
Technical Foundations�

Michael Jünger1 and Petra Mutzel2

1 University of Cologne, Department of Computer Science, Pohligstraße 1,
D-50969 Köln, Germany

2 Vienna University of Technology, Institute of Computer Graphics and
Algorithms, Favoritenstraße 9–11, A-1040 Wien, Austria

1 Introduction

Graph drawing software relies on a variety of mathematical results, mainly in
graph theory , topology , and geometry , as well as computer science techniques,
mainly in the areas algorithms and data structures, software engineering ,
and user interfaces. Many of the core techniques used in automatic graph
drawing come from the intersection of mathematics and computer science in
combinatorial and continuous optimization.
Even though automatic graph drawing is a relatively young scientific field,

a few generic approaches have emerged in the graph drawing community.
They allow a classification of layout methods so that most software packages
implement variations of such approaches.
The purpose of this chapter is to lay the foundations for all subsequent

chapters so that they can be read independently from each other while re-
ferring back to the common material presented here. This chapter has been
written based on the requirements and the contributions of all authors in
this book. This chapter is not an introduction to automatic graph drawing,
because it is neither complete nor balanced. In order to avoid repetitions,
we only explain subjects that are basic or used in at least two subsequent
chapters. The following chapters contain a lot of additional material. For
introductions into the field of automatic graph drawing we recommend the
books “Graph Drawing” by Di Battista, Eades, Tamassia, and Tollis [23] and
“Drawing Graphs” edited by Kaufmann and Wagner [52]. Nevertheless, this
book is self-contained in the sense that after this chapter has been read, every
subsequent chapter can be read without referring to external sources.

� We gratefully acknowledge the many contributions of the authors of the subse-
quent chapters. In particular, Gabriele Barbagallo, Andrea Carmignani, Giuseppe
Di Battista, Walter Didimo, Carsten Gutwenger, Sebastian Leipert, Maurizio
Patrignani, and Maurizio Pizzonia have contributed text fragments and figures
that were very helpful to us. In addition, the constructive remarks on earlier
drafts by David Auber, Vladimir Batagelj, Ulrik Brandes, Christoph Buchheim,
Tim Dwyer, Michael Kaufmann, Gunnar W. Klau, Stephen C. North, Merijam
Percan, Georg Sander, and Ioannis G. Tollis were very helpful for corrections and
improvements.



10 Michael Jünger and Petra Mutzel

Section 2 contains basic notions and notations from graph theory con-
cerning graphs and their representations including undirected and directed
graphs, layered graphs, and hierarchical and clustered graphs. It closes with
some remarks on the storage of graphs in computer memory. Section 3 dis-
cusses concepts of graph planarity and graph embeddings including planar
graphs, upward planarity, and cluster planar graphs. Section 4 introduces
generic layout styles: tree-, layered-, planarization-, orthogonal-, and force-
directed-layout.

2 Graphs and Their Representation

2.1 Undirected Graphs

A graph G = (V,E, λ) consists of a finite set V = V (G) of vertices or nodes,
a finite set E = E(G) of edges, and a function λ that maps each edge to a
subset V ′ ⊆ V with |V ′| ∈ {1, 2}. An edge e for which |λ(e)| = 1 is called
a loop and if for two edges e1, e2 ∈ E we have λ(e1) = λ(e2) we say that
e1 and e2 are multi-edges. Figure 1 shows a graph with a loop and a pair of
multi-edges.

v1

v2

v3

e3

e4

e2
e1 e5

Fig. 1. A graph with a loop and two multi-edges.

A graph with no loops and no multi-edges is characterized by a finite
set V of vertices and a finite set E ⊆ {{u, v} | u, v ∈ V, u �= v} of edges and
called a simple graph. In the sequel, we deal mostly (unless stated otherwise)
with simple graphs, but non-simple graphs are important in automatic graph
drawing and for ease of notation, we use the simplified G = (V,E) nota-
tion with the understanding that multi-edges and loops are distinguishable
elements of the multi-set E. E.g., for the non-simple graph in Figure 1, the no-
tation G(V,E, λ) = ({v1, v2, v3}, {e1, e2, e3, e4, e5}, λ(e1) = {v1, v2}, λ(e2) =
{v1, v2}, λ(e3) = {v1, v3}, λ(e4) = {v2, v3}, λ(e5) = {v3, v3}) becomes sim-
plified to G(V,E) = ({v1, v2, v3}, {e1, e2, e3, e4, e5}) = ({v1, v2, v3}, {{v1, v2},
{v1, v2}, {v1, v3}, {v2, v3}, {v3, v3}}).
For an edge e = {u, v}, the vertices u and v are the end-vertices of e, and

e is incident to u and v. An edge {u, v} ∈ E connects the vertices u and v.
Two vertices u, v ∈ V are adjacent if {u, v} ∈ E. By star(v) = {e ∈ E | v ∈ e}
we denote the set of edges incident to a vertex v ∈ V and adj(v) = {u ∈ V |



Technical Foundations 11

{u, v} ∈ E} is the set of vertices adjacent to a vertex v ∈ V . By deg(v) =
| star(v)|+ | loop(v)|, where loop(v) is the set of edges of the form {v, v}, we
denote the degree of a vertex v ∈ V , mindeg(G) = min{deg(v) | v ∈ V } is the
minimum degree and maxdeg(G) = max{deg(v) | v ∈ V } is the maximum
degree of G. E.g., in Figure 1, star(v1) = {e1, e2, e3}, star(v3) = {e3, e4, e5},
whereas adj(v1) = {v2, v3} and adj(v3) = {v1, v2, v3}. The degrees of these
two vertices are deg(v1) = 3 and deg(v3) = 4, the minimal degree of the graph
is mindeg(G) = 3 and the maximum degree is maxdeg(G) = 4. A vertex v
with deg(v) = 0 is called an isolated vertex .
For W ⊆ V let E[W ] = {{u, v} ∈ E | u, v ∈ W} and for F ⊆ E let

V [F ] = {v ∈ V | v ∈ e for some e ∈ F}. A graph G′ = (V ′, E′) is a subgraph
of G = (V,E) or contained in G if V ′ ⊆ V and E′ ⊆ E. For a vertex set
W ⊆ V we call G[W ] = (W,E[W ]) a vertex-induced subgraph of G and for
an edge set F ⊆ E we call G[F ] = (V [F ], F ) an edge-induced subgraph of G.
A walk W of length k in a graph G is an alternating sequence of vertices

and edges v0, e1, v1, e2, v2, . . . , ek, vk, beginning and ending with the vertices
v0 and vk, respectively, and ei = {vi−1, vi} for i = 1, 2, . . . , k. This walk
connects v0 and vk and may also be denoted by W = (v0, v1, . . . , vk), when
the edges are evident by context. A walk W is called a path if all vertices
are distinct, and it is called a trail if all edges are distinct. The distance of
two vertices u and v in G = (V,E), denoted by dist(u, v), is the number of
edges in a shortest path connecting u and v in G, and the diameter of G is
defined by diam(G) = max{dist(u, v) | u, v ∈ V }. A walk is called a cycle if
all vertices are distinct except for v0 = vk and k ≥ 2. A graph that does not
have any cycles is called a forest .
A graph G is connected if every pair of vertices is connected by a path,

otherwise it is called disconnected . A component of G is a maximal connected
subgraph of G. Thus a disconnected graph has at least two components. A
connected forest G is called a tree.
A graph G = (V,E) is k-connected if at least k vertices must be removed

from V in order to make the resulting vertex-induced subgraph disconnected.
By κ(G) = max{k | G is k-connected} we denote the (vertex-)connectivity
of G.
Of special interest in automatic graph drawing are 1, 2, and 3-connected

graphs, also called connected, biconnected , and triconnected graphs, respec-
tively. A vertex whose removal disconnects the graph is called a cut-vertex ,
i.e., a graph is biconnected if it has no cut-vertex. The maximal biconnected
components of a graph G are called the blocks of G. The blocks intersect in
cut-vertices, see Figure 2 for an illustration.
Two vertices whose removal disconnects a biconnected graph are called

a separating vertex pair , i.e., a graph is triconnected if it has no separating
vertex pair.
An edge whose removal disconnects the graph is called a bridge. The graph

in Figure 2 contains exactly one bridge.



12 Michael Jünger and Petra Mutzel

blocks cut vertices

Fig. 2. The cut-vertices and the blocks of a graph.

A graph G = (V,E) is k-edge-connected if at least k edges must be re-
moved from E in order to make the resulting edge-induced subgraph dis-
connected. By λ(G) = max{k | G is k-edge-connected} we denote the edge-
connectivity of G.
A vertex-k-coloring of a loop-less graph G = (V,E) is an assignment

c : V → {1, 2, . . . , k} such that c(u) �= c(v) whenever {u, v} ∈ E. By χ(G) =
min{k | G has a vertex-k-coloring} we denote the chromatic number of G.
Graphs G with χ(G) ≤ 2 are called bipartite graphs. Their vertex set can be
partitioned into two subsets (corresponding to the two color classes, one of
them possibly empty) such that all edges connect vertices of different subsets
of the bipartition. A graph is bipartite if and only if it does not contain a
cycle of odd length.

2.2 Directed Graphs

A directed graph or digraph G = (V,E) consists of a finite set V = V (G) of
vertices and a finite multi-set E ⊆ V × V = {(u, v) | u, v ∈ V } of (directed)
edges or arcs that are ordered pairs of vertices. Ignoring for every edge the
order of its vertices, we get an undirected graph that is called the underlying
graph of G. Thus, concepts like subgraph, walk, path, trail, cycle, forest,
component, or tree, naturally carry over to directed graphs. In addition, for
a directed walk we require that the involved edges are ordered pairs (vi−1, vi)
and so we get directed trails, directed paths, and directed cycles. If a digraph
G = (V,E) is simple, i.e., contains no loops or multi-arcs, it determines a
relation R ⊆ V × V defined by uRv ⇐⇒ (u, v) ∈ E.
A digraph G is strongly connected if each pair of vertices u, v ∈ V is

connected by a directed path from u to v. An acyclic digraph (directed acyclic
graph: dag) is a digraph with no directed cycle or loop. If e = (u, v) then e
is an outgoing or leaving edge of u and an incoming or entering edge of v.
By instar(v) = {(u, v) ∈ E | u ∈ V } we denote the set of incoming edges
of a vertex v ∈ V and by outstar(v) = {(v, u) ∈ E | u ∈ V } we denote the
set of outgoing edges of a vertex v ∈ V . Accordingly, we define inadj(v) =
{u ∈ V | (u, v) ∈ E} and outadj(v) = {u ∈ V | (v, u) ∈ E}. Then indeg(v) =
| instar(v)| is the in-degree and outdeg(v) = | outstar(v)| is the out-degree of
a vertex v ∈ V .



Technical Foundations 13

A source is a vertex with no incoming edges and a sink is a vertex with
no outgoing edges. An acyclic digraph G with exactly one source is called a
single source directed graph digraph. If, in addition, its underlying graph is
connected and has no loop and no (undirected) cycle, the graph is called a
rooted tree whose root is the only vertex v = root(T ) ∈ V with indeg(v) = 0
and whose leaves are vertices v ∈ V with outdeg(v) = 0. The depth depth(v)
of a vertex v in a rooted tree T = (V,E) is the length of the (unique) directed
path from the root of T to v. All vertices of depth k constitute tree level k.
Furthermore, for each v ∈ V that is not a leaf, the vertices in outadj(v) are
called children of v, and for each v ∈ V other than the root, the vertex in
inadj(v) is called parent of v. Children of the same parent are called siblings.
An acyclic digraph with exactly one sink is called a single sink digraph. An
acyclic digraph with exactly one source s and exactly one sink t and an edge
(s, t) is called an st-digraph.
A topological numbering of G is an assignment of numbers topnumber(v)

to the vertices v of G such that for every edge (u, v) of G the number
assigned to v is greater than the one assigned to u (i.e., topnumber(v) >
topnumber(u)). A topological sorting of G is a topological numbering of G
such that every vertex is assigned a distinct integer between 1 and |V |. It is
easy to see that G admits a topological numbering or sorting if and only if
G is acyclic.

