Chapter 1

Introduction

1.1. Introduction

Combinatorial optimization searches for an optimum object in a finite collec-
tion of objects. Typically, the collection has a concise representation (like a
graph), while the number of objects is huge — more precisely, grows exponen-
tially in the size of the representation (like all matchings or all Hamiltonian
circuits). So scanning all objects one by one and selecting the best one is not
an option. More efficient methods should be found.

In the 1960s, Edmonds advocated the idea to call a method efficient if its
running time is bounded by a polynomial in the size of the representation.
Since then, this criterion has won broad acceptance, also because Edmonds
found polynomial-time algorithms for several important combinatorial opti-
mization problems (like the matching problem). The class of polynomial-time
solvable problems is denoted by P.

Further relief in the landscape of combinatorial optimization was discov-
ered around 1970 when Cook and Karp found out that several other promi-
nent combinatorial optimization problems (including the traveling salesman
problem) are the hardest in a large natural class of problems, the class NP.
The class NP includes most combinatorial optimization problems. Any prob-
lem in NP can be reduced to such ‘NP-complete’ problems. All NP-complete
problems are equivalent in the sense that the polynomial-time solvability of
one of them implies the same for all of them.

Almost every combinatorial optimization problem has since been either
proved to be polynomial-time solvable or NP-complete — and none of the
problems have been proved to be both. This spotlights the big mystery:
are the two properties disjoint (equivalently, P#£NP), or do they coincide
(P=NP)?

This book focuses on those combinatorial optimization problems that have
been proved to be solvable in polynomial time, that is, those that have been
proved to belong to P. Next to polynomial-time solvability, we focus on the
related polyhedra and min-max relations.

These three aspects have turned out to be closely related, as was shown
also by Edmonds. Often a polynomial-time algorithm yields, as a by-product,
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a description (in terms of inequalities) of an associated polyhedron. Con-
versely, an appropriate description of the polyhedron often implies the
polynomial-time solvability of the associated optimization problem, by ap-
plying linear programming techniques. With the duality theorem of linear
programming, polyhedral characterizations yield min-max relations, and vice
versa.

So the span of this book can be portrayed alternatively by those combi-
natorial optimization problems that yield well-described polyhedra and min-
max relations. This field of discrete mathematics is called polyhedral combi-
natorics. In the following sections we give some basic, illustrative examples.!

1.2. Matchings

Let G = (V, E) be an undirected graph and let w : E — R, . For any subset
F of E, denote

(1.1) w(F) =Y w(e).

We will call w(F) the weight of F'.
Suppose that we want to find a matching (= set of disjoint edges) M in
G with weight w(M) as large as possible. In notation, we want to ‘solve’

(1.2) max{w(M) | M matching in G}.

We can formulate this problem equivalently as follows. For any matching M,
denote the incidence vector of M in R¥ by xM; that is,

M L 11fe€M,
(1.3) X(@’{OKegM,

for e € E. Considering w as a vector in RF | we have w(M) = wx™. Hence
problem (1.2) can be rewritten as

(1.4) max{w' x™ | M matching in G}.

This amounts to maximizing the linear function w'z over a finite set of

vectors. Therefore, the optimum value does not change if we maximize over
the convex hull of these vectors:

(1.5) max{w'z | z € conv.hull{x™ | M matching in G}}.
The set
(1.6) conv.hull{x™ | M matching in G}

is a polytope in RF, called the matching polytope of G. As it is a polytope,
there exist a matrix A and a vector b such that

1 Terms used but not introduced yet can be found later in this book — consult the Subject
Index.
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(1.7) conv.hull{x™ | M matching in G} = {z € R¥ | z > 0, Az < b}.
Then problem (1.5) is equivalent to
(1.8) max{w'z | z > 0, Az < b}.

In this way we have formulated the original combinatorial problem (1.2) as
a linear programming problem. This enables us to apply linear programming
methods to study the original problem.

The question at this point is, however, how to find the matrix A and the
vector b. We know that A and b do exist, but we must know them in order
to apply linear programming methods.

If G is bipartite, it turns out that the matching polytope of G is equal to
the set of all vectors x € RF satisfying

(1.9) z(e) >0 foree E,
Z:L‘(e) <1 forveV.
edv

(The sum ranges over all edges e containing v.) That is, for A we can take
the V x E incidence matrix of G' and for b the all-one vector 1 in RV .

