and Shannon’s entropy in Section 2.8 is based on the work of A.N. Kol-
mogorov [Problems Inform. Transmission, 1:1(1965), 1–7; IEEE Trans.
Inform. Theory, IT-14(1968), 662–665; Russ. Math. Surv., 38:4(1983),
27–36; Lect. Notes Math., Vol. 1021, Springer-Verlag, 1983, 1–5] and on
[A.K. Zvonkin and L.A. Levin, Russ. Math. Surv., 25:6(1970), 83–124].
The latter reference attributes Theorem 2.8.1 to Kolmogorov. Theo-
rem 2.8.2 and its Corollary 2.8.1, establishing the precise error term in
the additivity of complexity and symmetry of information as logarithmic
in the complexity, are due to Levin and Kolmogorov [A.K. Zvonkin and
L.A. Levin, Russ. Math. Surv., 25:6(1970), 83–124; A.N. Kolmogorov,
Russ. Math. Surv., 38:4(1983), 27–36].

