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2 Application of scattering theories to the
characterization of precipitation processes

Sandra Jacquier and Frédéric Gruy

2.1 Introduction

Solid-liquid suspensions are frequently used in industrial processes. These suspen-
sions usually contain aggregates made up of solid primary particles. Many char-
acterization tools of these suspensions are based on light scattering (Mie theory).
However, Mie theory (1908) is not always applicable to practical problems since
the scatterer must be a homogeneous sphere. The ordinary particle sizers that use
this theory do not make it possible to measure non-spherical particle geometri-
cal characteristics. Extensions of the Mie theory for arbitrary shaped particles or
particle aggregates are available nowadays (the T-matrix method, the Generalized
Multiparticle Mie (GMM)-solution, etc.). But the computing times of the optical
properties via these exact theories do not allow for a real-time analysis. This chap-
ter is therefore dedicated to the search for approximate methods for the estimation
of aggregate optical properties, particularly their scattering cross-section.

This chapter is split into five main sections. Section 2.2 concerns the aggre-
gation process and, more generally, the precipitation process, to provide a better
understanding of the framework of this study. Precipitation is the formation of a
solid in a solution during a chemical reaction. The morphology of particles cur-
rently observed during precipitation or particle synthesis will be described. The
relationship between optics and particle technology will be recalled. Section 2.3
outlines briefly the different approximate methods used for the case of spherical
and non-spherical particles. Section 2.4 presents selected approximations for light
scattering cross-sections in the case of aggregates. The quality of each approxima-
tion will be discussed by comparison with the exact theory. Practical cases will
be presented. Section 2.5 is an extension of the previous section to the light pres-
sure cross-section. Section 2.6 is an attempt to relate the scattering properties of
aggregates to their geometrical characteristics.

In the next section we describe the context of the need for approximate methods
for scattering cross-section of aggregates.
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2.2 Aggregate formation

Materials are often made from inorganic particles. These are formed by reactions
in the gas phase or, more commonly, in liquid phases. The main process is called
precipitation.

2.2.1 Precipitation and particle synthesis

The classical situation is the following: a solution consisting of a solute A and a
solvent is mixed with another one consisting of a solute B and the same solvent.
The two solutes react to form a solid product denoted AB.

A+B«< AB.

A and B are often ions.

If equilibrium between the solid phase and the solutes is reached, thermody-
namics tells us that this equilibrium (saturated solution) is characterized by the
solubility of the solid phase. However, when the concentrations of A and B are
high enough to produce solid particles, the initial solution is supersaturated. So,
the ratio of the actual concentration and the equilibrium concentration (solubility),
called supersaturation, is the key parameter of the dynamics of precipitation. The
higher the supersaturation, the higher the precipitation rate. Particle formation
can be distinguished into three stages: nucleation, growth and agglomeration.

Nucleation is the birth of particles that are large enough to grow (nuclei). Parti-
cles that are too small are unstable and dissolve in the solution. The nucleation rate,
JN, is defined as the number of created nuclei per unit volume and per unit time.
The formed nuclei are characterized by a so-called critical size. Typical critical size
values are within the range 1-50 nm. The nucleation rate is a nonlinear increasing
function of supersaturation. The nucleation stage in a precipitation process is often
difficult to observe. If light is used as a probe to study precipitation, nuclei can
be treated as Rayleigh scatterers. Considering the nuclei concentration, interaction
between light and suspension is usually below the detector threshold. Other meth-
ods (for instance, small-angle X-ray scattering) are preferred, but are more difficult
to apply. Details about the nuclei are not known. Hence, nuclei leading to inorganic
particles are often considered as amorphous and spherical.

The following stage is the growth of the nuclei. They may additionally convert
to crystals. Crystals present facets, the occurrence of which can be explained from
crystallography and thermodynamics. However, depending on the precipitation re-
action, only amorphous particles (i.e., hydroxylated compounds) can be found.
Usually, the growth rate is defined as the derivative of crystal characteristic length
(e.g., the diameter) with time. The growth rate increases with the supersaturation.
Most often the relation between growth rate and supersaturation is linear.

For different reasons (one is the decrease of supersaturation during precipitation,
due to the mass transfer from solution to crystals), an upper size limit for the
growing crystals is observed. At the end of the second stage, crystal or particle size
ranges between 0.1 and 10 um. During this period, particles become large enough
to scatter light effectively. Thus, light scattering methods are suitable for studying
the growth of crystals or primary particles in suspension.
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Before or after reaching the end of growth, crystals or amorphous particles can
form clusters or agglomerates. Agglomeration requires the collision of particles and
their subsequent adhesion due to attractive forces (for instance, van der Waals
forces). Consolidation between primary particles or crystals can take place by crys-
talline growth from the contact point. In quiescent liquids, the particle collisions
are due to their Brownian motion. For flowing suspensions, collisions are due to
Brownian motion for small particles or crystals (smaller than about 0.2 ym) and
to local shear for larger particles.

When the agglomerate increases in size, it becomes fragile. Then, break-up takes
place and a limit size is reached (with values in the range 5-100 ym). The stress
acting on the agglomerate results from the shear, but also the transition between
viscous and inertial turbulent regimes. This often leads to agglomerates containing
only a few primary particles (less than one hundred primary particles).

Summarizing: inorganic solutes can lead to solid particles in a batch precipita-
tion vessel, provided that the solution is initially supersaturated. Nucleation, i.e.
the birth of nuclei with a critical size, takes place, while supersaturation decreases
as a consequence. Finally, supersaturation becomes too small, to produce new nu-
clei. Thus, there is a mass transfer from solution to the nuclei surface leading to
the growth of nuclei. In this way, crystals or amorphous particles are formed. As
supersaturation tends to one, growth stops. Depending on the surface charge of
particles, their agglomeration may occur throughout the growth period.

2.2.2 Particle shapes during precipitation

Images from electron microscopy often show the complexity of particle structure.
Particles formed by growth from solution can be crystals with well-defined crys-
talline faces, but may be agglomerates of smaller (nanometric) particles. In this
case, agglomeration can be due to Brownian motion and the subsequent collision
of particles, but also to the contact of specific crystalline faces belonging to two
particles. The first situation leads to random agglomerate with spherical symmetry.
The second phenomenon, also called orientated agglomeration, leads to regularly
shaped particles (i.e., cylinders as disks stack). It must be underlined that the mech-
anism of orientated agglomeration is still being studied. Whatever the structure of
particle, crystals, random or ordered agglomerate of nanoparticles, their geometric
characteristics are easily determined by image analysis of electron micrographs.

However, these particles are rarely separate. They form agglomerates after col-
lision due to Brownian motion and/or shear flow. The structure of agglomerates is
disordered and is often considered as fractal-like. However, the reader must keep
in mind that these agglomerates consist of only a few particles.

Fig. 2.1 presents agglomerates of SrMoQ,, strontium molybdate, crystals
(Cameirao et al., 2008). They are obtained by precipitation:

SrCly + NagsMoO4 — SrMoQOy4 + 2NaCl.

Bipyramidal crystals in the size range 3-10 um are formed. Agglomerate size is in
the range 20-80 pym.
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ENSM SEI 150KV  X4500  1gm  WD9.6mm

Fig. 2.1. Agglomerate of SrMoO4 crystals.
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Fig. 2.2. Multi-scale ZnS agglomerate.

Fig. 2.2 presents agglomerates of zinc sulphide particles (Mekki-Berrada et al.,
2005). They are obtained by homogeneous precipitation:

ZnSO, + CH;CSNH; + 2H;,0 1 7nS + CH;COoH + NH{HSO; .

ZnS particles are sphere-like with a mean size equal to 3 um. They consist of
nanoparticles, 30 nm sized (one may observe an intermediate structure in the range
100...300nm). Micro-particles seem relatively dense. However, porosity and inner
structure depend on the acidity and temperature. Micro-particles collide to form
agglomerates in the range 20-60 pm.
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Fig. 2.3 shows ordered agglomerates resulting from the stacking of Ni(OH),
nanosized disks (Coudun et al., 2007). They are obtained by precipitation from
nickel di-dodecylsulfate and ammonia:

Ni(DS); + 20H™ goié Ni(OH), + 2DS™ .

wu 00c

Fig. 2.3. Ni(OH)2 nanosized agglomerates.

