
Formal Models of Communicating Systems

Languages, Automata, and Monadic Second-Order Logic

Bearbeitet von
Benedikt Bollig

1. Auflage 2006. Buch. ix, 181 S. Hardcover
ISBN 978 3 540 32922 0

Format (B x L): 15,5 x 23,5 cm

Weitere Fachgebiete > EDV, Informatik > Hardwaretechnische Grundlagen >
Netzwerk-Hardware

Zu Inhaltsverzeichnis

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft.
Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm
durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr

als 8 Millionen Produkte.

http://www.beck-shop.de/Bollig-Formal-Models-of-Communicating-Systems/productview.aspx?product=178503&utm_source=pdf&utm_medium=clickthru_lp&utm_campaign=pdf_178503&campaign=pdf/178503
http://www.beck-shop.de/trefferliste.aspx?toc=8253
http://www.beck-shop.de/trefferliste.aspx?toc=8253
http://www.beck-shop.de/fachbuch/inhaltsverzeichnis/9783540329220_TOC_001.pdf


1

Introduction

Nowadays, electronic devices largely depend on complex hardware and soft-
ware systems. Among them, medical instruments, traffic control units, and
many more safety-critical systems are subject to particular quality standards.
They all come along with the absolute need for reliability, as, in each case,
the consequences of a breakdown may be incalculable.

1.1 Formal Methods

Many existing systems were unthinkable some years ago and their complexity
is still rapidly growing so that it becomes more and more difficult to de-
tect errors or to predict their incidence. Consequently, formal methods play
an increasing role during the whole system-design process. The term “formal
methods” hereby covers a wide range of mathematically derived and ideally
mechanized approaches to system design and validation. More precisely, re-
search on formal methods attempts to develop mathematical models and algo-
rithms that may contribute to the tasks of modeling, specifying, and verifying
software and hardware systems. Let us go into these subareas in more detail:

Modeling

To make a system (or the idea of a system) accessible to formal methods, we
require it to be modeled mathematically. Unfortunately, we are faced with
a dilemma: on the one hand, a model ideally preserves and reflects as many
properties of the underlying system as possible. On the other hand, it should
be compact enough to support algorithms for further system analysis. How-
ever, in general, a good balance between detailed modeling and abstraction
will pay off. But not only does the modeling process lead to further interest-
ing conclusions, it may also help, itself, to get a better understanding of the
system at hand. Thus, the purposes of modeling a system are twofold. One is
to understand and document its essential features. The other is to provide the



2 1 Introduction

formal basis for a mathematical analysis. Both are closely related and usually
accompany each other.

Preferably, the modeling takes place in an early stage of system design.
The starting point, at a high level of abstraction, may be a rough, even if
precisely defined, idea of the system to be, which is subsequently refined step-
wise towards a full implementation. While, as mentioned, the latter might be
too detailed to draw conclusions from, previous stages of the design phase can
be consulted for that purpose. The models considered in this book are com-
municating automata, which, though they might abstract from many details,
reflect the operational behavior of a distributed system in a suitable manner
to make it accessible to formal methods.

Specification

Correctness of a system is always relative to a specification, a property or re-
quirement that must be satisfied. Embedded into the formal-methods frame-
work, a specification is often expressed within a logical calculus whose formulas
can be interpreted over system models, provided they are based on a common
semantic domain. Prominent examples are monadic second-order (MSO) logic
[8, 44], the temporal logics LTL [83] and CTL [22], and the µ-calculus [54]. A
specification might also be given in a high-level language that is closer to an
implementation and often allows us to synthesize a system directly and auto-
matically. In this regard, let us mention some process-algebra based languages
such as CCS [71], ACP [9], and LOTOS [18] and other formal design notions
like VHDL [81]. In this book, we focus on a monadic second-order logic, which
might be used to formulate properties that a given system should satisfy, and
high-level message sequence charts, which are employed at a rather early stage
of system development.

Verification

Once a system is modeled and a specification is given, the next task might be
to check if the specification is satisfied by the model. If the system or, rather,
the model of a system passes successfully through a corresponding valida-
tion process, it may be called correct in a mathematical sense. Preferably,
the verification process runs automatically. However, many frameworks are
too complex to support fully mechanized algorithms. In this respect, we can
distinguish two general approaches to verification: model checking [23], which
is fully automatic, and theorem proving [85], which requires human assistance.
If, otherwise, a system is synthesized directly from its specification, then it
can be assumed to be correct a priori, provided the translation preserves the
semantics of the specification.