2.3 Representation of Graphs

There are several ways to represent an (undirected or directed) graph. Here,
we restrict our attention to the classical representation in graph drawing. A
graph G = (V,E) is generally visualized by a drawing in 2 or 3-dimensional
space with the vertices drawn as points or boxes of a pre-specified width and
height, and the edges drawn as closed Jordan curves, connecting their incident
vertices. Layouts in which the coordinates of the vertex representations are
restricted to integer values are called grid layouts.
In this book, we describe software for generating graph drawings in 2 or 3-

dimensional space. In this chapter, however, we restrict our attention mainly
to drawings in 2-dimensional space.

2.4 Layered Graphs

Let 〈L1, L2, . . . , Lh〉 denote an ordered set of elements, called the layers of
the graph. A layered graph H = (G,Λ) consists of a (directed or undirected)
graph G = (V,E) and a function Λ : V → 〈L1, L2, . . . , Lh〉 assigning each
vertex v ∈ V to exactly one layer Li, i ∈ {1, . . . , h}.
Layered graphs are often represented “top-to-bottom” as follows: For i =

1, . . . , h, the vertices belonging to layer Li are drawn on a horizontal line
with y-coordinate yi, satisfying the condition y1 > y2 > · · · > yh. A popular



14 Michael Jünger and Petra Mutzel

alternative is a “left-to-right” representation with vertical lines at xi and
x1 < x2 < · · · < xh.
In graph drawing, layered graphs occur in the context of directed acyclic

graphs. For these graphs, a layering is generated based on a topological num-
bering, i.e., the function Λ satisfies Λ(v) > Λ(u) for each edge (u, v) ∈ E.
In this context it is common to draw all the edges as curves monotonically
decreasing in vertical direction in a top-to-bottom representation and mono-
tonically increasing in horizontal direction in a left-to-right representation.

2.5 Clustered Graphs

Clustered graphs are graphs with recursive clustering structures over the
vertices. A clustered graph C = (G,T ) consists of an undirected graph G =
(V,E) and a rooted tree T such that the leaves of T are exactly the vertices
of G. Each vertex ν of T represents a cluster V (ν) of the vertices of G that
are the leaves of the subtree rooted at ν. The root of T is called root cluster .
The tree T is called the inclusion tree of C because it describes an inclusion
relation between clusters. The graph G is called the underlying graph of C.
The tree T (ν) represents the subtree of T rooted at the vertex ν, and G(ν)
denotes the subgraph of G induced by the cluster associated with vertex ν.
We define C(ν) = (G(ν), T (ν)) to be the sub-clustered graph associated with
vertex ν. An edge {v, w} ∈ E with v ∈ V (G(ν)) and w ∈ V \V (G(ν)) is said
to be incident to cluster ν. Figure 3 shows a drawing of a clustered graph
C = (G,T ) and the corresponding tree T .

1 2

3

4

5

6

1 2 3 4 6

b a 5

c

a
b

c

Fig. 3. A drawing of a clustered graph and its defining tree.

In a drawing of a clustered graph C = (G,T ), the graph G is drawn with
points and curves as usual. For each vertex ν of T , the cluster is drawn as a
simple closed region R (i.e., a region without holes) that contains the drawing
of V (G(ν)), such that the following three conditions hold.

(i) The regions for all sub-clusters of ν are completely contained in the
interior of R.

(ii) The regions for all other clusters are completely contained in the exte-
rior of R.

(iii) If there is an edge e between two vertices of V (ν) then the drawing of
e is completely contained in R.



Technical Foundations 15

2.6 Compound Graphs

Compound graphs have been introduced for representing graphs with both
inclusion and adjacency relationships [63]. A compound graph C = (G,T )
is defined as an (undirected or directed) graph G = (V,EG) and a rooted
tree T = (V,ET ) that share the same vertex set V . There is a one to one
correspondence between the structure of the tree and the set of inclusions
between the vertices, namely, a vertex u is in direct inclusion relation to v
if and only if u is a child of v in the tree. If the end-vertices u and v of all
edges {u, v} ∈ EG belong to different root-leaf paths in T , C is called a simple
compound graph. In a simple compound graph, a pair of vertices (u, v) cannot
be in an adjacency and in an inclusion relation at the same time. Figure 4
shows an example of a simple compound graph.

1 2

3

5

7

6

9

8

4

6 8 1 2 3

4 5 9

7

G: T :

Fig. 4. A compound graph defined by a graph and a tree.

Edges connecting vertices of different tree levels are called inter-level
edges. If a compound graph does not contain inter-level edges, we call it
a nested graph.
A further restriction allowing only edges between the leaves of the tree

leads to an alternative definition of clustered graphs (see Section 2.5).
In a drawing of a compound graph C = (G,T ), the vertices of the graph G

are drawn as closed regions so that a vertex u is included in the region
representing the vertex parent(u) in T , and the edges in EG are drawn as
curves connecting the regions associated with its end-vertices. Figure 5 shows
a drawing of the compound graph defined in Figure 4.

1 2

3

8

9

6

4
5

7

Fig. 5. A drawing of the compound graph defined in Figure 4.



16 Michael Jünger and Petra Mutzel

2.7 Storage of Graphs and Digraphs

Common data structures for storing graphs and digraphs G = (V,E) are ad-
jacency matrices and adjacency lists. An adjacency matrix for an undirected
graph is a |V | by |V | matrix A(G) = (auv)u,v∈V where auv is the number of
edges connecting the vertices u and v, i.e., auv ∈ {0, 1} for simple graphs.
For a digraph, auv is the number of edges leaving u and entering v, again,
auv ∈ {0, 1} for simple digraphs. Adjacency matrices are, due to their storage
requirement of |V |2, independently of |E|, unattractive for sparse graphs, i.e.,
graphs in which E contains only a small subset of all possible edges.
In automatic graph drawing, usually sparse graphs are considered. In

fact, we often have |E| ≤ c|V | for some constant c. Therefore a different
data structure is usually more appropriate. Most common are star- and/or
adjacency-lists that give (in-/out-)star(v) and/or (in-/out-)adj(v) for each
v ∈ V as linear, linked, or doubly linked lists, depending on the application.
For digraphs, the in- and out-lists may be merged and equipped with an
in-/out-flag. In addition to the adjacency lists, a list of the edges with their
end-vertices is useful in most cases. In Figure 6, we illustrate the different
storage formats.

1

2

3

45

Adjacency matrix



1 2 3 4 5
1 0 1 1 0 1
2 1 0 1 0 1
3 1 1 0 1 1
4 0 0 1 0 1
5 1 1 1 1 0


Adjacency lists

adj(1) = 〈2, 3, 5〉
adj(2) = 〈3, 5, 1〉
adj(3) = 〈4, 5, 1, 2〉
adj(4) = 〈5, 3〉
adj(5) = 〈1, 2, 3, 4〉

1

2

3

45

Adjacency matrix



1 2 3 4 5
1 0 1 1 0 0
2 0 0 1 0 1
3 0 0 0 0 1
4 0 0 1 0 0
5 1 1 0 1 0


Adjacency lists

inadj(1) = 〈5〉 outadj(1) = 〈2, 3〉
inadj(2) = 〈1, 5〉 outadj(2) = 〈5, 3〉
inadj(3) = 〈2, 1, 4〉 outadj(3) = 〈5〉
inadj(4) = 〈5〉 outadj(4) = 〈3〉
inadj(5) = 〈2, 3〉 outadj(5) = 〈1, 2, 4〉

Fig. 6. Storage of graphs and digraphs.



Technical Foundations 17

3 Graph Planarity and Embeddings

This section deals with drawings and embeddings of a graph onto the plane
unless otherwise stated. A drawing of a graph G on the plane yields an
embedding Π of G, i.e., a clockwise ordering of the incident edges for every
vertex with respect to the drawing. Such an embedding can be conveniently
stored by ordering the star- or adjacency-lists of Section 2.7 accordingly.

3.1 Planar Graphs

A graph G = (V,E) is called planar if it can be drawn in the plane such that
no two edges cross each other except at common endpoints. An intersection
of two edges in a drawing other than at their endpoints is called a crossing .
A planar or combinatorial embedding Π of a planar graph G is an embed-
ding with respect to a planar drawing. A graph with a given fixed planar
embedding Π is also called a plane graph. Given a drawing of a plane graph
G, a face of G is a topologically connected region in the drawing bounded
by the (Jordan curves corresponding to the) edges of G. A face of a plane
graph is uniquely described by its boundary edges. The degree deg(f) of a
face f is defined as the number of its boundary edges, where each bound-
ary edge with both sides on the boundary of f is counted twice. The faces
of a plane graph are already described by the planar embedding. Two faces
are adjacent if their boundaries share an edge. The one unbounded face of
a plane graph is called the outer face or exterior face. All other faces are
called interior faces. An equivalent definition of a planar embedding is an
ordered list of the boundary edges for each face, clockwise for interior faces
and counter-clockwise for the exterior face.
A famous result of Euler [34] for polytopes relates the number of vertices,

edges, and faces in any planar embedding of a connected planar graph:

Theorem 1 (Euler’s Formula [34]). Let Π be a planar embedding of a
connected planar graph G = (V,E) and let F be the set of faces in Π. Then
|V | − |E|+ |F | = 2.
From Euler’s formula, an upper bound on the number of edges of a planar

graph with a given number of vertices is easily derived:

Theorem 2. For any simple planar graph G = (V,E) with at least 3 vertices
we have |E| ≤ 3|V | − 6.
The bound is attained for triangulated planar graphs, i.e., planar graphs

in which every face is a triangle.
While, in general, the number of different planar embeddings of a planar

graph is exponential in |V |, a triconnected planar graph has only two different
planar embeddings, which are mirror-images of each other, see Figures 7 and 8
for illustrations.



18 Michael Jünger and Petra Mutzel

v1 v2

v3 v4

v5 v6

e1

e2

e3

e4
e5

e6 e7

e8

f1

f2

f3

f4

planar embedding
v1: 〈v3, v5〉 f1: 〈e1, e6, e2〉
v2: 〈v4, v6〉 f2: 〈e6, e5, e7, e8〉
v3: 〈v1, v4, v5〉 f3: 〈e3, e4, e7〉
v4: 〈v2, v6, v3〉 f4: 〈e1, e2, e8, e4, e3, e5〉
v5: 〈v1, v3, v6〉
v6: 〈v2, v5, v4〉

(a)

v4 v3

v2 v1

v6 v5

e1

e2

e3

e4

e5

e6e7

e8

f3

f2

f1f4

same planar
embedding as (a),
i.e., combinatorially
equivalent to (a)

(b)

v1 v4

v3 v2

v5 v6

e1

e2
e3

e4

e5

e6

e7

e8

f1

f2

f3

f4
different planar embedding
v1: 〈v3, v5〉 f1: 〈e1, e6, e2〉
v2: 〈v4, v6〉 f2: 〈e3, e4, e8, e6, e5〉
v3: 〈v1, v4, v5〉 f3: 〈e4, e3, e7〉
v4: 〈v2, v3, v6〉 f4: 〈e1, e2, e8, e7, e5〉
v5: 〈v1, v3, v6〉
v6: 〈v2, v4, v5〉

(c)

Fig. 7. Combinatorial embeddings.

|V | = 7, |E| = 3|V | – 6 = 15
Fig. 8. A triconnected graph has a unique embedding up to reflection.

Given a planar embedding Π(G) of a planar graph G = (V,E) with face
set F , the dual graph G′ = (V ′, E′) is constructed as follows: V ′ = F and E′

contains an edge {fi, fj} for each e ∈ E such that e is on the boundary of



Technical Foundations 19

both fi and fj . (fi and fj may be identical.) By definition, the degree deg(f)
of a face f of G agrees with the degree of f as a vertex of G′. The dual graph
of a planar graph is in general a non-simple graph (i.e., contains loops and
multi-edges) as can be seen in the example shown in Figure 9. Loops in G′

correspond to bridges in G.

f1

f2 f3

f4

f5

f5 has a loop and there are three copies of {f4, f5}
Fig. 9. A planar graph and its non-simple dual graph.

Planarity of a graph G = (V,E) can be tested in O(|V |) time by, e.g., the
algorithm of Hopcroft and Tarjan [45], or an approach of Lempel et al. [55]
using the special data structure PQ-tree introduced by Booth and Lueker [7].
For a planar graph G, an embedding Π of G can be determined in linear time
by, e.g., the algorithms of Chiba et al. [17] or Mehlhorn and Mutzel [57].