2.2.3 Dynamics of precipitation: modelling

In order to manage the complexity of precipitation dynamics, each particle in the
precipitation reactor is characterized by space coordinates (x,y, z) and internal co-
ordinates p; (i.e. radius, characteristic lengths of crystal, volume, porosity, gyration
radius, fractal dimension, ...) with 1 <i < P.

The larger the number P, the more comprehensive the description of the
particles. So, the population density function n(x,y,z,p1...pp) is such that
dN =ndxdydzdp, ...dpp represents the number of particles with z in the range
[x;  + dx], p; in the range [p;p; + dp;].

This population density obeys the population balance equation (PBE), that can
be formally written as:

P
% = —ﬁ~(ﬁn)—; 8ii(ai(5)n)+JN(s)6(p1—plc)...6(pp—ppc)+Vag, (2.1)

where ¥ is the particle velocity, ¢ is the time, G; is the growth rate for the p;
parameter [G; = (dp;/dt)], 0 is the Dirac function, p;. is the internal parameter
corresponding to the critical nucleus, Jy(5) is the nucleation rate as a function of
the supersaturation S, and V,, is the agglomeration rate.

More often, the following assumptions are used:

—  homogeneous suspension
— only one internal parameter (particle radius)
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— agglomeration taken into account only at the end of nucleation and growth
— fractal-like agglomerates with constant fractal dimension

For fractal-like agglomerates, the relation between the number j of primary parti-
cles inside the agglomerate and its outer radius R; is:

j 1/DF

where a is the radius of the primary particle. Dg and S,. are respectively the fractal
dimension and the structure factor, which is a function of Dp.

Attempts to consider two internal parameters (radius and length for particles
such as a needle, solid volume and surface area for porous particles) have also been
made (Tandon and Rosner, 1999; Kostoglou et al., 2006).

Summing up, precipitated particles have a multi-scale structure. One commonly
observes three characteristic length values: 20nm, 2 um, 20 gm. Sometimes, only
two (2 pm, 20 um) are observed. The smallest particles are most often dense and
spherical. The intermediate particles are relatively dense and have a well-defined
shape (i.e. sphere, cylinder, ellipsoid, etc.). The largest scale corresponds to dis-
ordered or random agglomerates. The reader interested in details of precipitation
and population balance may refer to Sugimoto (2000) and Randolph and Larson
(1988).

2.2.4 Particle sizing during precipitation

Considerable efforts are made to understand the precipitation mechanisms and
to predict the change of the particle morphology with time. On the other hand,
industrialists need to monitor and control the precipitation process. Off-line size
measurements (i.e. using filtration, powder drying and scanning electron micro-
scope (SEM) observations or suspension sampling and sizing with granulometers)
are now avoided because these operations modify the particle morphology. On-line
measurements (i.e., using a recirculation loop with a measurement cell in a granu-
lometer) are possible, but representative sampling is difficult to carry out. In-line
measurements are preferred. They are often based on light extinction and are ob-
tained from turbidimetric sensors. So, turbidimetry will be at the centre of this
chapter.

Typically, the optical sensor for particle sizing is not the only one in the precip-
itating suspension. The temperature probe and concentration sensors are always
introduced into it. Thus, supersaturation and solid fraction (via mass balancing
from solute concentration) are deduced and, as a consequence, are known.

A turbidimetric sensor records the transmitted light intensity I;. One defines
the extinction coefficient or turbidity! as (see, for instance, Elimelech et al., 1995):

T = 1 In I

g (2.3)

! Definitions and notations in Egs. (2.3)(2.5) are used by researchers in the field of par-
ticle sizing concerning suspensions. Other researchers prefer these ones: 7* = —In(I;/1)
and oege(A) = 7°(A)/L where 7% and oeqt are the optical thickness and the extinction
coefficient, respectively.
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Ip and L are the incident light intensity and the geometrical thickness of the
medium, respectively. For a monodisperse diluted suspension, the turbidity obeys
the equation:

T(A) = N(@5,Ys, 25,01 - - PP) Cezt (A, p1 - - . PP) (2.4)

The functions N and C¢,; are the particle number concentration and the extinction
cross-section of the particles. (xs,ys, z5) are the coordinates of the sensor in the
reactor.

For a complex diluted suspension, turbidity contains the contribution of each
kind of particles:

T(A) = / n(zs,Ys, 25,01 - - - PP) Cext(Nip1 ... pp)dp1 ... dpp. (2.5)
[p1...pP]

Thus, the turbidity monitoring gives information on the population density change
with time during the precipitation process.
Two strategies can be considered for the analysis of turbidity signals:

— inversion of the integral equation (Eq.(2.5)) in order to get the population
density. Then, comparison to PBE (Eq.(2.1)) solution and identification of
unknown physicochemical and morphological parameters (i.e., fractal dimen-
sion ...)

— PBE (Eq. (2.1)) solving; calculation of 7(A) (Eq. (2.5)); comparison with experi-
mental turbidity for deducing the unknown physicochemical and morphological
parameters

For numerical reasons, the last one is preferred. However, whatever the strategy,
the knowledge of Cept(A,p1...pp) is needed.

The extinction cross-section is dependent on the relative refractive index m,
which is the ratio between the refractive indices of the material and the suspending
medium. Three typical cases can be envisaged: low optical contrast m—1 value
(0 < m—1 < 0.1), moderate contrast m—1 value (0.1 < m-1 < 0.5) and high
optical contrast m—1 value (m—1 > 0.5). Corresponding materials (suspended in
water) could be, respectively, silica SiOg (m = 1.08), alumina Al;O3 (m = 1.20)
and titania TiOg (m = 2).

We will focus our work on non-absorbing (in the visible range) materials that
are most commonly found in the precipitation process. Thus, scattering Cs., and
extinction Ce,y cross-sections are equal.

It is obvious that PBE solving, cross-section calculation and optimization pro-
cedure require great computational efforts and make it difficult to get results in a
short time. Therefore, any rapid calculation of the optical cross-sections would be
a step forward. The accuracy of approximations has to fit the measurement accu-
racy. In the case of turbidity, measurements within 3% error can be considered as
satisfactory.
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The need for approximations is particularly important for agglomerates?. Fast
calculations have to be based on known approximations coming from light scatter-
ing theory. The next section briefly recalls them.

2.3 Approximations for non-spherical particles

The scattering cross-section is a function of the dimensionless particle size param-
eter z (= ka for a sphere), the particle and the medium optical refractive indices
respectively denoted n, and n,,, the wavelength A (and the wave number k = 27/X)
of the incident light in the medium and the orientation of the incident light in the
relation of the particle position. The relative refractive index m, which is used in
the following equations, is the ratio between the material refractive index n, and
the medium refractive index n,,.

The exact theory was developed for a sphere in 1908 by G. Mie (see van de Hulst,
1981) and for spheroids by several authors (Asano and Yamamoto, 1975; Asano,
1979; Asano and Sato, 1980; Voshchinnikov and Farafonov, 1992; Farafonov et al.,
1999).

In this section, three classical approximations are recalled: the Rayleigh approx-
imation, the Rayleigh—Gans—Debye approximation and the Anomalous Diffraction
approximation. Principles are presented and an application is given for a sphere.
The reader interested in details on scattering theories may refer to Van de Hulst
(1981) and Kokhanovsky (2001).

2.3.1 Rayleigh approximation

The Rayleigh approximation that considers the scatterer as an oscillating dipole
has a validity range of x < 1, |mxz| < 1. So, the scattering efficiency factor for a

sphere is:

2 2

m* —1
m2+ 2

8 4

Qsca = gx

(2.6)

and the scattering cross-section is Cseq = QscaG (G represents the particle pro-
jected area, for a sphere G = wa?).

A comparison between this approximation and the Mie exact theory shows
that the validity range, in terms of maximum size, varies according to the relative
refractive index and the scattering angle (Mishchenko et al., 2002, 2004).

2.3.2 Rayleigh—Gans—Debye approximation

The validity range of the Rayleigh—Gans—Debye approximation (RGD) is: 2z|m —
ll<1land |m—1| < 1.

