
Object-Oriented Metrics in Practice

Using Software Metrics to Characterize, Evaluate, and Improve the Design of Object-Oriented Systems

Bearbeitet von
Michele Lanza, Radu Marinescu, S Ducasse

1. Auflage 2006. Buch. xiv, 207 S. Hardcover
ISBN 978 3 540 24429 5

Format (B x L): 15,5 x 23,5 cm
Gewicht: 502 g

Weitere Fachgebiete > EDV, Informatik > Hardwaretechnische Grundlagen >
Systemverwaltung & Management

Zu Inhaltsverzeichnis

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft.
Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm
durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr

als 8 Millionen Produkte.

http://www.beck-shop.de/Lanza-Marinescu-Object-Oriented-Metrics-Practice/productview.aspx?product=187724&utm_source=pdf&utm_medium=clickthru_lp&utm_campaign=pdf_187724&campaign=pdf/187724
http://www.beck-shop.de/trefferliste.aspx?toc=8257
http://www.beck-shop.de/trefferliste.aspx?toc=8257
http://www.beck-shop.de/fachbuch/inhaltsverzeichnis/9783540244295_TOC_001.pdf

4

Evaluating the Design

Object-oriented construction and design are misleading words, be-
cause they make people think that software can be constructed like
a house or designed like a piece of furniture. This is a myth which is
hard to kill. The truth is that a software system is at least as com-
plex as any other engineering artifact (such as buildings, if not more,
considering the fact that it evolves much faster).

Moreover, a modern software system is written by many people at
the same time, leading to (1) communication issues, (2) compatibility
issues and above all (3) complexity issues. In addition, a system can-
not be written once and for all, put in place and then work forever.
It is actually grown like a plant with many interrelated parts that de-
pend on each other, that die, that change, that are bugged and must
be fixed (introducing new bugs), etc.

You may well imagine that a plant which is not correctly watered
will die. In much the same spirit we can say that a system which
is not being cured and maintained will slowly decay and eventually
die. But all metaphors, including the one of the plant, do not fit the
context of object-oriented software. These systems are much more
complex and consist of thousands of artifacts and relationships be-
tween the artifacts. A change in one part of the system may break
other parts of the system. This is not due to bad programming prac-
tice, it is just a matter of complexity: you cannot expect to have a
complete picture of a large software system. Moreover, we are speak-
ing about evolving systems which change continuously, leading to
more complexity [LB85, DDN02].

Still in software construction finding an appropriate design is im-
portant. Indeed it may help people understand the system and ease
future changes. For example, it is well-known that using explicit type-

46 4 Evaluating the Design

checks goes against the essence of object-oriented programming and
creates brittle and hard to change code [DDN02]. However it is impor-
tant to understand that design decisions such as the impact of ap-
plying a given design pattern [GHJV95, ABW98] is difficult to assess
— using a design pattern introduces an intrinsic complexity which
should be balanced by the benefits of the pattern application. Identi-
fying the exact responsibilities of objects and how they should be dis-
tributed among objects is complex. In this book we show you how to
use metrics to assess the quality of a design. Metrics measure struc-
tural elements and as such they can reveal hidden symptoms. But
there will always be a gap between the symptoms and the deep as-
sessment that an expert in object-oriented design can do using these
symptoms. Therefore it is important to consider metrics as a tool and
as with any tool to know their advantages and disadvantages. This
leads us to the crucial questions we answer in this book:

What entities do we measure in object-oriented design?

It depends . . . on the language. In most object-oriented languages we
find and can measure classes; operations (including methods and
functions); variables (including the whole range from attributes to
local variables) etc.

What metrics do we use?

It depends . . . on our measurement goals. We may want to assess the
size, the complexity, the quality, etc.

What can we do with the information obtained?

It depends . . . on our objectives. We may want to just assess the sta-
tus quo to calm down management, we may want to brag with col-
leagues (“my system is bigger and better than yours”), or we may
actually want to ameliorate the quality of parts of the system.

Design Harmony

Simple metrics are not enough to understand and evaluate design, or
to put it bluntly: you cannot understand the beauty of a painting by
measuring its frame or understand the depth of a poem by counting
the lines. Object-oriented systems can be seen as pieces of complex
art and the creativity that programming involves backs up this bold
statement. Metrics can help to evaluate and improve designs, but

4 Evaluating the Design 47

those have to be meaningful metrics that are put in a context of de-
sign harmony.

The reader might be confused to find a word as ambiguous as
harmony in a book about object-oriented metrics. After all, a major
point of this book is that software, objet-oriented and not, can and
should be measured. However, metrics have to be put in a context.
The aspect of measurability and more specifically about thresholds
(such as: When should a class or a method be considered too large?)
does not make sense if there is no context: A class implementing a
parser is never going to be small, the domain is just too complex to
be modelled in a concise way. Still, and this is where harmony comes
into play, a class can be implemented in several ways, theoretically
even in only one huge method. This would however make the class
hard to understand.

An application, a class, a method and any other artifact in a soft-
ware system should be implemented in an harmonious way, e.g., a
class has to implement an appropriate number of methods of appro-
priate size, complexity, and functionality.