3.2 Upward Planarity

Let G be an embedded digraph. A vertex v of G is called bimodal if the
circular list of the edges incident to v can be partitioned into two (possibly
empty) linear lists of edges, one consisting of the incoming edges and the
other consisting of the outgoing edges. An embedding is called a bimodal
embedding if every vertex is bimodal. A planar graph is said to be bimodal if
it admits a planar bimodal embedding.
A drawing of G such that all the edges are curves monotonically increas-

ing in a given direction is known as an upward drawing . Figure 10(a) shows
an example of an upward planar drawing in the left-to-right direction. An
upward embedding U is a representation of G that consists of the clockwise



20 Michael Jünger and Petra Mutzel

(a) (b)

Fig. 10. (a) An upward planar drawing; (b) A quasi-upward planar drawing with
4 bends; the dashed lines indicate the tangents to the bend-points.

orderings of the incoming edges for every vertex with respect to an upward
drawing. Necessary conditions for the existence of an upward planar draw-
ing of an embedded graph GΠ are the acyclicity and the bimodality of GΠ

itself [5]. However, these conditions are not sufficient. A polynomial time algo-
rithm to test the existence of upward planar drawings of a planar embedded
digraph is given in [5]. The problem is NP-complete in a variable embedding
setting [41].
The quasi-upward drawing convention extends the upward drawing con-

vention [3]. A quasi-upward drawing of a digraph in the left-to-right direction
is such that the vertical line through each vertex v “locally” splits the incom-
ing edges from the outgoing edges of v. The term locally is used to identify
a sufficiently small connected region properly containing v.
A bend of a quasi-upward drawing in the left-to-right direction is a point

on an edge such that the vertical line through this point is tangent to the
edge. Intuitively, a bend is a point in which an edge inverts its left-to-right
direction. In Figure 10(b) a quasi-upward planar drawing with four bends is
shown. In [3] it is proven that a quasi-upward planar drawing of a digraph
exists if and only if the digraph is planar bimodal, and a polynomial time
algorithm for computing quasi-upward planar drawings with the minimum
number of bends of an embedded bimodal digraph is described.
A directed acyclic graph G = (V,E) is called upward planar if it has an

upward drawing without edge crossings. An upward planar embedding is an
upward embedding with respect to an upward planar drawing.
Upward planarity testing of directed acyclic graphs is NP-complete as

has been shown by Garg and Tamassia [41]. Acyclic digraphs with a single
source can be tested for upward planarity:

Theorem 3 (Bertolazzi et al. [6]). There is an O(|V |) time algorithm
using SPQR-trees to test whether a single source acyclic digraph G = (V,E)
is upward planar, and if so, it outputs an upward planar embedding.



Technical Foundations 21

3.3 Cluster Planarity

In Section 2.5 we have already discussed clustered graphs and their represen-
tation. Here, we adapt the concept of planarity to clustered graphs.
In a drawing of a clustered graph, an edge e and a region R have an

edge-region crossing if the drawing of e crosses the boundary of R more than
once. A drawing of a clustered graph is c-planar if there are no edge crossings
or edge-region crossings. A graph that admits a c-planar drawing is called c-
planar. Notice that the planarity of the underlying graph does not imply the
existence of a c-planar drawing of a clustered graph, see Figure 11.
A c-planar drawing of C induces a c-planar embedding. A c-planar embed-

ding of C fixes the planar embedding of the underlying graph G and contains
the circular ordering of all edges crossing the boundary of each non-trivial
cluster region.

Fig. 11. A clustered graph that is not c-planar.

Unfortunately, so far no polynomial time algorithm is known for c-pla-
narity testing. However, c-planarity can be tested for a subclass of clustered
graphs. A clustered graph C = (G,T ) is called c-connected if each cluster
induces a connected subgraph of G.

Theorem 4 (Feng et al. [35], Dahlhaus [21]). The c-planarity of a c-
connected clustered graph C = (G,T ) can be tested in linear time.

The algorithm of [35] is based on the following theorem that gives a nec-
essary and sufficient condition for c-planarity of c-connected graphs.

Theorem 5 (Feng et al. [35]). A c-connected clustered graph C = (G,T )
is c-planar if and only if G is planar, and there exists a planar drawing of G
such that for each vertex ν of T , all vertices and edges of G \G(ν) are in the
outer face of the drawing of G(ν).



22 Michael Jünger and Petra Mutzel

4 Graph Drawing Methods

4.1 Tree Layout

In automatic graph drawing, the notion “Tree Layout” refers to drawing
rooted trees. Before a general (undirected) tree can be processed, a root
must be chosen and all edges must be directed away from the root. Forests
are processed by drawing each connected component separately. Since for a
tree T = (V,E), we have |E| = |V | − 1, running times are given as functions
of |V |. For a typical tree layout, see Figure 12.

0

1

2

3

4

5

67

8

910

11

12

13

14

15 16

17

18

19

20

21 2223

24

25

26

27

28

29

Fig. 12. A typical tree layout.

We start by treating an important special case, namely binary trees, in
which each vertex has 0, 1, or 2 children. If a vertex has two children, one
is a left and the other is a right child, and if it has one child, this is either
a left or a right child. We describe a beautiful O(|V |) algorithm of Reingold
and Tilford [60] whose grid layout satisfies the following æsthetic criteria:

(A1) All vertices v ∈ V of the same depth are drawn on a straight horizontal
line whose y-coordinate is −depth(v).

(A2) A left child is placed to the left (smaller x-coordinate), a right child is
placed to the right (bigger x-coordinate) of its parent.

(A3) If a parent has two children, it is centered above its children.
(A4) A tree and its mirror image are drawn identically up to reflection.
(A5) Isomorphic subtrees are drawn identically up to translation.



Technical Foundations 23

For a vertex v ∈ V let Tl(v) be the subtree rooted at the left child of v,
if it exists, else Tl(v) = (∅, ∅), and let Tr(v) be the subtree rooted at the
right child of v, if it exists, else Tr(v) = (∅, ∅). Basic traversal orders for the
vertices of a binary tree T = (V,E) are defined by the following recursive
functions:

preorder(T )
{
if V (T ) �= ∅ {

v = root(T );
visit(v);
preorder(Tl(v));
preorder(Tr(v));

}
}

inorder(T )
{
if V (T ) �= ∅ {

v = root(T );
inorder(Tl(v));
visit(v);
inorder(Tr(v));

}
}

postorder(T )
{
if V (T ) �= ∅ {

v = root(T );
postorder(Tl(v));
postorder(Tr(v));
visit(v);

}
}

The algorithm of Reingold and Tilford follows the divide and conquer
principle implemented in the form of a postorder traversal of T = (V,E).
Namely, for each v ∈ V the algorithm computes layouts for Tl(v) and Tr(v)
up to horizontal translation, and when v is visited, the two drawings are
horizontally shifted together up to a minimum vertex separation of 2 or 3
grid points so that v can be centered above the roots of Tl(v) and Tr(v) at
an integer grid coordinate. If one of Tl(v) and Tr(v) is empty, v is placed one
grid unit to the left or right, respectively, of the root of the other.
For a tree T , the left contour of T consists of the vertices with mini-

mum x-coordinate at each depth in the tree, and the right contour is defined
analogously. The contour information can be stored and updated efficiently
with additional flags at each vertex. Whenever the subtrees Tl(v) and Tr(v)
are shifted together, the amount of shift is calculated by traversing the right
contour of Tl(v) and the left contour of Tr(v) in order to determine the first
point of contact. See Figure 13 for an illustration.
Linear running time is achieved by delaying all shifts of subtrees to a

second phase. Rather than performing the shifts directly, the necessary dis-
placements for subtrees are stored at their respective roots. In a second phase,
this information is processed in a preorder traversal of T in order to compute
the final x-coordinates of all vertices.
While the Reingold-Tilford algorithm is very efficient and delivers æsthet-

ically pleasing drawings, the width of the drawing may be arbitrarily far from
the minimum width subject to the five æsthetic criteria, more precisely, there
is a family of binary trees T = (V,E) that can be drawn on a grid of width 2,
yet the Reingold-Tilford algorithm delivers a drawing of width (|V |+2)/3. It
has been shown by Supowit and Reingold [65] that achieving minimum grid
width is NP-hard, and, even worse, that, unless P = NP, there is no poly-
nomial time algorithm for achieving a width that is smaller than 25

24 times
the minimum width. On the other hand, if continuous coordinates (rather



24 Michael Jünger and Petra Mutzel

v

r1 l1

r2 l2

r3 l3

r4
Tl(v)

Tr(v)

right contour of Tl(v): 〈r1, r2, r3, r4〉
left contour of Tr(v): 〈l1, l2, l3〉
first contact is between r3 and l3

Fig. 13. The Reingold-Tilford algorithm for binary tree drawing.

than integral grid coordinates) are allowed, Supowit and Reingold [65] have
shown that minimum width drawings can be found with the help of a linear
programming technique in polynomial time.
In practice, the Reingold-Tilford algorithm is generally accepted as the

method of choice for drawing binary trees. Walker [70] has generalized this
algorithm to general rooted trees, and Buchheim et al. [15] have improved
the running time of Walker’s algorithm to O(|V |) time. An easy modifica-
tion involving basic trigonometry allows for planar tree drawings in which
the vertices are placed on concentric circles around the root rather than on
parallel lines, see Eades [29].

4.2 Layered Layout

In the previous section, we have already seen a special case of layered layout:
all vertices of a rooted tree T = (V,E) were drawn on parallel horizontal
lines, i.e., assigned to parallel horizontal layers, and all directed tree edges
(u, v) ∈ E were drawn as straight lines between two consecutive layers such
that the y-coordinate of u was one grid unit bigger than the y-coordinate of v.
Conceptually, this drawing style easily extends to general acyclic digraphs
G = (V,E) by stipulating that, again, all vertices are drawn on parallel hori-
zontal lines such that for each directed edge (u, v) ∈ E the y-coordinate of u
is bigger than the y-coordinate of v. This idea has been worked out in an
automatic graph drawing cornerstone paper by Sugiyama et al. [62]. There-



Technical Foundations 25

fore, this drawing style is commonly referred to as Sugiyama-style layout, see
Figure 14 for a typical Sugiyama-style layout on five layers.

11

1 2 12

6 3 7

5 8 4

9 10

L1

L2

L3

L4

L5

Fig. 14. A typical Sugiyama-style layout.

The great popularity of Sugiyama-style layout is boosted by the fact that
any directed or undirected graph can be converted into an acyclic digraph
either by reversing directed edges in the case of a digraph or assigning appro-
priate directions to the edges in the case of an undirected graph. We will first
describe layered layout for acyclic digraphs and then discuss the conversion
of any graph into an acyclic digraph.
Sugiyama-style layout for an acyclic digraph G = (V,E) decomposes into

three phases:

(S1) Layer Assignment: Compute a layering of the graph via a topological
numbering (see Section 2.4). I.e., assign all vertices to disjoint nonempty
subsets L1, L2, . . . , Lh of V called layers such that for each edge (u, v)
the following holds: If the end-vertex u is assigned to layer Li and the
end-vertex v is assigned to layer Lj then j > i. If j > i+1, i.e., the edge
traverses intermediate layers, we call e a long edge and replace it by a
directed path from u to v with j − i− 1 artificial intermediate vertices
for each traversed layer. In Figure 14, the artificial vertices cöıncide
with the edge bends.

(S2) Crossing Minimization: For each layer L, determine permutations
of the vertices in L with the goal of obtaining few crossings under
the following assumptions: (1) The layers are parallel horizontal lines.
(2) Each vertex is drawn on the line corresponding to its layer with x-
coordinate compatible with its position in the layer permutation. (3) All
edges are drawn as straight line segments between consecutive layers.

(S3) Coordinate Assignment: Turn the topological layout of (S2) into
a geometric layout by assigning to each v ∈ V the y-coordinate −i if
v ∈ Li and an x-coordinate compatible with the vertex permutation of
Li. Finally, suppress the artificial vertices in the drawing.