2The term aggregation corresponds to the formation of a cluster, the primary particles
of which only interact by physical forces such as van der Waals forces. On the other
hand, agglomeration is aggregation followed by strengthening at the contact point in a
supersaturated solution. Aggregate and agglomerate optical properties will be treated in
the same way.
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Fig. 2.4 represents a particle with an unspecified shape lit by a plane wave
being propagated along the axis z’. It is supposed that each volume element is a
Rayleigh scatterer and behaves independently of the other particle volume elements.
The scattering waves of all these volume elements interfere. The phases of all these
scattering waves are ascribed to a common coordinates reference in order to handle
their amplitude.

incident

T

Fig. 2.4. RGD approximation.

The expression of the contribution, of the volume element AV located out of
O, to the scattering field by the particle is:

i kr—ik-z
AEH,sca _ Sy 0\ e . AV E||,inc ’
AE_L,sca 0 Sl —i-k-r EJ_,inc
The contribution of a volume element located in O’ will be:
ik(r—
AE|H,sca _ Sy 0 61‘ (r—2) AV eié EH,inc -
A-EJ_,sca 0 Sl —i-k-r EJ_,inc

with § = kR e (e, — é,) and R=00". S1 and Sy are the amplitude functions per
volume unity:

k3 k3

Sp ~ —Z—(m— 1) and Ss =~ _w

2

-1 .
o (m—1) cosé

0 is the scattering angle.
Integration is done with respect to particle volume V' to obtain the total field
in the direction €. So, the amplitude functions for the particle are:

ik® ik®
S)=——(m—-1Vf and Sy = ———(m — 1)V f cosf.
2m 27

The form factor f obeys:
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L
f—V/Ve av (2.7)

that becomes for a sphere:

3. ,
flu) = E(smu—u cosu), u=2x sin o -

It follows for a spherical particle (Van de Hulst, 1981) that:

= " 7Ta2 a
Quea = / F(6)d/6(ra?), (2.80)

where,

4
F(9) = ﬂ-a2§|m — 1%z f? <2:1: sin g) (1+cos®f) sinf. (2.8b)

2.3.3 Anomalous Diffraction approximation

This approximation, due to Van de Hulst, bears the name of anomalous diffrac-
tion (AD) because, for low optical contrast, the light passing through the particle
(transmitted without deflection) interferes with that diffracted, then producing a
diffraction known as anomalous (Fig. 2.5).

Let us consider particles such as: > 1 and |m, — 1| < 1 (see the discussion
of Videen and Chylek (1998) and Liu (1998)).

The second condition implies that the rays are not deviated when they cross
the interface particle-medium and that the reflection is negligible with the same
interface. Extinction is therefore due to:

— absorption of the light passing through the particles
— interferences between the light passing through the particle and that passing
around it

EEENNN

Fig. 2.5. Anomalous Diffraction approximation; ray passing through a sphere.
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Following Van de Hulst (1981), one derives:

47

Cemt = 2

2
Re {S(0)} with S(0) ;i // (1 e~ k=11 gy 1
Y
[Sp]

Integration is performed over the particle projected area .S, on a plane perpen-
dicular to the propagation direction. [ is the computed path of light through the
particle, which is a function of the projection coordinates  and y. The integrand
represents the subtraction with ‘the part of shade’ (value 1) of the rays passing
through the particle (e~#*(m=1b),

If m is real,

Cseqa =2 // [1— cos(kl(m —1))] dS,. (2.9)
(S

Therefore, it follows for a sphere
4 4
Qsca :Qemt =2-- Slnp+7(1—COSp)7 (210)
P P

where p = 2z(m — 1).

The anomalous diffraction was applied to a sphere and an infinitely long cir-
cular cylinder (Van de Hulst, 1981), a prism column (Chylek and Klett, 1991), a
hexagonal crystal of ice (Sun and Fu, 1999), ellipsoids (Lopatin and Sid’ko, 1988;
Streekstra and Hoekstra, 1994), a short cylinder (Liu et al., 1998) and other various
forms (Sun and Fu, 2001; Yang et al., 2004).

A comparison between AD and the exact theory (Liu et al., 1998) suggests that
AD estimates the extinction more precisely in the case of a random orientation of
non-spherical particles than for spheres.

The next section treats approximations for the case of clusters of spheres. The
derived approximations are directly related to the previous ones.

2.4 Approximations for aggregate scattering cross-section

This part begins with a short summary of the exact methods. It is followed by
a study of the relation between aggregate scattering cross-section and physical
characteristics. Finally, four approximations are described and an illustration in
the field of precipitation is presented.

2.4.1 Exact theory for non-spherical particles and aggregates

The presented summary (see Table 2.1) of the different exact methods is not exhaus-
tive. But we try to show several methods used to calculate the optical properties
of an aggregate. We invite the reader to consult the article of Kahnert (2003) to
have a more complete range of these methods and the papers series of Mishchenko
et al. (2007, 2008). It is rather difficult to classify them precisely and especially to
enumerate all of them. Nevertheless one can classify them in three main categories:
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Table 2.1. Methods for treating the light scattering by a non-spherical particle or an
aggregate (N is the number of operations in the algorithm (Kahnert, 2003))

Name

Principle

Applications

Strong and weak
points

Methods based on partial derivative equations

SVM
Separation
of Variable
Method

FDTD
Finite
Differences
Time
Domain

FEM
Finite
Element
Method

PMM
Point-
Matching
Method

Method applied in the case
of the Mie theory; it can be
applied when the boundary
of the considered particle
coincides with the reference
frame.

This method consists of
discretizing the Maxwell
equations, in space and
time. Then to solve them it
is necessary to start from
the initial values (Yang and
Liou, 2000).

This method consists in
discretizing the Helmholtz
equation in space and
solving numerically using
the boundary conditions
(Coccioli et al., 1996).

In this method, the in-
ternal and external fields
are expressed as a spheri-
cal harmonic vector. The
tangential field at the
boundary of a particle must
be continuous for a fixed
number of points belonging
to the particle surface.

In any reference
frame, where the
variables separa-
tion can be applied.
Asano and Ya-
mamoto (1975) used
this technique to
determine the opti-
cal properties of a
spheroid.

All particle shapes.

All particle shapes.

Normally all par-
ticle shapes, but
problems are known
for the elongated
geometries.

— The solution ob-
tained is known as
exact but calcula-
tions are long

— the operation for
each orientation
must be repeated

- N =~ O(z?)

— the operation for
each orientation
must be repeated

- N = O(z*)

— the operation for
each orientation
must be repeated

— the precision de-
pends on the grid
which must be se-
lected according to
the particle shapes

~ N =~ 0(z")

— this method is
limited to the
quasi-spherical
particles, it has a
dubious conver-
gence, and thus,
requires a long
CPU time (Wriedst,
1998).
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Table 2.1. (Continued)

Name Principle Applications Strong and weak
points

Volume or surface integration

VIEM The field inside and outside Inhomogeneous, — MOM and DDA

Volume the volume is expressed in anisotropic particles. have a long CPU

Integral terms of incident and inter- time

Equation nal fields for the selected — the operation for

Method volume. each orientation
— the internal field is eval- must be repeated
uated by considering, for — N =~ 0(z2)

each volume element, as
being constant: MOM
(Method of Moments)
(Harrington, 1968). Alter-
natively,

— each element is regarded
as a dipole: DDA (Discrete
Dipole Approximation)
(Draine and Flatau, 1994)

1. Methods based on the partial derivative equations which calculate the scattering
field by solving the Maxwell equations or the Helmholtz equation. They are
subjected to the boundary conditions suitable in the time or the frequency
domain.

2. Methods based on integration over volume or surface of equations derived from
the Maxwell equations. Thus, the boundary conditions are automatically in-
cluded in the solution.

3. The other methods are known as hybrids since they derive from the various
approaches.

It is important to specify the meaning of the ‘T-matrix method’ expression
which is found in a lot of publications. In the T-matrix method, the incident and
scattering fields are expressed in the form of a series of spherical vector wave func-
tions. This approach is named the T-matrix method when the expansion coefficients
of the incident wave and the scattering wave are connected by a linear transfor-
mation (T is for transition). This matrix T contains all the information on the
particle’s optical properties for a given wavelength. It is a function of the size pa-
rameter, the shape, and the optical refractive index of the considered particles, but
it does not depend on the incident field. Thus this matrix is not to be computed
at each particle orientation change or change of the incident wave direction.