Appropriate to what? This appropriateness is a kind of harmony
that can indeed be measured and reached. This overall harmony is
composed of three distinct harmonies that concern every software
artifact:

1. Identity Harmony – “How do I define myself?” Every entity in a
software system must justify its existence: does it implement a
specific concept and how does it do that? Is it doing too many
things or nothing at all?

2. Collaboration Harmony – “How do I interact with others?” Every
entity collaborates with others to fulfill its tasks. Does it do that
all on its own, or does it use other entities. How does it use them?
Does it use too many?

3. Classification Harmony – “How do I define myself with respect
to my ancestors and descendants?”. This harmony combines ele-
ments of both identity and collaboration harmony in the context
of inheritance. For example, does a subclass use all the inherited
services, or does it ignore some of them?

Boiling it down: Every artifact in a system needs to be in harmony
with itself (not too large, not too small, not too complex, not too sim-
ple, etc.), in harmony with its collaborators (do not talk to everybody,

48 4 Evaluating the Design

do not talk to nobody, etc.), and finally in harmony with its ancestors
and descendants. Every artifact must have its appropriate place, size,
and complexity to fit the system context.

Detection Strategies and Class Blueprints

In the remainder of this chapter we present two techniques to eval-
uate the design of object-oriented systems and to detect structural
disharmonies:

1. A detection strategy is a composed logical condition, based on met-
rics, that identifies those design fragments that are fulfilling the
condition.

2. A class blueprint is a semantically rich visualization of the internal
structure of classes and class hierarchies. We use a class blueprint
to inspect source code and to detect visual anomalies which in
turn point to design disharmonies.

4.1 Detection Strategies

The Principles of Detection Strategies

A metric alone cannot help to answer all the questions about a sys-
tem and therefore metrics must be used in combination to provide
relevant information. Why?

Using a medical metaphor we might say that the interpretation of
abnormal measurements can offer an understanding of symptoms,
but the measurements cannot provide an understanding of the dis-
ease that caused those symptoms. The bottom-up approach, i.e., going
from abnormal numbers to the recognition of design diseases is im-
practicable because the symptoms captured by single metrics, even
if perfectly interpreted, may occur in several diseases: The interpre-
tation of individual metrics is too fine grained to indicate the disease.

This leaves us with a major gap between the things that we mea-
sure and the things that are in fact important at the design level with
respect to a particular investigation goal.

How should we combine then metrics in order to make them serve
our purposes? The main goal of the mechanism presented below is
to provide engineers with a means to work with metrics at a more
abstract level. The mechanism defined for this purpose is called a
detection strategy, defined as follows:

4.1 Detection Strategies 49

A Detection Strategy is a composed logical condition, based on
metrics, by which design fragments with specific properties are
detected in the source code.

The aim with detection strategies is to make design rules (and their
violations) quantifiable, and thus to be able to detect design prob-
lems in an object-oriented software system, i.e., to find those design
fragments that are affected by a particular design problem.

The use of metrics in the detection strategies is based on the mech-
anisms of filtering and composition, described next.

Filtering

The key issue in filtering is to reduce the initial data set so that only
those values that present a special characteristic are retained. A data
filter is a boolean condition by which a subset of data is retained from
an initial set of measurement results, based on the particular focus
of the measurement.

The purpose of filtering is to keep only those design fragments
that have special properties captured by the metric. To define a data
filter we must define the values for the bottom and upper limits of
the filtered subset. Depending on how we specify the limit(s) of the
resulting data set, filters can be either statistical, based on absolute
thresholds, or based on relative thresholds.

Statistical Filters

A first approach when we seek abnormal values in a data set is to
employ statistical means for detecting those values. Thus, the (bi-
nary) filtering condition and its semantics are implicitly contained
in the statistical rules that we use. The advantage of this approach
is that it is not necessary to specify explicitly a threshold value be-
yond which entities are considered abnormal. One significant exam-
ple of a statistical filter is the box-plot technique, which is a statis-
tical means for detecting the abnormal values (outliers) in a data
set [FP96]. In this case, the detection of outliers starts from the me-
dian value, which can be directly computed from the analyzed data
set. Based on this median value, two pairs of thresholds are com-
puted i.e., the lower/upper quartile and resp. lower/upper tail. These
thresholds are again computed implicitly, based on the formulas pre-
sented in Fig. 4.1. Eventually, in a box-plot an outlier is a value from
the data set that is either higher than the upper tail or lower than the
lower tail thresholds.

50 4 Evaluating the Design

Fig. 4.1. The box-plot technique [FP96].

Threshold-Based Filters

The alternative way of defining filters is to pick-up a comparator
(e.g.,lower than or highest values) and specify explicitly a threshold
value (e.g., lower than 10 or 5 highest values). But, as already dis-
cussed in Chapter 2 (see Sect. 2.1), the selection of proper thresholds
is one of the hardest issues in using metrics. There are two ways in
which these filters can be specified:

1. Absolute Comparators. We use the classical comparators for num-
bers, i.e., > (greater than); ≥ (greater than or equal to); < (less
than); ≤ (less than or equal to).