Several phases of system design are depicted in Fig. 1.1, which, in addition,
features the stage of code generation to gain from the system model an effective
implementation thereof.



1.2 Partial Orders and Graphs 3

1 2

req

ack

syn

send

rec

send rec

rec

send

rec send

/* Sending Process */
initsend();
putint(2);
send("receiver",4,99);

/* Receiving Process */
int num;
recv(99);
getint(&num);

?

|= G (1!2→ F 2?1)

Safety,
Liveness, ...specification

synthesis

modeling &
verification

code generation

Fig. 1.1. Stages of system development

1.2 Partial Orders and Graphs

As mentioned above, it is desirable to apply formal methods even in the early
stages of system design to avoid extensive reimplementation and redesign,
which, in turn, might lead to explosive costs. A common design practice when
developing communicating systems is to start with specifying scenarios to
exemplify the intended interaction of the system to be. Usually, distributed
systems operate concurrently, i.e., some actions do not depend on the oc-
currence of another. One possible single execution sequence of a distributed
system is therefore often described by a partially ordered set (poset) (V,≤),
such as depicted by Fig. 1.2a. The elements of V , which are also referred
to as events, comprise actions that are executed during a system run. They
are arranged according to the partial order ≤ ⊆ V × V to reflect their in-
teraction dependencies. Say, for example, we deal with events send, rec ∈ V
that form the send and receipt of a message. Naturally, sending a message
precedes its receipt so that send ≤ rec. Otherwise, there might be events
that do not interfere with each other. For example, two read events read1(x)
and read2(x) that independently read a shared variable x are not related, so
neither read1(x) ≤ read2(x) nor read2(x) ≤ read1(x), whereas the time of
writing the variable does affect the value of what is read (cf. Fig. 1.2c).

A poset, in turn, might be represented by a graph (V,→) whose edge
relation → ⊆ V × V gives rise to ≤ when generating its reflexive transitive
closure. Sometimes, → allows a more concrete modeling of communication
than ≤. Namely, writing send → rec suggests that send and rec together



4 1 Introduction

send

send′ rec

(a) a poset

send rec

(b) a graph

write(x)

read1(x) read2(x)

(c) independence
of events

Fig. 1.2. Partially ordered sets and graphs

form the exchange of one and the same message (cf. Fig. 1.2b), whereas writing
send ≤ rec is actually a weaker statement, just claiming that rec happens
eventually after send but might be the receipt of another event send′, as
illustrated in Fig. 1.2a.

Message sequence charts (MSCs) provide a prominent notion to further the
partial-order and graph-based approaches. They are widely used in industry,
are standardized [49, 50], and are similar to UML’s sequence diagrams [7]. An
MSC depicts a single partially ordered execution sequence of a system. In do-
ing so, it defines a collection of processes, which, in their visual representation,
are drawn as vertical lines and interpreted as time axes. Moreover, an arrow
from one line to a second corresponds to the communication events of sending
and receiving a message. An example MSC illustrating a part of Bluetooth
[13], a specification for wireless communication, is depicted in Fig. 1.3. Using
the Host Control Interface (HCI), which links a Bluetooth host (a portable
PC, for example) with a Bluetooth controller (a PCMCIA card, for example),
a host application attempts to establish a connection to another device. The
connection-request phase, which is based on an asynchronous connectionless
link (ACL), is heralded by Host-A sending a HCI Create Connection com-
mand to its controller to initiate a connection. Note that, usually, a command
is equipped with parameters, which are omitted here. As HCI commands may
take different amounts of time, their status is reported back to the host in
the form of a HCI Command Status event. After that, HC-A defers the present
request to HC-B, which, in turn, learns from Host-B that the request has been
rejected, again accompanied by sending a status event. The controllers agree
on rejection by exchanging messages LMP not accepted and LMP detach and,
afterwards, provide both Host-A and Host-B with HCI Connection Complete

events. The execution sequence illustrated above depends on the visual ar-
rangement of arrows. An endpoint of an arrow is a send event if it is the
source of that arrow. Otherwise, it is a receive event. More specifically, we
suppose events located on one and the same process line to be totally or-
dered and require a receive event to occur only if the corresponding send
event has been executed. The above-mentioned partial order now arises from
the reflexive transitive closure of those assumptions. Note that, in fact, some
pairs of events cannot be ordered accordingly. Considering our example, re-



1.3 High-Level Specifications 5

ceiving HCI Command Status by Host-A may occur before or after receiving
LMP host connection req, while the latter is supposed to happen after send-
ing the former HCI Command Status event.