To classify the publications set relying on this method, a database review was
carried out by Mishchenko et al. (2004, 2007, 2008). This method is, in fact, a
technique of calculation, which is found associated with various methods (e.g.,
SVM). Thus, any method making it possible to formulate the problem in the way
of a matrix T is called the T-matrix method.
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The solving by separation of variables (SVM) for only one sphere can be en-
larged to an aggregate of spheres by using the translation theorem for the spherical
wave vector functions which expresses them in various bases of coordinates, and,
by applying a superposition principle. The total scattering field for an aggregate is
then represented by the superposition of the individual scattering fields resulting
from each particle in the knowledge that these fields are interdependent. Moreover,
one can formulate the problem as a T-matrix. This method is very precise but
its computation time depends on the number and the size parameter of primary
particles.

We will use in the continuation of this text a method which is in fact a particular
case of the T-matrix method (Mishchenko et al., 2004) bearing the name of GMM
(Generalized Multi-particle Mie-solution).

We did not find a comparison of the various methods, except for an article of
Hovenier et al. (1996) which compared the T-matrix (method by surface integra-
tion), SVM and DDA. This article shows that the last is not completely in agree-
ment with the two other methods. As no study was undertaken in this direction,
the work presented in this article is achieved with a method which seems, closest to
the one used for a simple sphere and validated by experiment (Xu and Gustafson,
2001): GMM. The details of GMM are given by Xu (1995, 1996, 1997a,b, 1998a).

2.4.2 Main features of the scattering properties of aggregates

We present a summary of the main features of the scattering properties of ag-
gregates. Results come from the calculated optical properties of aggregates such
as:

— aggregates of spherical primary particles

— number of primary particles in the aggregate N € [1, 100]

— primary particle size parameter (z) in the range: [0.013, 9.25].

— three different materials (SiO2, Al;O3, TiO2); non-absorbing materials

Optical properties are calculated by using GMM theory.
First of all it is interesting to study the effect of the inter-particle distance on
the scattering cross-section.

2.4.2.1 The case of a two-sphere set

The evolution of the scattering cross-section of a two-sphere set according to the
type of material, their size parameter and the center to center distance has already
been studied by Mishchenko et al. (1995) and Quirantes et al. (2001).

The Kx, parameter for different materials was used. K x,, is defined as the ratio
between the scattering cross-section of an aggregate and the sum of scattering cross-
sections of N primary particles which form this aggregate (so, the denominator
assumes non-interacting and non-interfering spheres).

Cxu,N

Kx, = —2>—.
X NCisien

(2.11)
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The two spheres, denoted i and j, were gradually separated (center to center) by
a factor Fj; proportional to their diameter, until they did not interact any more
(Kxy is equal to 1). As the separation distance is denoted d;;, the factor obeys the
relation:

Fij = dij/(2a) ,

where a is the radius of the primary particle.

According to Fig. 2.6, for size parameter smaller than 0.5, the smaller the pri-
mary particle is, the greater the distance factor must be to obviate any interaction.
We therefore endorse the conclusion of Kolokolova and Gustafson (2001): a sus-
pension consisting of Rayleigh scatterers as primary particles has to have a very
weak volume fraction to avoid multiple scattering, whatever the relative refractive
index.

Interaction between particles cannot be ignored even if F;; > 4 (for the whole
range of the size parameter).

For spheres in contact, K x, (Fig. 2.6) increases with decreasing size parameter
up to a value close to 2. When the two spheres are large enough, the deviation from
the non-interacting limit is negligible (e.g., Kx,, < 1.1 for > 5).

It therefore appears useful to evaluate the critical inter-particle distance for
which interaction is negligible. An approximate method for aggregate optics calcu-
lation could take it into account.

2.4.2.2 The case of aggregate (N > 2)

Auger et al. (2003) studied the relation between the extinction cross-section of an
aggregate, its shape (linear or compact configuration) and the number of primary
particles (2, 4, 8, 13) in the case of titania TiOs (the optical refractive index be-
ing equal to 2.8). In this article, the average extinction cross-section (average on
the polarization and the incident wave direction) divided by the aggregate volume
(made up of monosized spheres) is calculated, according to their particle radius
(between 0.04 pm and 0.132 pm). It is found that there exist two size ranges (for
A = 0.546 um). For a primary particle radius smaller than 0.08 ym-0.09 um, an
isolated primary particle scatters less than if it was contained in an aggregate.
Primary particles belonging to the second range behave in an opposite way. They
show that there exist two size ranges concerning the effect of aggregate shape:
in the first range, a compact configuration scatters more than linear configura-
tion, and conversely for the second range. Lastly, a comparison with the equivalent
sphere approximation shows that the latter is not suitable. Auger et al. (2005)
and Jacquier and Gruy (2007a) perform similar studies in the way that they com-
pare the scattering cross-section for various configurations. The Auger et al. (2005)
study is based on the distribution of randomly generated aggregates by classical
mechanisms of aggregation.

Jacquier (2006) and Jacquier and Gruy (2007a) enlarged the study using differ-
ent optical refractive indices, a greater range of the primary particle size parameter,
and different configurations. They noted the effect of the primary particle number
and the aggregate morphology. The results are summarized in the two next para-
graphs.
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Fig. 2.6. Evolution of Kx, according to the size parameter and the distance factor
ranging between 1 and 100 for the three materials (SiO2, AloOs, TiO2).
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o Effect of the number of primary particles on the scattering cross-section

In the paper of Jacquier and Gruy (2007a), two extreme configurations were com-
pared (linear and compact configuration). For each configuration, Jacquier and
Gruy noticed that there exist two ranges. The first is for K, larger than 2, and
the second is for Ky, ranging between 0 and 2. The value of the size parameter
of the primary particles corresponding to the range boundary is a weak function
of the optical refractive index, the primary particle number and the configuration.
However, the authors suggest the first range for z € [0, 2] (Fig. 2.7(a)) and the sec-
ond one for x € [2,10] (Fig. 2.7(b)) (the limit of their study is for a size parameter
smaller than 10). They conclude (as shown in Fig. 2.7):

Py
‘E) ——2 spheres 20
18 4 spheres 12
16 |
‘14 \ Si0, -« « «B spheres v BL~a
0 \ — — 16 spheres 2 "'-\,g_ -
3 \ ] ———
g1l \ ¢10
8 08
s :
) e 0y £ 50
T = v
1 S S S R S 00—
00 05 10 15 20 2 4 6 8 10
X X
a b

Fig. 2.7. Kx, as a function of the size parameter for the linear configuration with N
primary particles (2, 4, 8, 16) and for SiO2 (Jacquier and Gruy, 2007a): (a) for the range
z € [0,2] and (b) z € [2,10].

for « € [0, 2], the larger the number of primary particles, the larger the scatter-
ing cross-section whatever the configuration. Indeed, in the case of very small
size parameter, the aggregate scattering cross-section is proportional to the
particle number square and to the primary particle scattering cross-section
(Cxy,n x N 2C’Mie,l). This relation is checked on a lesser scale by aggregates
with high refractive index (e.g., TiOz). In addition the decrease of Kx,(x)
seems to depend on the configuration.

for x € [2,10], Kx.(z) is not yet equal to 1 (Fig. 2.7(b)), i.e. the aggregate
scattering cross-section is not the sum of the scattering cross-sections of each
primary particle.

o Effect of the aggregate morphology on scattering cross-section

As illustrated in Fig. 2.8, it is possible to establish a classification of the configura-
tions according to their scattering cross-section. In the x-domain, where Kx, > 1,
the scattering cross-section of the compact configuration is higher than that of the
plane configuration, itself higher than that of pl and p2 configurations (which are
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Fig. 2.8. Kx. as a function of the size parameter for aggregates with four primary
particles (linear, compact, plan, pl, p2) for Al,Os.

very close Fig. 2.9). The linear configuration is the weakest. The order is reversed
for the other z-domain (Kx, < 1). Thus, there are two extreme configurations,
linear and compact, between which are other configurations.

& § 83

compact  linear plan pl p2

Fig. 2.9. Different aggregate configurations in the case of four primary particles.

The primary particles arrangement, i.e. the aggregate configuration, is not with-
out effect on the scattering cross-section, nevertheless, the number of primary par-
ticles in it is the prevailing parameter in the range x € [0;2]. In the second range
(z € [2;10]), the configuration is more important than the number of primary
particles.