2. Relative Comparators. The operators that can be used are highest
values and lowest values. These filters delimit the filtered data set
by a parameter that specifies the number of entities to be retrieved,
rather than specifying the maximum (or minimum) value allowed
in the result set. Thus, the values in the result set will be relative
to the original set of data. The used parameters may be absolute
(e.g., retrieve the 20 entities with the highest LOC values) or per-
centile (e.g., retrieve the 10% of all entities having the lowest LOC
values). This kind of filter is useful in contexts where we consider
the highest or lowest values from a given data set, rather than
indicating precise thresholds.

Composition

In contrast to simple metrics and their interpretation models, a de-
tection strategy is intended to quantify more complex design rules,

4.1 Detection Strategies 51

that involve multiple aspects that needed quantification. As a con-
sequence, in addition to the filtering mechanism that supports the
interpretation of individual metric results, we need a second mech-
anism to support a correlated interpretation of multiple result sets –
this is the composition mechanism. It is based on a set of AND and
OR operators that compose different metrics together to form a com-
posite rule.

Graphical Notation for Detection Strategies

A detection strategy is a composed logical expression by which de-
sign entities addressed by the strategy are filtered. Instead of using
formulas, we decided to take advantage of a well-known graphical
notation used to represent logical circuits. In this representation, the
composition operators are represented as logical AND and OR gates
(see Fig. 4.2). Both the input and the output terms of the gates are
filters. Inputs can be either simple or composed filtering conditions.

Representation of Simple Filters

A simple filter is represented as a gray rounded rectangle, composed
of an informal description of the filtering condition and a white com-
partment (box) where the filtering formula is depicted i.e., the met-
ric followed by the filtering operator and the threshold value (see
Fig. 4.2).

Representation of Composed Filters

A composed filter is represented as a gray rounded rectangle that
contains only the informal description of the composed condition that
it stands for (see Fig. 4.3). Note, that a composed filter is always
the result (output) of another gate. Notice, that these intermediary
terms are not conceptually necessary. We introduced them, in order
to increase increase the understandability of more complex detection
strategies.

Detection Strategies Exemplified

A detection strategy can be used to express in a quantitative man-
ner deviations from a given set of rules of design harmony. While it
is impossible to establish an objective and general set of such har-
mony rules that would lead automatically to high-quality design if

52 4 Evaluating the Design

Input Term

Input Term

AND

Input Term

Input Term

OR

Output Term

Output Term

Fig. 4.2. Composition operators used in detection strategies represented as
logical AND/OR gates.

Metric > Threshold

Informal description of a simple

filtering condition

Informal description of a composed

filtering condition

AND
High-Level

Filtering Condition

Fig. 4.3. A graphical representation of a detection strategy.

they would be applied, yet heuristic knowledge reflects and preserves
the experience and quality goals of the developers.

As a consequence, over the last two decades, many authors were
concerned with identifying and formulating design principles [Mey88b]
[Lis87] [Mar02b], rules [CY91] [Mey88b], and heuristics[Rie96] [JF88]
[Lak96] [LR89] that would help developers fulfill those criteria while
designing their systems.

4.1 Detection Strategies 53

An alternative approach to disseminating heuristical knowledge
about the quality of the design is to identify and describe the symp-
toms of bad-design.

This approach is used by Fowler in his book on refactorings
[FBB+99] and by the “anti-patterns” community [BMMM98] as they
try to identify situations when the design must be structurally im-
proved. Fowler describes around twenty code smells – or “bad smells”
as the author calls them – that address symptoms of bad design,
often encountered in real software systems.

Let us see now, based on the concrete example of the God Class
[Rie96] design flaw, how detection strategies can be defined for a con-
crete design flaw. The entire process is summarized in Fig. 4.4.

The starting point in defining such a detection strategy is given by
one (or more) informal design rules — like those stated by Riel [Rie96],
Martin [Mar02b] or Fowler [FBB+99] — that comprehensively define
the design problem, i.e., the disharmony that we want to capture. In
this concrete case we start from the three heuristics related to the
God Class problem, as described by Riel [Rie96]:

Top-level classes in a design should share work uniformly. [...]
Beware of classes with much non-communicative behavior. [...]
Beware of classes that access directly data from other classes.

Step 1: Identify Symptoms

The first step in constructing a detection strategy is to break down the
informal rules in a correlated set of symptoms (e.g., class inflation, ex-
cessive method complexity, high coupling) that can be captured by a
single metric. In our case the first rule refers to high class complexity.
The second rule speaks about the level of intra-class communication
between the methods of the class; thus it refers to the low cohesion
of classes. The third heuristic addresses a special type of coupling,
i.e., the direct access to instance variables defined in other classes.
In this case the symptom is access of foreign data.

Step 2: Select Metrics

The second step is to select proper metrics that quantify best each of
the identified properties. In this context the crucial question is: from
where should we take the proper metrics? There are two alternatives:

54 4 Evaluating the Design

Fig. 4.4. Process of transforming an informal design rule in a detection strat-
egy.

