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Chapter 2

Location and Attitude

2.1
Introduction

This chapter covers the basic building blocks required to construct 3-D models of
geological structures. Included here are methods for locating points in three dimen-
sions on a map or in a well, for determining the attitude of a plane and the orientation
of a line, and for representing planes with structure contours. Both graphical and
analytical solutions for finding and displaying lines and planes are presented. Many of
the analytical techniques are based on vector geometry, a topic treated separately in
Chap. 12. The graphical techniques utilize stereograms and tangent diagrams.

2.2
Location

The locations of data points recorded on maps and well logs must be converted to a single,
internally consistent coordinate system in order to be used in the interpretive calcula-
tions given in this book. The positions of points in three dimensions will be described in
terms of a right-handed Cartesian coordinate system with +x = east, +y = north, and
+z = up. Dimensions will be given in feet and kilofeet or meters and kilometers, depend-
ing on the units of the original source of the data. Parts of a foot will be expressed as a
decimal fraction. Unit conversions are a common source of error which are largely avoided
by retaining the original units of the map or well log. The relationships between locations
on a topographic map or well log and the xyz coordinate system are given next.

2.2.1
Map Coordinate Systems, Scale, Accuracy

The true locations of points on or in the earth are given in the spherical coordinate
system of latitude, longitude, and the position along an earth radius. Maps are con-
verted from the spherical coordinate system to a plane Cartesian coordinate system by
projection. Some distortion of lengths or angles or both is inherent in every projection
technique, the amount of which depends on the type of projection and the scale of the
map (Greenhood 1964; Robinson and Sale 1969; Bolstad 2002) but is not significant at
the scale of normal field mapping.

In many regions, maps are based on the transverse Mercator or polar stereographic
projections and contain a superimposed rectangular grid called the Universal Trans-
verse Mercator (UTM) or the Universal Stereographic Projection (USP) grid (Robinson
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and Sale 1969; Snyder 1987). The UTM grid is used at lower latitudes and the USP grid
is used in the polar regions. The UTM grid divides the earth into 6 × 8° quadrilaterals
that are identified by reference numbers and letters. All UTM coordinates are with
respect to a survey datum that should be specified. In North America, for example,
UTMs are referenced to either the North American Datum of 1927 (NAD-27) or the
datum of 1983 (NAD-83) (Bolstad 2002).

UTM coordinates along the margin of a United States Geological Survey (USGS)
map are given at intervals of 1 000 m (Fig. 2.1). On a topographic quadrangle map, the
first digit or digits of the UTM coordinates are shown as a superscript and the last
three zeros are usually omitted. Locations within the grid are given as the coordinates
of the southwest corner of a block within the grid system. The x value is called the
easting, and the y value is called the northing. For example, the lower left coordinate
in Fig. 2.1, 518, is 518 000 m east of the origin. Any block can be subdivided into tenths
in both the x and y directions, adding one significant digit to the coordinates of the
sub-block. Sub-blocks may be similarly subdivided. UTM coordinates are commonly
written as a single number, easting first, then the northing, with the superscript and
the trailing zeros omitted. For example, a grid reference of 196 542 in the map of Fig. 2.1
represents a block 100 m on a side with its southwest corner at x = 196, y = 542. A grid
reference of 19 605 420 represents a block 10 m on a side with its southwest corner at
x = 1 960, y = 5 420. This coordinate system is internally consistent over large areas and
is convenient for maintaining large databases. The United Kingdom uses a similar metric
system called the National Grid (Maltman 1990).

The surface locations of wells are commonly recorded according to the coordinates
given on a cadastral map, which is a map for officially recording property boundaries,
land ownership, political subdivisions, etc. In much of the United States the cadastral system
is based on the Land Office grid of Townships and Ranges (Fig. 2.2). The grid is aligned
with latitude at base lines and with longitude at guide meridians. Every 24 miles the grid
is readjusted to maintain the 6 mile dimensions of the blocks. An individual township is
located according to its east-west coordinate (Township) and its north-south coordinate
(Range). The township that has been subdivided (Fig. 2.2) is T.2N., R.3E. A township is
subdivided into 36 sections, each 1 mile on a side and numbered from 1 to 36 as shown in
Fig. 2.2. For a more precise location, each section is subdivided into quarter sections (may
be called corners) as in the northeast quarter of sect. 7, abbreviated NE¼ sect. 7. Quarter
sections may themselves be divided into quarters, as in the northwest quarter of the
northeast quarter of sect. 7, abbreviated NW¼NE¼ sect. 7, T.2N., R.3E. Locations within

Fig. 2.1.
UTM grid (NAD-27) in north-
central Alabama as given on a
USGS topographic map. Each
square block is 1000 m on a
side. Block 1954 is shaded
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a quarter are given in feet measured from a point that is specified. The surveys were not
always done perfectly and were sometimes forced into irregular shapes by the topogra-
phy. It is necessary to see the local survey map to be certain of the locations.

Map scales are expressed as a ratio in which the first number is the length of one
unit on the map and the second number is the number of units of the same length on
the ground. The larger the scale of the map, the smaller the second number in the
ratio. Geological maps suitable for detailed interpretation are typically published at
scales ranging from 1 : 63 300 (1 in to the mile: 1 in = 63 300 in = 1 mile) to 1 : 24 000
(1 in = 24 000 inches, the 7.5 minute quadrangles of the USGS). Larger scales are useful
for making very detailed maps. Base maps should always contain bar scales which make
it easy to enlarge or reduce the map while preserving the correct scale.