26 Michael Jünger and Petra Mutzel

For each of the three phases, there is a variety of possibilities for implemen-
tation. We restrict ourselves to complexity considerations and the discussion
of a selection of ideas that are widely used in the practice of automatic graph
drawing.

Layer Assignment. In phase (S1) we would like to avoid too many arti-
ficial vertices, because they induce long edge drawings and have a negative
influence on the running times of the later phases as we will see. Call h the
height and max1≤i≤h |Li| the width of the layer assignment. When we postu-
late a compact final drawing as an æsthetic requirement, we must deal with
the tradeoff of keeping both height and width small or reasonably related in
order to obtain some desired aspect ratio.
The minimization of the number of artificial vertices has been successfully

addressed by Gansner et al. [40]. If yv denotes the vertical coordinate of vertex
v ∈ V , then the problem can be formulated as the integer linear programming
problem

minimize
∑

(u,v)∈E
yu − yv

subject to yu − yv ≥ 1 for all (u, v) ∈ E

yv ≥ 0 and integral for all v ∈ V

that can be solved efficiently in polynomial time with network flow techniques.
(For network flow algorithms, see, e.g., Cook et al. [18].)
It is quite simple to compute a layer assignment with minimum height by

observing that the length of a longest directed path in G is a lower bound
on the height of the layer assignment, and that an easy modification of a
topological sorting algorithm, called longest path layering can be used to
find a layer assignment with this height. The method uses a first-in-first-out-
queue Q of vertices initialized with all vertices v ∈ V with indeg(v) = 0.
Starting with i = 1, each vertex v ∈ Q is removed from Q, assigned to Li,
and all edges in outstar(v) are deleted. When a deletion operation leads to
indeg(w) = 0 for a vertex w ∈ outadj(v), then w is inserted as a new vertex
at the end of Q. Finally, i is increased by one as soon as all old vertices have
been processed and then the new vertices in Q become old vertices. This
procedure takes O(|V |+ |E|) time and space. Its drawback is that it has no
control over the width of the layer assignment.
Unfortunately, it is NP-hard to minimize the height for a given width

w ≥ 3. This can be proved via a simple transformation from a well-known
NP-hard multiprocessor scheduling problem in which |V | unit-time jobs with
|E| precedence constraints between pairs of jobs must be processed on w par-
allel machines so as to minimize the completion time. This relation suggests
the application of a very popular polynomial time approximative algorithm
by Coffman and Graham [19] for this multiprocessor scheduling problem to



Technical Foundations 27

the layer assignment problem. We refrain from explaining the method but
only state that if h is the height attained by the algorithm and hmin is the
minimum possible height given width w, then we have h ≤ (2− 2

w )hmin, i.e.,
the algorithm computes the optimum solution for w = 2 and has a decent
performance guarantee for larger w.
From now on, let G = (V,E) be the acyclic digraph after the addition of

artificial vertices and their incident edges.

Crossing Minimization. The crossing minimization problem is NP-hard
even when restricted to 2-layer instances. Nevertheless, it has been attacked
with a branch-and-cut algorithm that produces an optimum solution in ex-
ponential running time, see Healy and Kuusik [44]. (For an introduction to
branch-and-cut algorithms see, e.g., Elf et al. [33].) However, such methods
have not yet reached the maturity and practical efficiency to be used in soft-
ware systems for automatic graph drawing. Instead, most systems apply a
layer by layer sweep as follows: Starting from some initial permutation of the
vertices on each layer, such heuristics consider pairs of layers (Lfixed, Lfree) =
(L1, L2), (L2, L3), . . . , (Lh−1, Lh), (Lh, Lh−1), . . . , (L2, L1), (L1, L2), . . . and
try to determine a permutation of the vertices in Lfree that induces a small
bilayer cross count for the subgraph induced by the two layers, while keep-
ing Lfixed temporarily fixed. These down and up sweeps continue until no
improvement is achieved.
Thus the problem is reduced to the 2-layer crossing minimization problem

in which a vertex permutation on one layer is fixed and the other is computed
so as to induce the minimum (or at least a small) number of pairwise interior
edge crossings among the edges connecting vertices of the two layers. Eades
and Wormald [31] have shown that the 2-layer crossing minimization prob-
lem with one fixed layer is NP-hard as well, nevertheless, in this case, the
optimum can be found efficiently in practice for instances with up to about
60 vertices on the free layer, albeit with a rather complicated branch-and-cut
algorithm by Jünger and Mutzel [49]. Experimental studies in the same arti-
cle have shown that certain efficient heuristics perform very well in practice.
We describe two of them: the barycenter heuristic of Sugiyama et al. [62] and
the median heuristic by Eades and Wormald [31].
In the 2-layer crossing minimization problem with one fixed layer we have

a bipartite graph G = (V,E) with bipartition V = N
.∪ S such that all edges

(u, v) ∈ E have u ∈ N (the “northern layer”) and v ∈ S (the “southern
layer”). Given a permutation 〈n1, n2, . . . , np〉 of all ni ∈ N , i ∈ {1, 2, . . . , p}
we wish to find a permutation 〈s1, s2, . . . , sq〉 of all sj ∈ S, j ∈ {1, 2, . . . , q}
that induces a small number of interior edge crossings when the edges are
drawn as straight line segments connecting the positions of their end-vertices
which are placed on two parallel lines according to the permutations. We
use the example in Figure 15 for illustration. The permutations given in this
figure induce 12 crossings.



28 Michael Jünger and Petra Mutzel

n1 n2 n3 n4 n5 n6

s1 s2 s3 s4 s5

e1

e2
e3 e4

e5
e6 e7

e8 e9 e10

e11

Fig. 15. A two layer graph.

For ease of exposition, we assume without loss of generality that there are
no isolated vertices. For each vertex s ∈ S, let

barycenter(s) =
1

indeg(s)

∑
ni∈ inadj(s)

i

median(s) = med{i | ni ∈ inadj(s)}

where med(M) denotes the median, i.e., the element in position
⌊ |M |

2

⌋
when

the finite multi-set M ⊆ IN is sorted in ascending order.
The medians and barycenters can be computed for all s ∈ S in O(|E|) time

and space. The two heuristics return S sorted by barycenters or medians, re-
spectively, as the southern vertex permutation. In our example, the barycen-
ter permutation is 〈s2, s1, s3, s4, s5〉 with barycenter values 〈2, 2.6̄, 4, 4, 4.5〉
and the median permutation is 〈s2, s1, s4, s5, s3〉 with median values 〈2, 3, 3,
3, 4〉. In this case the barycenter permutation induces 11 crossings and the
median permutation stays at 12 crossings.
The sorting step takes O(|S| log |S|) time in the barycenter heuristic and

O(|N |) time in the median heuristic, so that the total running time is O(|E|+
|S| log |S|) for the former and O(|E|) for the latter, with O(|E|) space for
both.
The heuristics have been analyzed theoretically and an interesting result

(shown by Eades and Wormald [31]) is that for any given northern permuta-
tion, if c is the number of crossings induced by the result of the median heuris-
tic and cmin is the minimum possible number of crossings, then c ≤ 3 cmin
when a certain tie breaking rule in the sorting step is obeyed.
Finally, we discuss an innocent looking problem, namely counting the

number of crossings once crossing minimization heuristics have been per-
formed, in order to decide if the layer by layer sweep should be continued
or terminated. Since all crossings occur between consecutive layer pairs, the
problem reduces to the 2-layer cross counting problem: Given permutations



Technical Foundations 29

πN ofN and πS of S, determine the number of pairwise interior edge crossings
in the above setting.
Of course, it is easy to determine if two given edges in a 2-layer graph

with given permutations πN and πS cross or not by simple comparisons of
the relative orderings of their end vertices on LN and LS . This leads to an
obvious algorithm with running timeO(|E|2). This algorithm can even output
the crossings rather than only count them, and since the number of crossings
is Θ(|E|2) in the worst case, there can be no asymptotically better algorithm.
However, we do not need a list of all crossings, but only their number.
The best known approaches to the 2-layer cross counting problem, both

in theory and in practice, are by Waddle and Malhotra [69] and by Barth et
al. [1] and run in O(|E| log |E|) and O(|E| log(min{|N |, |S|})) time, respec-
tively. The former is a sweep line algorithm and the latter uses a reduction
of the cross counting problem to the counting of the inversions of a certain
sequence. We refrain from a detailed description and only mention that an
experimental evaluation by Barth et al. [1] shows that a combination of the
median heuristic for crossing minimization and cross counting with any of the
O(|E| log |E|) algorithms can be performed for very large graphs very fast.

Coordinate Assignment. After the topology of the layout has been fixed
by the previous two phases (S1) and (S2), the purpose of phase (S3) is the as-
signment of coordinates to the vertices. Since each artificial vertex introduced
in phase (S1) gives rise to a possible edge bend in the final layout, a careless
implementation of phase (S3) usually leads to the so-called “spaghetti effect”
as shown in Figure 16(a).

12 3

4

5

6

7

8

9

10 11

12

13

14

15

16

17

18

19

20

21

2223

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

(a)

12 3

4

5

6

7

8

9

10 11

12

13

14

15

16

17

18

19

20

21

2223

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

(b)

Fig. 16. The spaghetti effect and a remedy.



30 Michael Jünger and Petra Mutzel

The goal is to avoid this effect by “straightening” the long edges that
traverse layers in the layout so as to obtain results as shown in Figure 16(b).
A landmark paper on layered layout by Gansner et al. [40] treats this problem
in much detail. In addition to a layer by layer sweep heuristic similar in spirit
to the one described in the previous subsection for crossing reduction, the
authors give an integer linear programming formulation as follows.
For each e ∈ E, let Ω(e) be a priority for edge e to be drawn as a vertical

line segment. We wish to assign integer x-coordinates within a grid drawing
in which the vertices are separated by at least one grid unit. If xv is the
x-coordinate to be assigned to v ∈ V , then the spaghetti avoidance problem
can be formulated as the integer non-linear program

minimize
∑

(u,v)∈E
Ω((u, v)) |xv − xu|

subject to xj − xi ≥ 1 for all pairs i and j of vertices
within a layer permutation, where
i is immediately followed by j

xv ≥ 0 and integral for all v ∈ V

which can be transformed via additional variables to the integer linear pro-
gram

minimize
∑

(u,v)∈E
Ω((u, v)) zuv

subject to zuv ≥ xv − xu for all (u, v) ∈ E

zuv ≥ xu − xv for all (u, v) ∈ E

xj − xi ≥ 1 for all pairs i and j of vertices
within a layer permutation, where
i is immediately followed by j

xv ≥ 0 and integral for all v ∈ V

that can be solved efficiently in polynomial time using network flow tech-
niques. The authors recommend choosing

Ω((u, v)) =


1 if both u and v are non-artificial,
2 if exactly one of u and v is artificial,
8 if both u and v are artificial.

Ideally, a long layer traversing edge has at most two bends, one at its
first and one at its last artificial vertex, and is drawn vertically in between.
The optimum of the above optimization problem cannot guarantee this. With
certain additional requirements on the outcome of the crossing minimization
phase (S2), two fast heuristics overcome this problem by trying to obtain
near optimum solutions to the above optimization problem under the addi-
tional restriction that all long edges indeed have at most two bends and the



Technical Foundations 31

internal parts are drawn vertically, the first by Buchheim et al. [14] runs in
O(|E| log2 |E|) time, and the second by Brandes and Köpf [10] runs in O(|E|)
time. Both produce visually pleasing results very efficiently.