2.4.2.3 Conclusion on aggregate scattering cross-section

The study of scattering (Cs.,) cross-sections of aggregates obtained with the exact
method revealed that:

— the distance between particles is a relevant parameter for Cyeq,

— different aggregate configurations, following its shape or the number of primary
particles which it contains, are perfectly distinguishable,

— the number of primary particles is the relevant parameter in the case of small
size parameter z (z — 0, Cxy N < N*Chrie1),
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— there exists, for an aggregate with a given number of primary particles, two
extreme configurations (linear and compact) between which the cross-sections
of the others are located.

2.4.3 Approximate methods (CS, BPK, AD, ERI) for aggregates

In this subsection, we describe different approximate methods: the Compact
Sphere method (CS), the Berry—Percival-Khlebtsov method (BPK), the Anoma-
lous Diffraction method (AD), and the Effective Refractive Index method (ERI).
A first comparison between these four methods was published by Gruy (2001) in
connection with aggregation of SiO5 micro-particles in water.

The study of the parameters influencing the optical properties of aggregate
began with Fuller and Kattawar (1988a,b). Rouleau (1996) compared several ap-
proximate methods for optical properties based on:

—  RGD approximation

— Non-interacting spheres

— Equivalent volume sphere

— Equivalent projected area sphere

This study was carried out only for compact aggregates with 30 primary particles
whose size parameter was smaller than 0.6 and the refractive index was kept con-
stant (m = 1.7 + 0.17). He concluded that the abovementioned methods are not
efficient except the one using the projected area.

The differences between the methods quoted in the next paragraphs are evalu-
ated in Table 2.2. We chose to differentiate porosity and arrangement. The validity
range of all these methods is normally the whole size parameter range except for
AD, which, as already mentioned in subsection 2.3.3, is to be used only in the case
of large particles.

Table 2.2. Comparison of approximate methods

Method Does it take into account: Does it use:

the arrangement? the interactions? Maxwell-Garnett equation?

(porosity)
CS no no no
ERI yes no yes
BPK yes yes no
AD yes yes no

In the next subsections, scattering cross-section values from the approximate
method (Chethoa,n) and the exact method (Cx, n) will be compared. Then, the
ratio K, is defined as:

Omethod N
K, = ———— 2.12
" Cxu,N (2.12)
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2.4.3.1 The Compact Sphere (CS) method

This method has to be mentioned because it is used as the first coarse approx-
imation by investigators and by particle sizer manufacturers. One finds it under
the name of equivalent sphere (in volume), and it will be compared with the other
methods.

N=1 \ \ _/_. . n=i
. — >
Equivalent { =
J{ (!
sphere ~

P
'
1)

C,.(n=8)=C,__ (N=1) C,(n=8)=C,_ (N=1)

Fig. 2.10. The Compact Sphere method.

The aggregate is regarded as a full sphere, i.e. containing all the matter
(Fig. 2.10). This method can be valid for aggregates of high compactness. The
scattering cross-section Ccg, n is then evaluated with the theory of Mie.

As shown in Fig. 2.11, the CS method overestimates the scattering cross-section
for < 7, whatever the configuration. As we will see in subsection 2.4.3.3, an ag-
gregate can be considered as a (porous) sphere with an effective refractive index.
Whatever the chosen equivalent sphere, the value of the scattering cross-section cal-
culated by Mie theory is always smaller than the one obtained from the CS method.
Moreover, this method does not take into account the interactions (interference and
interaction).
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Fig. 2.11. The Compact Sphere approximation: K,, as function of the size parameter
for SiO2 (a) linear configuration, (b) compact configuration.
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2.4.3.2 The Berry—Percival-Khlebtsov (BPK) method

This method originates from the work of Berry and Percival (1986) and Khlebtsov
(1996). The three following points constitute the stages of the BPK method.

Step 1: Evaluation of the angular contribution of each primary particle to the

scattering cross-section:
Fi(6) = Citie. F(6), (2.13)
Crep 1
where F(6) comes from the RGD approximation for a sphere (see Eq. (2.8b)). F1(6)
is the corrected function for F'(#) in order to verify: f(;r F1(0) df = Chsie,1-

Step 2: Calculation of the interferences of scattering waves for each pair of
primary particles leading to a structure factor S which does not depend on polar-
ization. The structure factor is related to the aggregate morphology through the
inter-particle distances.

N
S@O)=|N+ > Ry /N?, (2.14a)

i=j=1,i#]

o (2t 5in (5)) -

A
2kd;; sin <2>

and d;; is the distance between ¢ and j particles.
Step 3: Use of a corrective coefficient d taking into account the multiple scat-
tering (Berry and Percival, 1986)

where

3 (3 ’
d_1 = |:1 — ﬁ(—aﬂpr — Grlpi):| + [W(arlpr - ailpi):| ’ (215)

with

ar1 and a;; are the real and imaginary parts of the first Mie coefficient a

N
pr=2 Z pr1(kdiz)
J>iyi=1
N

pi=2 Y pu(kdy)

pri(z) = (cos:cfl(ac) - Sinfﬂfz(ﬂf))/ﬂ62
pi(z) = (sinz fi(z) + cosa:fg(m))/:r2

fi(z) =sinz — gf(x) + 1 (f(x) B Sinx)

T T
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Fig. 2.12. The BPK approximation: K,, as function of the size parameter for SiO2 (a)
linear configuration, (b) compact configuration.

sinx

fa(x) = - f(x)

x

3.

f(z) = ﬁ(smx — I cosx)

Conclusion of steps:
Cppr.n = N%d / F1(0)S(0) do (2.16)
0

Fig. 2.12 shows that the BPK method is a satisfactory approximation of the
exact method for the small size parameter (z < 2). The BPK method leads to an
error smaller than 10% for a size parameter ranging between 0 and 2 in the case
of SiO2 and of AlyO3. For higher refractive index (i.e. TiOz), the error increases
until it reaches 30% (for more restricted size parameter range [0; 1]). The BPK
method shows that the pair interactions must be taken into account only for small
size parameters; their contribution in scattering cross-section calculation is less in
the case of large aggregated primary particles.

2.4.3.3 The Effective Refractive Index (ERI) method

We have shown in subsection 2.4.2.2, that the location of the primary particles
inside an aggregate and its shape had an effect on the scattering cross-section.
The effective refractive index (ERI) method considers the shape. Knowing that the
projected area of the scattering body (on the plane (E, H) of the incident wave) is
a relevant parameter in optics, we consider an equivalent sphere starting from the
aggregate projected area (Fig. 2.13).

Projection is carried out according to several successive planes (plane perpen-
dicular to the incident wave vector). This corresponds to random rotation that
takes place in a real situation (for instance, aggregate in a turbulent flow). Then,
an average projected area (Sp)¢ is calculated and an equivalent projected area
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Fig. 2.13. Projected area representation.

sphere is defined. Successively, it can be deduced, the equivalent radius ay ., the
solid volume fraction inside the sphere ¢, = (Na})/ a?v’e, the effective refractive
index m, using the Maxwell-Garnett theory

mgfl_6 m? —1
m24+2  m24+2°

and then the extinction cross-section Cgrr v by means of Mie theory. This method
is more efficient than the other equivalent sphere methods, because the solid volume
fraction in this sphere is always high (0.1 < ¢, < 1).

ERI method behaves differently according to the configuration for small size pa-
rameter (Fig. 2.14). Indeed, Csca value calculated with this method is higher than
the scattering cross-section calculated with the exact method for a linear configura-
tion (Fig. 2.14(a)). This deviation can be taken in consideration and calculation has
to be corrected in order to reduce the deviation between ERI and exact methods.

Jacquier and Gruy (2007a,b) proposed a corrective factor F'(x,d;/a) for the
scattering cross-section Cgrr . This is written as:

C%OI?IG,N ZCERLN/F(J?,dl/a), (2.17)
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Fig. 2.14. The ERI approximation: K,, as function of the size parameter for SiO2 (a)
linear configuration, (b) compact configuration.
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where d; is a morphological parameter defined as:

1
dy = N D izjdij (2.18)

2.4.3.4 The Anomalous Diffraction (AD) method

In subsection 2.4.2.2 it has been already mentioned that morphology becomes more
important for large size parameters. The anomalous diffraction approximation, clar-
ified in subsection 2.3.3 (Van de Hulst, 1981), accounts for the aggregate morphol-
ogy by means of the intercept (chord) of a light ray and the aggregate (Fig. 2.15).

i / 7
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Fig. 2.15. Definition of a chord.