Most governmentally produced base maps have an accuracy equivalent to the
U.S. Class 1 map standard (Fowler 1997). This standard states that the horizontal po-
sition of 90% of the points must be within 0.5 mm of their true location at the scale
of the map. For example, at the 1 : 24 000 scale, a point on the map must be within
0.5 mm × 24 000 = 12 m (39.4 ft) of its true location. The vertical position of 90% of all
contours must be within half the contour interval in open areas and spot elevations
must be within one-quarter of a contour of their true elevation. A 20-ft contour (char-
acteristic of 1 : 24 000 USGS topographic maps) can be expected to be accurate to ±10 ft
(3 m). For comparison, the width of the thinnest contour line is about 0.01 in on a
1 : 24 000 USGS topographic map and represents 20 ft (6.01 m) at the scale of the map.
The accuracy of an enlarged (or reduced) map is no better than it was at the original
scale. Ground surveys of point locations such as wells can be expected to be accurate
to within 1 m and satellite surveys can be accurate to 0.1 m within the survey area
(Aitken 1994), significantly greater accuracies than that of many base maps.

Fig. 2.2.
The Township-Range grid
system. The basic unit is a
24-mile block of 6-square-mile
townships. Township T2N,
R3E is divided into sections.
(After Greenhood 1964)

2.2  ·  Location
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2.2.2
Geologic Mapping in 3-D

Widely available computer technology now makes it possible to construct and inter-
pret geological maps in 3-D. Three-dimensional geologic outcrop mapping usually
begins with a digital elevation model (DEM). A DEM is a grid of elevation values and
their corresponding xy coordinates (Bolstad 2002). The DEM is contoured (typically
by triangulation because it is computationally fast and fits the control points, see
Chap. 3) to produce a computer visualization of the topographic surface (Fig. 2.3). The
accuracy of the most widely available DEMs is not as great as the corresponding topo-
graphic map, which may be important in critical applications. For DEMs produced at
the scale of a 7.5-minute quadrangle and derived from a photogrammetric source,
90 percent have a vertical accuracy of 7-meter root mean square error or better and
10 percent are in the 8- to 15-meter range (source USGS EROS Data Center).

Geological contact lines can be constructed as three-dimensional traces on the surface
of the contoured DEM. This can be achieved by extracting lines from the 3-D topo-
graphic surface within 3-D software (Fig. 2.4), or by mapping 3-D lines in outcrop using
a Global Positioning System (GPS) receiver, which provides a digital file that can be
used with the computer map (Bolstad 2002). Extracting lines from the contoured DEM
usually is done over a superimposed image of the hard-copy geological map. Geographic
information system (GIS) software allows the image of a geological map to be draped
over the DEM surface, giving a realistic view of the map surface. Images used for this
purpose need to be ortho rectified, aligned and georeferenced to fit the DEM. Once the

Fig. 2.3. Oblique view to the NE of the Blount Springs area, Alabama, 50 ft topographic contours derived
from a 30 m Digital Elevation Model (NAD-27). Horizontal coordinates are UTMs in meters, no vertical
exaggeration
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contacts are digitized, they can be visualized as part of the 3-D model (Fig. 2.5), edited
and otherwise manipulated digitally.

The geologic map of the Blount Springs area (Figs. 2.4, 2.5) will provide the data for
an ongoing example of the process of creating and validating a structure contour map.
The map area is located along the Sequatchie anticline at the southern end of the
Appalachian fold-thrust belt and is the frontal anticline of the fold-thrust belt.

2.2.3
Wells

The location of points in a well are measured in well logs with respect to the elevation
of the wellhead and are usually given as positive numbers. Depths in oil and gas wells
are usually measured from the Kelly bushing (Fig. 2.6a). The elevation of the Kelly
bushing (KB) is given in a surveyor’s report included as part of the well-log header
information. Alternatively, depths may be measured from ground level (GL) or the
derrick floor (DF).

Fig. 2.4. Geologic map of a portion of the southern Sequatchie anticline in the vicinity of Blount Springs,
Alabama. Base map is a DEM. The units are, from oldest to youngest, Silurian Red Mountain Formation
and Devonian Chattanooga Shale (SDrmc), Mississippian Tuscumbia Limestone and Fort Payne Forma-
tion (Mtfp), Mississippian Pride Mountain Formation (Mpm), Mississippian Hartselle Sandstone (Mh),
Mississippian Bangor Limestone (Mb), Pennsylvanian Pottsville Formation (Ppv). Thick lines are geologic
contacts, thin lines are topographic contours (50 ft interval). Horizontal scale is UTM in meters. Solid
squares are locations where bedding attitudes have been measured. (After Cherry 1990; Thomas 1986)

2.2  ·  Location
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2.2.3.1
Datum

The coordinates of points in a well need to be corrected to a common datum elevation,
normally sea level. The depths should be adjusted so that they are positive above sea
level and negative below. In a vertical well the log depths are converted to a sea-level
datum with the following equation:

SD = KB – MD   , (2.1)

where SD = subsea depth, KB = elevation of Kelly bushing or other measurement of
surface elevation, MD = measured depth on well log.

Fig. 2.5. 3-D oblique view of geologic map of Blount Springs area, from Fig. 2.4. Topography is shown
as shaded relief map, without vertical exaggeration

Fig. 2.6. Location in a deviated well. a Vertical section through a deviated well, in the northeast-southwest
direction. Depths in the well are measured downward from the Kelly bushing (KB). True vertical depths
(TVD) are calculated from the borehole deviation survey. b Map view of the deviated well. Locations of
points down hole are given by their distance from the surface location. TD total depth; MD measured depth
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2.2.3.2
Deviated Well

Many wells are purposely drilled to deviate from the vertical. This means that points in
the well are not directly below the surface location. The shape of the well is determined
by a deviation survey, the terminology of which is given in Fig. 2.6. The primary informa-
tion from a deviation survey is the azimuth and inclination of the borehole and the
downhole position of the measurement, for a number of points down the well. This in-
formation is converted by some form of smoothing calculation into the xyz coordinates
of selected points in well-log coordinates, known as true vertical depth (TVD, Fig. 2.6a)
and is given in the log of the survey. The TVD must be corrected for the elevation of the
Kelly bushing to give the locations of points with respect to the datum. In a deviated well
the log depths are converted to a sea-level datum with the following equation:

SD = KB – TVD   , (2.2)

where SD = subsea depth, KB = elevation of Kelly bushing or other measurement of
surface elevation, TVD = true vertical depth from the deviation survey.

