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Chapter I.2
Thermodynamics of Electrochemical Reactions

Fritz Scholz

I.2.1 Introduction

The wish to determine thermodynamic data of electrochemical reactions and of
the involved compounds is one of the most important motivations to perform elec-
trochemical measurements. After calorimetry, electrochemistry is the second most
important tool to determine thermodynamic data. Although ab initio quantum chem-
ical calculations can be used for the calculation of thermodynamic data of small
molecules, the day is not yet foreseeable when electrochemical experiments will
be replaced by such calculations. In this chapter we provide the essential informa-
tion as to what thermodynamic information can be extracted from electrochemical
experiments and what the necessary prerequisites are to do so.

The first step in this discussion is to distinguish between the thermodynam-
ics and kinetics of an electrochemical reaction. Thermodynamics only describes
the changes in energy and entropy during a reaction. The interplay between these
two fundamental state functions determines to what extent a reaction will proceed,
i.e., what the equilibrium constant is. Nothing can be said about the rate at which
this equilibrium state can be reached, and nothing can be said about the mecha-
nism of the proceeding reaction. In general, thermodynamic information can only
be obtained about systems that are in equilibrium, or at least very near to equi-
librium. Since electrochemical reactions always involve the passage of current, it
is in many cases easy to let a reaction proceed near to the equilibrium by limit-
ing the current, i.e., the passage of charge per time, which is nothing else but the
reaction rate.

In this chapter, no attempt is made to provide a comprehensive account
of electrochemical thermodynamics; but rather a survey of what is essen-
tial to understand the thermodynamic information provided by electroanalytical
techniques. The fundamentals of electrochemical thermodynamics are available
elsewhere [1].
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I.2.2 The Standard Potential

The electroanalytical techniques considered in this volume are such that one always
measures an electrode potential–current relationship, which is determined by the
electrochemical reaction proceeding at one electrode only, i.e., the so-called work-
ing electrode. Of course, the same current must flow through the counter, or
auxiliary, electrode as well; however, the experiments are designed in such a way
that the process at the counter electrode is not rate determining. To give an example,
when a platinum disc electrode of 1 mm diameter is used as the working electrode
and the counter electrode is a sheet of platinum with a surface area of 4 cm2, and
the solution contains 10−3 mol L−1 K4[Fe(CN)6] and 0.1 mol L−1 KNO3, the
dependence of current on electrode potential will be determined by the following
electrochemical reaction only:

[
Fe (CN)6

]4− �
[
Fe (CN)6

]3− + e− (I.2.1)

Of course, on the counter electrode, another electrochemical reaction proceeds,
the nature of which remains usually unknown. Let us assume that we measure a
cyclic voltammogram (Fig. I.2.1), so that, in the first potential scan going in the pos-
itive direction, the hexacyanoferrate(II) ions are oxidized at the working electrode to
hexacyanoferrate(III). The counterbalancing reaction at the second (auxiliary) elec-
trode is not known; however, it is probable that hydronium ions of the water are
reduced to hydrogen. In the following scan to negative potentials, the hexacyano-
ferrate(III) ions formed in the first scan are reduced back to hexacyanoferrate(II).
Here the counterbalancing reaction on the auxiliary electrode may be an oxida-
tion of the adsorbed hydrogen or the oxidation of the hexacyanoferrate(II) ions,
which are also present at the auxiliary electrode (provided that this electrode is,
as normally, in the same solution as the working electrode). The fact that we do
not know what happens at the counter electrode, and, even worse, the fact that
different processes may occur on the counter electrode, would make it very hard
to use such electrode potential–current relationships for the determination of ther-
modynamic data, if we could not provide conditions where only the current at the
working electrode is determining the measured response: this is achieved by using
a working electrode having a surface area which is much smaller than that of the
auxiliary electrode. Such ratio of electrode surface areas assures that the electrode
reaction at the working electrodes limits the measured currents. Further, it is advan-
tageous to control the electrode potential of the working electrode always versus
the potential of an electrode having a fixed and stable reference potential; therefore,
such measurements are nowadays always performed in a three-electrode arrange-
ment: A third electrode, the so-called reference electrode (see Chap. III.2), is in
electrolytic contact with the solution to be studied, only for the purpose to con-
trol the potential of the working electrode throughout the experiment. Practically
no current is allowed to flow through the reference electrode and its construction
is such that its potential is constant (equilibrium potential) under all conditions,
in particular, independent of the composition of the solution being studied. Since
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Fig. I.2.1 Cyclic voltammogram (fifth cycle) of a solution containing 6.25 × 10−3 mol L−1

K4Fe(CN)6. Pt working electrode with 3 mm diameter; electrolyte: 0.5 mol L−1 KNO3; scan rate:
20 mV s−1

the potential of the working electrode is always referred to that of the reference
electrode, one has to recognize that the electrochemical reaction at the reference
electrode is the theoretically counterbalancing reaction for the process studied. This
means that the cyclic voltammogram shown in Fig. I.2.1 corresponds to the fol-
lowing cell reaction, provided that the reference electrode is a silver/silver chloride
electrode:

[
Fe (CN)6

]3− + Agmet + Cl− �
[
Fe (CN)6

]4− + AgCl (I.2.2)

Usually, reference electrodes are chosen for convenience, and the potentials may
be recalculated versus the standard hydrogen electrode (SHE), which was selected
as the zero point of the potential scale. When this is done for the given example, the
following reaction is considered:

[
Fe (CN)6

]3− + 1/2H2 �
[
Fe (CN)6

]4− + H+ (I.2.3)
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This, of course, is also a chemical reaction and it could proceed without any
electrodes in a solution. However, in our experiment, the oxidation and reduction are
proceeding at separate electrodes, which have the task of transferring the electrons.
The electrical work wel that can be done by this system is

wel = −Q�E = −nF�E (I.2.4)

where �E is the potential difference between the electrodes, Q is the transported
charge, which is n times the Faraday constant (96,484.6 C mol−1), and n is the
number of electrons transferred within the reaction (n = 1 in reaction (I.2.3)).
Fundamental thermodynamics tell that the electrical work equals the change in
Gibbs free energy (this quantity is also called free energy, or Gibbs energy):

wel = �GT , p (I.2.5)

The subscripts T and p indicate that this holds true for constant tempera-
ture and pressure, a condition which can be realized in electrochemical reactions.
Conventional electrochemistry treatise would now discuss a cell in which the reac-
tion (I.2.3) takes place. This could be a cell where equilibrium has been established,
which in the example means that the species on the right side of Eq. (I.2.3) are
strongly predominating, and, by application of a potential difference, the reaction
is driven to the left side. This case is called electrolysis. The other possibility is
realized when a hexacyanoferrate(III) solution is in one electrode compartment and
the other compartment contains a platinum electrode around which hydrogen gas
is bubbled. In that case a current flow will be observed to establish equilibrium
conditions, i.e., to drive the reaction to the right side. This case is called a gal-
vanic cell. In a cyclic voltammetric experiment (the recorded voltammogram is
shown in Fig. I.2.1), the potential of the working electrode is changed in a con-
trolled manner, first from left to right (to positive potentials) and later from right
to left (to negative potentials) and the current response is measured. The current
flow is the consequence of a fundamental dependence of the ratio of the activities
of the hexacyanoferrate(III) and hexacyanoferrate(II) ions on the potential of the
electrode:

E = E©
[Fe(CN)6]3−/4− + RT

nF
ln

a[Fe(CN)6]3−

a[Fe(CN)6]4−
(n = 1) (I.2.6)

This equation is referred to as the Nernst equation. This equation requires that at
each potential of the working electrode there is a specific value of the ratio:

a[Fe(CN)6]3−

a[Fe(CN)6]4−
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To establish this ratio it is necessary to interconvert the involved ions, which is
only possible by a flow of current. The Nernst equation follows from the require-
ment that reaction (I.2.1) is at equilibrium when the electrochemical potentials of
reactants and products are equal:

μ̃[Fe(CN)6]3− + μ̃solution
e− = μ̃[Fe(CN)6]4− (I.2.7)

Since μ̃metal
e− is equal to μ̃solution

e− it follows that the second term on the left side
of Eq. (I.2.7) is the electrochemical potential of the electrons in the inert metal
electrode. The electrochemical potentials are connected with the chemical potentials
according to

μ̃α
i = μ

© ,α
i + RT ln aα

i + zFφα (I.2.8)

(φα is the inner electric potential of the phase α in which the species i are present
(cf. Fig. I.2.2), μ© ,α

i is the standard chemical potential of the species i, and z is its
charge). The electrochemical potential differs from the chemical potential only by
the electric work, i.e., by the product ‘charge times voltage.’ The chemical potential
of i is

μi = μi
© + RT ln ai =

(
∂G

∂ni

)

p,T ,nj

(I.2.9)

i.e., the partial derivative of the Gibbs free energy over the change in the number of
ions i. Writing Eq. (I.2.8) for all species of reaction (I.2.1) and introducing it into
Eq. (I.2.7) yields

μ
©
[Fe(CN)6]4− + RT ln a[Fe(CN)6]4− + z[Fe(CN)6]4−Fφsolution

=μ
©
[Fe(CN)6]3− + RT ln a[Fe(CN)6]3− + z[Fe(CN)6]3−Fφsolution

+μ© ,metal
e− + RT ln ametal

e− + ze−Fφmetal

(I.2.10)

The standard potentials and activities without a phase index all relate to the solu-
tion phase. Since the following relation holds z[Fe(CN)6]4−−z[Fe(CN)6]3− = ze− = −n,
where n is the number of exchanged electrons, one can rearrange Eq. (I.2.10) as
follows:

ze−Fφmetal + z[Fe(CN)6]3−Fφsolution − z[Fe(CN)6]4−Fφsolution

= ze−F
(
φmetal − φsolution

) = −nF
(
φmetal − φsolution

)

= μ
©
[Fe(CN)6]4− − μ

©
[Fe(CN)6]3− + RT ln a[Fe(CN)6]4− − RT ln a[Fe(CN)6]3−

−μ© ,metal
e− − RT ln ametal

e−
(I.2.11a)
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(a)

(b)

Fig. I.2.2 (a) Schematic situation at the border of a phase with vacuum. Ψ α is the outer electric
potential of phase α, i.e., the work that must be done when a unit charge is transferred from infinity
(in the vacuum) to the surface of phase α. (The difference in the two outer electric potentials of two
different phases is called the Volta potential difference.) χ α is the surface electric potential of phase
α, i.e., the work to be done when a unit charge is transferred from the surface into phase α, and φ α

is the inner electric potential of phase α, i.e., the work to be done when a unit charge is transferred
from infinity (in vacuum) into the inner of phase α. φ α is a nonmeasurable quantity, whereas Ψ α

can be calculated and measured. The three potentials are interrelated as follows: φα = Ψ α + χα .
(b) Schematic situation at the interface of two phases α and β: The difference in inner electric
potentials is called the Galvani potential difference �φ

