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Development of a Computational System
to Determine the Optimal Bus-stop
Spacing in order to Minimize the Travel
Time of All Passengers

Homero F. Oliveira, Mirian B. Gonçalves, Eduardo S. Cursi
and Antonio G. Novaes

1 Introduction

One of the main concerns regarding urban planning nowadays is public trans-
portation. The great number of vehicles in the main cities has been causing many
problems, from infrastructure (number of vehicles over street capability), trough
safety (high accident rates) and environmental issues (high pollution rates), among
others. In infrastructure, one of the problems caused by the large number of
vehicles on the streets is the travel time between two locations.

These problems aggravate specially in big cities, where traffic jams have
already become part of the urban landscape.

However, one of the main aspects to be considered in a public transportation
system is the travel time of the passenger using a bus line. The number of stops
affects the total travel time deeply. In this manner, the number stops must be
chosen very carefully, in a way that the bus lines become more appealing to the
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users. With a large number of stops, the user walks very little, but it makes the trip
too long and unpleasant for those who travel a long distance in that line. On the
other hand, too few stops make the trip faster, but the passengers also have to walk
more to get to the bus-stop, as well as to the final destination.

Ammons (2001) studied various spacing patterns between bus-stops around the
world and concluded that the average spacing is from 200 to 600 m in urban areas.
Reilly (1997) noticed that the European traffic departments have different stan-
dards to determine the spacing between bus-stops. In Europe, there are 2–3 stops
per kilometer, which means that the spacing is from 330 to 500 m, in opposition to
United States standards, where the stops are spaced from 160 to 250 m.

These studies show that the distance between stops does not follow a scientific
procedure, or even based on predefined methodological studies. According to
Kehoe (2004), in many routes along the USA, the bus-stops were defined trough
time, as a result of user’s requests to authorities and/or bus companies. Because the
stops were based on citizen’s needs, altering the distance between stops becomes a
complicated process, for the population has already grown accustomed to the
original spacing.

These remarks lead to the following question:
How will the ideal number of stops be determined in order to optimize the line

for the users?
To answer this question we combined the concepts of non-linear programming

(Frielander 1994) and Voronoi diagram. Voronoi diagrams has been around for at
least four centuries, and many relevant material can be found in many areas, such
as anthropology, archeology, astronomy, biology, cartography, chemistry, com-
putational geometry, ecology, geography, geology, marketing, meteorology,
operations research, physics, remote sensing, statistics, and urban and regional
planning (Novaes 2000).

The concept of Voronoi Diagram is very simple. Given a finite set of distinct,
isolated points in a continuous space, we associate all locations in that space with
the closest member of the point set. The result is a partitioning of the space in a set
of regions where each region is related to only one of the points of the original set.

Since the 1970s, algorithms for computing Voronoi diagrams of geometric
primitives have been developed in computational geometry and related areas. There
are several ways to construct a Voronoi diagram. One of the most practical is the
incremental method, described in Novaes (2000). This method is also one of
the most powerful in the subject of numerical robustness. The total time complexity
for this method is of O(n2). However, the average time complexity can be decreased
to O(n) by the use of special data structures as described in Novaes (2000), p. 264.

2 Concepts of Voronoi Diagram

In this section we will define the main concepts and some properties of Voronoi
Diagrams. The concepts presented in this section were based in Okabe et al.
(1992).
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2.1 Definition of a Planar Ordinary Voronoi Diagram

Given a set of two or more but a finite number of distinct points in the Euclidian
plane, we associate all locations in that space with the closest member(s) of the
point set with respect to the Euclidean distance. The result is a tessellation off the
plane into a set of regions associated with members off the point set (Okabe et al.
1992).

The mathematical definition is the following:

VðpiÞ ¼ xj x� xik k� x� xj

�
�

�
� for j 6¼ i; j 2 In

� �

ð1Þ

where V is the planar ordinary Voronoi diagram associated with pi and the set
given by:

Vo ¼ Vðp1Þ; . . .;VðpnÞf g ð2Þ

An example of an ordinary Voronoi diagram is presented in Fig. 1.

2.2 Definition of a Multiplicatively Weighted Voronoi
Diagram

In the ordinary Voronoi diagram, we assume that all generator points have the
same weight. But, in many practical applications, we may have to assume that they
have different weights in order to represent, for example the population of a city,
or the level of hazardousness that an accident at a point can cause.