4.1 Detection Strategies 55

1. Use well-known metrics from the literature. For example, we could
choose a metric from a well-known metrics suite (e.g., the Chi-
damber&Kemerer [CK94] suite), or from the metrics summarized
by various authors (e.g., Lorenz and Kidd [LK94], Henderson-
Sellers [HS96], Briand [BDW99, BDW98] etc.)

2. Define a new metric (or adapt an existing one), so that the met-
ric captures exactly one of the symptoms (see previous step) that
appears in that design flaw that we intend to quantify.

Our approach is a conservative one, i.e., we try to use as much
as possible metrics from the literature, avoiding thus to define new
(oftentimes unnecessary) metrics. Yet, in the same time we want to
emphasize that, in defining a good detection strategy, it is very im-
portant not to sacrifice the exact quantification of a symptom, just
for the sake of using an existing metrics from the literature. In other
words, if no adequate metric can be found in the literature, define a
new metric that reflects one symptom that needs to be quantified.

For the God Class design flaw these properties are class complex-
ity, class cohesion and access of foreign data. Therefore, we choose
the following set of metrics1:

• Weighted Method Count (WMC) is the sum of the statical complex-
ity of all methods in a class [CK94]. We consider McCabe’s cyclo-
matic complexity metric as a complexity measure [McC76, LK94].

• Tight Class Cohesion (TCC) is the relative number of methods di-
rectly connected via accesses of attributes [BK95, BDW98].

• Access to Foreign Data (ATFD) represents the number of external
classes from which a given class accesses attributes, directly or
via accessor-methods.

Notice that while the first two metrics (i.e., WMC and TCC) are metrics
defined in the literature, the last one was defined by us in order to
capture a very specific aspect, i.e., the extent to which a class uses
attributes of other classes.

Step 3: Select Filters

The next step is to define for each metric the filter that captures best
the symptom that the metric is intended to quantify. As mentioned
earlier, this implies to (1) pick-up a comparator and (2) to set an

1 For a precise description of all the metrics used in the book, including the
metrics below please refer to Appendix A.

56 4 Evaluating the Design

adequate threshold, in conformity with the semantics described in
Sect. 2.1.

In our concrete case, the first symptom is referring to excessively
high class complexity we want to find classes that are complexity
outliers. Thus, for the WMC metric we use the ≥ (greater than or
equal to) comparator. How do we find the threshold for extremely high
values of the WMC complexity metric? There is no other way than
to base it on statistical data related to complexity, as described in
Sect. 2.1. Based on the semantic labels described there, we can say
now that we will use the very high threshold value.

For capturing the aspect of “access to foreign data” we use the
> (greater than) comparator, whereby the threshold value will be the
maximal number of “tolerable” foreign attributes to be used. Thus,
the threshold value for ATFD, does not need to be based on statis-
tics, because the metric has a precise semantic: It measures the ex-
tent of encapsulation breaking. Based on the rationale presented in
Sect. 2.1 “accidental” usage of foreign data, and consequently a few
such usages are harmless; thus, ATFD > FEW .

Eventually, for the low cohesion symptom we choose the < (less
than) comparator. In order to set the proper threshold, we first have
to notice that the values of TCC are fractions; thus we can use one
of the thresholds with fraction semantics summarized in Table 2.3.
As this filter must capture non-cohesive classes, we decided to use
the one-third threshold (see Sect. 2.1), meaning that only one third
of the method pairs of the class have in common the usage of the
same attribute. If we wanted to capture more extreme cases of non-
cohesiveness, we could have used the one-quarter threshold.

Step 4: Compose the Detection Strategy

The final step is to correlate these symptoms, using the composi-
tion operators described previously. From the context of the informal
heuristics as presented by their author in [Rie96], we infer that all
these three symptoms should co-exist if a class is to be considered a
behavioral God Class. Consequently, the final form of the God Classes
detection strategy is the one depicted in Fig. 4.5.

The Missing Link

Detection strategies are useful to detect problems in object-oriented
designs. What they finally produce is a list of suspects, i.e., all en-
tities in the system which conform to the applied detection strategy.

4.1 Detection Strategies 57

ATFD > FEW

Class uses directly more than a

few attributes of other classes

WMC ! VERY HIGH

Functional complexity of the

class is very high

TCC < ONE THIRD

Class cohesion is low

AND GodClass

Fig. 4.5. Detection of a God Class

These suspects must be manually inspected to find those that cause
the most severe problems in the context of the entire system. Ap-
plying the numerous detection strategies presented in this book (see
the next three chapters) would lead to many long code listings that
you, the engineer must manually inspect, which is painful and time-
consuming process.

Consequently, we need a technique that helps us to (1) assess
quickly the context of each suspect, (2) decide if the suspect needs
to be urgently refactored, and (3) get insights into how this is to be
done.

Next, we will introduce a powerful visualization technique called
Class Blueprint which helps us cover this “missing link” between lists
of suspects and the design fragments that need to be improved. Class
Blueprint is a semantically enriched depiction of the internal struc-
ture of classes. It will help us to quickly grasp and discuss the inter-
nal design of classes and the way they collaborate with other classes.

Using again a medical metaphor we can say that while detection
strategies help us to detect abnormal fragments of a system’s design,
the Class Blueprint technique helps us to perform a radiography (or
a CAT scan) of suspicious design fragments and decide if and how we
need to intervene.