The various possible chords I, 5 ... were evaluated and introduced as [ = El l;
into Eq. (2.19)

Cabn :2{{4 (1—cos2;l(m—1)> dydz=2[{4 (1 — cos(l/a)(m — 1)) dydz.

(2.19)
[Sp] is the projection plane. Details or examples on expressions relating {/a and
(y, z) can be found in Yang et al. (2004) and Gruy and Jacquier (2008).

This calculation is repeated while rotating the aggregate or changing the pro-
jection plane. So, a mean value of scattering cross-section is deduced (Fig. 2.16). As
expected, the AD method is not suitable for small size parameters but proves to be
a good approximation for a size parameter higher than 2. It is important to recall
that AD is strongly related to the configuration (morphology) since it includes in
its formulation the chord length distribution of the aggregate.



2 Scattering theories to the characterization of precipitation processes 61

] | —— 2 spheres
L\ $i0, — - =4 spheres 1', \,\ $i0, 4 spheres

{l —— 2 spheres 145
!
.
I

- - - - 8 spheres 135 0 - - - - Bspheres
\ — — 1Bspheres I — — 16 spheres

Fig. 2.16. The AD approximation: K., as function of the size parameter for SiO2 (a)
linear configuration, (b) compact configuration.

2.4.3.5 Summary

Approximate methods facilitate the estimation of the aggregate scattering cross-
section in a short computation time. Jacquier and Gruy (2007a) evaluated the
performance of these four approximate methods with respect to the exact method:

— Methods replacing an aggregate by a compact sphere (CS) are inappropriate.

—  The BPK (Berry—Percival-Khlebtsov) method is valid for 0 < # < 2 with an
error which increases with the material refractive index.

— The corrected ERI (Effective Refractive Index) method is the approximate
method capable of efficiency over all size parameters. The error for a scattering
cross-section is always smaller than 5%.

— The AD (Anomalous Diffraction) method works fairly well for 2 < z < 10 and
is less sensitive to refractive index variation.

2.4.4 Application: turbidity versus time during
the agglomeration process

As mentioned in section 2.2, nucleation and growth lead to (primary) particles with
a size between 0.1 ym and 10 pm. Then, these particles collide and agglomerate
by Brownian motion and/or local shear. So, let us consider agglomeration of small
monosized primary particles in a homogeneous suspension. Agglomeration proceeds
as a bimolecular reaction, the kinetic constant of which can be expressed in terms
of known quantities. Generally, the kinetic constant is a function of the sizes of
the two colliding particles. However, in the case of Brownian agglomeration or
shear agglomeration (but not for shear aggregation, i.e without consolidation of
the particle cluster), the kinetic constant K,, weakly depends on the particle size,
so that we may consider it as not dependent on particle size. Following Kruyt
(1952), modeling of agglomeration with constant K,, leads to simple expressions
for number concentrations in the agglomerate:
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N; = No(t/tey (1 +1/t) 1. (2.20a)

Nj; is the number concentration in agglomerate consisting of j primary particles.
Ny is the number concentration in primary particles at time ¢ = 0. There is no
agglomerate at t = 0. t. is the characteristic time of agglomeration. It obeys:

te =2/(KogNo) . (2.20b)

For instance, t. = 3u/(4kT Noa) for Brownian agglomeration. T, k and p are the
temperature, the Boltzmann constant and the dynamic viscosity, respectively. a is a
non-dimensional parameter representing the agglomeration efficiency (0 < a < 1).
For the sake of simplicity, we consider this parameter as a constant throughout the
agglomeration process.

It will be pointed out that t. and then /N; do not depend on the agglomerate
morphology. The previous expressions are approximate, but are considered as a
first and realistic approach to agglomeration dynamics.

At a given time, the turbidity of the suspension contains the contribution of
each j-agglomerate:

ZN Pl ) Cem(N\m,pl . pl). (2.21)

Following the ERI method, the internal coordinates relevant for scattering cross-
section are a (the primary particle radius), j, (Sp)o. Even if the characteristic time
does not depend on the morphology, it appears that large agglomerates have a
fractal-like structure. Depending on the agglomeration mechanism, simulations give
values of fractal dimension between 1.8 and 2.6. Due to restructuring of agglomer-
ates, the fractal dimension is larger than 2. As the fractal dimension is larger than
2, the outer radius of the agglomerate is equal to the radius ag ; of the ‘projected
area’ equivalent sphere. Small agglomerates do not have the fractal-like structure.
However, we have shown (Gruy, 2001) that they can be described by means of a
power law relating ags ; and j:

ass _ ((5o\'"* _ (1) (2.22)
a ma? S, ' '

Later on, we will consider Eq. (2.22) suitable for a wide range of primary particle
numbers. Then,

t) = Nj(t,te)Ceat(A,m, j,a, D). (2.23)

Figs 2.17 and 2.18 represent the change of turbidity (normalized by 7o(\) =
NoCrerzt(A,m,a)) with time (normalized by t.) for agglomeration of silica (m =
1.08). Figs 2.17 and 2.18 show the effect of two fractal dimensions (Dp = 2.1;
Dp = 2.5) and two primary particle radii (a = 0.1 um; a = 1 um) respectively at
A=04pm and A = 0.8 um.



2 Scattering theories to the characterization of precipitation processes 63

2,5
T/T
/ 0

D_F=25 a=0.1um

D_F=2.1 a=0.1ym
1,5 4

D_F=2.1 a=1um

051 D F=25 a=1um

7‘=0.4pm

0 T T T T T 1
0 2 4 6 8 10 12

Fig. 2.17. Normalized turbidity versus time; agglomeration of silica in water; A = 0.4 um.
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Fig. 2.18. Normalized turbidity versus time; agglomeration of silica in water; A = 0.8 pm.
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2.5 Approximation for radiation pressure cross-section

2.5.1 Introduction

Often, precipitation leads to concentrated suspensions. On the one hand, transmit-
ted light intensity becomes very weak making backscattering sensors more suitable
than turbidimetric ones. On the other hand, multiple scattering takes place. What-
ever the considered signal (backscattered, side-scattered or transmitted light), the
interpretation has to account for multiple scattering. The most popular theory
which considers this phenomenon is the radiative transfer theory, particularly its
diffusion approximation (Ishimaru, 1978). The relevant phenomena associated with
backscattering measurement are either coherent or incoherent ones. The first type
result from interference caused by the double passage of the wave through the same
particle (Tsang and Ishimaru, 1984, 1985; Wolf et al., 1988; Akkermans et al., 1988;
de Wolf, 1991; Helfenstein et al., 1997). The angular width of the measured intensity
peak is proportional to the transport mean free path L. = (NC)p,) "', where N is
the particle number concentration and (), is the radiation pressure cross-section.
The second type only considers the multiple scattering: scattered light intensity is
also a function of the transport mean free path. Theoretical calculations were com-
pared to on- (off-) line experimental data for transmittance (Ishimaru et al., 1983)
and retroreflectance (Kuga and Ishimaru, 1984; Nichols et al., 1997) experiments
with suspensions of spherical beads, and a fairly good agreement between both was
found.

The radiation pressure cross-section is expressed as a function of the extinction
and scattering cross-sections, and also the asymmetry parameter (g = (cos6)):

Cpr = Uext — Csca °g-
In the case of non absorbing material:
Cpr: sca(]-*g)'

The asymmetry parameter for spheres has been calculated and analytical or em-
pirical expressions have been derived in the framework of different approximations,
e.g. geometrical optics and RGD approximations. Empirical expressions for large
randomly oriented non-spherical particles were also proposed (see Kokhanovsky,
2001). Rigorous calculations were achieved by different authors (see, for instance,
Xu (1998b)).