The activity of electrons in the metal phase is 1 because they are in their standard
state and ze− = −1. From Eq. (I.2.11a) follows the Nernst equation in the form

�φ = φmetal − φsolution =
μ
©
[Fe(CN)6]3− − μ

©
[Fe(CN)6]4− + μ

© ,metal
e−

nF

+RT

nF
ln

a[Fe(CN)6]3−

a[Fe(CN)6]4−

(I.2.11b)
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Whereas a direct measurement of the inner electric potential of a single phase is
impossible, the difference, i.e., the Galvani potential difference of two phases �φ

having identical composition or its variation for two phases having a common inter-
face, is accessible when a proper reference electrode is used, i.e., a metal/electrolyte
system, which should guarantee that the chemical potential of the species i is the
same in both electrolytes, i.e., the two electrolytes contacting the metal phases I and
II. In addition, the absence of a junction potential between the two electrolytes is
required. Under such circumstances it is possible to measure a potential difference,
�E, that is related to �φ; however, it always includes the �φ of the reference elec-
trode. The latter is set to zero for the Standard Hydrogen Electrode (see below). In
fact, the standard chemical potential of the formation of solvated protons is zero by
convention.

�φ = φmetal − φsolution = �E = E©
[Fe(CN)6]3−/4− + RT

nF
ln

a[Fe(CN)6]3−

a[Fe(CN)6]4−
(I.2.12)

The standard potential E© is an important value as it is related to the standard
Gibbs free energy of the reaction �G©T ,p and also to the equilibrium constant K
according to

− nFE© = �G©T ,p = −RT ln K (I.2.13)

When one wants to calculate the equilibrium constant of reaction (I.2.3) from the
standard potentials of the system hexacyanoferrate(II/III) and 2H+/H2, it is essential
that one writes this equation with the oxidized form of the system and hydrogen
on the left side and the reduced form and protons on the right side. Only then
does the sign convention hold true and Eq. (I.2.13) yields the equilibrium con-
stant for the reaction when the tabulated standard potentials are used. Note also
that the standard potential of the hydrogen electrode is 0 V for the reaction written
as: 2H+ + 2e− � H2, or written as H+ + e− � 1/2H2. Table I.2.1 gives a compila-
tion of standard potentials of electrode reactions. (Standard potentials are available
from many different sources [2].) Although only single redox couples are listed, the
standard potentials of each system always refer to the reaction:

Oxidised form+ hydrogen � reduced form+ hydronium ions (I.2.14)

In many cases, standard potentials of electrode reactions can be determined by
electrochemical measurements. However, this is not trivial for the following rea-
sons: according to the Nernst equation, one will measure E = E© when the
activities of all species are 1, and, of course, at 25◦C and 1 bar pressure. However,
the activity condition is hard to realize as, at the high concentrations which would
be necessary to realize it, the activity coefficients strongly deviate from 1. Therefore,
one measures the potentials at concentrations orders of magnitude lower and extrap-
olates the linear part of the dependence to unit activities. The standard potential can
also be calculated from the standard enthalpies and entropies of the involved species,
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Table I.2.1 Standard potentials of electrode reactionsa

Half cell Electrode reaction E© (V vs. SHE)

Li |Li+ Li+ + e− � Li −3.040
Rb|Rb+ Rb+ + e−� Rb −2.924
K|K+ K+ + e−� K −2.924
Cs|Cs+ Cs+ + e−� Cs −2.923
Ca|Ca2+ Ca2+ + 2 e−� Ca −2.76
Na|Na+ Na+ + e−� Na −2.713
Mg|Mg2+ Mg2+ + 2 e−� Mg −2.375
Al|Al3+ Al3+ + 3 e− � Al −1.706
Zn|Zn2+ Zn2+ + 2 e− � Zn −0.7628
Pt|Cr2+, Cr3+ Cr3+ + e− � Cr2+ −0.41
Fe|Fe2+ Fe2+ + 2 e−� Fe −0.409
Cd|Cd2+ Cd2+ + 2 e−� Ni −0.4026
Ni|Ni2+ Ni2+ + 2 e− � Ni −0.23
Pb|Pb2+ Pb2+ + 2 e− � Pb −0.1263
Pt|H2, H+aq 2H+ + 2 e− � H2 0.0000
Pt|Cu2+, Cu+ Cu2+ + e− � Cu+ +0.167
Cu2+|Cu Cu2+ + 2 e− � Cu +0.3402

Pt| [Fe (CN)6
]3− ,

[
Fe (CN)6

]4− [
Fe (CN)6

]3− + e−�
[
Fe (CN)6

]4− +0.356

Pt| [W (CN)8
]3− ,

[
W (CN)8

]4− [
W (CN)8

]3− + e−�
[
W (CN)8

]4− +0.457

Pt| [Mo (CN)8
]3− ,

[
Mo (CN)8

]4− [
Mo (CN)8

]3− + e− �
[
Mo (CN)8

]4− +0.725
Ag|Ag+ Ag+ + e− � Ag +0.7996
2 Hg|Hg2+

2 Hg2+
2 + 2 e−� 2 Hg +0.7961

Pt|Cr2O2−
7 , Cr3+, H+ Cr2O2−

7 + 14 H+ + 6 e−� 2 Cr3+ + 7H2O +1.36
Pt|O2, H2O,H+ 1/2 O2 + 2H+ + 2 e−� H2O +1.229
Au+|Au Au+ + e+ � Au +1.83
Pt|MnO−4 , Mn2+, H+ MnO−4 + 8H+ + 5 e− � Mn2+ + 4H2O +1.491
Pt|H4XeO6, XeO3 H4XeO6 + 2 H+ + 2 e− � XeO3 + 3 H2O +2.42
Pt|F2, F− F2 + 2 e−� 2 F +2.866