Host-A HC-A HC-B Host-B

HCI Create Connection

HCI Command Status

LMP host connection req

HCI ConnectionRequest

HCI Reject Connection Request

HCI Command Status

LMP not accepted

LMP detach

HCI Connection Complete HCI Connection Complete

Fig. 1.3. An MSC modeling the ACL connection request phase

1.3 High-Level Specifications

Recall that a specification language might be used to formulate desirable
properties of a given implementation or represent a first intuition of what the
system has to do. A single graph or poset can, however, describe no more
than one single execution sequence. Otherwise, a collection of graphs might
capture all the scenarios that a designer wants the system under development
to realize. Based on the notion of MSCs and the likewise partial-order based
concept of Mazurkiewicz traces [27], several modeling and specification for-
malisms have been considered at a formal level, among them high-level MSCs
[6, 45, 68, 76], which are capable of describing possibly infinitely many scenar-
ios in a compact manner. From an algebraic point of view, high-level MSCs
are rational expressions defining rational languages by means of choice, con-
catenation, and iteration. The study of algebraic language classes might then
lead us to recognizable languages [73, 96], which can be characterized by cer-
tain monoid automata. Following the classical algebraic approach further, we
will come across the class of regular languages whose linear extensions form a
regular word language.



6 1 Introduction

Moreover, there is a close connection between MSCs and Mazurkiewicz
traces so that transferring the regularity notions for traces might be another
axis to define regularity of sets of MSCs. Those aspects have been studied in
[35, 56, 72, 73]. As we will see, the above language classes exhibit quite different
properties in terms of implementability. Hereby, the notion of implementability
is derived from a reference model, the poset- or graph-based counterpart of a
finite automaton over words, which is explained in the next section in more
detail.

MSO logic provides another specification formalism. But not only does
MSO logic constitute an expressive specification language. Its relation to for-
malisms such as automata or high-level constructs over graphs and posets has
also been a research area of great interest aiming at a deeper understanding of
the latter’s logical and algorithmic properties (see [94] for an overview). Fol-
lowing the logical approach, one might likewise argue that we can call a set of
graphs regular if it is definable in the corresponding MSO logic, because, in
the domain of words, regularity and definability in MSO logic coincide [20, 32].

1.4 Towards an Implementation

The next step in system design might be to supply an implementation realizing
or satisfying a specification. Recall that we are still interested in an abstract
model rather than a concrete implementation in some low-level programming
language. However, the view we are taking now is much closer to the latter.
More precisely, we ask for automata models that are suited to accepting the
system behavior described by, say, a high-level MSC, a logical formula, or
a monoid automaton. Consequently, we are particularly interested in their
expressiveness relative to the above-mentioned language classes.

To create formal methods tailored to a distributed system and to the
associated mathematical model, it is generally helpful to study some of the
model’s properties first and to learn more about its limitations along with
algorithmic restrictions and its degree of abstraction. In this regard, typical
questions to clarify are:

• Is my model of an implementation a suitable one, i.e., does it reflect all
the aspects I want to verify?

• What is a suitable specification language; is any specification imple-
mentable?

• What kind of problem can I expect to be decidable?

Basically, that is what this book is all about. We will hereby concentrate
on communicating systems, which occur whenever independent processes and
objects interact, whether via message exchange through fifo (“first-in, first-
out”) buffers or when attempting to write a shared variable. At the same time,
we focus on issues related to the areas of system modeling and specification.



1.5 An Overview of the Book 7

In particular, we will address the relation of several automata models with
(fragments of) MSO logic to clarify its use as a specification language.

Concerning systems that are distributed in nature, the notion of a pro-
cess is central. It seems therefore natural to consider each process as a single
automaton and to define a notion of communication describing how these par-
allel systems work together. When, for example, we equip such local processes
with message buffers, we obtain the model of a message-passing automaton
or communicating (finite-state) machine. There is a precise logical character-
ization of communicating finite-state machines by a fragment of MSO logic,
called existential MSO (EMSO) logic, so that any specification in terms of
an EMSO expression has an implementation in terms of a communicating
finite-state machine. Another model of communication is provided by asyn-
chronous automata. Herein, local processes synchronize by executing certain
actions (e.g., writing a variable) simultaneously, whereas others may be taken
autonomously (e.g., reading the variable). Asynchronous automata were in-
troduced originally by Zielonka in the framework of the partial-order model
of Mazurkiewicz traces [97], and they were generalized by Droste et al. to
run on even more general posets [29]. Asynchronous automata could also be
shown to be expressively equivalent to EMSO logic relative to traces and
CROW-posets, which are subject to an axiom that considers concurrent read
and exclusive owner write. A quite general method of recognizing sets of par-
tial orders and graphs is that of graph acceptors as introduced by Thomas
[93]. They are known to be exactly as expressive as EMSO logic for arbitrary
classes of graphs that have bounded degree. But they lack operational be-
havior and do not really reflect the dynamic causal nature of a system. We
will, however, get to know asynchronous cellular automata (with types), which
combine the models of asynchronous automata, graph acceptors, communicat-
ing finite-state machines, and many other systems and allow us to treat them
in a unifying framework. In particular, asynchronous cellular automata turn
out to have the same expressive power as EMSO logic relative to any class of
pomsets and dags.