Up to now, calculations of radiation pressure cross-section for aggregates have
been mainly motivated by the calculation of forces acting on interstellar dust illu-
minated by stars (Kimura and Mann, 1998; Kimura et al., 2002; Iati et al., 2004).
Radiation pressure plays a key role in the dynamical behavior of submicrometer-
size grains in the stellar radiation and gravitational fields. Kimura and Mann (1998)
studied aggregates composed of 256 primary particles, the radius of which is 0.01 pm
and that are illuminated by visible light and infrared. The considered materials are
silicate and amorphous carbon as representatives of weakly and strongly absorbing
materials, respectively. Calculations for randomly oriented fractal-like aggregates
(with Dp = 2 and Dy = 3) were performed by means of the DDA method. Au-
thors showed that the asymmetry parameter smoothly increases with increasing
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size parameter x (decreasing wavelength) of the primary particle and increases as
the fractal dimension decreases if x < 0.16 (for « > 0.16, g ~ 0.7). The asymmetry
parameter for aggregates is higher than for volume-equivalent spheres, irrespective
of the constituent material. The authors point out that aggregates with small frac-
tal dimension present a large fluctuation in g for different aggregate orientations.
Kimura et al. (2002) extended the previous study to larger aggregates (N < 2048).
They compare radiation pressure cross-sections calculated from the DDA method,
Mie theory applied to volume-equivalent sphere (CS method) and Mie theory com-
bined with the Bruggeman mixing rule. CS is a rough approximation for the two
materials and two fractal dimensions. Mie/Bruggeman approximation is a good
approximation for compact aggregates, but performs weakly for loose aggregates,
especially with non-absorbing primary particles. The authors showed that Cp, is
less dependent on the porosity of aggregates while the values strongly vary with the
material composition. Iati et al. (2004) computed, through the T-matrix method,
optical properties of cosmic dust grains. Grains are aggregates consisting of 31
non-identical spheres. Materials are also silicate and amorphous carbon. Primary
particle size distribution is assumed to be Gaussian-like. The radius of the volume-
equivalent sphere is equal to 0.14 yum. For both materials, aggregation leads to a
sharp increase in the extinction and radiation pressure cross-sections. Subsections
2.5.2 and 2.5.3 are respectively devoted to the main features of C,, for aggregates
and approximate methods for estimating Cp,.

2.5.2 Main features of radiation pressure cross-section
2.5.2.1 Single sphere

The variation of the asymmetry parameter is presented for spherical particles of
various chemical compositions in Fig. 2.19.
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Fig. 2.19. Asymmetry parameter for three materials as function of the size parameter.
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The asymmetry parameter is close to zero for very small size parameters, what-
ever the refractive index. Then, it increases to a plateau close to 1 in the case
of SiO5 and AlyOs, i.e. the light is scattered predominantly in the forward direc-
tion. A spherical particle of TiO5 has a mean scattering angle which varies less
monotonously according to the size parameter. Indeed, for a size parameter equal
to 4, the asymmetry parameter is close to zero, the scattering can be then de-
scribed as dipole-like, while for a size parameter of about 6 the scattering seems
to happen in a privileged direction. Fig. 2.20 represents Cp, as a function of the
size parameter for a sphere and the three different materials. In the size parameter
range [0; 10], the radiation pressure cross-section increases as the optical refractive
index increases.
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Fig. 2.20. Radiation pressure cross-section for three materials as function of the size
parameter.

2.5.2.2 Aggregate of spheres

The variations of Cp, for an aggregate have been examined according to: the number
of primary particles, their size parameter, the relative optical refractive index and
the aggregate shape. Simulations were performed by means of the GMM method
(Xu, 1998b).

The simulation results are presented as previously: effect of the number of pri-
mary particles within the aggregate and effect of the aggregate shape on the func-
tion Px,(z). Px, is the ratio between Cp, value of an aggregate (Cpy x. n) and
one of its N primary particles considered as independent NCp, nrie,1:

Cpr,Xu,N

Px, = .
NCpnMieJ
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2.5.2.2.1 Effect of the number of primary particles on the radiation
pressure cross-section

Fig. 2.21 represents Px, as a function of the size parameter for a chain-aggregate
of SiOy primary particles. The variation of Cp, with primary particle size param-
eter is similar to that one corresponding to the scattering cross-section. Two size
parameter ranges can be defined. In the z-range [0; 2|, constructive interferences
and multiple scattering (or interaction between primary particles) are important.
In the z-range [2; 10], the radiation pressure cross-section is close to the Cp, of a
set of spheres without interaction. However, multiple scattering still occurs at some
extend.
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Fig. 2.21. Px, as a function of the size parameter for the linear configuration with N
primary particles (2, 4, 8, 16) and for SiOs: (a) for the range = € [0, 3] and (b) z € [0, 10].

However, the radiation pressure cross-section of an aggregate made up of pri-
mary particles whose size parameter is higher than 1.5 seems to be proportional
(by a factor p(N,z)N) to the primary particle radiation pressure cross-section.
p(N,z)N is a weak function of z for SiOy (more dependent on z for TiOs). As
expected, Px,(z) is similar to Kx, () in the z-range [0; 1] because the asymmetry
factor of the primary particle is smaller than 0.25. But, Py, (z) must not be related
to Kxqu(x) in the z-range [1; 10].

2.5.2.2.2 Effect of the aggregate morphology on radiation pressure
cross-section

Fig. 2.22 represents Px,, for different configurations of aggregates consisting of four
primary particles arranged according to Fig. 2.9. Similar variations are obtained.
The deviation between the two extreme configurations is about 10.7%, which is a
smaller value than that obtained with C.,. But Cp, is a little more sensitive to
configurations which are close each other, since the average deviation between the
pl and p2 configurations is about 1.3% compared with 0.8% for Cieq.
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Fig. 2.22. Px, as a function of the size parameter for different configurations of 4-aggre-
gates (linear, compact, plane, pl, p2) for SiOs.

2.5.3 Approximate methods for aggregates

2.5.3.1 The ERI method

In the same way that we showed the effectiveness of the ERI approximate method,
for calculation of Cj.q, we evaluated (Jacquier and Gruy, 2007b) its performances
for the calculation of Cp,.. The ratio of the radiation pressure cross-sections obtained
on the one hand with the exact (GMM) method and on the other hand with the
ERI method is denoted L,,:
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Fig. 2.23. L,, function with z € [0;10] for linear aggregate (SiO2).



2 Scattering theories to the characterization of precipitation processes 69

The deviation of L,, from 1 (Fig. 2.23) leads to the search for a corrective factor
in order to reduce it. Jacquier and Gruy (2007b) proposed a corrective factor as
a multi-parameter function G(z, N,d;/a) for the radiation pressure cross-section
Cpr.er1,N- Thus, the corrected radiation pressure cross-section obeys the expres-
sion:

wrErr,N = Cpr.eriN/G(z, N, di/a). (2.24)

Later on, this method is called ERI/G.

2.5.3.2 Other methods

We noticed in subsection 2.5.2.2 that Px, of any configuration of soft particles
does not vary with x for z higher than 1.5. The value of Px,(;>1.5) depends on the
aggregate morphology that can be characterized through N and d;/a. However,
Pxu(z>1.5) may be a weak function of x for hard material (Fig. 2.24). We can
observe that variations of Px(;>1.5) are similar to those for a two-sphere aggregate.
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Fig. 2.24. Px, as a function of the size parameter for the compact configuration with N
primary particles (2, 4, 8, 16) and for TiOs: z € [0, 10].

These comments suggest the two approximate methods:

— method Ppl: Cp, xu,n proportional to Cp, of a primary particle: Cp, arie1
— method Pp2: Cp, xy,n proportional to Cp, of a doublet: Cpp x42

The proportionality factors, denoted respectively p; and ps, can be expressed as
a function of a single parameter: 3 = N/ /d1/a. Corresponding expressions can
be found in (Jacquier and Gruy, 2007b). Table 2.3 presents the performances of
ERI/G, Ppl and Pp2. It appears that the ERI/G method is not as efficient as Ppl
and Pp2 but ERI/G presents the biggest advantage to be used over all the size
range.
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Table 2.3. Approximate method performance for the calculation of Cp, for different
materials with = € [1.5;10]. m and o are respectively the mean value and the standard
deviation for the corresponding dataset

method Linear configuration Compact configuration
material SiOs Al,O3 TiO» SiO» Al,O53 TiO,

m o m o m o m o m o m o
Ppl 1.01 0.05 1.05 0.11 1.06 0.17 1.01 0.04 1.00 0.11 1.08 0.17
Pp2 0.98 0.04 096 0.08 094 0.12 097 0.04 093 0.10 0.93 0.11

ERI/G 0.93 0.17 090 0.15 1.07 0.23 092 0.13 090 0.11 1.06 0.30

2.5.4 Conclusion

We have presented different ways to calculate approximately the radiation pressure
cross-section of aggregates. The corresponding expressions can be used to study
dense suspensions. For instance, Tontrup et al. (2000) performed an experimental
work about the aggregation of TiOs micro-particles in water by using a backscat-
tering sensor. They deduced the change of the transport mean free path with time.
SEM observations showed that the aggregates contain few primary particles. Ap-
proximations could be used to determine some characteristics of the aggregates.