The calculated position of the points determined from a deviation survey depends on
the spacing between the measurement points and the particular smoothing calculation
used to give the TVD locations. If the measurement points are spaced tens of meters or
a hundred or more feet apart, the positions of points toward the bottom of a 3 000-m
(10 000-ft) well might be uncertain by tens of meters or a hundred feet or so. This is because
the absolute location of a point depends on the accuracy of the location of all the points
above it in the well. Small errors accumulate. The relative positions of points spaced a
small distance apart along the well should be fairly accurate. Points will be accurately
located if the deviation survey is based on points spaced only a meter or less apart.

Locations in a deviated well are commonly given as the xyz coordinates of points in
the well relative to the surface location, for example, P1 and P2 in Fig. 2.7a. Here z is the
vertical axis, positive upward, the subscript “1” will always denote the upper point and
the subscript “2” will denote the lower point. A unit boundary is likely to be located
between control points, making it necessary to calculate its location.

Fig. 2.7. Calculation of position of a unit boundary in a deviated well. a Boundary located between two
control points. b Boundary located below the control points

2.2  ·  Location
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To find the coordinates of an intermediate point, P, between P1 and P2, let r be the
distance along the well from the upper control point to the point P. In a right-handed
xyz coordinate system (Fig. 2.7) with z positive upward, positive x = east and positive
y = north, the point P (x, y, z) between P1 (x1, y1, z1) and P2 (x2, y2, z2) at a location given
by the ratio r / s (where r + s = L), has the coordinates (Eves 1984)

x = (rx2 + sx1) / (r + s)   , (2.3a)

y = (ry2 + sy1) / (r + s)   , (2.3b)

z = (rz2 + sz1) / (r + s)   . (2.3c)

L is found from the Pythagorean theorem:

L = [(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2]1/2   . (2.4)

Substitute s = L – r into Eq. 2.3 to obtain

x = (rx2 – rx1 + Lx1) / L   , (2.5a)

y = (ry2 – ry1 + Ly1) / L   , (2.5b)

z = (rz2 – rz1 + Lz1) / L   . (2.5c)

If the well is straight between the upper and lower points, L will be equal to the log
distance. If L is not equal to the log distance, then the well is not straight and the calcu-
lated value of L will give the more internally consistent answer. More precise location of
the point will require definition of the curvature of the well between the control points.

It may be required to locate a contact below the last control point given by the de-
viation survey (Fig. 2.7b). A simple linear extrapolation can be used, based on the
assumption that the well continues in a straight line below the last control point with the
same orientation it had between the last two control points. The subscripts “1” and “2”
again represent the upper and lower control points. Let ∆x = (x2 – x1), ∆y = (y2 – y1),
and ∆z = (z2 – z1), then

x = x2 + r∆x / L   , (2.6a)

y = y2 + r∆y / L   , (2.6b)

z = z2 + r∆z / L   , (2.6c)

where x, y, and z = the coordinates of a point at a well-log distance r below the last
control point, P2, having the coordinates (x2, y2, z2), and L (Eq. 2.4) = the straight-line
distance between the last two control points.

As an example of the location of points in a deviated well, consider the following
information from a well (KB at 660 ft) on which the formation boundary of interest is at
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a log depth of 1 225 ft. The deviation survey gives the coordinates of points above and
below the boundary as 1 200 ft TVD, 50 ft northing, –1 050 ft easting and 1 400 ft TVD,
150 ft northing, –1 150 ft easting. What are the coordinates of the formation boundary?
The subsea depths of the upper and lower points, found by subtracting the log depths
from the elevation of the Kelly bushing are P1: z = –540 ft and P2: z = –740 ft, respec-
tively. From Eq. 2.4, the straight-line distance between the two points is L = 225 ft.
From Eq. 2.3, the coordinates of a point r = 25 ft down the well from the upper point
are –560 ft subsea, 60 ft northing, –1 060 ft easting. Note that negative northing is to
the south and negative easting is to the west.

2.3
Orientations of Lines and Planes

The basic structural measurements at a point are the orientations of lines and planes.
The attitude of a plane is its orientation in three dimensions. The attitude may be given
as the strike and dip (Fig. 2.8). Strike is the orientation of a horizontal line on the plane
and the dip is the angle between the horizontal and the plane, measured perpendicular
to the strike in the downward direction. Compass directions will be given here as the
trend, which is the azimuth on a 360° compass (Ragan 1985), and will be indicated by
numbers always containing three digits. Strike and dip are written in text form as strike,
dip, dip direction; for example 340, 22NE and represented by the map symbols of
Fig. 2.9a–d. The degree symbol may be written after each angle (i.e., 340°, 22° NE) or
may be omitted for the sake of simplicity, as will be done here (Rowland and Dueben-
dorfer 1994). The alternative form on a quadrant compass is the bearing and the dip
(Ragan 1985), for which the same attitude would be written as N20W, 22NE. In subsur-
face geology, where the frame of reference may be a vertical shaft or well bore, the
inclination of a plane may be given as the hade, which is the angle from a downward-

Fig. 2.8.
Attitude of the shaded plane
can be given by its strike and
dip, dip vector, or pole

Fig. 2.9. Map symbols for the attitude of a plane. a Strike and dip. b Strike and dip of overturned bed.
c Strike of vertical bed. d Horizontal bed. e Azimuth and plunge of dip. f Facing (stratigraphic up)
direction of vertical bed. g Azimuth and plunge of dip, overturned bed

2.3  ·  Orientations of Lines and Planes
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pointing vertical line and the plane. The hade angle is the complement of the dip
(90° – δ). The attitude of a plane may also be given as the azimuth and plunge of the
dip vector, written as dip amount, dip direction. By this convention, the previous atti-
tude is given as 22, 070, indicated by the map symbol of Fig. 2.9e. This is the form that
is usually used in this book because it is short and convenient for numerical calcula-
tions. The dip vector will occasionally be written in short form as δδδδδ , where the bold
type indicates a vector. The attitude of a plane may also be represented by the orien-
tation of its pole, a line perpendicular to the plane (Fig. 2.8).