58 4 Evaluating the Design

4.2 The Class Blueprint

In this section we present a visualization to assist the understanding
of classes by representing a semantically augmented call- and access-
graph of the methods and attributes of classes.

We only take into account the internal static structure of a class
and focus on the way methods call each other and the way attributes
are accessed, and the way the classes use inheritance.

This will help us understand the structure of classes without the
need to read all of their code. Classes are difficult to understand
because of the following reasons:

1. Contrary to procedural languages, the method definition order in a
file is not important [Dek02]. There is no simple and apparent top-
down call decomposition, which is necessary to break down the
complexity of understanding object-oriented code. This problem
is emphasized in the context of integrated development environ-
ments (IDEs), which disconnect the class and method definitions
from their physical storage medium, e.g., directories and files.

2. Classes are organized in inheritance hierarchies in which at each
level behavior can be added, overridden or extended. Understand-
ing how a derived class fits within the context of its base class is
complex because late binding provides a powerful instrument to
build template and hook methods that allow children’s behavior
to be called in the context of their ancestors. The presence of late
binding leads to yoyo effects: To understand the code by following
the call-flow the reader has to browse up and down the hierarchy
[WH92, DRW00].

The objective of the class blueprint is to help a programmer to under-
stand and develop a mental model of the classes he or she browses
and to offer support for reconstructing the logical flow of method
calls. In short, a class blueprint is a semantically enriched and lay-
ered visualization of the control-flow and access structure of classes
[LD01, DL05]2.

The Principles of a Class Blueprint

A class blueprint is structured according to layers that group the
methods and attributes. The nodes (varying in size depending on
2 To locate it in the general context of cognitive models [LPLS96, vMV96], it

is intended to support the implementation plans at the language level, i.e.,
working in code chunks, in this case classes and methods.

4.2 The Class Blueprint 59

source code information of the metrics) represent a class’s methods
and attributes and are colored3 according to semantic information,
e.g., whether a method is abstract, overriding other methods, return-
ing constant values, etc.

The Layered Structure of a Class Blueprint

Initialization External Interface Internal Implementation Accessors Attributes

Invocation Sequence

Fig. 4.6. A class blueprint decomposes a class into layers.

A class blueprint decomposes a class into layers and assigns its at-
tributes and methods to each layer based on the heuristics described
below (see Fig. 4.6). The layers support a call-graph notion in the
sense that a method node on the left connected to another node on
the right is either invoking or accessing the node on the right that
represents a method or an attribute.

The layers have been chosen according to a notion of time-flow and
encapsulation. The notion of encapsulation is visualized by separat-
ing state (to the right) from behaviour (to the left), and distinguish-
ing the public (to the left) from the private part (to the right) of the
class’ behaviour. Added to this only the actual source code elements
are visualized, i.e., we do not represent artificial elements resulting

3 The colors used in our visualizations follow visual guidelines suggested by
Bertin [Ber74], Tufte [Tuf90], Ware [War00], and Pinker [Pin97], e.g., we
take into account that the human brain is not capable of simultaneously
processing more than a dozen distinct colors.

60 4 Evaluating the Design

from a combination/abstraction of source code elements. From left
to right we identify the following layers: initialization layer, external
interface layer, internal implementation layer, accessor layer, and at-
tribute layer. The first three layers and the methods contained therein
are placed from left to right according to the method invocation se-
quence, i.e., if method m1 invokes method m2, m2 is placed to the
right of m1 and connected to an edge.

A class blueprint contains the following layers:

1. Initialization layer. The methods contained in this first layer are
responsible for creating an object and initializing the values of the
attributes of the object. A method belongs to this layer if one of
the following conditions holds:
• The method is a constructor.
• The method name contains the substrings “init(ialize)”.

2. External interface layer. The methods contained in this layer
represent the interface of a class to the outside world. A method
belongs to this layer if one of the following conditions holds:
• It is invoked by methods of the initialization layer .
• In languages like Java and C++which support modifiers (e.g.,

public, protected, private) it is declared as public or protected.
• It is not invoked by other methods within the same class, i.e.,

it is a method invoked from outside of the class by methods
of collaborator classes or subclasses. Should the method be
invoked both inside and outside the class, it is placed within
the implementation layer .

We consider the methods of the interface layer to be the entry
points to the functionality provided by the class. We do not in-
clude accessor methods (getters and setters) in this layer, but in a
dedicated accessor layer .

3. Internal implementation layer. The methods contained in this
layer represent the core of a class and are not supposed to be
visible to the outside world. A method belongs to this layer if the
method is invoked by at least one method of the same class.

4. Accessor layer. This layer is composed of accessor methods, i.e.,
methods whose sole task is to get or set the values of attributes.

5. Attribute layer. The attribute layer contains the attributes of the
class, connected to the method nodes in the other layers by edges
representing access relationships.

4.2 The Class Blueprint 61

Representing Methods and Attributes

We represent methods and attributes using colored boxes (nodes) of
various size and position them within the layers presented previously.
We map metric information to the size of the method and attribute
nodes, and map semantic information on their colors.