a Some half-cells are given with platinum as the inert electrode; however, this is only taken as
an example for an inert electrode and it does not mean that there is any dependence of the
standard potentials on the electrode material. The standard potentials of dissolved redox sys-
tems are independent of the electrode material. This is opposite to the standard rate constants
of electron transfer, which are very dependent on the electrode material. Please note also that
many of the given standard potentials cannot be obtained by electrochemical measurements.
They are calculated from thermodynamic data obtained, e.g., from calorimetry. The system
Pt|MnO−4 , Mn2+, H+ is irreversible not only on platinum but also on all other electrode mate-
rials. When a platinum wire is introduced into an acidic solution containing permanganate and
manganese(II) ions, the measured potential is a so-called mixed potential. This term refers to
the fact that it is the result of two different electrode reactions, the reduction of permanganate
to some intermediate redox state (+6 or +5) and the oxidation of water to oxygen. Both pro-
cesses occur with a certain exchange current density and the electrode attains a potential at
which the cathodic and anodic current densities are equal, so that no net current flows. Hence the
mixed potential depends on the kinetics of these two processes and it will more or less strongly
deviate from the standard and formal potential of the two redox species constituting a possible
redox pair.
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which is the only possibility for such systems were a reversible electrochemical
measurement is impossible (see footnote of Table I.2.1).

When hydronium or hydroxide ions are involved in redox equilibria without
being themselves reduced or oxidized, it is essential to define standard potentials
for the overall reaction, not only for the electron transfer equilibrium. An example
is the following reaction:

Cr2O2−
7 + 14 H+ + 6e− � 2Cr3+ + 7 H2O (I.2.15)

with E© = +1.35 V vs. SHE. The splitting of this composite equilibrium into a
pure redox equilibrium and a pure acid–base equilibrium is senseless because the
two are not experimentally feasible. When protons or hydroxide ions are involved
in a redox equilibrium only via acid–base equilibria, their activities are also defined
as 1 for the standard potential. For biochemists, standard potentials which relate
to pH 0 or 14 are not very useful, as biochemical reactions proceed at pH val-
ues around 7 (± 5 at most). Therefore, in biochemistry, another set of standard
potentials E′ was introduced, the so-called biochemical standard potentials, which
refer to the standard state of H+ and OH− as 10−7 mol L−1. The E′ values of a
reaction

Ox+ nH+ + me− � HnRed(n−m)+ (I.2.16)

can be calculated from the standard potential E© (defined for aH+= 1) of this
reaction with the help of the following relationship:

E′ = E© − 0.414[V]
n

m
(I.2.17)

This relationship holds true for 25◦C (for details see [1a]).

I.2.3 The Formal Potential

Although the standard potentials are the fundamental values for all thermodynamic
calculations, in practice, one has more frequently to deal with the so-called for-
mal potentials. The formal potentials are conditional constants, very similar to the
conditional stability constants of complexes and conditional solubility products of
sparingly soluble salts (see [2c]). The term conditional indicates that these constants
relate to specific conditions, which deviate from the usual standard conditions.
Formal potentials deviate from standard potentials for two reasons, i.e., because
of nonunity activity coefficients and because of chemical ‘side reactions’. The latter
should better be termed ‘side equilibria’; however, this term is not in common use.
Let us consider the redox system iron(II/III) in water:

Fe3+ + e− � Fe2+ (I.2.18)
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By common agreement this notation means that both iron(II) and iron(III) are
present in the form of aqua complexes. The Nernst equation for reaction (I.2.18) is

E = E©
[Fe(H2O)6]3+/2+ + RT

F
ln

a[Fe(H2O)6]3+

a[Fe(H2O)6]2+
(I.2.19)

(Note that n= 1 in this case.) For the activities we can write ai = γi
(
ci/co

i

)
where

γ i is a dimensionless activity coefficient, ci is the concentration of the species i in
mol L−1, and c◦ is the unit concentration 1 mol L−1. Introducing this into the Nernst
equation yields

E = E©
[Fe(H2O)6]3+/2+ + RT

F
ln

c[Fe(H2O)6]3+

c[Fe(H2O)6]2+
+ RT

F
ln

γ[Fe(H2O)6]3+

γ[Fe(H2O)6]2+
(I.2.20)

It is easy to imagine that only in acidic solutions can both iron(II) and iron(III)
be present as aqua complexes: the pKa1 (= − log Ka1; Ka1 being the first acidity
constant) of the iron(III) hexaqua complex [Fe(H2O)6]3+ is 3.1. Hence this is an acid
almost two orders of magnitude stronger than acetic acid! [Fe(H2O)6]3+ strongly
tends to transfer a proton to the solvent water and to become a [Fe(H2O)5(OH)]2+

ion. Other protons, although less acidic, may subsequently be transferred and the
resulting hydroxo complexes will further tend to form polynuclear complexes. This
reaction cascade may easily go on for hours and days and all the time there is no
equilibrium established. If that happens, the Nernst equation cannot be applied at all.
However, if this reaction cascade comes to a quick end, perhaps because the solution
is rather acidic, a number of different iron(III) species may coexist in equilibrium
with the iron(III) hexaqua complex [Fe(H2O)6]3+. In such cases it is useful to define
a so-called side reaction coefficient αFe(III) according to the following equation:

αFe(III) =
c[Fe(H2O)6]3+

cFe(III)total

(I.2.21)

Where cFe(III)total is the sum of the concentrations of all iron(III) species.
Formulating for the iron(II) species a similar equation to Eq. (I.2.21) and introducing
both into Eq. (I.2.20) yields

E = E©
[Fe(H2O)6]3+/2+ + RT

F
ln

αFe(III)

αFe(II)
+ RT

F
ln

cFe(III)total

cFe(II)total

+RT

F
ln

γ[Fe(H2O)6]3+
γ[Fe(H2O)6]2+

(I.2.22)

Because the total concentrations of iron(III) and iron(II) are analytically accessi-
ble values, and because the second and fourth term on the right side of Eq. (I.2.22)
are constant under well-defined experimental conditions (i.e., when the solution



I.2 Thermodynamics of Electrochemical Reactions 21

has a constant composition), it is convenient to define a new constant, the formal

potential E ©′
c,Fe3+/2+ , as follows:

E©
′

c,Fe3+/2+ = E©
[Fe(H2O)6]3+/2+ + RT

F
ln

αFe(III)

αFe(II)
+ RT

F
ln

γ[Fe(H2O)6]3+

γ[Fe(H2O)6]2+
(I.2.23)

Equation (I.2.22) can now be written in the following way:

E = E©
′

c,Fe3+/2+ + RT

F
ln

cFe(III)total

cFe(II)total

(I.2.24)

(The subscript c of E©
′

c,Fe3+/2+ indicates that this is a conditional constant.) A for-
mal potential characterizes an equilibrium between two redox states; however, one
should never forget that it is strongly dependent on the solution composition, as side
reactions (equilibria) and activity coefficients strongly influence it. If the solution
would be so acidic that both Fe(II) and Fe(III) are present as hexaqua complexes,
it may still be that the activity coefficients of these two species strongly deviate
from 1 because either the concentrations of the two iron forms are rather high, or
also because there are other electrolytes in high concentration present. In such case
it would make sense to define a formal potential on the basis of Eq. (I.2.20) as
follows:

E©
′

c,Fe3+/2+ = E©
[Fe(H2O)6]3+/2+ + RT

F
ln

γ[Fe(H2O)6]3+

γ[Fe(H2O)6]2+
,

i.e., only taking into account the deviations of the standard potential caused by the
activity coefficients.

In defining the formal potential in Eq. (I.2.23), the side reactions are acid–base
equilibria. Of course, all other kinds of chemical equilibria, e.g., complex formation
and precipitation, have similar consequences. In the case of an electrode of the sec-
ond kind, e.g., a calomel electrode, the so-called ‘standard potential’ of the calomel
electrode is nothing but the formal potential of the electrode at achloride = 1. The
potential of the calomel electrode at various KCl concentrations is always the formal
potential of this electrode at the specified concentration (see Chaps. II.9 and III.2).

The concept of formal potentials has been developed for the mathematical treat-
ment of redox titrations, because it was quickly realized that the standard potentials
cannot be used to explain potentiometric titration curves. Generally, formal poten-
tials are experimentally determined using equations similar to Eq. (I.2.24) because
it is easy to control the overall concentrations of species in the two redox states. For
calculating formal potentials it would be necessary to know the standard potential,
all equilibrium constants of ‘side reactions’, and the concentrations of all solution
constituents. In many cases this is still impossible as many equilibrium constants
and the underlying chemical equilibria are still unknown. It is the great advantage
of the concept of formal potentials to enable a quantitative description of the redox
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equilibrium without the exact knowledge of the side reactions. Formal potentials are
tabulated for strictly defined experimental conditions.

I.2.4 Characteristic Potentials of Electroanalytical Techniques

Each electroanalytical technique has certain characteristic potentials, which can
be derived from the measured curves. These are the half-wave potential in direct
current polarography (DCP), the peak potentials in cyclic voltammetry (CV), the
mid-peak potential in cyclic voltammetry, and the peak potential in differential pulse
voltammetry (DPV) and square-wave voltammetry. In the case of electrochemical
reversibility (see Chap. I.3) all these characteristic potentials are interrelated and it
is important to know their relationship to the standard and formal potential of the
redox system. Here follows a brief summary of the most important characteristic
potentials.

I.2.4.1 Direct Current Polarography (Employing
a Dropping-Mercury Electrode)

I.2.4.1.1 The Half-Wave Potential E1/2

There are four fundamentally different factors that will lead to a deviation between
half-wave and standard potentials. The first one is related to the diffusion of the
species towards the electrode and within the mercury drop. These diffusion pro-
cesses are also influenced by the sphericity of the mercury drop. The second factor
is due to any amalgamation reaction, and the third factor is due to solution equi-
libria. The fourth factor, which will force the half-wave potential to deviate from
the standard potential, is a possible irreversibility of the electrode system. Before
discussing these four effects, the general equation relating the half-wave potential
to the standard potential is given as

E1/2 = E© + RT

nF
ln

[
γOxD1/2

Red

γRedD1/2
Ox

]

(I.2.25)

I.2.4.1.2 Influence of Diffusion

The deviation expected as a result of (i) unequal diffusion coefficients of the
oxidized and reduced species, and (ii) electrode sphericity can be described as
follows [3]:

E1/2 = E© − 3.4
RT

nF

t1/6
1

m1/3

(
D1/2

Ox + D1/2
Red

)
− RT

nF
ln

D1/2
Ox

D1/2
Red

(I.2.26)

(t1 is the drop time, m is the flow rate of mercury, and D are diffusion coefficients of
the involved species. In Eq. (I.2.25), activity coefficients are not taken into account.)
For a typical set of parameters, i.e., for equal diffusion coefficients (this is frequently
a good approximation), DOx = DRed = 10−9 m2s−1, a drop time of 1 s, a mercury
flow rate of 1 mg s−1, and n = 1 the result is that E1/2 = E© − 0.0093 V. This is
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indeed a rather small deviation. Equation (I.2.25) was derived taking into account
the sphericity of the mercury drop. When the sphericity is neglected, the second
term in Eq. (I.2.26) may be omitted.