Making any Graph Acyclic and Directed. If we want to apply Sugiya-
ma-style layout to a non-acyclic digraph, a natural way to make it acyclic
is reversing the directions of edges in order to obtain an acyclic digraph. In
many cases, such as the drawing of flowcharts, the input data can be expected
to determine the choice of such reversals. In the absence of such input data,
we would like to reverse as few edges as possible. Thus we can guarantee that,
in the final layout, a minimum number of edges point upward rather than
downward. This problem is equivalent to the feedback arc set problem, also
known as the acyclic subdigraph problem. It is NP-hard yet can be solved in
many reasonably sized cases to optimality by branch-and-cut, see Jünger et
al. [50]. When more than the minimum number of edges are reversed, the
equivalence is lost. Fortunately, there are fast heuristics for finding a small
number of edges whose reversal makes the digraph acyclic, most notably a
heuristic by Eades et al. [30] that runs in O(|E|) time and guarantees a
solution in which at most |E|

2 − |V |
6 edges must be reversed in order to obtain

an acyclic digraph.
If we want to apply a Sugiyama-style method to an undirected graph,

various application-dependent considerations may guide the assignment of
directions to the edges so as to obtain an acyclic digraph. In the absence of
such guidance, or in addition to it, it is reasonable to assign the directions to
the edges with the goal of obtaining a compact final layout. Sander [61] dis-
cusses various heuristics, among them a force-directed layout (see Section 4.5)
from which the layer assignment, and thus the edge direction assignment, is
extracted. This practically successful idea saves phase (S1) and tends to pro-
duce uniform edge lengths. See [24] for an experimental study of the many
alternative ways to draw directed graphs.

4.3 Planarization

There are many interesting drawing methods for planar graphs that yield
plane drawings as we will discuss in Section 4.4. Such a method can be applied
to a non-planar graph G after transforming G into a planar graph G′. The
basic idea of the planarization method was introduced by Tamassia et al. [67].
There are different ways of planarizing a given non-planar graph. The

most widely used method in graph drawing is to construct an embedding
of G with a small number of crossings, and then to substitute each crossing
and its involved pair of edges ({u1, v1}, {u2, v2}) by an artificial vertex w
and four incident edges {w, u1}, {w, u2}, {w, v1}, and {w, v2}. We call the
resulting planar graph GP = (VP , EP ) a planarized graph from G.



32 Michael Jünger and Petra Mutzel

After the planarization phase, the resulting planar graph G′ is drawn
using a planar drawing algorithm, and then the artificial vertices are re-
substituted by crossings.
The crossing minimization problem searches for a drawing with the min-

imum number of crossings. Unfortunately, this problem is NP-hard [39]. A
classical approach for generating a drawing with a small number of crossings
is to compute a planar subgraph P of G by temporarily removing edges.
Then the removed edges are re-inserted while trying to keep the number of
crossings small. In practice, this method usually leads to drawings with few
crossings.
Further restrictions of planarity, such as upward or c-planarity, lead to

similar planarization methods. Under the restriction that upward planarity
and c-planarity can only be tested for a subset of directed and clustered
graphs, respectively, approaches for upward planarization and cluster pla-
narization can be developed by using the corresponding testing algorithms.
In the sequel we will explain the two steps, namely edge removal and edge

re-insertion, in more detail.

Edge Removal. We consider the maximum planar subgraph problem which
is the problem of removing the minimum number of edges of a non-planar
graph so that the resulting graph P is planar. This problem is NP-hard [56].
However, Jünger and Mutzel suggest a branch-and-cut algorithm which is
able to solve small problem instances to provable optimality in short com-
putation time [48]. Since this algorithm has exponential running time in the
worst case, heuristics are often used for solving this problem in practice.
A subgraph P = (V,E′) of a graph G = (V,E) is called a maximal planar

subgraph of G if there is no edge e ∈ E \ E′ so that the graph (V,E′ ∪ e} is
planar.
A simple algorithm for computing a maximal planar subgraph of a given

graph G is to start with the empty graph and successively add the edges of G
if their addition results in a planar graph. Edges destroying the planarity are
discarded (see Algorithm 1). The incremental algorithm can be implemented
in time O(|V ||E|) by simply calling a linear planarity testing algorithm. Di
Battista and Tamassia have suggested an incremental planarity testing algo-
rithm which can test in O(log |V |) time whether an edge can be added to a
graph without destroying planarity, thus leading to a total running time of
O(|E| log |V |). The best theoretical algorithm for incremental planarity test-
ing has been suggested by Djidjev [27] and runs in time O(|E| + |V |). It is
based on the SPQR-tree data structure and special dynamic data structures
that allow union and splits for sets in constant amortized time.
Another method based on the planarity testing algorithm by Hopcroft and

Tarjan has been suggested by Cai et al. [16] and runs in time O(|E| log |V |).
An algorithm based on PQ-trees has been suggested by Jayakumar et

al. [46] and runs in time O(|V |2). The peculiarities of this algorithm are



Technical Foundations 33

Algorithm 1: Incremental maximal planar subgraph

Input : Graph G = (V, E)

Output: Maximal planar subgraph P = (V, F ) of G

Set F = ∅
for all edges e ∈ E do
if P = (V, F ∪ {e}) is planar then

Set P = (V, F ∪ {e})
end

end

discussed in various subsequent papers, see, e.g., [47], and it turns out that
algorithms based on PQ-trees are not appropriate for finding maximal planar
subgraphs in general. Despite the fact that this algorithm does not compute a
maximal planar subgraph, it leads to larger subgraphs than the näıve method
in general. Ziegler has shown that the results improve if the algorithm is
applied several times to the same graph with perturbed input data [71].

Edge Re-Insertion. Given a planar subgraph P of G = (V,E), our task is
to re-insert the removed edges so that the number of edge crossings is small.
More formally, the problem is to create a drawing with the minimum number
of crossings in which the planar subgraph is drawn crossing-free. Without the
latter restriction, the problem would be equivalent to the crossing minimiza-
tion problem.
The most widely used edge re-insertion method is shown in Algorithm 2.

It chooses a planar embedding of P and successively inserts the edges of F .
After each re-insertion step, the crossings are substituted by artificial vertices,
thus providing a planar graph after each step. For a fixed planar embedding,
an edge e = {u, v} can be inserted with the minimum number of crossings
by computing a shortest path in an extended dual graph. The extension is
necessary to connect the primal vertices u and v with the dual graph. This
is done by adding u∗ and v∗ inside the faces Fu and Fv that correspond to u
and v in the primal graph, respectively, and by adding artificial edges from
the new vertices to the dual vertices bounding the faces Fu and Fv. The new
edge creates a crossing in GP whenever a (real) dual edge in G∗

P is used,
which corresponds to crossing the boundary of two adjacent faces. Figure 17
shows a plane graph, its extended dual graph, and an edge e to be inserted.
The algorithm can be implemented in time O(|F |(|E′| + |C|)), where |C| is
the number of generated crossings.
Clearly, the number of generated crossings highly depends on the cho-

sen embedding Π at the beginning. Gutwenger et al. [43] have presented an
algorithm which solves the one-edge insertion problem optimally over the
set of all embeddings of G in linear time, thus overcoming this problem.
Since the embedding of GP is changed after substituting the crossings dur-



34 Michael Jünger and Petra Mutzel

Fig. 17. The edge re-insertion step for one edge.

Algorithm 2: Classical edge re-insertion algorithm

Input : Planar graph P = (V, E′) of G = (V, E) and edge set F = E \ E′

Output: Planarized graph GP = (VP , EP ) of G

Set GP = (V, E′)
Compute a planar embedding Π of GP

Compute the dual graph G∗
P of GP with respect to Π

for all edges e = {u, v} ∈ F do
Extend the dual graph G∗

P at the end-vertices of e
Compute a shortest path from u to v in G∗

P

Update GP = (VP , EP ) by substituting all crossings by new vertices
Update the dual graph G∗

P

end

ing the run of the algorithm, it may happen that some of the crossings are
not needed anymore in the final drawing, and this leads to further crossing
reduction. The edge re-insertion is specified in Algorithm 3, whose running
time is O(|F |(|E′|+ |C|)).

Algorithm 3: Optimal embedding re-insertion algorithm

Input : Planar graph P = (V, E′) of G = (V, E) and edge set F = E \ E′

Output: Planarized graph GP = (VP , EP ) of G

Set GP = (V, E′)
for all edges e = {u, v} ∈ F do

Call the optimal 1-edge re-insertion algorithm for e and GP

Update GP = (VP , EP ) by substituting all crossings by new vertices

end
Reduce superfluous crossings in the planarized graph GP



Technical Foundations 35

The number of generated crossings can be further decreased by a remove-
and-reinsert post-processing step (see, e.g., Ziegler [71] for experimental re-
sults). A typical drawing using planarization in combination with a planar
orthogonal layout method is shown in Figure 18.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23 24

25

26

27

28

29

Fig. 18. A typical drawing in planarization style.

4.4 Orthogonal Layout

A popular style in graph drawing is orthogonal drawing. In an orthogonal
drawing each edge is represented as a chain of horizontal and vertical seg-
ments. A point where a horizontal and a vertical segment of an edge meet is
called a bend .
A popular orthogonal drawing method is the topology-shape-metrics ap-

proach of Batini et al. [2], which we will discuss now. The topology-shape-
metrics method focuses on the æsthetic criteria crossings, bends, and area of
the drawing and tries to keep these numbers small while fixing the topology,
the shape, and the edge lengths, in this order. It deals with topology, shape,
and geometry of the drawing separately, allowing for each æsthetic criterion
to be addressed in the corresponding step, avoiding the complexity of a global
optimization. Experimental results have shown that minimization in all these
steps does in fact lead to better drawings (see, e.g., [25]). Algorithm 4 gives
an overview of the topology-shape-metrics method.
The topology is fixed using the planarization method based on planar

subgraphs (see Section 4.3). Then, a planar orthogonal drawing method is
used for planar graphs, which we will discuss in the sequel.



36 Michael Jünger and Petra Mutzel

Algorithm 4: The topology-shape-metrics method

Input : Graph G = (V, E);

Output: Orthogonal drawing of G = (V, E)

Planarization. If G is planar, then a planar embedding for G is computed.
If G is not planar, a set of artificial vertices is added to replace crossings.

Orthogonalization. During this step, an orthogonal representation H of
G is computed within the previously computed embedding.

Compaction. In this step a final geometry for H is determined. Namely,
coordinates are assigned to vertices and bends of H.

Orthogonalization. Initially, we consider only 4-planar graphs, i.e., pla-
nar graphs G with maxdeg(G) = 4. Given a 4-planar graph G with planar
embedding Π, the algorithm by Tamassia [66] computes a planar orthogonal
grid embedding with the minimum number of bends in polynomial time by
transforming it into a minimum-cost flow problem in a network. The network
is based on the dual graph given by Π and contains O(|V |+ |F |) vertices and
O(|V |+ |E|) edges for a planar embedded graph with |F | faces.
The algorithm is region preserving, i.e., the underlying topological struc-

ture given in Π is not changed by the algorithm.
Each feasible flow in the network corresponds to a possible shape of G.

In particular, the minimum cost flow leads to the orthogonal shape with the
lowest number of bends since each unit of cost is associated with a bend in
the drawing. The flow is used to build a so-called orthogonal!representation
H that describes the shape of the final drawing in terms of bends occurring
along the edges and angles formed by the edges. Formally, H is a function
from the set of faces F to lists of triples r = (er, sr, ar) where er is an edge,
sr is a bit string, and ar is the angle formed with the following edge inside
the appropriate face. The bit string sr provides information about the bends
along edge er, and the kth bit describes the kth bend on the right side of er
where a zero indicates a 90◦ bend and a one a 270◦ bend. The empty string
ε is used to characterize straight line edges. Figure 19 shows an example.
There are four necessary and sufficient conditions for an orthogonal rep-

resentation H to be a valid shape description of some 4-planar graph:

(P1) There is a 4-planar graph whose planar embedding Π is identical to
that given by H restricted to the e-fields. We say that H extends Π.

(P2) Let r and r′ be two elements in H with er = er′ . Since each edge is
contained twice in H these pairs always exist. Then string sr′ can be
obtained by applying bitwise negation to the reversion of sr.

(P3) Let |s|0 and |s|1 denote the numbers of zeroes and ones in string s,
respectively. Define for each element r in H the value

ρ(r) = |sr|0 − |sr|1 + (2−
ar
90
).



Technical Foundations 37

H(f1) =
(
(e1, 00, 180), (e2, ε, 90), (e3, 010, 90),
(e4, 10, 360), (e4, 10, 90), (e5, ε, 180)

)
H(f2) =

(
(e6, 0, 90), (e7, ε, 90), (e5, ε, 90)

)
H(f0) =

(
(e7, ε, 270), (e6, 1, 90), (e3, 101, 270),
(e2, ε, 180), (e1, 11, 90)

)e6

e7

e1

e2

e3

e4

e5f2 f1

f0

Fig. 19. Orthogonal grid drawing with corresponding orthogonal representation of
a 4-planar graph

Then for each face f∑
r∈H(f)

ρ(r) =
{
+4 if f is an internal face
−4 if f is the external face f0.