It is not difficult to show that the matching polytope for bipartite graphs is
indeed completely determined by (1.9). First note that the matching polytope
is contained in the polytope determined by (1.9), since x satisfies (1.9)
for each matching M. To see the reverse inclusion, we note that, if G is
bipartite, then the matrix A is totally unimodular, i.e., each square submatrix
has determinant belonging to {0, +1,—1}. (This easy fact will be proved in
Section 18.2.) The total unimodularity of A implies that the vertices of the
polytope determined by (1.9) are integer vectors, i.e., belong to ZZ. Now
each integer vector satisfying (1.9) must trivially be equal to x™ for some
matching M. Hence, if G is bipartite, the matching polytope is determined
by (1.9).

We therefore can apply linear programming techniques to handle problem
(1.2). Thus we can find a maximum-weight matching in a bipartite graph in
polynomial time, with any polynomial-time linear programming algorithm.
Moreover, the duality theorem of linear programming gives

(1.10) max{w(M) | M matching in G} = max{w'z | z > 0, Az < 1}
=min{y"1 |y >0,yTA>w"}.
If we take for w the all-one vector 1 in RF, we can derive from this K&nig’s

matching theorem (Kénig [1931]):

(1.11) the maximum size of a matching in a bipartite graph is equal to
the minimum size of a vertex cover,

where a vertex cover is a set of vertices intersecting each edge. Indeed, the
left-most expression in (1.10) is equal to the maximum size of a matching.
The minimum can be seen to be attained by an integer vector y, again by
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the total unimodularity of A. This vector y is a 0, 1 vector in RY, and hence
is the incidence vector xV of some subset U of V. Then y'A > 1T implies
that U is a vertex cover. Therefore, the right-most expression is equal to the
minimum size of a vertex cover.

K&nig’s matching theorem (1.11) is an example of a min-maz formula
that can be derived from a polyhedral characterization. Conversely, min-max
formulas (in particular in a weighted form) often give polyhedral characteri-
zations.

The polyhedral description together with linear programming duality also
gives a certificate of optimality of a matching M: to convince your ‘boss’ that a
certain matching M has maximum size, it is possible and sufficient to display
a vertex cover of size |[M|. In other words, it yields a good characterization
for the maximum-size matching problem in bipartite graphs.

1.3. But what about nonbipartite graphs?

If G is nonbipartite, the matching polytope is not determined by (1.9): if C is
an odd circuit in G, then the vector z € R¥ defined by z(e) :=  if e € EC
and z(e) := 0 if e ¢ EC, satisfies (1.9) but does not belong to the matching
polytope of G.

A pioneering and central theorem in polyhedral combinatorics of Edmonds
[1965b] gives a complete description of the inequalities needed to describe
the matching polytope for arbitrary graphs: one should add to (1.9) the
inequalities

(1.12) Z z(e) < |2|U|] for each odd-size subset U of V.
eCU

Trivially, the incidence vector x™ of any matching M satisfies (1.12). So the
matching polytope of G is contained in the polytope determined by (1.9) and
(1.12). The content of Edmonds’ theorem is the converse inclusion. This will
be proved in Chapter 25.

In fact, Edmonds designed a polynomial-time algorithm to find a maxi-
mum-weight matching in a graph, which gave this polyhedral characterization
as a by-product. Conversely, from the characterization one may derive the
polynomial-time solvability of the weighted matching problem, with the el-
lipsoid method. In applying linear programming methods for this, one will be
faced with the fact that the system Ax < b consists of exponentially many
inequalities, since there exist exponentially many odd-size subsets U of V.
So in order to solve the problem with linear programming methods, we can-
not just list all inequalities. However, the ellipsoid method does not require
that all inequalities are listed a priori. It suffices to have a polynomial-time
algorithm answering the question:

(1.13) given € RP | does & belong to the matching polytope of G?
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Such an algorithm indeed exists, as it has been shown that the inequalities
(1.9) and (1.12) can be checked in time bounded by a polynomial in |V, | E|,
and the size of z. This method obviously should avoid testing all inequalities
(1.12) one by one.

Combining the description of the matching polytope with the duality
theorem of linear programming gives a min-max formula for the maximum
weight of a matching. It again yields a certificate of optimality: if we have a
matching M, we can convince our ‘boss’ that M has maximum weight, by
supplying a dual solution y of objective value w(M). So the maximum-weight
matching problem has a good characterization — i.e., belongs to NPNco-NP.