I.2.4.1.3 Influence by Amalgamation

When the deviation caused by unequal diffusion coefficients can be neglected, it
generally holds true that the half-wave potential equals the formal potential, i.e.,

E1/2 = E©
′

c ; however, the chemical system has a significant influence on how much
the formal potential really deviates from the standard potential. Even in the case of
very simple systems, the thermodynamic deviation between the measured half-wave
potential and the standard potential can be quite large, as, e.g., for Ba2+/Baamalgam
where the polarographic half-wave potential is −1.94 V vs. SCE and the standard
potential of the system Ba2+/Ba is−2.90 V vs. SCE. The reason for that deviation is
the amalgamation of metallic barium. For amalgam-forming metals, the relationship
between the half-wave potential and the standard potential is as follows:

E1/2 = E© − �G©amal

nF
+ RT

nF
ln asat + RT

nF
ln

γOxD1/2
Red

γRedD1/2
Ox

(I.2.27)

Where �G©amal is the standard Gibbs free energy of amalgam formation and asat is
the activity of the metal in the mercury at saturation. (In the derivation of this equa-
tion it has been assumed that the activity of mercury is not altered by the amalgam
formation [4].) Note that the very negative standard Gibbs free energy of amalgam
formation of barium shifts the half-wave potential by almost 1 V, fortunately to more
positive values, so that barium becomes accessible in polarography.

I.2.4.1.4 Influence by Solution Equilibria

(i) Acid–Base Equilibria
In the polarography of organic compounds in protic solvents such as water, the
electron transfer is frequently accompanied by a proton transfer:

Ox+ 2e− + 2H+ � H2Red (I.2.28)

The pure redox equilibrium is

Ox+ 2e− � Red2− (I.2.29)

As Red2− is a Brønsted base it will be stepwise protonated and these equilibria
can be described as follows:

H2Red � HRed− + H+ Ka,1 (I.2.30)

HRed− � Red2− + H+ Ka,2 (I.2.31)
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Provided that the system is reversible and not complicated by side reactions,
the half-wave potential will be equal to the formal potential and the relation to
the standard potential is as follows:

E1/2 = E©
′

c = E© + RT

2F
ln

γOx

γRed2−
+ RT

2F
ln

(
a2

H+
Ka,1Ka,2

+ aH+

Ka,2
+ 1

)

(I.2.32)

As expected, the half-wave potential will depend on the pH and, from a plot
of E1/2 vs. pH, one can determine the pKa values of the system, provided that
they are within the pH range. Whenever the solution pH equals a pKa value,
the slope of the plot E1/2 vs. pH changes. More information on the influence
of pH on half-wave potentials of more complex systems is available from a
publication by Heyrovský [5].

(ii) Complex Formation
A very frequent case in inorganic chemistry is the formation of metal complexes
according to the general reaction

Men+
aq +pAnm− � MeAn(mp−n)−

p (I.2.33)

If the metal ions can be reduced to the metal, which means that all ligands
will be stripped off during this reduction, the following equation can be derived

[6] for the dependence of the half-wave potential (which is equal to E©
′

c ) on the
activity of ligands Anm− and the stability constant of the complex K:

E1/2 = E©
Men+

aq /Me0
amal
− 3.4RTt1/6

1
nFm1/3

(
D1/2

Men+
aq
+ D1/2

Me0
amal

)
− RT

nF ln
D1/2

Men+
aq

D1/2

Me0
amal

−RT
nF ln

D1/2

Men+
aq

D1/2

[MeAnp](mp−n)−
− RT

nF ln K − RT
nF ln ap

Anm−

(I.2.34)

The subscript on the diffusion coefficient D indicates the species, i.e., the aqua
metal ion Men+

aq , the complex metal ion [MeAnp](mp−n)− and the metal atoms in

the liquid mercury Me0
amal. Because of the small contributions from the second,

third and fourth term on the right-hand side of Eq. (I.2.34), the following simplified
equation is often used to determine the stoichiometric coefficient p and the stability
constant K:

E1/2 = E©
Men+

aq /Me0
amal
− RT

nF
ln K − RT

nF
ln ap

Anm− (I.2.35)

To determine p and K a plot of E1/2 vs. the logarithm of the concentration of
the ligand is useful. The slope gives p and the intercept gives K. The following
prerequisites have to be fulfilled: (i) reduction of the metal ions to the metal, (ii)
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ligand concentration must exceed that of the metal, and (iii) the reduction must be
reversible in dc polarography.

When a metal ion is not reduced to the metal but instead to a lower oxidation
state, the dependence of E1/2 on ligand concentration gives only the difference in
p values and the ratio of K values of the two complexes of the metal in the two
oxidation states.

From the preceding it follows that the half-wave potential measured in DCP will
only in rare cases approximately equal the standard potential. The requirements
for this are (i) no side reactions (equilibria) of the reduced or oxidized form (esp.
no protonation reactions), (ii) no amalgamation, or a dissolution in mercury with
negligible Gibbs free energy of amalgamation, and (iii) no strong deviation of the
activity coefficient ratio from unity.