The orientation of a line is given by its trend and plunge. The trend is the angle, β ,
between north and the vertical projection of the line onto a horizontal plane (Fig. 2.10).
The plunge is the angle, p, in the vertical plane between the line and the horizontal. The
orientation of a line is written as plunge amount, azimuth of trend, for example 30, 060 is
a line plunging 30° toward the azimuth 060°. On a map the orientation of a line is repre-
sented by the same type of symbol as the azimuth and plunge of the dip (Fig. 2.9b) which
is also a line. The two symbols could be differentiated on a map by means of line weight.

Given the xyz coordinates of two points, it is possible to calculate the trend and
plunge of the line between them (Fig. 2.11). If subscript 1 represents the higher of the
two points, the plunge of the line determined from the following equations will be
downward. The preliminary value of the azimuth θ ' and plunge δ  of the line between
points 1 and 2 are (from Eqs. 12.11 and 12.12)

θ ' = arctan (∆x / ∆y)   , (2.7)

δ = arcsin [(z2 – z1) / L]   , (2.8)

where

Fig. 2.10.
Trend and plunge of a line in
the shaded surface

Fig. 2.11.
Trend and plunge of a line
between two points
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∆x = (x2 – x1)   , (2.9a)

∆y = (y2 – y1)   , (2.9b)

and L is given by Eq. 2.4. Division by zero is not allowed in Eq. 2.7. The preliminary
azimuth, θ ', calculated from Eq. 2.7, is always in the range of 000 to 090°. The angle
must be converted to the true azimuth, θ , in the range of 000 to 360° using Table 2.1.

As an example of the calculation of the orientation of a line, find the trend and
plunge of the well between points P1 and P2 from the example in Sect. 2.2.3.2. The lo-
cations of the two points are found from the deviation survey to be P1: z = –540 ft, 50 ft
northing, –1 050 ft easting and P2: z = –740 ft, 150 ft northing, –1 150 ft easting. The
preliminary plunge and trend of the line, from Eqs. 2.7 and 2.8, is 55, –045. The sign of
∆x is negative (∆x = (–1 150 – (–1 050) = –100) and ∆y is positive (∆y = 150 – 50 = +100),
and so from Table 2.1, the true azimuth is θ = 360 + (–45) = 315.

The orientation of a line can also be represented by its pitch or rake, r, which is the
angle measured in a specific plane between the line and the strike of the plane (Fig. 2.12).
Both the rake and the attitude of the plane must be specified. This form is convenient
for recording lines that are attached to important planes, like striations on a fault plane.
Alternatively the orientation of a line in a plane can be represented by its apparent dip
and bearing (Fig. 2.12). Apparent dip, δ ', is the orientation of a line that lies in a plane
in some direction other than the true dip (Fig. 2.12). An apparent dip can be written
as a plunge and trend or as a rake in the plane. Apparent dips are important in drawing
a cross section that is in a direction oblique to the true dip direction of bedding.

It is possible to represent the three-dimensional orientations of lines and planes
quantitatively on graphs called stereograms and tangent diagrams. The graphical tech-
niques aid in the visualization of geometric relationships and allow for the rapid so-
lution of many three-dimensional problems involving lines and planes.

Table 2.1.
True azimuth, θ, determined
from preliminary azimuth, θ '
based on the signs of ∆x and
∆y (Eq. 2.9) or cos α and cos β
(Eq. 2.14)

Fig. 2.12.
True dip, δ, apparent dip, δ ',
and rake (or pitch), r

2.3  ·  Orientations of Lines and Planes
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2.3.1
Stereogram

A stereogram (Dennis 1967; Lisle and Leyshon 2004) is the projection of the latitude and
longitude lines of a hemisphere onto a circular graph. Two different projections are com-
monly used in structural interpretation, the equal-area net (Schmidt or Lambert net) and
the equal-angle stereographic net (Wulff net). The different projection techniques result
in the preservation of different properties of the original sphere (Greenhood 1964). The
equal-area net is required if points are to be contoured into spatially meaningful concen-
trations. An equal-angle net produces false concentrations from an evenly spaced distri-
bution of points, although the angular relationships are correct. The lower-hemisphere
equal-area stereograms (Fig. 2.13a) will be used throughout this book (an enlarged copy
for use in working problems is given as Fig. 2.28 at the end of the chapter).

The outer or primitive circle of the equal-area stereogram is the projection of a
horizontal plane (Fig. 2.13a). The compass directions are marked around the edge of
the primitive circle. The projections of longitude lines form circular arcs that join the
north and south poles of the graph and represent great circles. The trace of a plane is
a great circle. A line plots as a point. The projections of latitude lines are elliptical
curves, concentric about the north and south poles and represent small circles. The
center of the graph is a vertical line. Planes and lines plotted on a stereogram can be
visualized as if they were intersecting the surface of a hemispherical bowl (Fig. 2.13b).