(P4) For each vertex v ∈ V we have∑
er=(u,v)

ar = 360 ∀u ∈ V,

i.e., the angles around v given by the a-fields sum up to 360◦.

We say that a drawing Γ realizes H ifH is a valid description for the shape
of Γ . Figure 19 shows an orthogonal representation H and a grid embedding
realizing H. Note that the number of bends in any drawing that realizes H
is

b(H) =
1
2

∑
f∈F

∑
r∈H(f)

|sr|.

Let G = (V,E) be the input graph with planar embedding Π defining
the face set F . The construction of the underlying network N follows [42]:
Let U = UF ∪ UV denote its vertex set. Then for each face f ∈ F there is a
vertex in UF and for each vertex v ∈ V there is one in UV . Vertices uv ∈ UV

supply b(uv) = 4 units of flow and vertices uf ∈ UF consume

−b(uf ) =
{
2 deg(f)− 4 if f is an internal face
2 deg(f) + 4 if f is the external face f0

units of flow. Thus, the total supply is 4|V | and the total demand is∑
f �=f0

(2 deg(f)− 4) + 2deg(f0) + 4 = 4|E| − 4|F |+ 8



38 Michael Jünger and Petra Mutzel

which is equal to the total supply, according to Euler’s formula (Theorem 1).
The arc set A of network N consists of two sets AV and AF where

AV = {(uv, uf ) | uv ∈ UV , uf ∈ UF , v is adjacent to f} and
AF = {(uf , ug) | uf �= ug ∈ UF , f is adjacent to g}

∪ {(uf , uf ) | f contains a bridge}.

Arcs in AV have lower bound 1, capacity 4, and cost 0. Each unit of flow
represents an angle of 90◦, so a flow in an arc (uv, uf ) ∈ AV corresponds to the
angles formed at vertex v inside face f . Note that there can be more than one
angle, see for example Figure 19 where the vertex common to edges e6, e5, e4,
and e3 builds two angles in f1. Precisely, the flow in (uv, uf ) corresponds to
the sum of the angles at v inside f . Following this interpretation, flow in arcs
(uf , ug) ∈ AF find their analogy in bends occurring along edges separating
f and g that form a 90◦ angle in f . Naturally their lower bound is 0, their
capacity unbounded, and they have unit cost.
The conservation rule at vertices uv ∈ UV expresses that the angle sum

around the corresponding vertex v is equal to 360◦. The vertices in UF con-
sume flow; here, the conservation rule states that every face has the shape of
a rectilinear polygon. A planar graph and the transformation into a network
is shown in Figure 20(a)–(d).
It is easy to see that there is always a feasible flow in network N : Flow

produced by vertices in UV can be transported to vertices in UF where it
satisfies their demand. In case it is not possible to satisfy every vertex in
UF by exclusively using arcs in AV , units of flow can be shifted without
restriction between vertices in UF because of their mutual interconnection
by arcs in AF . Every feasible flow can be used to construct an orthogonal
representation for the input graph G, in particular the minimum cost flow,
leading to the orthogonal representation with the minimum number of bends.
The following lemma states the analogy between flows in the network and
orthogonal representations.

Lemma 1 (Tamassia [66]). Let G be the input graph, Π its planar embed-
ding, and N the constructed network. For each integer flow χ in network N ,
there is an orthogonal representation H that extends Π and whose number
of bends is equal to the cost of χ. The flow χ can be used to construct the
orthogonal representation.

Figure 21 completes the example from Figure 20, showing the minimum
cost flow in the constructed network and a realizing grid embedding for the
derived orthogonal representation.
Vice versa, it can be shown that the number of bends in each orthogonal

grid embedding of a graph with planar embedding Π is equal to the cost
of some feasible flow in network N . This result and Lemma 1 lead to the
following theorem, combining the basic results of [66] and [42]:



Technical Foundations 39

(b) Nodes in network N .
Supply/demand shown

(a) Planar embedding P

(c) Arcs in AV . Capacity 4,
lower bound 1, cost 0

(d) Arcs in AF . Capacity ∞,
lower bound 0, cost 1

+4
+4

+4

+4

+4

+4+4

-4
-8

-16

v1
v2

v3

v4

v5v6

v7f1

f2

f0

Fig. 20. Network construction.

1

11

1 1 1

2

1

4

3
2

3

3

1 (cost 1)13

Fig. 21. Minimal cost flow in network N and a resulting grid embedding.



40 Michael Jünger and Petra Mutzel

Theorem 6 (Tamassia [66]). Let Π be a planar embedding of a connected
4-planar graph G and let N be the corresponding network. Each feasible flow
χ in N corresponds to an orthogonal representation for G that extends Π and
whose number of bends is equal to the cost of χ. In particular, the minimum
cost flow can be used to construct the bend optimal orthogonal representation
preserving Π.

Garg and Tamassia [42] have shown that the minimum cost flow problem
in this specific network can be solved in O(|V |7/4√ log |V |) time.
Obviously, the number of bends is highly dependent on the chosen em-

bedding. Unfortunately, the problem in the variable embedding setting is
NP-complete [41]. However, Bertolazzi et al. [4] have designed a branch-
and-bound algorithm for solving the bend minimization problem over the set
of all embeddings to optimality. An alternative approach for provably opti-
mum solutions is based on integer linear programming and has been suggested
by Mutzel and Weiskircher [58]. Both algorithms use the data structure of
SPQR-trees in order to represent the set of all planar embeddings of the given
planar graph.

Compaction. After the orthogonalization phase, the description is dimen-
sionless, and coordinates need to be assigned to the vertices and bends. The
problem of computing the edge lengths of an orthogonal representation min-
imizing the area or the total edge length of the drawing is called the com-
paction problem. This problem is NP-hard [59].
There is a vast amount of literature concerning the compaction problem,

since it has played an important role not only in graph drawing, but also in
the context of circuit design. The heuristic methods can be categorized into
constructive and improvement methods. Tamassia has suggested the first ap-
proach in the context of graph drawing. In [66], he provides a linear time
algorithm based on rectilinear dissection of the orthogonal representation.
Recently, Bridgeman et al. [12] have extended this technique by introduc-
ing the concept of turn-regularity, thus leading not only to better heuris-
tics, but also to particular classes of orthogonal representations that can be
solved to optimality. The compression-ridge method and other graph-based
compaction methods originate in VLSI layout and constitute improvement
heuristics for the compaction problem. They consider the one-dimensional
compaction problem of reducing the horizontal or vertical edge lengths. Ex-
perimental studies by Klau et al. [53] have shown that the heuristics lead to
tremendous improvements in area and edge length minimization.
Klau and Mutzel have presented a branch-and-cut algorithm which is able

to solve the compaction problem with respect to edge length minimization to
provable optimality [54]. The approach is based on a new combinatorial for-
mulation of the problem. Besides the possibility of providing an integer linear
programming formulation for the problem, the new approach also provides



Technical Foundations 41

new classes of orthogonal representations that can be solved in polynomial
time [54].

High Degree Orthogonal Drawings. As already discussed above, the
bend minimization algorithm by Tamassia only works for graphs with ver-
tex degree bounded by four. In order to generate orthogonal drawings for
graphs of arbitrary vertex degree, different drawing conventions have been
introduced in the literature. Here we introduce the basic Kandinsky drawing
convention, defined by Fößmeier and Kaufmann [36].
A basic Kandinsky drawing (see Figures 22(a) and (b)) is an orthogonal

drawing such that:

1. Segments representing edges may not cross, with the exception that two
segments that are incident on the same vertex may overlap. Observe that
the angle between such segments has zero degree. Roughly speaking, a
basic Kandinsky drawing is “almost” planar: it is planar everywhere but
in the possible overlap of segments incident on the same vertex. Observe
in Figure 22(b) the overlap of segments incident on vertices 1, 2, and 3.

2. All the polygons representing the faces have an area strictly greater than
zero.

Basic Kandinsky drawings are usually visualized by representing vertices
as boxes with equal size and representing two overlapping segments as two
very near segments. See Figure 22(c).
In [36] an algorithm is presented that computes a basic Kandinsky drawing

of an embedded planar graph with the minimum number of bends. Further-
more, the authors conjecture that the drawing problem becomes NP-hard
when condition 2 is omitted. Basic Kandinsky drawings generalize the con-
cept of orthogonal representation, allowing angles between two edges incident
to the same vertex to have zero degree. The consequence of the assumption
that the polygons representing the faces have area strictly greater than zero
is that the angles have specific constraints. Namely, because of conditions 1
and 2, each zero degree angle is in correspondence with exactly one bend [36].
An orthogonal representation corresponding to the above definition is a basic
Kandinsky orthogonal representation.
Figure 23 shows a typical planar orthogonal drawing in basic Kandinsky

style.
The basic Kandinsky model has been extended in [26] to deal with draw-

ings in which the size (width and height) of each single vertex is assigned
by the user. We refer to this extended model as the Kandinsky model. A
Kandinsky drawing has the following properties (see also Figure 22(d)):

1. Each vertex is represented by a box with its specific width and height
(width and height are assigned to each single vertex by the user).



42 Michael Jünger and Petra Mutzel

6

7

4

2

1

5

3

(a)

4

1

2

3

6 7

5

(b)

1

2

3

4 5

6 7

(c)

4

6 7

5

3

vertex     width     height

1               1             1
2               2             0
3               0             0
4               0             0

6               0             0
7               0             0

5               0             1

1

2

(d)

Fig. 22. (a) A planar graph and (b) one of its basic Kandinsky drawings; (c) A
more effective visualization of the basic Kandinsky drawing in (b); (d) A Kandinsky
drawing with the same shape as the drawing in (b); the sizes of the vertices are
specified in the table.



Technical Foundations 43

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

19

20

21

22

23

24

25

26

27

28

29

Fig. 23. A typical planar orthogonal drawing in basic Kandinsky style.

2. Consider any side of length l ≥ 0 of a vertex v and consider the set I of
arcs that are incident on such a side.
(a) If l + 1 ≥ |I| then the edges of I may not overlap.
(b) If l+1 < |I| then the edges of I are partitioned into l+1 non-empty

subsets such that all the edges of the same subset overlap.
3. The orthogonal representation constructed from a Kandinsky drawing by
contracting each vertex into a single point is a basic Kandinsky orthogonal
representation.

Di Battista et al. [26] suggest a polynomial time algorithm for computing
Kandinsky drawings of an embedded planar graph that have the minimum
number of bends over a wide class of Kandinsky drawings.



44 Michael Jünger and Petra Mutzel

4.5 Force Directed Layout

The basic idea of force-directed methods is to associate the vertices of a
graph with physical entities and the edges with interactions between their
end-vertex entities. Imagine that the vertices are charged particles with mu-
tual repulsion and that the edges are springs attached at their end-vertices.
Let this physical system relax to a (locally) minimum energy state in three-
dimensional space, assign to the vertices the Cartesian coordinates of their
corresponding vertex particles in this state and draw the edges connecting
the positions of their end-vertices as straight lines. This captures the general
idea of force-directed methods for three-dimensional graph drawing. We ap-
ply this idea to simple undirected graph drawing in two dimensions and treat
non-simple and/or directed graphs as well as three-dimensional layouts af-
terwards. See Figure 24 for a typical force-directed layout in two dimensions.

01

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig. 24. A typical force-directed layout.

It should be stressed that the title of this section is a concession to the
short tradition of automatic graph drawing and the title “Drawing on Physi-
cal Analogies” of a recommended survey of Brandes [9] would be much more
appropriate, because what follows has little to do with what physicists do
when they study ground states of physical systems and relaxation dynamics.

Two-Dimensional Force-Directed Layout of Undirected Graphs. For
ease of notation, we identify vertices and edges with their physical counter-
parts. In approaching the charged particles and spring model, the force acting



Technical Foundations 45

on a vertex v ∈ V depends on the locations pv = (xv, yv) ∈ IR2 of the vertices
v ∈ V and is composed of the repulsive forces by the other vertices and the
forces by the edges in star(v), i.e.,

F (pv) =
∑

u∈V \{v}
repulsionforce(pu, pv) +

∑
{u,v}∈star(v)

springforce({pu, pv}).