Method

Attribute

Abstract

Method

Overriding

Method

Delegating

Method

Extending

Method

Constant

Method

Read Accessor

Method

Write Accessor

Method

Direct access
Method invocation

Number of Invocations

Number of
Lines of Code

Number of external
accesses

Number of
internal accesses

Fig. 4.7. In a class blueprint the metrics are mapped on the width and the
height of a node. The methods and attributes are positioned according to the
layer they have been assigned to.

Mapping metrics information on size. The width and height of the
nodes reflect metric measurements of the represented entities, as il-
lustrated in Fig. 4.7. In the context of a class blueprint, the metrics
used for the method nodes are lines of code for the height and num-
ber of invocations (i.e., number of static invocation going out from the
represented node) for the width. The metrics used for the attribute
nodes are the number of direct accesses from methods within the

62 4 Evaluating the Design

class for the width and the number of direct accesses from methods
defined in other classes for the height. This allows one to identify how
attributes are accessed.

Description Color

Attribute blue node
Abstract method cyan node
Extending method. A method which performs a super invocation. orange node
Overriding method. A method redefinition without hidden method invocation. brown node
Delegating method, forwards the method call to another object. yellow node
Constant method. A method which returns a constant value. grey node
Interface and Implementation layer method. white node
Accessor layer method. Getter. red node
Accessor layer method. Setter. orange node

Invocation of a method. blue edge
Invocation of an accessor. Semantically equivalent to a direct access. blue edge
Access to an attribute. cyan edge

Table 4.1. In a class blueprint semantic information is mapped on the colors
of the nodes and edges.

Mapping semantic information on color. The call-graph is aug-
mented not only by the size of its nodes but also by their color. In
a class blueprint the colors of nodes and edges represent semantic
information extracted from the source code analysis. The colors play
an important role in conveying added information [Ber74, Tuf90]. Ta-
ble 4.1 presents the semantic information we add to a class blueprint
and the associated colors.

Class Blueprints Exemplified

To show how the class blueprint visualization allows one to represent
a condensed view of a class’s methods, call-flow and attribute ac-
cesses, we describe in detail two classes implementing two different
domain entities of the Jun framework: The first one defines the con-
cept of a 3D graph for OpenGL mapping and the second is a rendering
algorithm. We present the blueprints and some pieces of code to show
how the graphical representation is extracted from the source code
and how the graphical representation reflects the code it represents,
building a trustable model.

To help the reader to understand the first class blueprint we also
show on the right of the figure a blueprint without metrics in which
the method names are shown on the boxes that represent them.

4.2 The Class Blueprint 63

Fig. 4.8. Left: An actual class blueprint visualization of the class
JunOpenGL3dGraphAbstract, a class which represents 3D graphs in
OpenGL. Right: The same class displayed with method names for illustrating
how the methods call each other.

The left part of Fig. 4.8 shows the blueprint of a Smalltalk class
named Jun-OpenGL3dGraphAbstract which we describe hereafter. As
the named blueprint on the right in Fig. 4.8 shows, this kind of rep-
resentation does not scale well in practice; additionally, metrics in-
formation is not reflected in a named blueprint (i.e., the width and
height of nodes is not correlated with metric value). Therefore it is
not used in this book.

The code shown is Smalltalk code; however, in order to understand
the code sequence being fluent in Smalltalk is not a must as we are
only concerned with method invocations and attribute accesses.4

Example 1: An Abstract Class

The class blueprint shown in Fig. 4.8 has the following structure:

• One initialization layer method. This method, called initialize, is
positioned on the left. As shown, it extends (invokes) a superclass

4 In Smalltalk, attributes as local variables are read simply by using the at-
tribute name in an expression. They are written using the := construct.
In a first approximation, messages follow the pattern receiver method-
Name1: arg1 name2: arg2 which is equivalent to the Java/C++syntax re-
ceiver.methodName1name2(arg1, arg2). Hence bidiagNorm := self bidiag-
onalize: superDiag assigns to the variable bidiagNorm the result of the
method bidiagonalize.

64 4 Evaluating the Design

method with the same name, hence the node color is orange. It
directly accesses two attributes, as the cyan line shows. The code
of the method initialize is as follows:

initialize
super initialize.

displayObject := nil.

displayColor := nil

• Several external interface layer methods. Note that many of
them have a yellow color, i.e., they delegate the functionality. The
following method asPointArray is a delegating method:

asPointArray
ˆ self displayObject asPointArray

The five grey nodes in the interface layer are methods returning
constant values as illustrated by the following method isArc. This
method illustrates a typical practice to share a default behavior
among the hierarchy of classes.

isArc

ˆ false

• A small internal implementation layer with two sub-layers.
This layer shows that the blueprint granularity resides at the
method level, as the visualization does not specifically represent
control flow constructs. The method displayObject performs a lazy
initialization, i.e., it initializes the attributes only when the at-
tributes are accessed and acts as an abstract template method
by calling the method createDisplayObject which is abstract and
thus represented as a cyan node. The method createDisplayOb-
ject should then be redefined in the subclasses.

displayObject
displayObject isNil ifTrue:

[displayObject := self createDisplayObject].