Voronoi diagrams for the weighted distance are more complicated to analyze.
The sides of the polygons are no longer straight lines but are arcs of circles.

The multiplicative weighted Voronoi diagram is characterized by the weighted
distance calculated by

Fig. 1 Example of ordinary
Voronoi diagram
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dmwðp; piÞ ¼
1
wi
jjx� xijj; wi [ 0 ð3Þ

where wi is the weight associated with each point i. After a few steps of calcu-
lation, we obtain a bisector that is defined by

bðpi; pjÞ ¼ xj x� w2
i

w2
i � w2

j
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j
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�
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�
¼ wiwj
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�
�
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�

( )

ð4Þ

This bisector is the set of points that satisfy the condition that the distance from
p to the point defined by

w2
i xj

w2
i � w2

j

�
w2

j xi

w2
i � w2

j

ð5Þ

is constant. The bisector is a circle in R2. So, the dominance region of pi over pj

with the weighted distance is written by:

Domðpi; pjÞ ¼ x :
1
wi
jjx� xijj �

1
wj
jjx� xjjj

� �

; i 6¼ j ð6Þ

Figure 2 is an example of a multiplicatively weighted Voronoi Diagram with
the coordinates of the points inside the parenthesis and the weights associated to
them outside.

2.3 Definition of an Additively Weighted Voronoi Diagram

Similarly to the multiplicative weighted Voronoi diagram, the additively weighted
Voronoi diagram (Fig. 3) is characterized by the weighted distance calculated by

Fig. 2 Example of a multi-
plicatively weighted Voronoi
diagram
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dmwðp; piÞ ¼ jjx� xijj � wi ð7Þ

2.4 Definition of a Compoundly Weighted Voronoi Diagram

Similarly to the multiplicative and additively weighted Voronoi diagram, the
compoundly weighted Voronoi diagram is characterized by the weighted distance
calculated by

dmwðp; piÞ ¼
1
yi
jjx� xijj � wi ð8Þ

3 Definition of the Problem

This paper presents a model to optimize the bus-stop spacing of a bus line located
in the city of São Paulo, Brazil. The city of São Paulo has approximately
10.5 million people and the public transportation system has about six million
users daily (SPTrans—São Paulo Transportes S.A—http://www.sptrans.com.br).

The bus line that will be used in this paper is a new line that will be operational
after the completion of the metro line number 4. That new metro line will be ready
for use in 2010. The bus line was projected to transport passengers from the west
region of the city to a metro station. At the station the passengers can switch to the
metro line in order to get to their final destination. The purpose of the system is to
find the optimal bus-stop spacing in order to minimize the total travel time of the
passenger that goes from any point of the region to the metro station. The whole
itinerary has 6.4 km.

Fig. 3 Example of an addi-
tively weighted Voronoi
diagram
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4 Formulation of the Model

Figure 4 shows the bus line in a Cartesian plan. The pattern on population density
U(x, y) will be defined in relation with the variables ‘x’ and ‘y’. The situation
presented here is that the users in this area use bus lines to get to a bus terminal.

The area that this specific bus line can reach is called S. The ensemble of bus
stops in the lines is represented by si where i [ In and the number of bus stops is
n ? 1. There is also the distance di that represents de spacing between bus stops i
and i - 1.

Considering that a user is at a specific point r (x0, y0) and wishes to go to bus
stop s1 (x1, y1), being r, s1 = S. The travel distance Da will be calculated as shown:

Da ¼ k � r � s1k k ¼ k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � x0Þ2 þ ðy1 � y0Þ2
q

ð9Þ

In this case, k is a correction factor to approximate the Euclidean distance
to a walk distance. In this paper the value used is 1.3, as described in (Novaes
2000).

The time Ta that takes to go to the bus stop is calculated dividing the distance
Da by the user’s speed on foot Va. Which means:

Ta ¼
Da

Va
ð10Þ

Saka (2001) showed how to calculate how much time the bus takes to reach its
destination (the terminal). The time is calculated as shown:

Tbus ¼ Tad þ Ted þ Tc þ To ð11Þ

Metro Station

Bus line

Bus-stop

s1

s2

s3

sn

s0

 

r 

d2

Boundaries of 
areas with 
different 
population 
density  

Fig. 4 The bus line in a
Cartesian plane
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In which:

a) Tad = acceleration and deceleration time;
b) Ted = passenger boarding and disembarkation time;
c) Tc = time delay due to traffic control (traffic lights, etc.);
d) To = travel time in normal traffic speed.

