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Chapter 2
A LITTLE BIT OF PROBABILITY

The theory of probability is at bottom nothing but common sense re-
duced to calculus.

Pierre Simon De Le Place
Theori Analytique des Probabilites (1812–1820)

2.1 What Is Probability?

The probability of the occurrence of an event is indicated by a number
ranging from 0 to 1. An event whose probability of occurrence is 0 is
certain not to occur, whereas an event whose probability is 1 is certain
to occur.

The classical definition of probability is as follows: if an event can
occur in N mutually exclusive, equally likely ways and if nA  of these
outcomes have attribute A, then the probability of A, written as P(A),
equals nA /N. This is an a priori definition of probability, that is, one
determines the probability of an event before it has happened. Assume
one were to toss a die and wanted to know the probability of obtaining a
number divisible by three on the toss of a die. There are six possible
ways that the die can land. Of these, there are two ways in which the
number on the face of the die is divisible by three, a 3 and a 6. Thus,
the probability of obtaining a number divisible by three on the toss of a
die is 2/6 or 1/3.

In many cases, however, we are not able to enumerate all the pos-
sible ways in which an event can occur, and, therefore, we use the rela-
tive frequency definition of probability. This is defined as the number
of times that the event of interest has occurred divided by the total
number of trials (or opportunities for the event to occur). Since it is
based on previous data, it is called the a posteriori definition of prob-
ability.

For instance, if you select at random a white American female, the
probability of her dying of heart disease is .00287. This is based on the
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finding that per 100,000 white American females, 287 died of coronary
heart disease (estimates are for 2001, National Center for Health Sta-
tistics7). When you consider the probability of a white American female
who is between ages 45 and 64, the figure drops to .00088 (or 88
women in that age group out of 100,000), and when you consider
women 65 years and older, the figure rises to .01672 (or 1672 per
100,000). For white men 65 or older it is .0919 (or 9190 per 100,000).
The two important points are (1) to determine a probability, you must
specify the population to which you refer, for example, all white fe-
males, white males between 65 and 74, nonwhite females between 65
and 74, and so on; and (2) the probability figures are constantly revised
as new data become available.

This brings us to the notion of expected frequency . If the probabili-
ty of an event is P and there are N trials (or opportunities for the event
to occur), then we can expect that the event will  occur N × P times. It is
necessary to remember that probability “works” for large numbers.
When in tossing a coin we say the probability of it landing on heads is
.50, we mean that in many tosses half the time the coin will land heads.
If we toss the coin ten times, we may get three heads (30%) or six heads
(60%), which are a considerable departure from the 50% we expect.
But if we toss the coin 200,000 times, we are very likely to be close to
getting exactly 100,000 heads or 50%.

Expected frequency is really the way in which probability “works.”
It is difficult to conceptualize applying probability to an individual. For
example, when TV announcers proclaim there will be say, 400 fatal
accidents in State X on the Fourth of July, it is impossible to say
whether any individual person will in fact have such an accident, but
we can be pretty certain that the number of such accidents will be very
close to the predicted 400 (based on probabilities derived from previous
Fourth of July statistics).

2.2 Combining Probabilities

There are two laws for combining probabilities that are important.
First, if there are mutually exclusive events  (i.e., if one occurs, the other
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cannot), the probability of either one or the other occurring is the sum
of their individual probabilities. Symbolically,

P A or B P A P B( ) ( ) ( )= +

An example of this is as follows: the probability of getting either a 3
or a 4 on the toss of a die is 1/6 + 1/6 = 2/6.

A useful thing to know is that the sum of the individual probabili-
ties of all possible mutually exclusive events must equal 1. For example,
if A is the event of winning a lottery, and not A (written as A), is the
event of not winning the lottery, then P(A) + P ( A) = 1.0 and P( A) = 1
– P(A).

Second, if there are two independent events (i.e., the occurrence of
one is not related to the occurrence of the other), the joint probability of
their occurring together (jointly) is the product  of the individual prob-
abilities. Symbolically,

P A and B P A P B( ) ( ) ( )= ×

An example of this is the probability that on the toss of a die you
will get a number that is both even and divisible by 3. This probability is
equal to 1/2 × 1/3 = 1/6. (The only number both even and divisible by 3
is the number 6.)