I.2.4.1.5 Influence by Irreversibility of the Electrode System

In the case of irreversible reactions, the polarographic half-wave potential also
depends on the standard potential (formal potential); however, the kinetics of the
electrode reaction lead to strong deviation as an overpotential has to be applied to
overcome the activation barrier of the slow electron transfer reaction. In the case of
a totally irreversible electrode reaction, the half-wave potential depends on the stan-
dard rate constant ks of the electrode reaction, the transfer coefficient α, the number
ne− of transferred electrons, the diffusion coefficient Dox, and the drop time t1 [7]
as follows:

E1/2 = E©
′

c +
RT

αnF
ln

(
2.31kst

1/2
1

D1/2
Ox

)

(I.2.36)

I.2.4.2 Cyclic Voltammetry

I.2.4.2.1 The Peak Potentials

In the case of a reversible electrode reaction, the cathodic and anodic peak potentials
depend in the following way on the formal potential:

Epc = E©
′

c − 1.109
RT

nF
− RT

nF
ln

D1/2
Ox

D1/2
Red

(I.2.37)

Epa = E©
′

c + 1.109
RT

nF
− RT

nF
ln

D1/2
Ox

D1/2
Red

(I.2.38)

Assuming equal diffusion coefficients, the difference between the anodic and
cathodic peak potentials is

Epa − Epc = 2

(
1.109

RT

nF

)
≈ 57

n
mV (I.2.39)

at 25◦C.
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The latter relationship is a good indication of the reversibility of the electrode
reaction, although some caution is necessary because a more complex electrode
reaction may give the same difference (see Chap. II.1).

Provided that the diffusion coefficients of the oxidized and reduced forms are
equal, a simple relation between the peak potentials and the formal potential follows:

E©
′

c =
Epa + Epc

2
(I.2.40)

Equation (I.2.40) is very frequently used to determine the formal potential of a
redox system with the help of cyclic voltammetry; however, one should never for-
get that it holds true only for reversible systems, and provided that the symmetry
coefficient α = 0.5 (see Chap. I.3). To be cautious, it is better to refer to the value
determined by Eq. (I.2.40) as the mid-peak potential determined by cyclic voltam-

metry. The formal potential E©
′

c has the same meaning as discussed above for direct
current polarography. Hence Eqs. (I.2.32) and (I.2.34) can be applied accordingly.

When cyclic voltammetry is performed with microelectrodes it is possible to
record wave-shaped steady-state voltammograms at not too high scan rates, similar
to dc polarograms. Ideally, there is almost no hysteresis and the half-wave potential
is equal to the mid-peak potential of the cyclic voltammograms at macroelectrodes
(see Chap. II.1).

In the case of totally irreversible electrode reactions, only one peak, e.g., the
reduction peak when the oxidized form is present in the solution, will be visible.
The cathodic peak potential depends on the formal potential as follows:

Epc = E©
′

c −
RT

αnF

(
0.780+ 0.5 ln

αnDOxFv

RT
− ln ks

)
(I.2.41)

It is impossible to disentangle E©
′

c and k values for totally irreversible reactions.
For quasi-reversible electrode reactions it is not easy to say how much the peak

potential difference can be to still allow a fairly reliable determination of the formal
potential with the help of Eq. (I.2.40); however, differences up to 120 mV can be
tolerated if α and β are near to 0.5.

I.2.4.3 Differential Pulse Voltammetry (DPV),
Alternating Current Voltammetry (ACV),
and Square-Wave Voltammetry (SWV)

For reversible systems there is no special reason to use these techniques, unless
the concentration of the electrochemical active species is too low to allow appli-
cation of DCP or cyclic voltammetry. For a reversible electrochemical system, the
peak potentials in alternating current voltammetry (superimposed sinusoidal voltage
perturbation) and in square-wave voltammetry (superimposed square-wave voltage
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perturbation) will be equal to the formal potential, i.e., Ep = E©
′

c . However, in
differential pulse voltammetry, there is a systematic deviation according to

Ep = E©
′

c −
�Epulse

2
(I.2.42)

for a reduction. �Epulse is the amplitude of the pulse. In the case of oxidation, the
deviation is positive. As in the previous methods, in the case of irreversible elec-
trode systems, the deviation of the peak potential from the formal potential will also
depend on the kinetic parameters. Whereas it is easy to detect irreversibility in ACV
and SWV (see Chap. II.2), this is not trivial in DPV as the peak width of a totally
irreversible system is almost as for a reversible system.

I.2.5 Thermodynamics of the Transfer of Ions
Between Two Phases

Reactions in which electrons are transferred from one phase to another are of elec-
trochemical nature, because a charged particle, the electron, is transferred by an
applied electric field. However, it would not be reasonable to confine electrochem-
istry to electron transfer only. There is no difference in principle when other charged
species, i.e., ions, are transferred under the action of an electric field. The driving
force for an ion transfer between two phases I and II is the establishment of equal
electrochemical potentials μ̃i in both phases. The electrochemical potential of a
charged species in phase I is

μ̃I
i = μ̃

© ,I
i + RT ln aI

i + ziFφI (I.2.43)

(μ̃© ,I
i is the standard chemical potential of the ion i in I, φI is the inner electric

potential of phase I, zi is the charge of the species i). An ion can be driven into phase
I by two different forces, either by chemical forces, due to μ̃