The total time that is lost in each bus stop can be represented as:

Ts ¼ Tad þ Ted ð12Þ

Adjusting to this particular case, as it is meant to calculate the ideal spacing
between bus-stops, it is possible to eliminate the time delay due to traffic control
(traffic lights, etc.) in order to concentrate the calculations in the time spent in the
bus stops. So, we can say that the total travel time from stop i until the final
destination is:

Tbus ¼ ðTs � iÞ þ Di

Vb
ð13Þ

where Di is the distance from bus stop i to the terminal and Vb is the average speed
of the bus on the route. And the total time is calculated as follows:

Ttot ¼ Ta þ Tbus ð14Þ

And the total time from bus stop i is

Ttot ¼ k
r � sik k

Va
þ ðTs � iÞ þ Di

Vb
ð15Þ

Assuming that every user will board in the bus-stop that minimizes his/her
travel time, he/she will board the bus-stop that meets the following equation:

Mini k
r � sik k

Va
þ ðTs � iÞ þ Di

Vb

� �

ð16Þ

As a result of this factor, every stop will have its target area defined with:

Vi ¼ rjk r � sik k
Va

þ ðTs � iÞ þ Di

Vb
� k

r � sj

�
�

�
�

Va
þ ðTs � jÞ þ Dj

Vb
; i 6¼ j; i; j 2 In

� �

ð17Þ

which becomes, as described earlier, a additively weighted Voronoi region.
The total travel time from all passengers in the studied area will be calculated

by:

T ¼
Xn

i¼1

Z

Vi
k

rðx; yÞ � sik k
Va

þ ðTs � iÞ þ Di

Vb

� �

/ x; yð Þds ð18Þ
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This way, the optimization function is:

min
d1;d2;...;dn

Xn

i¼1

Z

Vi
k

rðx; yÞ � sik k
Va

þ ðTs � iÞ þ Di

Vb

� �

/ x; yð Þds ð19Þ

That is a non restricted non-linear programming function.

5 The System

The system that was designed to solve that problem was written in Delphi 6.0 and
utilizes some heuristics that are available in the literature.

For the non-linear programming problems we implemented three different
heuristics: the Gradient method, the Conjugated Gradient method (Fletcher and
Reeves 1964) and the Davidon-Fletcher-Powel method. Those methods are
described by Luenberger (2005).

The system also can use three different rules to stop the line search: Armijo,
Wolfe and Goldstein.

The gradient of the function is calculated using the Ridders’ method of poly-
nomial extrapolation described in Press et al. (2002).

User's Average Travel Time
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Fig. 5 Result obtained by the system
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6 The Result

The system was used to find the optimal solution for the number of stops from
n = 5 until n = 25. The solutions found indicates that the smallest total travel
time is obtained with n = 10. Looking at the results in Fig. 5, we can see that if
you increase the number of stops the user’s average travel time will increase.

Fig. 6 Result obtained by the system
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This result shows an average distance of 620 m from each bus stop. Using the
usual bus-stop spacing of 250 m that is the most common in the city of São Paulo,
we will have an increase of the travel time in more than 15%. This difference in a
universe of six million passengers can be very significant.

Figure 6 shows a map with the location of the bus-stops obtained by the system.
The figure shows the bus line and the area affected for it. Is this case we used
600 m for each side of the bus line to be the limit of the area affected by the bus
line.

The map also shows the Voronoi regions (ordinary and weighted) associated to
each bus-stop. The ordinary Voronoi region is the area where the user will find the
nearest bus-stop from his location. The weighted Voronoi region is the area where
the user will find the bus-stop that will take him to his destination in the smallest
amount of time.

7 Conclusions

In this paper, we designed and implemented a system to find the optimum bus-stop
spacing in order to minimize the total travel time of the passengers of a bus line
that goes to a final destination. The system was developed using concepts of non-
linear programming and Voronoi diagrams. The idea was to use both concepts
together to find the optimal solution for the problem. The results showed that there
is an optimal number of bus-stops but if this number is increased a little, it will not
compromise the solution too much and it will make the user walk less. But if we
compare the actual bus-stop spacing with the optimal one found by the system, we
can observe that the travel time can be decreased in more than 15%.

The result can also be used as a parameter to be combined with others, like cost,
number of vehicles, etc. in order to design a new line or to improve an existing
one.
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