This gives one motivation for studying polyhedral methods. The ellip-
soid method proves polynomial-time solvability, it however does not yield a
practical method, but rather an incentive to search for a practically efficient
algorithm. The polyhedral method can be helpful also in this, e.g., by imi-
tating the simplex method with a constraint generation technique, or by a
primal-dual approach.

1.4. Hamiltonian circuits and the traveling salesman
problem

As we discussed above, matching is an area where the search for an inequal-
ity system determining the corresponding polytope has been successful. This
is in contrast with, for instance, Hamiltonian circuits. No full description in
terms of inequalities of the convex hull of the incidence vectors of Hamiltonian
circuits — the traveling salesman polytope — is known. The corresponding
optimization problem is the traveling salesman problem: ‘find a Hamiltonian
circuit of minimum weight’, which problem is NP-complete. This implies
that, unless NP=co-NP, there exist facet-inducing inequalities for the trav-
eling salesman polytope that have no polynomial-time certificate of validity.
Otherwise, linear programming duality would yield a good characterization.
So unless NP=co-NP there is no hope for an appropriate characterization of
the traveling salesman polytope.

Moreover, unless NP=P, there is no polynomial-time algorithm answering
the question

(1.14) given = € R, does z belong to the traveling salesman polytope?

Otherwise, the ellipsoid method would give the polynomial-time solvability
of the traveling salesman problem.

Nevertheless, polyhedral combinatorics can be applied to the traveling
salesman problem in a positive way. If we include the traveling salesman
polytope in a larger polytope (a relazation) over which we can optimize in
polynomial time, we obtain a polynomial-time computable bound for the
traveling salesman problem. The closer the relaxation is to the traveling
salesman polytope, the better the bound is. This can be very useful in a
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branch-and-bound algorithm. This idea originates from Dantzig, Fulkerson,
and Johnson [1954b].

1.5. Historical and further notes

1.5a. Historical sketch on polyhedral combinatorics

The first min-max relations in combinatorial optimization were proved by Dénes
Kénig [1916,1931], on edge-colouring and matchings in bipartite graphs, and by
Karl Menger [1927], on disjoint paths in graphs. The matching theorem of Kénig
was extended to the weighted case by Egervéary [1931]. The proofs by Kénig and
Egervary were in principal algorithmic, and also for Menger’s theorem an algo-
rithmic proof was given in the 1930s. The theorem of Egervary may be seen as
polyhedral.

Applying linear programming techniques to combinatorial optimization prob-
lems came along with the introduction of linear programming in the 1940s and
1950s. In fact, linear programming forms the hinge in the history of combinatorial
optimization. Its initial conception by Kantorovich and Koopmans was motivated
by combinatorial applications, in particular in transportation and transshipment.

After the formulation of linear programming as generic problem, and the devel-
opment in 1947 by Dantzig of the simplex method as a tool, one has tried to
attack about all combinatorial optimization problems with linear programming
techniques, quite often very successfully. In the 1950s, Dantzig, Ford, Fulkerson,
Hoffman, Kuhn, and others studied problems like the transportation, maximum
flow, and assignment problems. These problems can be reduced to linear program-
ming by the total unimodularity of the underlying matrix, thus yielding exten-
sions and polyhedral and algorithmic interpretations of the earlier results of Kénig,
Egervéry, and Menger. Kuhn realized that the polyhedral methods of Egervary for
weighted bipartite matching are in fact algorithmic, and yield the efficient ‘Hungar-
ian’ method for the assignment problem. Dantzig, Fulkerson, and Johnson gave a
solution method for the traveling salesman problem, based on linear programming
with a rudimentary, combinatorial version of a cutting plane technique.

A considerable extension and deepening, and a major justification, of the field
of polyhedral combinatorics was obtained in the 1960s and 1970s by the work and
pioneering vision of Jack Edmonds. He characterized basic polytopes like the match-
ing polytope, the arborescence polytope, and the matroid intersection polytope; he
introduced (with Giles) the important concept of total dual integrality; and he
advocated the interconnections between polyhedra, min-max relations, good char-
acterizations, and efficient algorithms. We give a few quotes in which Edmonds
enters into these issues.

In his paper presenting a maximum-size matching algorithm, Edmonds [1965d]
gave a polyhedral argument why an algorithm can lead to a min-max theorem:

It is reasonable to hope for a theorem of this kind because any problem which
involves maximizing a linear form by one of a discrete set of non-negative vectors
has associated with it a dual problem in the following sense. The discrete set
of vectors has a convex hull which is the intersection of a discrete set of half-
spaces. The value of the linear form is as large for some vector of the discrete set
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as it is for any other vector in the convex hull. Therefore, the discrete problem
is equivalent to an ordinary linear programme whose constraints, together with
non-negativity, are given by the half-spaces. The dual (more precisely, a dual) of
the discrete problem is the dual of this ordinary linear programme.