ˆ displayObject

createDisplayObject

ˆ self subclassResponsibility

• Two accessors. There is a read-accessor, color, displayed as the
red accessor node and a write-accessor, setValue: displayed as the
rightmost orange accessor node.

4.2 The Class Blueprint 65

• Two attributes. Note that the read-accessor reads one attribute,
while the write-accessor writes the other one. However, no method
uses the write-accessor. The attributes are also directly accessed:
the initialize method accesses both, while two other methods also
directly access the attributes. which is an inconsistent coding
practice.

Fig. 4.9. A blueprint of the class JunSVD. This class blueprint shows patterns
of the type Single Entry, Structured Flow and All State.

Example 2: An Algorithm

The class blueprint presented in Fig. 4.9 displays the class JunSVD
implementing the algorithm of the same name. Looking at the blueprint
we get the following information.

• No initialization layer method. The left layer is empty.
• Three external interface layer methods. Two of them directly

access the attributes of the class. We also see that the second
external interface layer method is actually an entry point to all
the methods in the internal implementation layer.

• An internal implementation layer composed of nine methods
in five sub-layers. The class is actually written in a clearly struc-
tured way. Therefore the class blueprint can also be used to infer a
reading order of the methods contained in this class. The blueprint
shows that the node A which represents the method compute
(shown hereafter) invokes the methods bidiagonalize:, epsilon and
diagonalize:with:.

66 4 Evaluating the Design

compute
| superDiag bidiagNorm eps |

m := matrix rowSize.

n := matrix columnSize.

u := (matrix species unit: m) asDouble.

v := (matrix species unit: n) asDouble.

sig := Array new: n.

superDiag := Array new: n.

bidiagNorm := self bidiagonalize: superDiag.

eps := self epsilon * bidiagNorm.

self diagonalize: superDiag with: eps.

• Three read-accessor methods. Although three read-accessors
have been defined, they are not used by methods of this class,
because they do not have any incoming edges that would exem-
plify their use.

• Six attributes. All the attributes in this class are accessed by
several methods, i.e., all the state of the class is accessed by the
methods. The blueprint also reveals that the attributes are heavily
accessed. The nodes marked as A, B and C consistently access all
the attributes matrix, n, m, sig, v and u. To understand how this
particular behavior is possible we show the code of the method
generalizedInverse (C). After reading the code we easily under-
stand that this particular behavior for a class is normal for an
algorithm and we mentally acknowledge that the other methods
are built in a similar fashion.

generalizedInverse
| sp |

sp := matrix species new: n by: m.
sp doIJ: [:each :i :j |

sp row: i column: j put:

((i = j and: [(sig at: j) isZero not])

ifTrue: [(sig at: j) reciprocal]

ifFalse: [0.0d])].

ˆ (v product: sp) product: u transpose

This example shows that the blueprint visualization conveys infor-
mation which is otherwise hard to notice: all attributes are accessed
by the methods. This is an example of how the approach supports
opportunistic code reading. First the reader is intrigued by the regu-
larity of the accesses, then reads one method and understands that
the methods implement an algorithm. The reader can now extrapolate
this knowledge to the other methods of the class.

4.2 The Class Blueprint 67

Example 3: Class Blueprints and Inheritance

Understanding classes in the presence of inheritance is difficult as
the flow of the program is not local to a single class but distributed
over hierarchies, as mentioned by Wild [WH92] and Lange [LN95]. In
the context of inheritance we visualize every class blueprint separately
and put the subclasses below the superclasses according to a simple
tree layout.

In Fig. 4.10 we see a concrete inheritance hierarchy of class
blueprints. The superclass defines some behavior that is then spe-
cialized by each of the three subclasses named JunColorChoiceHSB,
JunColorChoiceSBH and JunColorChoiceHBS. The blueprint of this
hierarchy reveals that the subclasses have been developed to satisfy
the implementation needs of the superclass: they do not define any
extra behavior; it is the superclass that must be analyzed to under-
stand the whole hierarchy.

We see that the root class defines several abstract methods (de-
noted by the cyan color) that represent color components such as
brightness, hue and color and which are overridden (denoted by the
brown color) in the three small subclasses. As there is the same num-
ber of brown nodes as cyan ones, there is a good chance that the
subclasses are concrete classes.

The method named color is a template method that calls three
abstract methods as confirmed by the definition of the method color:

color
ˆ ColorValue hue: self hue

saturation: self saturation

brightness: self brightness

We see that the methods xy: (B) and xy (C), play a central role in the
design of the class as they are both called by several of the methods
of each subclass, as confirmed by the following method of the class
JunColorChoiceSBH:

JunColorChoiceSBH>>brightness: value
((value isKindOf: Number) and:

[0.0 <= value and: [value <= 1.0]])

ifTrue: [self xy: self xy x @ 1 - value]

This example shows again that the blueprint conveys information
which is otherwise hard to notice, e.g., the fact that all the subclasses
of the root classes implement only methods which override methods

68 4 Evaluating the Design

Fig. 4.10. A class blueprint visualization of an inheritance hierarchy with
the class JunColorChoice as root class. The root class contains an Interface
visual pattern, while each of the subclasses is a pure Overrider. Furthermore,
each subclass is a pure Siamese Twin.

in the superclass, or it helps to detect the template method design
pattern present in the root class.