1.5 An Overview of the Book

Chapter 2 recalls some basic notions and results concerning posets, monoids,
and formal languages. It moreover presents the well-known halting problem of
Turing machines, an undecidable problem that will be used to obtain related
undecidability results with respect to communicating automata.

Chapter 3 introduces graphs in general and related notions, presents the
corresponding MSO logic to express graph properties, and provides Thomas’
fundamental result, which makes use of the famous theorem of Hanf and serves
as the basis for upcoming logical characterizations: the expressive equivalence
of graph acceptors and EMSO logic.



8 1 Introduction

Chapter 4 recalls the well-known and thoroughly studied model of finite
automata over words and their relation with MSO logic and the algebraic no-
tions of recognizability and rationality. Though finite automata are considered
to be a purely sequential model, they will, equipped with a communication
medium, represent the building blocks of a distributed system.

Chapter 5 lays the foundation of subsequent chapters. It constitutes the
basic parameter or architecture of a communicating system in terms of a
distributed alphabet and introduces asynchronous cellular automata (with
types) as a universal tool unifying finite automata, asynchronous automata,
graph acceptors, communicating finite-state machines, and lossy channel sys-
tems. Asynchronous cellular automata turn out to be expressively equivalent
to EMSO logic relative to dags over distributed alphabets and therefore cover
the expressiveness results of all the above-mentioned models. Though, at first
sight, asynchronous cellular automata appear as a rather complex and unin-
tuitive model (e.g., compared with finite automata), they have been around
since the end of the 80’s and are a well-established tool to describe concurrent
behavior. In this book, we deal with a particularly simple definition of asyn-
chronous cellular automata to make them accessible to a broad readership.
The reader is encouraged to study this model thoroughly; a good comprehen-
sion thereof will pay off and enable her to understand more specific concepts
more easily (such as shared-memory and channel systems), to design her own
automata models and to characterize them logically, and to sharpen the un-
derstanding of different phenomena of concurrency and their characteristics.

Chapter 6 presents asynchronous automata, a formal model of shared-
memory systems. Naturally, asynchronous automata run over Mazurkiewicz
traces, a class of graphs that describe the simultaneous access by several pro-
cesses to common resources. The literature provides manifold approaches to
modeling traces, and every approach has its strengths and weaknesses. In our
setting, traces are best defined as graphs, as introduced in Chap. 3. We estab-
lish a logical characterization of asynchronous automata in terms of EMSO
logic interpreted over traces. Note that the derivation of this equivalence is
solely based on our considerations in Chap. 5 and, unlike other methods that
have been applied so far, does not rely on further results whose proofs would
have gone beyond the scope of this book. Finally, we recall the well-known
theorem of Zielonka, which compares asynchronous automata with the notion
of recognizability.

From Chap. 7 on, the book concentrates on systems that communicate
through reliable or faulty (fifo) channels. In this regard, we first provide the
notion of MSCs, followed by the definition of several classes of MSC languages,
e.g., generated by high-level MSCs. Recall that a single MSC describes one
possible run of the system at hand, whereas a set of MSCs (an MSC language)
might be used to characterize the complete system behavior.

Traces are to asynchronous automata as MSCs are to communicating
finite-state machines. The definition of communicating finite-state machines
and lossy channel systems can be found in Chap. 8, which also deals with



1.5 An Overview of the Book 9

their expressiveness relative to the previously proposed language classes. In
particular, again exploiting Chap. 5, we can easily derive from the logical
characterization of asynchronous cellular automata a logical characterization
of communicating finite-state machines.

Finally, Chap. 9 studies the gap between MSO logic and its existential frag-
ment, exemplified in the framework of communicating finite-state machines,
which is also compared to the formalisms of high-level MSCs and recogniz-
ability. It will turn out that, as a specification language, the full MSO logic
and (compositional) high-level MSCs are too powerful: we identify both MSO
and high-level MSC specifications that cannot be implemented in terms of an
automaton.