A stereogram is used with a transparent overlay on which the data are plotted and
which can be rotated about the center of the graph. To begin using a stereogram, on the
overlay, mark the center and the north, east, south, and west directions, and the primi-
tive circle (Fig. 2.14a). To plot the attitude of a plane from the strike and dip (for ex-
ample, 60, 32SE), mark the strike on the primitive circle. Then rotate the overlay so that
the strike direction lies on the N-S axis (Fig. 2.14b), find the great circle corresponding
to the dip by counting down (inward) along the E-W axis from the primitive circle
(zero dip) the dip amount in the dip direction. Draw a line along the great circle and

Fig. 2.13. Stereogram. a Equal-area stereogram (Schmidt or Lambert net), lower hemisphere projection.
b Visualization of a plane and its pole in a lower hemisphere. (After Rowland and Duebendorfer 1994)
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then return the overlay to its original position to see the plane in its correct orientation
(Fig. 2.14c). Find the pole to the plane by placing the overlay in the starting position
for drawing bedding, that is, with the strike direction N-S. Along the E-W axis, count
in from the primitive circle an amount equal to the dip, then count another 90° to find
the pole (Fig. 2.14b) or, equivalently, count the dip amount up (outward) from the cen-
ter point of the diagram. Mark the position of the E-W line on the primitive circle and
return the overlay to its original position to find the trend of the pole (330°). The plunge
of the pole is 90° minus the dip. To plot planes and poles from the dip and dip azimuth
of the plane (the plane previously plotted is δδδδδ = 32, 150) mark the dip direction on the
primitive circle (Fig. 2.14a), rotate the overlay to bring this direction to E-W, and count
the dip amount inward to find the point that represents the orientation of the dip vector.
The great circle projection of the bed goes through this point. Plot 90° plus the dip
along E-W to find the pole (Fig. 2.14b). Return the overlay to its original position to
see the result (Fig. 2.14c). If the plunge and trend to be plotted are those of a line,
follow the same steps as in plotting a dip vector.

Fig. 2.14. Plotting the orientation of the plane and its pole on an equal-area lower-hemisphere stereo-
gram. The plane has a dip of 32SE (150), and a strike of 060. a NESW compass directions and strike and
dip directions are marked on the overlay (square). b Overlay rotated to bring the strike to north and the
dip to east. Trace of plane and pole to plane marked on overlay. c Overlay returned to its original posi-
tion. The plunge and trend of the pole is 58, 330

2.3  ·  Orientations of Lines and Planes
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Plotting poles and lines can be done more quickly on a stereogram using a
Biemsderfer plotter (Wise 2005), a calibrated dip scale that rotates on the center of the
net to allow plotting of points without rotating the overlay. The attitudes of lines such
as dip vectors and lineations are also quickly and easily plotted on a tangent diagram,
described in Sect. 2.3.3.

Apparent dips are quickly determined on a stereogram as the orientation of the
point of intersection between a line in the direction of the apparent dip and the great-
circle trace of a plane. For example, find the apparent dips along the azimuths 080
and 180 for the plane plotted previously (δδδδδ = 32, 150). Plot lines from the center of the
graph in the azimuth directions (Fig. 2.15a). The intersections of the azimuth lines
with the great circle are the apparent dips. Dips can be read from the N-S axis as well
as the E-W and so the 180° azimuth is in measurement direction. The angle measured
inward from the primitive circle to the intersection is the apparent dip, 28°. The over-
lay is rotated into measurement position for the 080° azimuth (Fig. 2.15b) to find the
apparent dip of 15°.

Apparent dip problems can be worked backwards to find the true dip from two
apparent dips. Plot the points representing the apparent dips, then rotate the overlay
until both points fall on the same great circle. This great circle is the true dip plane.

2.3.2
Natural Variation of Dip and Measurement Error

The effect of measurement error or of the natural irregularity of the measured surface
on the determination of the attitude of a plane is readily visualized on a stereogram.
The plane is represented by its pole (Fig. 2.16). Irregularities of the measured surface
and measurement errors should produce a circular distribution of error around this
pole (Cruden and Charlesworth 1976). An error of 4° around the true dip is probably

Fig. 2.15. Apparent dip in the plane given by the dip vector 32, 150 on an equal-area, lower-hemisphere
stereogram. a Plane plotted with apparent dips shown as black squares. The south-trending apparent
dip is 28, 180. b Overlay rotated 10° to bring the 080° trending apparent dip into measurement posi-
tion; apparent dip is 15, 080
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the maximum expected for routine field measurements on a normally smooth bed
surface. Measurements on a rough surface may show an even greater variability. A
good average attitude from a rough surface can be obtained by making several mea-
surements and then separately averaging the strikes and dips or the trends and plunges
of the dips. A good field measurement procedure is to lie a flat field notebook or square
of rigid plastic on a rough bed surface to average out the irregularities.

The effect of the error is related to the attitude of the plane. If the bed is horizontal,
the pole is vertical (Fig. 2.16, point a) and the error means that the azimuth of the dip
could be in any direction, even though the true three-dimensional orientation of the plane
is rather well constrained. Small irregularities on a bed surface have the same effect
(Woodcock 1976; Ragan 1985). On a steeply dipping plane (Fig. 2.16, point b), the same
amount of error causes little variation in either the azimuth or the dip. Conversely, the
measurement of the trend of a line on a gently dipping surface is accurate to within a
few degrees, but the direction measured on a steeply dipping plane may show signifi-
cantly greater error (Woodcock 1976). A precision of about 2° is about normal for
calculations done using a stereogram. For greater precision, the calculations should be
done analytically by methods that will be presented later in the chapter.