2.6 Scattering properties versus geometrical parameters
of aggregates

The main question that appears when studying the formation of particles or aggre-
gates is: which is the relevant morphological parameter related to the measurement?
The answer mainly depends on the particle size and is partially included in theories
and modeling leading to scattering cross-section calculations.

So, when we consider the Mie theory for homogeneous spheres, the solving
method and the results are dependent only on the relative refractive index and
the boundary conditions for the Helmholtz equation. From a geometrical point
of view, the mathematical function describing the particle surface is the relevant
parameter. The case of non-spherical convex bodies is similar. As the physics is
always based on the Maxwell and Helmholtz equations, the corresponding solution
for a natural incident light depends only on the body surface that is characterized
by the equation f(z,y,z) = 0.

If we are interested in the orientation average of the scattering cross-section, a
function describing the body and being invariant to rotation will be preferred. So,
the pair distance distribution density (PDDD) could be an interesting approach to
describing the shape. It is a well-known function in physics and can be defined for
liquids as:

dN = g(r)dmr? dr.

dN represents the number of molecules distant from a given (tagged) molecule with
the distance in the range [r,r + dr]. In the case of liquid, the distribution is nearly
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isotropic. This function clearly appears in RGD approximation for convex bodies
(distribution density is connected to | f|?) and BPK approximation for multi-sphere
aggregate (in Eqgs (2.14a) and (2.14Db)).

In the first case (RGD), we consider any pair of volume elements in the scat-
tering body. The pair distance distribution density is a continuous function of the
distance between volume elements. In our context, we chose the notation D, (r).
Then, the orientation-averaged scattering cross-section can be written as (Gruy,

2009):
Rm,az

2
Crap, = §k4v2(m - 1)2/ F(kr)D,(r) dr (2.25)
an'in

with
F(z) = 3[cos(2x)(—1+5x_2—3x_4)+sin(2x)(2x_1—6x_3)+1+x_2+3x_4} /(4x2) .

The distribution density function is normalized:

Ronas
/ D,(r)dr =1 (2.26)
Rpin

Fig. 2.25 presents the function D, (r) for a sphere and various spheroids. The pair
distribution function for a sphere with radius a obeys the expression:
3 .
aDpU):anu@Q::igu%u3—12u4%1® (2.27)
with u =7/a and 0 < u < 2.
In the second case (BPK), equations contain the inter-particle distance d;;. This
function is not continuous; as far as a cluster of point scatterers is concerned:

Dp@qA“A}_1)§;5@~dﬁ). (2.28)

¢ is the Dirac function.
A particular case is the fractal-like aggregate, the PDDD of which obeys the
equation (continuous form):

Dy(r) oc rPr=3, (2.29)

According to subsection 2.4.3.2, the BPK approximation gives good results when
the size parameter of the primary particle is smaller than 2. Thus, the PDDD is
the relevant morphological parameter.

It has been shown by Gruy (2009) that this function associated with BP ap-
proximation (Berry and Percival, 1986) for aggregates of Rayleigh scatterers allows
for an estimation of the scattering cross-section of convex bodies. This method is
proved efficient for spheres and spheroids as the scattering efficiency is smaller than
1 and as the material is optically either soft or hard.

The non-corrected ERI method is based only on the average projected area
(Sp)o of the body. However, it is not suitable for elongated aggregates with small
size parameter. (S,)o can be expressed as a function of the number of primary
particles and of the mean inter-particle distance (Jacquier and Gruy, 2008a,b):
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Fig. 2.25. Pair distance distribution density for sphere, oblate spheroid (axis ratio equal
to 2) and prolate spheroid (axis ratio equal to 2). a is the smallest semi-axis length.

<Sp>0 = 7'1'R2

D

(2.30)

with R, = a(d1/2a)1/5N1/3d}E/8 and N < 100; dg is the space dimension; d; is the
relevant morphological parameter. It is directly related to the first moment of the
distribution D, (r):

M, = / D, (r)rdr
0
e 1
2¥)

1
1.7

It would be possible to choose other moments of the distribution for describing
geometrical and optical properties of aggregates. For instance, the second-order
moment is directly related to the gyration radius, that is a well-known parameter
used to define a fractal-like aggregate. However, there was no noticeable change and
thus no improvement was found when choosing another mean distance definition for
the aggregate. Thus, we chose the lowest-order distribution moment. The corrected
ERI method also uses the d; distance parameter.

For large size parameter (z > 2), the AD approximation becomes efficient.
In this case, the relevant line is the chord. Expression of the average scattering
cross-section can be rewritten by introducing the chord length distribution D;(l)
(Jacquier and Gruy, 2008a,b):
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(Cap.n) = <2// (1—coskl(m—1))dydz>

(S

1

2(5,) /Olm (1 — cos ki(m — 1)) Dy(1) di (2.32)

The chord length distribution (CLD) is defined as follows: D;(l) dl represents the
number fraction of the chord length in the range [I,1 + dl]. Thus, D;(l) obeys the
normalization equation:

/ " D) dl =1 (2.33)
0

lmaz 18 the maximum chord length of an aggregate.

Fig. 2.26 presents the D;(l) function for an aggregate consisting of 16 primary
particles. One observes three very distinct peaks or modes, each one characterized
by a chord length range:

— [0;2a] corresponds to primary particles (distribution density D; (1))
—  [2a;4a] corresponds to pair of particles in contact (distribution density D; (1))
[4a;lma.] corresponds to the aggregate superstructure (distribution density

Dyc(1))

D (1) contains the contributions of each distribution density. These are weighted
by the coefficients &1, &5, &3:

16 spheres in compact configuration

”l()]

Fig. 2.26. D;(l) for compact aggregate with 16 primary particles. [ is normalized by the
radius of the primary particle.
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D;5(l € [2a;4a D, (1 € [4a; lnax
Di(l) = &Dia(l) + &2 l’24(a, | D, Se l?(u [ ])
Dus(l) di Lo Dya(l) di

2a

(2.34a)

with
S +&+ée=1. (2.34b)

The distribution densities D;1(I) and D;o(l) are given by analytical expressions
(Jacquier and Gruy, 2008a,b). D; ¢(1) is an empirical function, the same for all the
aggregates. Only weighting coefficients depend on the aggregate morphology. Re-
sults shown in Fig. 2.26 for a particular aggregate are representative for aggregates
with primary particle number up to one hundred. Coefficients &1, &2, &o depend on
N,d1,dg (Jacquier and Gruy, 2008a,b).

The calculation of the scattering cross-section using Eqgs (2.32) to (2.34b)) is
much faster than that based on Eq. (2.19).

Certain presented approximations are characterized by a decoupling or separa-
tion between optics and geometry. This separation allows for a faster calculation
of the optical properties. To our knowledge, the relationship between chord length
distribution (as defined by Fig. 2.15) and pair distance distribution is not triv-
ial, particularly for aggregates, and requires complementary works in the field of
integral geometry. Moreover, the transition between the different geometrical char-
acteristics, i.e PDD and CLD, as the primary particle size increases is not yet
quantitatively understood.

2.7 Conclusion

The analysis of turbidimetric data during the precipitation process is a challenge for
researchers working in the field of light scattering by particles. The variety of sizes,
shapes and optical contrast requires several approaches for the calculation of their
optical properties. Performance criteria are the calculation speed and the accuracy
fitted with the measurement accuracy. Accurate calculations performed with so-
phisticated numerical methods will always be needed and used for the purpose of
validation. Difficulties remain for certain particles with a complex morphology. For
instance, one observes precipitated zinc sulphide particles in the size range [0.5 pm;
5 pm]| exhibiting sand rose (i.e., gypsum flower) morphology. The typical multi-scale
morphology of many precipitated particles firstly needs tools coming from integral
geometry in order to be described with a minimum number of parameters. Know-
ing this parameter set, optical properties will be calculated with exact theories.
The parameter number coming from geometrical analysis can be reduced when the
optical properties of the particles are appropriately considered for the formulation
of approximate theories to the calculation of scattering properties. An example for
such an approach has been presented, but further advances are needed.
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