For a class of discrete problems, formulated in a natural way, one may hope then
that equivalent linear constraints are pleasant enough though they are not explicit
in the discrete formulation.

In another paper (characterizing the matching polytope), Edmonds [1965b] stressed
that the number of inequalities is not relevant:

The results of this paper suggest that, in applying linear programming to a com-
binatorial problem, the number of relevant inequalities is not important but their
combinatorial structure is.

Also in a discussion at the IBM Scientific Computing Symposium on Combinatorial
Problems (March 1964 in Yorktown Heights, New York), Edmonds emphasized that
the number of facets of a polyhedron is not a measure of the complexity of the
associated optimization problem (see Gomory [1966]):

I do not believe there is any reason for taking as a measure of the algorithmic
difficulty of a class of combinatorial extremum problems the number of faces in the
associated polyhedra. For example, consider the generalization of the assignment
problem from bipartite graphs to arbitrary graphs. Unlike the case of bipartite
graphs, the number of faces in the associated polyhedron increases exponentially
with the size of the graph. On the other hand, there is an algorithm for this
generalized assignment problem which has an upper bound on the work involved
just as good as the upper bound for the bipartite assignment problem.

After having received support from H.-W. Kuhn and referring to Kuhn’s maximum-
weight bipartite matching algorithm, Edmonds continued:

This algorithm depends crucially on what amounts to knowing all the bounding
inequalities of the associated convex polyhedron—and, as I said, there are many
of them. The point is that the inequalities are known by an easily verifiable
characterization rather than by an exhaustive listing—so their number is not
important.

This sort of thing should be expected for a class of extremum problems with a
combinatorially special structure. For the traveling salesman problem, the ver-
tices of the associated polyhedron have a simple characterization despite their
number—so might the bounding inequalities have a simple characterization de-
spite their number. At least we should hope they have, because finding a really
good traveling salesman algorithm is undoubtedly equivalent to finding such a
characterization.

So Edmonds was aware of the correlation of good algorithms and polyhedral char-
acterizations, which later got further support by the ellipsoid method.

Also during the 1960s and 1970s, Fulkerson designed the clarifying framework of
blocking and antiblocking polyhedra, throwing new light by the classical polarity of
vertices and facets of polyhedra on combinatorial min-max relations and enabling,
with a theorem of Lehman, the deduction of one polyhedral characterization from
another. It stood at the basis of the solution of Berge’s perfect graph conjecture in
1972 by Lovész, and it also inspired Seymour to obtain several other basic results
in polyhedral combinatorics.
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1.5b. Further notes

Raghavan and Thompson [1987] showed that randomized rounding of an optimum
fractional solution to a combinatorial optimization problem yields, with high prob-
ability, an integer solution with objective value close to the value of the fractional
solution (hence at least as close to the optimum value of the combinatorial prob-
lem). Related results were presented by Raghavan [1988], Plotkin, Shmoys, and
Tardos [1991,1995], and Srinivasan [1995,1999].

Introductions to combinatorial optimization (and more than that) can be found
in the books by Lawler [1976b], Papadimitriou and Steiglitz [1982], Syslo, Deo,
and Kowalik [1983], Nemhauser and Wolsey [1988], Parker and Rardin [1988],
Cook, Cunningham, Pulleyblank, and Schrijver [1998], Mehlhorn and N&her [1999],
and Korte and Vygen [2000]. Focusing on applying geometric algorithms in com-
binatorial optimization are Lovdsz [1986] and Grotschel, Lovasz, and Schrijver
[1988]. Bibliographies on combinatorial optimization were given by Kastning [1976],
Golden and Magnanti [1977], Hausmann [1978b], von Randow [1982,1985,1990], and
O’hEigeartaigh, Lenstra, and Rinnooy Kan [1985].

Survey papers on polyhedral combinatorics and min-max relations were pre-
sented by Hoffman [1979], Pulleyblank [1983,1989], Schrijver [1983a,1986a,1987,
1995], and Grotschel [1985], on geometric methods in combinatorial optimization
by Grétschel, Lovdsz, and Schrijver [1984b], and on polytopes and complexity by
Papadimitriou [1984].