2.3.3
Tangent Diagram

The other useful diagram for representing the attitudes of planes is the tangent dia-
gram (Fig. 2.17; an enlarged copy is given at the end of the chapter as Fig. 2.29). De-
veloped by Hubbert (1931), it has been popularized by Bengtson (1980, 1981a,b) in
the context of dipmeter interpretation. It is particularly valuable in the determina-

Fig. 2.16.
Equal-area, lower-hemisphere
stereogram. Measurement
error of 4° (radius of circles)
around true bedding poles
(points a and b)

2.3  ·  Orientations of Lines and Planes
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tion of the crest lines of cylindrical and conical folds (Chap. 5). The concentric circles
on the diagram represent the dip magnitude and their spacing is proportional to the
tangent of the dip, hence the name tangent diagram. The center of the diagram is
zero dip. The azimuth is marked around the margin of the outer circle. The attitude
of a plane is represented by a vector from the origin in the direction of the azimuth
and having a length equal to the dip amount (Fig. 2.17). The attitude can be shown
with the complete vector or as a point plotted at the location of the tip of the vector.
See Sect. 2.8 for how to plot dip vector points on a tangent diagram using a spread-
sheet. A major convenience of the tangent diagram is that no overlay is required and
that certain problems are solved very quickly and without the rotations that are re-
quired with the stereogram. The drawback of the tangent diagram is that very steep
dips require a very large diagram. The diagram in Fig. 2.17 extends to a dip of 65°. A
calibrated scale that can be used to plot dips from 65° to 80° is given at the bottom of
this figure. To use it, plot the vector along the appropriate radius and use the auxil-
iary scale to find the added length of the vector beyond the outer circle of the dia-
gram. The diagram is not practical if a significant percentage of the dips are over 70°,
for which a stereogram is more suitable. The tangent diagram can be used as a circu-
lar histogram, even for steep dips, by plotting the steep dips with their correct azi-
muths along the outer circle.

A tangent diagram is a convenient tool for finding the true or apparent dip. The
apparent dip in a given direction (Fig. 2.18a) is the vector in the appropriate direction.

Fig. 2.17.
Tangent diagram. Arrow rep-
resents a plane dipping 40°
to the west (40, 270). (After
Bengtson 1980)
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For example, given a dip vector of a bed δδδδδ1, find the apparent dip in the direction of δδδδδ2.
Project the tip of δδδδδ2 onto the direction of δδδδδ1. The projection is along a line perpendicu-
lar to the apparent dip. The length of the projected bedding vector in the direction of
the apparent dip is the amount of the apparent dip. The true dip can be found from
two apparent dips. The perpendiculars from the apparent dips (δδδδδ1 and δδδδδ2) intersect at
the tip of the true dip vector (Fig. 2.18b).

2.4
Finding the Orientations of Planes

The attitude of a plane measured by hand with a compass or given by a dipmeter log
is effectively the value at a single point. Measured over such a small area, the attitude
is very sensitive to small measurement errors, surface irregularities, and the presence
of small-scale structures. The following two sections describe how to find the attitude
from three points that can be widely separated and from structure contours. Both
methods provide an average attitude representative of the map-scale structure.

The farther the points depart from a straight line, the more reliable the expected
result because small irregularities or location errors will have less influence on the
result. If more than three points are available to find the attitude of the plane, a best-
fit can be determined using planar regression or moment of inertia analysis (Fernández
2005). A typical situation for this application would be a series of points along the
outcrop trace of a plane (e.g., Fig. 2.4). On the other hand, the farther the points are
from one another, the greater the possibility that they no longer fall on a single plane.
A high-quality calculated dip will be compatible with the surrounding data as demon-
strated with a structure contour map (Chap. 3) and cross section (Chap. 6). If the unit
thickness is known (Chap. 4), a very powerful test of the quality of a calculated dip is
to show that both the top and base of the unit fit their respective outcrop traces.

Fig. 2.18. Apparent dip on a tangent diagram. a Apparent dip from true dip. b True dip from two ap-
parent dips. (After Bengtson 1980)

2.4  ·  Finding the Orientations of Planes
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2.4.1
Graphical Three-Point Problem

The attitude of a plane can be uniquely determined from three points that are not on
a straight line. Let the highest elevation be point a and the lowest be point d (Fig. 2.19).
The intermediate elevation, f, must also occur along the line joining a and d as point e.
The line fe is the strike line. The horizontal (map) distance from a to e by linear
interploation is ab, where

ab = (ac × be) / cd   . (2.10)

Plot the length ab on the map (Fig. 2.19b) and join point f and b to obtain the strike
line. The dip vector lies along the perpendicular to the strike, directed from the high
point to the intermediate elevation along the strike line. The dip amount is

δ = arctan (v / h)   , (2.11)

where v = the elevation difference between the highest and the lowest points and h = the
horizontal (map) distance between the highest point and a strike-parallel line through d.
The azimuth of the dip is measured directly from the map direction of the dip.

A typical example of a 3-point problem is seen on the map of Fig. 2.20a. The map
shows the elevations of three locations identified in the field as being on the same
contact (a, f, d). These points could just as easily be the elevations of a formation bound-
ary identified in three wells. To find the attitude of the contact, draw a line between the
highest and lowest points (a–d, Fig. 2.20b) and measure its length. Use Eq. 2.10 to find the
distance along the line from the high point to the level of the intermediate elevation (e).
Connect the two intermediate elevations to find the strike line (Fig. 2.20b,c).  Draw a
perpendicular from the strike line (e–f) to the lowest point (d, Fig. 2.20d). The hori-
zontal length of the line is h and the elevation change is v. Determine the dip from
Eq. 2.11. The azimuth of the dip is measured from the map. The dip vector in this
example is 22, 125.

Fig. 2.19. True dip, δ, and apparent dip, δ '. a Perspective view. b Map view. N: north. For explanation
of a–h and v, see text
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A dip can be converted from degrees into feet/mile or meter/kilometer by solving Eq. 2.11
for v and letting h be the reference length (5 280 ft for ft/mile or 1 000 m for m/km):

v = h tan δ   , (2.12)

where v = the vertical elevation change, h = reference length, and δ = dip. The same
relationship can be used to determine the vertical distance from a reference point to
a dipping horizon seen in a nearby outcrop (Fig. 2.21a).