The joint probability law is used to test whether events are indepen-
dent. If they are independent, the product of their individual probabili-
ties should equal the joint probability. If it does not, they are not inde-
pendent. It is the basis of the chi-square test of significance, which we
will consider in the next section.

Let us apply these concepts to a medical example. The mortality
rate for those with a heart  attack in a special coronary care unit in a
certain hospital is 15%. Thus, the probability that a patient with a heart
attack admitted to this coronary care unit will die is .15 and that he will
survive is .85. If two men are admitted to the coronary care unit on a
particular day, let A be the event that the first man dies and let B be the
event that the second man dies.
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The probability that both will die is

P A and B P A P B( ) ( ) ( ) . . .= × = × =15 15 0225

We assume these events are independent of each other so we can
multiply their probabilities. Note, however, that the probability that ei-
ther one or the other will die from the heart attack is not  the sum of
their probabilities because these two events are not mutually exclusive.
It is possible that both will die (i.e., both A and B can occur).

To make this clearer, a good way to approach probability is
through the use of Venn diagrams, as shown in Figure 2.1. Venn dia-
grams consist of squares that represent the universe of possibilities and
circles that define the events of interest.

In diagrams 1, 2, and 3, the space inside the square represents all
N possible outcomes. The circle marked A represents all the outcomes
that constitute event A; the circle marked B represents all the outcomes
that constitute event B. Diagram 1 illustrates two mutually exclusive
events; an outcome in circle A cannot also be in circle B. Diagram 2
illustrates two events that can occur jointly: an outcome in circle A can
also be an outcome belonging to circle B. The shaded area marked AB
represents outcomes that are the occurrence of both A and B. The dia-
gram 3 represents two events where one (B) is a subset of the other
(A); an outcome in circle B must also be an outcome constituting event
A, but the reverse is not necessarily true.

BA B

A

AB

N N N

A B

Figure 2.1

It can be seen from diagram 2 that if we want the probability of an
outcome being either A or B and if we add the outcomes in circle A to
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the outcomes in circle B, we have added in the outcomes in the shaded
area twice. Therefore, we must subtract the outcomes in the shaded
area (A and B) also written as (AB) once to arrive at the correct an-
swer. Thus, we get the result

P A or B P A P B P AB( ) ( ) ( ) ( )= + −

2.3 Conditional Probability

Now let us consider the case where the chance that a particular event
happens is dependent on the outcome of another event. The probability
of A, given that B has occurred, is called the conditional probability of
A given B, and is written symbolically as P(A|B). An illustration of this
is provided by Venn diagram 2. When we speak of conditional prob-
ability, the denominator becomes all the outcomes in circle B (instead
of all N possible outcomes) and the numerator consists of those out-
comes that are in that part of A which also contains outcomes belong-
ing to B. This is the shaded area in the diagram labeled AB. If we r e-
turn to our original definition of probability, we see that

P A B
n

n
AB

B

( | ) =

(the number of outcomes in both A and B, divided by the total number
of outcomes in B).

If we divide both numerator and denominator by N, the total num-
ber of all possible outcomes, we obtain

P A B
n N

n N

P A and B

P B
AB

B

( | )
( )

( )
= =

Multiplying both sides by P(B) gives the complete multiplicative law:

P A and B P A B P B( ) ( | ) ( )= ×
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Of course, if A and B are independent, then the probability of A given
B is just equal to the probability of A (since the occurrence of B does
not influence the occurrence of A) and we then see that

P A and B P A P B( ) ( ) ( )= ×

2.4 Bayesian Probability

Imagine that M is the event “loss of memory,” and B is the event
“brain tumor.”  We can establish from research on brain tumor pa-
tients the probability of memory loss given a brain tumor, P(M|B).  A
clinician, however, is more interested in the probability of a brain tu-
mor, given that a patient has memory loss, P(BM).

It is difficult to obtain that probability directly because one would
have to study the vast number of persons with memory loss (which in
most cases comes from other causes) and determine what proportion
of them have brain tumors.