For p = (x, y) ∈ IR2 let ‖p‖ =
√

x2 + y2 denote the Euclidean norm of p
and let −−→pupv= pv−pu

‖pv−pu‖ be the normalized difference vector of pv and pu. We
may choose the repulsion force between vertices u and v to follow an inverse
square law, i.e.,

repulsionforce(pu, pv) =
R

‖pu − pv‖2 ·
−−→pupv

where R is a repulsion constant, and the spring force of edge {u, v} according
to Hooke’s law, i.e.,

springforce(pu, pv) = S{u,v} · (‖pu − pv‖ − l{u,v})· −−→pupv

where S{u,v} is the stiffness and l{u,v} is the natural length of the spring
between u and v such that springforce(u, v) is proportional to the difference
between the distance of u and v and the natural length of the spring. The
natural spring lengths l{u,v} reflect the desirable lengths of the edges in the
drawing and can be passed together with the stiffnesses S{u,v} as additional
input to a force-directed method.
Force-directed methods try to compute vertex positions pv for which the

physical system attains an equilibrium state in which F (pv) = 0 for all v ∈ V .
Such a state is approximated in practice by iterative algorithms that, starting
with some initial (possibly random) positions pv for the vertices v ∈ V , com-
pute F (pv) for all v ∈ V and then update the positions pv ←− pv+µ ·F (pv)
where the step length µ is a small number, either given as a parameter or cho-
sen dynamically depending on the number of iterations already performed.
The (dynamic) choice of µ, a stopping criterion, and whether all moves are
parallel or sequential are among the many choices an implementor of a force-
directed method must make. For the dynamic choice of µ, all kinds of iterative
improvement schemes, e.g., simulated annealing or genetic algorithms, can be
used.
Inspired by previous usage of force-directed methods in VLSI layout al-

gorithms, this method that is usually referred to as spring embedder was
introduced into automatic graph drawing by Eades [28] with a modified force
model that replaces the definition of springforce(pu, pv) with a logarithmic
counterpart

springforceEades(pu, pv) = S{u,v} · log
(‖pu − pv‖

l{u,v}

)
· −−→pupv .



46 Michael Jünger and Petra Mutzel

A very early paper on automatic graph drawing by Tutte [68] can be inter-
preted as a spring embedder method for the special case R = 0, Se = 1 and
le = 0 for all e ∈ E so that F (pv) is replaced by

FTutte(pv) =
∑

{u,v}∈star(v)
(pv − pu)

and the positions of at least three vertices are fixed in advance. (If no vertices
are fixed, the solution pv = (0, 0) for all v ∈ V is an undesired optimum.)
Here, the problem of coordinate assignment is reduced to the solution of
a (sparse) system of linear equations. The resulting coordinates have the
nice property that each non-fixed vertex position is at the barycenter of
its neighbor vertex positions. If Tutte’s method is applied to a 3-connected
planar graph and the coordinates of the vertices of a face of some planar
embedding are fixed to their positions in a strictly convex planar drawing of
this face, it produces a planar straight line drawing.
Many variants closer to the generic model have been proposed and ex-

perimentally evaluated in the literature, the modifications concern various
redefinitions of the forces in order to facilitate their evaluation and/or obtain
faster convergence of the iterative method, and speeding up the iterative pro-
cess by evaluating only a subset of the repulsion force terms in F (pv). E.g.,
Fruchterman and Reingold [38] replace repulsionforce(pu, pv) by

repulsionforceFG(pu, pv) =
l2{u,v}

‖pu − pv‖ ·
−−→pupv

and springforce(pu, pv) by

springforceFG(pu, pv) =
‖pu − pv‖2

l{u,v}
· −−→pvpu

whereas Frick et al. [37] use

repulsionforceFLM(pu, pv) =
l2{u,v}

‖pu − pv‖2 · (pu − pv)

springforceFLM(pu, pv) =
‖pu − pv‖2
l2{u,v} · Φ(v)

· (pv − pu)

where Φ(v) = 1+ deg(v)
2 . They also add an additional gravitational component

gravitationforceFLM(pv) = Φ(v) · γ ·
(∑

w∈V pw

|V | − pv

)
to F (pv), where γ is a gravitational constant, and perform all calculations
in (fast) integer arithmetic. Together with more refinements, a substantial



Technical Foundations 47

reduction in running time without visible compromises in layout quality can
be achieved.
We have not yet discussed the choice of the stiffness and the natural

length parameters that can be used to control the behavior of a force-directed
method. An interesting suggestion has been made by Kamada and Kawai [51].
For a connected graph G = (V,E) and u, v ∈ V let δ(u, v) denote the length
of a shortest path connecting u and v. The idea is to aim at a final layout
in which the distance ‖pu − pv‖ is approximately proportional to δ(u, v). To
this end, Kamada and Kawai use springs between all

(|V |
2

)
vertex pairs so

that the force between vertices u and v can be written as

springforceKK(pu, pv) = Suv · (‖pu − pv‖ − δ(u, v)).

They choose the stiffness parameters so that they are strong for graph-
theoretically near vertices and decay according to an inverse square law with
increasing distance δ(u, v), namely

Suv =
S

δ(u, v)2

for some constant S.
The potential energy of the spring between u and v is

E(u, v) =
∫
springforceKK(pu, pv) d(‖pu − pv‖ − δ(u, v))

=
1
2
Suv(‖pu − pv‖ − δ(u, v))2

=
S

2

(‖pu − pv‖
δ(u, v)

− 1
)2

and the potential energy of the whole drawing becomes

E =
∑

u,v∈V, u�=v
E(u, v) =

S

2

∑
u,v∈V, u�=v

(‖pu − pv‖
δ(u, v)

− 1
)2

.

Necessary conditions for the optimality of vertex positions pv = (xv, yv) are

∂E

∂xv
= 0 and

∂E

∂yv
= 0 for all v ∈ V.

For finding an approximate solution to this nonlinear system of equations,
Kamada and Kawai use an iterative algorithm that in each iteration chooses
a vertex w ∈ V on which the largest force is acting, i.e.,

w = argmax

{√(
∂E

∂xv

)2

+
(

∂E

∂yv

)2
∣∣∣∣∣ v ∈ V

}
and a line search to move it to an energy minimizing position while the
positions of the vertices v ∈ V \ {w} are temporarily fixed.



48 Michael Jünger and Petra Mutzel

Two-Dimensional Force-Directed Layout of Directed Graphs. For
directed graphs, force-directed layout methods can accommodate a preferred
direction within the drawing such that each directed edge is penalized pro-
portionally to the angle ϕ its drawing deviates from the preferred direction.
In a more general context, Sugiyama and Misue [64] propose the following
amendment to basic force-directed methods: If −−→pupv

⊥ is the unit length vec-
tor perpendicular to −−→pupv and pointing towards a decrease of ϕ, they add a
rotation force

rotationforce(pu, pv) =M · ‖pu − pv‖α · ϕβ · −−→pupv
⊥

to springforce(pu, pv), where M is a constant for the strength of an exterior
magnetic field and the parameters α and β control the relative influence of
the exterior field on vertex distance and angle deviation, respectively.

Other Extensions. Eades et al. [32] propose a method for the layout of
hierarchical (clustered) graphs with force-directed methods. For simplicity,
let us assume that the vertex set of G = (V,E) is partitioned into disjoint
subsets Vi, i ∈ {1, 2, . . . , k} for some k ∈ IN, i.e., we have a hierarchy of
depth one. For each Vi they introduce an additional artificial vertex vi that
is equipped with strong attractive forces with respect to the vertices v ∈ Vi
(realized by the appropriate artificial edges) and repulsive forces with respect
to the artificial vertices vj representing the other clusters Vj �= Vi.
Davidson and Harel [22] propose general energy functions that try to

capture various æsthetic requirements in automatic graph drawing. They try
to

minimize η = λ1η1 + λ2η2 + λ3η3 + λ4η4

where

η1 =
∑
u,v∈V

1
‖pu − pv‖2

η2 =
∑
v∈V

(
1
r2v
+
1
l2v
+
1
t2v
+
1
b2v

)
η3 =

∑
{u,v}∈E

‖pu − pv‖2

η4 = number of edge crossings

and rv, lv, tv, and bv are the distances of vertex v to the right, left, top, and
bottom boundary of the drawing area, respectively. Thus, η1 contributes the
repulsion between vertices, η2 the respect for the drawing area, η3 the prefer-
ence for short edges, and η4 the number of crossings (that can be easily calcu-
lated for any given vertex positions pv). The parameters λi (i ∈ {1, 2, 3, 4})
in the objective function control the relative emphasis on each of the four



Technical Foundations 49

criteria. Davidson and Harel use a simulated annealing procedure to find an
approximation to an energy minimal state of the system.
Brandes and Wagner [11] show how the layout of curved edge representa-

tions with Bézier curves can be reduced to the straight line case by placing
Bézier curve control points instead of vertices.

Final Remarks on Force-Directed Methods. In the discussion above,
there is no hidden assumption on the dimension of the drawing space, so
everything presented can be applied for three-dimensional force-directed lay-
out as well with the obvious modifications. E.g., Bruß and Frick [13] present
an extension of the method of Frick et al. [37] while Cruz and Twarog [20]
present an extension of the method of Davidson and Harel [22] in which the
cross counting component that is irrelevant in a three-dimensional drawing
is replaced by an edge-edge repulsion term.
Due to their general applicability and the lack of special structural as-

sumptions as well as for the ease of their implementation, force-directed
methods play a central role in automatic graph drawing. Just like layered
drawing methods they are included in many graph drawing software pack-
ages. An experimental comparison of various force-directed approaches is
presented by Brandenburg et al. [8].

References

1. Barth, W., Jünger, M., Mutzel, P. (2002) Simple and efficient bilayer cross
counting. In: M. Goodrich and S. Kobourov (eds.) Graph Drawing ’02, Lecture
Notes in Computer Science 2528, Springer-Verlag, 130–141

2. Batini, C., Nardelli, E., Tamassia, R. (1986) A layout algorithm for data flow
diagrams. IEEE Transactions on Software Engineering SE-12 (4), 538–546

3. Bertolazzi, P., Di Battista, G., Didimo, W. (1998) Quasi-upward planarity. In:
S. H. Whitesides (ed.) Graph Drawing ’98, Lecture Notes in Computer Science
1547, Springer-Verlag, 15–29

4. Bertolazzi, P., Di Battista, G., Didimo, W. (2000) Computing orthogonal draw-
ings with the minimum number of bends. IEEE Transactions on Computers 49
(8), 826–840

5. Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C. (1994) Upward drawings
of triconnected digraphs. Algorithmica 6 (12), 476–497

6. Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R. (1998) Optimal up-
ward planarity testing of single-source digraphs. SIAM Journal on Computing
27, 132–169

7. Booth, K., Lueker, G. (1976) Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. Journal of Computer
and System Sciences 13, 335–379

8. Brandenburg, F. J., Himsolt, M., Rohrer, C. (1996) An experimental compari-
son of force-directed and randomized graph drawing algorithms. In: F.-J. Bran-
denburg (ed.) Graph Drawing ’95, Lecture Notes in Computer Science 1027,
Springer-Verlag, 76–87



50 Michael Jünger and Petra Mutzel

9. Brandes, U. (2001) Drawing on Physical Analogies. In: M. Kaufmann and
D. Wagner (eds.) Drawing Graphs, Lecture Notes in Computer Science 2025,
Springer-Verlag, 71–86

10. Brandes, U., Köpf, B. (2002) Fast and simple horizontal coordinate assignment.
In: P. Mutzel, M. Jünger, S. Leipert (eds.) Graph Drawing ’01, Lecture Notes
in Computer Science 2265, Springer-Verlag, 31–44

11. Brandes, U., Wagner, D. (2000) Using graph layout to visualize train intercon-
nection data. J. Graph Algorithms and Applications 4 (3), 135–155

12. Bridgeman, S., Di Battista, G., Didimo, W., Liotta, G., Tamassia, R., Vismara,
L. (2000) Turn-regularity and optimal area drawings of orthogonal representa-
tions. Computational Geometry: Theory and Applications, 16, 53–93