Another useful application of Eq. 2.11 is to find the distance to the intersection be-
tween a horizontal plane (such as an oil-water contact) and a dipping plane (such as

Fig. 2.20. Attitude determination from three points on a topographic map. Horizontal scale in km, ver-
tical scale in ft. a Three points (solid squares) on a contact. b Determination of the strike line (e–f).
c The same three points in oblique 3-D view to NE. d Enlarged 3-D view of three-point solution

Fig. 2.21.
Distance to a point on a dip-
ping bed, in vertical cross
sections in the dip direction.
a Vertical distance from a ref-
erence point to a dipping bed.
b Horizontal distance from a
well to a dipping bed

2.4  ·  Finding the Orientations of Planes
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the top of the unit containing the contact) which are separated by a known distance in
the well. Solve Eq. 2.11 for h (Fig. 2.21b):

h = v / tan δ   , (2.13)

where h = distance from the well bore to the intersection with a dipping bed and
v = vertical distance in the well between the intersection of the dipping horizon and
the horizontal horizon.

2.4.2
Analytical Three-Point Problem

The attitude of a plane is given by the trend and plunge of the dip vector (Fig. 2.22). The
dip vector can be determined analytically from the xyz coordinates of three non-colinear
points (derived in Sect. 12.3). The preliminary trend and plunge of the dip vector is

θ ' = arctan (A / B)   , (2.14)

δ = arcsin {–cos [90 + arccos (C / E)]}   , (2.15)

where θ ' = the preliminary azimuth of the dip, δ = the amount of the dip, and

A = y1z2 + z1y3 + y2z3 – z2y3 – z3y1 – z1y2   , (2.16a)

B = z2x3 + z3x1 + z1x2 – x1z2 – z1x3 – x2z3   , (2.16b)

C = x1y2 + y1x3 + x2y3 – y2x3 – y3x1 – y1x2   , (2.16c)

D = z1y2x3 + z2y3x1 + z3y1x2 – x1y2z3 – y1z2x3 – z1x2y3   , (2.16d)

E = (A2 + B2 + C2)1/2   . (2.16e)

Fig. 2.22.
Three points on a plane and
the dip vector of the plane
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The sign of E = –sign D if D ≠ 0; = sign C if D = 0 and C ≠ 0; = sign B if C = D = 0.
Division by zero is not allowed in Eq. 2.14. The value of θ ' computed from Eq. 2.7 is
always between the values of 000° and 090° and is equal to 90° if B = 0. The true
azimuth, θ, of the dip in the complete range from 000° to 360° can be determined from θ '
and the signs of cos α and cos β (Eqs. 2.17 and Table 2.1):

cos α = A / E   , (2.17a)

cos β = B / E   , (2.17b)

where A, B, and E are given by Eqs. 2.16a,b,e above.
As an example, find the analytical solution to the 3-point problem in Fig. 2.20. The

three points have the coordinates, in xyz order, of 520 739, 3 754 420, 800; 520 438,
3 753 560, 700; 520 833, 3 753 700, 600. From Eqs. 2.14–2.17, the dip is 22° at an azimuth
of 125°. The leading UTM digits of the x and y coordinates are identical and need not
be included in the calculation.

2.5
Apparent Dip

Apparent dip, δ ', is the angle in a plane between the horizontal and some direction
other than the true dip (Fig. 2.19a). To find the apparent dip, let the horizontal angle
between the true and apparent dip be α, then

δ ' = arctan (tan δ  cos α)   . (2.18)

On a completed structure-contour map, the apparent dip in a given direction is found
from

δ ' = arctan (I / h')   , (2.19)

where I = the contour interval and h' = the horizontal distance on the map between
the contours in the direction of interest (Fig. 2.23). If the direction perpendicular to
the contours is selected, then the apparent dip is the true dip. If the strike direction is
selected, the apparent dip is zero.

Fig. 2.23.
Relationships between struc-
ture contours, point elevations,
and dip. Points a and b are at
the same elevation; c and d are
at different elevations. C1 and
C2 are structure contours. For
explanation of other symbols,
see text

2.5  ·  Apparent Dip
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2.6
Structure Contours

Structure contours provide an efficient and effective representation of the attitude of a
surface. The contours are strike lines and the dip direction is perpendicular to the con-
tours (Fig. 2.23). The simplest way to construct structure contours from a geologic map
is to connect points on a contact that lie at the same elevation. If two points on a contact
have the same elevation, for example a and b in Fig. 2.23, then a line joining them is a
strike line or structure contour. Finished maps normally show contours at even incre-
ments of elevation.

Structure contours are the primary method for illustrating the shape of structures in the
subsurface. Generated from outcrop maps, structure contours provide an effective method
for validating the outcrop pattern and for smoothing out local dip variations caused by bed
roughness. If a map horizon is planar, the contours on it are parallel and uniformly spaced.
Folding produces curved contours that usually are not far from parallel at a local scale.
Abrupt changes in direction indicate fold hinges, faults, or mistakes. Unless radical thickness
changes occur, the structure contours on adjacent horizons are approximately parallel.

The following sections describe the creation of straight-line structure contours from
the elevations of three points and the interpretation of contours in the vicinity of a dip
measurement. The generation of curved structure contours from multiple control points
is discussed in Chap. 3.

2.6.1
Structure Contours from Point Elevations

Structure contours are usually generated from point elevations, especially in subsur-
face work. Except for the unlikely circumstance where all the points happen to fall on
the selected contour elevations, contouring will require placing contours between con-
trol points that have different elevations. This means that contour values must

Fig. 2.24. Structure contours on a dipping plane (from Fig. 2.20). The 650-ft and 750-ft contours are
interpolated between the four control points. a Plan view. b 3-D oblique view to NE
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be interpolated between the control points. Using linear interpolation (more complex
forms of interpolation are considered in Chap. 3), an interpolated even-elevation con-
tour lies at point c (Fig. 2.23) on the straight line between the two points at known
elevations a and d. Following the method of Eq. 2.10, the elevation of the upper control
point is a, the horizontal distance of the desired contour from the highest control point
is D, the elevation of the desired contour is C2, the map distance between the two control
points is h', and the vertical distance between the two control points is v', giving

D = h' (a – C2) / v'   . (2.20)

As an example, the strike line constructed in Fig. 2.20b is itself a structure contour
line. Two additional structure contour lines are shown in Fig. 2.24.