All these examples illustrate how the blueprints help a software
engineer to: (1) build a mental image of the class in terms of method
invocations and state access, (2) understand the class/subclass
roles, and (3) identify key methods.

Blueprints act as revealers in the sense that they raise questions,
support hypotheses, or clearly show important information. When
questions are raised, code reading helps confirm the information pro-
vided by the visualization. Code reading is not always necessary, but
can be used sparingly on identified methods. There is a definitive

4.2 The Class Blueprint 69

synergy between the visual images generated by the blueprint and
the code reading. Class blueprints allow one to characterize classes
but also represent an important means of communication.

Example 4: Class Blueprints and Design Problems

Class Blueprints provide us with a powerful visual means to inspect
the suspects detected by the detection strategies. For example, by
applying the God Class detection strategy (see page 51) on a case
study we found several suspects, one of which is class Modeller.

Fig. 4.11. The class blueprint of a God Class suspect.

By building the class blueprint for this class (see Fig. 4.11) we
can immediately see that Modeller is not a class with an excessive
number of methods, but has a certain number of considerably large
and complex methods (3 methods are longer than 100 lines of code,
the longest one addDocumentationTag (annotated as 1a in the figure)

70 4 Evaluating the Design

is 150 lines code and invoked by three other methods, two of which
are the second and third longest methods in this class: addOperation
(1b, 116 LOC) and addAttribute (1c, 108 LOC). The class blueprint
reveals other disharmonies in this class: there are 12 attributes in
this class, all of them private (which is good), but there are “only” 4
accessor methods. Moreover, the attributes are accessed both directly
and indirectly (using the accessors), denoting a certain inconsistency
or lack of access policy.

4.3 Conclusions and Outlook

In this chapter we presented two approaches which will allow us to
evaluate the design of object-oriented software systems, the Detection
Strategy and the Class Blueprint:

Detection Strategy: It provides us with a means to detect flawed
(from a design point of view) entities in object-oriented systems.
The design strategies produce lists of suspects that comply with
specific heuristics encoded with metrics.

Class Blueprint: It provides us with a powerful visual means to
inspect the suspects detected by the detection strategies.

In the beginning of this chapter (see 46) we argued that metrics
can help to evaluate designs, but those have to be meaningful metrics
that are put in the context of rules, best practices and heuristics that
express the harmony of a design.

Although we partially agree with Fowler stating that “no set of
metrics rivals informed human intuition” [FBB+99], there is a big
disadvantage: human intuition does not scale with the dimensions
of today’s software systems. Therefore, in order to find and improve
disharmonious design fragments in the next three chapters we em-
ploy detection strategies and the class blueprint.

Consequently in the remaining chapters, we present in detail 11
such design disharmonies. For each of them we describe the detection
strategy that helps to detect them automatically using metrics, we
look at selected examples using the class blueprint, and conclude
each disharmony with a discussion of how to cure flawed entities
using refactorings.

Based on the harmony aspects identified in Sect. 4, we divide the
11 design disharmonies in three categories, i.e., identity collaboration
and classification disharmonies:

4.3 Conclusions and Outlook 71

Identity Disharmonies (Chapter 5): God Class(80), Brain Class(97),
Feature Envy(84), Brain Method(92), Data Class(88), Duplication(102)

Collaboration Disharmonies (Chapter 6): Dispersed Coupling(127),
Intensive Coupling(120), Shotgun Surgery(133)

Classification Disharmonies (Chapter 7): Refused Parent Bequest(145),
Tradition Breaker(152)

Fig. 4.12. Disharmonies and their correlations.

Each of the following chapters has four major parts:

1. Harmony Rule(s). As mentioned before, disharmonies are devia-
tions from a set of principles, rules and heuristics that specify
what harmony means. Therefore, before presenting a catalogue of
disharmonies, we summarize in the form of one or more harmony

72 4 Evaluating the Design

rules those aspects of harmony that we took into account when
building the catalogue of disharmonies. These harmony rules are a
concise distillation of various design rules and heuristics found in
the literature (e.g., [Rie96, Mar02b, JF88, Lak96, Mey88b, Lis87]).

2. Overview of Detected Disharmonies. Most of the times design
disharmonies do not appear in isolation. Therefore, before pre-
senting the disharmonies one by one, we provide a brief overview
in which we reveal the most common correlations between the
various disharmonies. Apart from discussing the correlations, we
provide in each case a picture that captures the web of correla-
tions involving the disharmonies presented in that chapter. As a
sneak preview, in Fig. 4.12 you can see all disharmonies and their
most common correlations. complete web of correlations

3. Catalogue of Disharmonies. The central part of each chapter con-
sists of a catalogue of specific disharmonies that can be detected
using a metrics-based approach. Each disharmony is described in
a in a pattern-like format.

4. Summary. Each chapter ends with a suite of practical guidelines
on detecting and recovering from the disharmonies presented in
the chapter.