13. Bruß, I., Frick, A. (1996) Fast interactive 3-D graph visualization. In: F.-
J. Brandenburg (ed.) Graph Drawing ’95, Lecture Notes in Computer Science
1027, Springer-Verlag, 99–110

14. Buchheim, C., Jünger, M., Leipert, S. (2001) A fast layout algorithm for k-
level graphs. In: J. Marks (ed.) Graph Drawing ’00, Lecture Notes in Computer
Science 1984, Springer-Verlag, 229–240

15. Buchheim, C., Jünger, M., Leipert, S. (2002) Improving Walker’s algorithm to
run in linear time. In: M. Goodrich and S. Kobourov (eds.) Graph Drawing
’02, Lecture Notes in Computer Science 2528, Springer-Verlag, 344–353

16. Cai, J., Han, X., Tarjan, R. E. (1993) An O(m logn)-time algorithm for the
maximal planar subgraph problem. SIAM Journal on Computing 22, 1142–1164

17. Chiba, N., Nishizeki, T., Abe, S., Ozawa T. (1985) A linear algorithm for em-
bedding planar graphs using PQ-trees. Journal of Computer System Science
30 (1), 54–76

18. Cook, W. J., Cunningham, W. H., Pulleyblank, W. R., Schrijver, A. (1998)
Combinatorial Optimization. John Wiley & Sons

19. Coffman, E. G., Graham, R. L. (1972) Optimal scheduling for two processor
systems. Acta Informatica 1, 200–213

20. Cruz, I. F., and Twarog, J. P. (1996) 3D graph drawing with simulated anneal-
ing. In: F.-J. Brandenburg (ed.) Graph Drawing ’95, Lecture Notes in Computer
Science 1027, Springer-Verlag, 162–165

21. Dahlhaus, E. (1998) A linear time algorithm to recognize clustered graphs and
its parallelization. In: C. L. Lucchesi and A. V. Moura (eds.) Latin ’98, Lecture
Notes in Computer Science 1380, Springer-Verlag, 239–248

22. Davidson, R., Harel, D. (1996) Drawing graphs nicely using simulated anneal-
ing. ACM Transactions on Graphics 15, 301–331

23. Di Battista, G., Eades, P., Tamassia, R., Tollis, I. G. (1999) Graph Drawing:
Algorithms for the visualization of graphs. Prentice Hall, New Jersey

24. Di Battista, G., Garg, A., Liotta, G., Parise, A., Tamassia, R., Tassinari, E.,
Vargiu, F., Vismara, L. (1997) Drawing Directed Graphs: an Experimental
Study. In: S. North (ed.) Graph Drawing ’96, Lecture Notes in Computer Sci-
ence 1190, Springer-Verlag, 76–91

25. Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.
(1997) Computational Geometry: Theory and Applications 7, 303–316

26. Di Battista, G., Didimo, W., Patrignani, M., Pizzonia M. (1999) Orthogonal
and quasi-upward drawings with vertices of arbitrary size. In: J. Kratochv́ıl
(ed.) Graph Drawing ’99, Lecture Notes in Computer Science 1731, Springer-
Verlag, 297–310



Technical Foundations 51

27. Djidjev, H. N. (1995) A linear algorithm for the maximal planar subgraph
problem. In: Proceedings of the 4th Workshop Algorithms Data Struct., Lecture
Notes in Computer Science, Springer-Verlag

28. Eades, P. (1984) A heuristic for graph drawing. Congressus Numerantium 42,
149–160

29. Eades, P. (1992) Drawing free trees. Bulletin of the Institute for Combinatorics
and its Applications 5, 10–36

30. Eades, P., Lin, X., Smyth, W. F. (1993) A fast and effective heuristic for the
feedback arc set problem. Information Processing Letters 47, 319–323

31. Eades, P., Wormald, N. (1994) Edge crossings in drawings of bipartite graphs.
Algorithmica 11, 379–403

32. Eades, P., Cohen, R. F., Huang, M. L. (1997) Online animated graph drawing
for web animation. In: G. Di Battista (ed.) Graph Drawing ’97, Lecture Notes
in Computer Science 1353, Springer-Verlag, 330–335

33. Elf, M., Gutwenger, C., Jünger, M., Rinaldi, G. (2001) Branch-and-cut algo-
rithms and their implementation in ABACUS. In: M. Jünger and D. Naddef
(eds.) Computational Combinatorial Optimization, Lecture Notes in Computer
Science 2241, Springer-Verlag, 157–222

34. Euler, L. (1750) Demonstratio nonnullarum insignium proprietatum quibus sol-
ida hedris planis inclusa sunt praedita. Novi Comm. Acad. Sci. Imp. Petropol.
4 (1752-3, published 1758), 140–160, also: Opera Omnia (1) 26, 94–108

35. Feng, Q. W., Cohen, R. F., Eades, P. (1995) Planarity for clustered graphs.
In: P. Spirakis (ed.) Algorithms – ESA ’95, Lecture Notes in Computer Science
979, Springer-Verlag, 213–226

36. Fößmeier, U., Kaufmann, M. (1996) Drawing high degree graphs with low bend
numbers. In: F. J. Brandenburg (ed.) Graph Drawing ’95, Lecture Notes in
Computer Science 1027, Springer-Verlag, 254–266

37. Frick, A., Ludwig, A., Mehldau, H. (1995) A fast adaptive layout algorithm for
undirected graphs. In: R. Tamassia and I. G. Tollis (eds.) Graph Drawing ’94,
Lecture Notes in Computer Science 894, Springer-Verlag, 388–403

38. Fruchtermann, T. M. J., Reingold, E. M. (1991) Graph drawing by force-
directed placement. Software – Practice and Experience 21, 1129–1164

39. Garey, M. R., Johnson, D. S. (1983) Crossing number is NP-complete. SIAM
J. Algebraic Discrete Methods 4, 312–316

40. Gansner, E. R., Koutsofios, E., North, S. C., Vo, K. P. (1993) A technique
for drawing directed graphs. IEEE Transactions on Software Engineering 19,
214–230

41. Garg, A., Tamassia, R. (1995) On the computational complexity of upward
and rectilinear planarity testing. In: R. Tamassia and I. G. Tollis (eds.) Graph
Drawing ’94, Lecture Notes in Computer Science 894, Springer-Verlag, 286–297

42. Garg, A., Tamassia, R. (1997) A New Minimum Cost Flow Algorithm with
Applications to Graph Drawing. In: S. North (ed.) Graph Drawing ’96, Lecture
Notes in Computer Science 1190, Springer-Verlag, 201–216

43. Gutwenger, C., Mutzel, P., Weiskircher, R. (2001) Inserting an edge into a
planar graph. In: Proceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2001), ACM Press, 246-255

44. Healy, P., Kuusik, A. (1999) The vertex-exchange graph: a new concept for
multi-level crossing minimization. In: J. Kratochv́ıl (ed.) Graph Drawing ’99,
Lecture Notes in Computer Science 1731, Springer-Verlag, 205–216



52 Michael Jünger and Petra Mutzel

45. Hopcroft, J., Tarjan, R. E. (1974) Efficient planarity testing. Journal of the
ACM 21, 549–568

46. Jayakumar, R., Thulasiraman, K., Swamy, M. N. S. (1989) O(n2) algorithms for
graph planarization. IEEE Transactions on Computer Aided Design 8, 257–267

47. Jünger, M., Leipert, S., Mutzel, P. (1998) A note on computing a maximal
planar subgraph using PQ-trees. IEEE Transactions of Computer-Aided Design
and Integrated Circuits and Systems 17, 609–612

48. Jünger, M., Mutzel, P. (1996) Maximum planar subgraphs and nice embed-
dings: practical layout tools. Algorithmica 16, 33–59

49. Jünger, M., Mutzel, P. (1997) 2-layer straight line crossing minimization: per-
formance of exact and heuristic algorithms. Journal of Graph Algorithms and
Applications 1, 1–25

50. Jünger, M., Reinelt, G., Thienel, S. (1995) Practical Problem Solving with Cut-
ting Plane Algorithms in Combinatorial Optimization. In: W. Cook, L. Lovász,
P. Seymour (eds.), DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, 111-152

51. Kamada, T., and Kawai, S. (1989) An algorithm for drawing general undirected
graphs. Information Processing Letters 31, 7–15

52. Kaufmann, M., Wagner, D. (eds.) (2001) Drawing Graphs: Methods and Mod-
els. Lecture Notes in Computer Science 2025, Springer-Verlag

53. Klau, G. W., Klein, K., Mutzel P. (2001) An Experimental Comparison of
Orthogonal Compaction Algorithms. In: J. Marks (ed.) Graph Drawing ’00,
Lecture Notes in Computer Science 1984, Springer-Verlag, 37–51

54. Klau, G. W., Mutzel P. (1999) Optimal compaction of orthogonal grid draw-
ings. In: G. Cornuejols, R. E. Burkard, and G. J. Woeginger (eds.), Integer
Programming and Combinatorial Optimization (IPCO ’99), Lecture Notes in
Computer Science 1610, Springer-Verlag, 304–319

55. Lempel, A., Even, S., Cederbaum, I. (1967) An algorithm for planarity testing of
graphs. Theory of Graphs: International Symposium: Rome, July 1966, Gordon
and Breach, New York, 215–232

56. Liu, P.C., Geldmacher, R. C. (1977) On the deletion of nonplanar edges of a
graph. Proceedings of the 10th S-E Conference on Comb., Graph Theory, and
Comp., Boca Raton, FL, 727–738

57. Mehlhorn K., Mutzel, P. (1996) On the embedding phase of the Hopcroft and
Tarjan planarity testing algorithm. Algorithmica 16, 233–242

58. Mutzel, P., Weiskircher, R. (2002) Bend Minimization in Orthogonal Drawings
Using Integer Programming. In: O. Ibarra and L. Zhang (eds.) Computing
and Combinatorics, Eighth Annual International Conference (COCOON 2002),
Lecture Notes in Computer Science 2387, Springer-Verlag, 484-493

59. Patrignani, M. (2001) On the complexity of orthogonal compaction. Computa-
tional Geometry: Theory and Applications 19 (1), 47–67

60. Reingold, E., Tilford, J. (1981) Tidier drawing of trees. IEEE Transactions on
Software Engineering 7, 223–228

61. Sander, G. (1996) Visualisierungstechniken für den Compilerbau. Pirrot Verlag
& Druck, Saarbrücken

62. Sugiyama, K., Tagawa, S.,Toda, M. (1981) Methods for visual understanding
of hierarchical system structures. IEEE Transactions on Systems, Man, and
Cybernetics 11, 109–125



Technical Foundations 53

63. Sugiyama, K., Misue, K. (1991) Visualization of structural information: auto-
matic drawing of compound digraphs. IEEE Transactions on Systems, Man,
and Cybernetics 4 (21), 876–893

64. Sugiyama, K., Misue, K. (1995) A simple and unified method for drawing
graphs: magnetic-spring algorithm. In: R. Tamassia and I. G. Tollis (eds.)
Graph Drawing ’94, Lecture Notes in Computer Science 894, Springer-Verlag,
364–375

65. Supowit, K. J., Reingold, E. M. (1983) The complexity of drawing trees nicely.
Acta Inform. 18, 377–392

66. Tamassia, R. (1987) On embedding a graph in the grid with the minimum
number of bends. SIAM Journal on Computing 16 (3), 421–444

67. Tamassia, R., Di Battista, G., Batini, C. (1988) Automatic graph drawing and
readability of diagrams. IEEE Transactions on Systems, Man, and Cybernetics
18, 61–79

68. Tutte, W. T. (1963) How to draw a graph. Proceedings of the London Mathe-
matical Society, Third Series 13, 743–768

69. Waddle, V., Malhotra, A. (1999) An E log E line crossing algorithm for levelled
graphs. In: J. Kratochv́ıl (ed.) Graph Drawing ’99, Lecture Notes in Computer
Science 1731, Springer-Verlag, 59–70

70. Walker II, J. Q. (1990) A node-positioning algorithm for general trees. Software
– Practice and Experience 20, 685–705

71. Ziegler, T. (2001) Crossing minimization in automatic graph drawing. Doctoral
Thesis, Technische Fakultät der Universität des Saarlandes