2.6.2
Structure Contours from Attitude

If the dip is known, then the spacing between structure contours is found from the
method of Eq. 2.11 (Fig. 2.23) to be

H = I / tan δ    , (2.21)

where H = horizontal spacing between structure contours measured perpendicular to
the contour strike, I = contour interval, and δ = dip. The trend of the structure con-
tours is perpendicular to the dip direction.

2.6.3
Dip from Structure Contours

If the attitude is given by structure contours, the dip is found by solving Eq. 2.21:

tan δ = I / H   , (2.22)

where δ = dip, I = contour interval, and H = spacing between contours. The dip direc-
tion is perpendicular to the contour, in the direction toward the lower contour.

2.7
Intersecting Contoured Surfaces

The trace of a contact on a geologic map represents the intersection of the topographic
surface with the boundaries of the geologic units. Finding the intersection between two
surfaces is a fundamental technique in three-dimensional interpretation. In Sect. 2.6.1,
three points along the outcrop trace of a planar geological contact were used to gen-
erate a structure-contour map. Conversely, the outcrop trace of a contact can be deter-
mined from a structure contour map. The following procedure works for both plane
and curved structure contour surfaces. The structure contour map is superimposed
on the topographic map (Fig. 2.25a). All intersection points where both surfaces have

2.7  ·  Intersecting Contoured Surfaces
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Fig. 2.25.
Intersection between topo-
graphic contours and a planar
marker horizon. Contour in-
terval 20 ft. a Structure con-
tours on a geologic horizon
(within shaded rectangle) and
topographic contours. The out-
crop trace of the contact is the
thick line. b Oblique 3-D view
to E. c Geologic map of the
outcrop trace (thick line) with
the structure contours of the
plane removed
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identical elevations are marked. Additional topographic and structural contours can
be interpolated to add additional control. Marking the intersection points is most
convenient if the topographic map is on a transparent overlay that can be placed above
the structure contour map, something that is easily done in computer drafting pro-
grams. A 3-D view of the intersecting surfaces (Fig. 2.25b) helps in understanding the
procedure. The intersection points are connected to obtain the outcrop pattern of the
horizon (Fig. 2.25c). The inferred outcrop pattern becomes a working hypothesis for
the location of the horizon. Exactly the same procedure is used to find the intersection
between a fault and a stratigraphic marker or the line of intersection between two faults.

2.8
Derivation: Tangent Diagram on a Spreadsheet

To plot a tangent diagram with a spreadsheet it may be necessary to shift the origin for
the azimuth (Az) from zero to the east to zero to the north using

Az = Az – 90   . (2.23)

Change the dip to the tangent of the dip,

r = tan (dip)   , (2.24)

and change from polar to Cartesian coordinates with

x = r cos (Az)   , (2.25a)

y = r sin (Az)   . (2.25b)

The native angle format in spreadsheet trigonometric functions is radians and so where
angles in degrees are used in trigonometric expressions they must always be converted to
degrees from radians. Plot the transformed points as an xy graph in the spreadsheet.

2.9
Exercises

2.9.1
Interpretation of Data from an Oil Well

The Appleton oil field is located near the northern rim of the Gulf of Mexico basin.
Use the data from well 4835-B in this field (Table 2.2) to solve the following problems.
Find the subsea depths of the stratigraphic markers. Write a spreadsheet program using
Eqs. 2.3 and 2.4 to find the coordinates of a point between two known points. Find the
true vertical depths and the total rectangular coordinates of the formation contacts in
the well. What is the orientation of the well where it penetrates the Smackover? Write
a spreadsheet program to solve this problem based on Eq. 2.4. Find the true vertical
depths and the total rectangular coordinates of the oil-water contact (OWC) and the

2.9  ·  Exercises
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base of the Smackover. Plot the locations of the stratigraphic tops relative to the sur-
face location of the well on the map (Fig. 2.26). Connect the points to show the shape
of the well in map view. How far from the well (horizontally and in which direction)
would you expect to first find the intersection of the oil-water contact with the top of
the Smackover Formation, assuming constant dip for the Smackover?

2.9.2
Attitude

Given the dip vector of the plane 35, 240, show on an overlay of a stereogram the trace
of the plane, its dip vector, and its pole. Show the dip vector 25, 240 on a tangent dia-
gram. What is the apparent dip along a line that trends 260?

Table 2.2. Data from well 4835-B, Appleton field, Alabama. Kelly Bushing: 244 ft
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2.9.3
Attitude from Map

Use the map of the Blount Springs area (Fig. 2.27) to answer the following questions. Find
the attitude of the Mpm in its southeastern outcrop belt using the 3-point method. Draw
structure contours for the Mtfp, Mpm, and Mh on the eastern side of the map. Are the
upper and lower contacts of each unit parallel to each other? Do you think the contacts
are mapped correctly? Determine the attitude of the eastern contact between the Mpm
and the Mtfp by the 3-point method and from the structure contours. Are they the same?
If they are different, discuss which answer is better. What would be the apparent dip of
the Mpm in a north-south roadcut through the northwestern limb of the anticline?

Fig. 2.26.
Map grid for plotting
points in a deviated well
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Fig. 2.27.
Geological map of the north-
east corner of the Blount
Springs area, southern Appa-
lachian fold-thrust belt. Thin
lines are topographic contours
(elevations in feet). Thick lines
are geologic contacts. Arrows
are dip directions; numbers
give the amount of dip
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Fig. 2.28. Equal-area stereogram
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Fig. 2.29. Tangent diagram

2.9  ·  Exercises