Bayes' equation (or Bayes' theorem) estimates P(BM) as follows:

P brain tumor given memory loss
P memory loss given brain tumor P brain tumor

P memory loss
( , )

( , ) ( )

( )
=

×

In the denominator, the event of “memory loss” can occur either
among people with brain tumor, with probability = P(MB) P(B), or
among people with no brain tumor, with probability = P(M B )P( B ).
Thus,

P B M
P M B P B

P M B P B P M B P B
( | )

( | ) ( )

( | ) ( ) ( | ) ( )
=

+

The overall probability of a brain tumor, P(B) is the “a priori
probability,” which is a sort of “best guess” of the prevalence of brain
tumors.
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2.5 Odds and Probability

When the odds of a particular horse losing  a race are said to be 4 to 1,
he has a 4/5 = .80 probability of losing. To convert an odds statement to
probability, we add 4 + 1 to get our denominator of 5. The odds of the
horse winning  are 1 to 4, which means he has a probability of winning
of 1/5 = .20.

The odds in favor of A
P A

P not A

P A

P A
= =

−
( )

( )

( )

( )1

P A
odds

odds
( ) =

+1

The odds of drawing an ace = 4 (aces in a deck) to 48 (cards that
are not aces) = 1 to 12; therefore, P(ace) = 1/13. The odds against
drawing an ace = 12 to 1; P(Not Ace) = 12/13.

In medicine, odds are often used to calculate an odds ratio.  An
odds ratio is simply the ratio of two odds. For example, say that in a
particular study comparing lung cancer patients with controls, it was
found that the odds of being a lung cancer case for people who smoke
were 5 to 4 (5/4) and the odds of having lung cancer for nonsmokers
was 1 to 8 (1/8), then the odds ratio would be

5 4
1 8

5 8

4 1
40
4

10
/

/
=

×
×

= =

An odds ratio of 10 means that the odds of being a lung cancer
case is 10 times greater for smokers than for nonsmokers.

Note, however, that we cannot determine from such an analysis
what the probability of getting lung cancer is for smokers, because in
order to do that we would have to know how many people out of all
smokers developed lung cancer, and we haven't studied all smokers; all
we do know is how many out of all our lung cancer cases were smok-
ers. Nor can we get the probability of lung cancer among nonsmokers,



26 Biostatistics and Epidemiology: A Primer for Health Professionals

because we would have to a look at a population of nonsmokers and
see how many of them developed lung cancer. All we do know is that
smokers have 10-fold greater odds of having lung cancer than non-
smokers.

More on this topic is presented in Section 4.12.

2.6 Likelihood Ratio

A related concept is the likelihood ratio (LR), which tells us how likely it
is that a certain result would arise from one set of circumstances in
relation to how likely the result would arise from an opposite set of cir-
cumstances.

For example, if a patient has a sudden loss of memory, we might
want to know the likelihood ratio of that symptom for a brain tumor,
say. What we want to know is the likelihood that the memory loss arose
out of the brain tumor in relation to the likelihood that it arose from
some other condition. The likelihood ratio is a ratio of conditional
probabilities.

LR
P memory loss given brain tumor

P memory loss given no brain tumor

P M given B

P M given not B

=

=

( , )

( , )

( )

( )

Of course to calculate this LR we would need to have estimates of
the probabilities involved in the equation, that is, we would need to
know the following: among persons who have brain tumors, what
proportion have memory loss, and among persons who don't have
brain tumors, what proportion have memory loss. It may sometimes be
quite difficult to establish the denominator of the likelihood ratio be-
cause we would need to know the prevalence of memory loss in the
general population.

The LR is perhaps more practical to use than the Bayes' theorem,
which gives the probability of a particular disease given a particular
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symptom. In any case, it is widely used in variety of situations because
it addresses this important question: If a patient presents with a symp-
tom, what is the likelihood that the symptom is due to a particular dis-
ease rather than to some other reason than this disease?

2.7 Summary of Probability

Additive Law:

P A or B P A P B P A and B( ) ( ) ( ) ( )= + −

If events are mutually exclusive: P A or B P A P B( ) ( ) ( ).= +

Multiplicative Law:

P A and B P A B P B( ) ( | ) ( )= ×

If events are independent:  P A and B P A P B( ) ( ) ( ).= ×

Conditional Probability:

P A B
P A and B

P B
( | )

( )

( )
=

Bayes’ Theorem:

P B A
P A B P B

P A B P B P A B P B
( | )

( | ) ( )

( | ) ( ) ( | ) ( )
=

+

Odds of A:

P A

P A

( )

( )1 −
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Likelihood Ratio:

P A B

P A B

( | )

( | )