© ,I
i , or by the electric

potential φI. When an ion has a high chemical affinity toward a certain phase II, it
will not cross the interface from phase I to phase II until the electrochemical poten-
tials are equal. This will create a potential difference between the two phases, which
counterbalances the chemical affinity. This process is the basis of all ion-selective
electrodes, e.g., a glass electrode. It is also possible to force ions deliberately from
one phase into the other when a potential difference is applied across the interface.
Imagine that two immiscible liquid phases are filled into a tube so that they build up
a common interface in the middle (Fig. I.2.3). When each of the two liquids contains
an electrolyte, which is dissociated (this needs dipolar liquids), and two inert metal
electrodes are inserted into the two liquids, it is possible to apply a potential dif-
ference across the liquid–liquid interface. For exact measurements one will further
introduce into each liquid a reference electrode to control the potential of each of the
metal electrodes separately. Upon application of a voltage between the two working
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Fig. I.2.3 Experimental arrangement for measuring the transfer of ions between two immiscible
liquid electrolyte solutions

electrodes, a current may flow. At the two metal electrodes unknown faradaic reac-
tions will occur (electron transfer reactions). However, the overall current has also
to cross the liquid–liquid interface. Since the electrolyte solutions on both sides are
ion conductors only, passage of current can occur only when ions are transferred
from one liquid to the other. The ion transfer at the interface is the rate-determining
process of the entire current flow. Indeed, it is possible to record a cyclic voltammo-
gram which shows current peaks due to the transfer of, e.g., an anion from water to
nitrobenzene and back (Fig. I.2.4). The mid-peak potential of such cyclic voltammo-
grams also has a thermodynamic meaning. The difference between the two standard
chemical potentials of i in the two phases I and II is called the standard Gibbs free
energy of ion transfer:

μ̃
© ,I
i − μ̃

© ,II
i = �G© ,I→II

transfer,i (I.2.44)

Hence, the difference of the standard Galvani potentials of the two phases is
related to the standard Gibbs free energy of ion transfer:

�II
I φ
©
i = −

�G© ,I→II
transfer,i

ziF
(I.2.45)

The mid-peak potential E1/2 of the cyclic voltammogram is equal to the stan-
dard Galvani potential �II

I φ
©
i . Again there is a similar problem as encountered for

the electron transfer reaction, i.e., the impossibility to determine a single-electron



I.2 Thermodynamics of Electrochemical Reactions 29

Fig. I.2.4 Cyclic voltammogram of the transfer of tetramethylammonium ions between water and
nitrobenzene. c(TmeA+)= 4.7× 10−4 mol L−1; the supporting electrolyte is in the aqueous phase
0.1 mol L−1 LiCl, and in nitrobenzene 0.1 mol L−1 tetrabutylammonium tetraphenylborate; the
scan rate is 20 mV s−1. (Adapted from [11], with permission)

transfer equilibrium. All electron-transfer equilibria have been referred to that of the
hydrogen electrode. To build up a thermodynamic scale of standard Galvani poten-
tials, an extra thermodynamic assumption has to be made. One such assumption is
that the standard Gibbs free energies of ion transfer of the anions and cations of
tetraphenylarsonium tetraphenylborate are equal for all pairs of immiscible liquids.
It may be generally stated that the standard Galvani potentials of ion transfer are
much less accurately known than the standard potentials of electron transfer.

It is interesting that the transfer of ions from one phase to another can also result
from the creation of a potential difference by electron transfer. Imagine that a solid
phase contains immobile electroactive ions like Fe3+. These ions can be reduced;
however, this would violate the charge balance, unless other cations can diffuse
into the solid, or anions could leave the solid. This is a very frequently encoun-
tered case in solid-state electrochemistry (see Chap. II.8). One can understand this
insertion electrochemistry as resulting from the creation of an electric field due to
the electron transfer. The same phenomena can also be observed when droplets of
an immiscible liquid contain electroactive species, and these droplets are deposited
onto an electrode surface, which is introduced into an aqueous solution [8].

The transfer of ions between phases is still a minor field in electrochemical stud-
ies and therefore this very brief introduction should suffice. Detailed information
is available elsewhere [8–11]. A constantly updated listing of standard Galvani
potentials of ion transfer is available on the Internet [12].



30 F. Scholz

I.2.6 Thermodynamic Data Derived from Standard
and Formal Potentials

I.2.6.1 Data Derived from Standard Potentials

Equation (I.2.13) has shown us that the standard potential gives access to the stan-
dard Gibbs free energy of the electrochemical reaction. Since the Gibbs free energy,
the enthalpy and the entropy are connected via the relationship G = H − TS, the
following equation holds true for the standard values:

− nFE© = �rG
©
T ,p = �rH

© − T�rS
© (I.2.46)

By differentiation one can easily obtain the standard entropy as

(
∂E©

∂T

)

p
= − 1

nF

(
∂�rG©

∂T

)
= �rS©

nF
(I.2.47)

Equation (I.2.46) means that by plotting the standard potential vs. the tempera-
ture, a straight line will result from the slope of which the standard entropy can be
calculated. However, the experiment is not as easy to perform when high-precision
data are aimed at. Usually, one thermostats the voltammetric cell and keeps the
reference electrode at a constant reference temperature. Of course, the temperature
gradient between the working electrode and the reference electrode gives rise to
an extra potential difference, which will be rather small for small temperature dif-
ferences (up to 30–50◦C). Only for high-precision data has this to be taken into
account. The alternative is to bring the reference electrode to the same temperature
as the working electrode. This can be done when the temperature coefficient of the
reference electrode is known. Once the standard entropy of a reaction has been deter-
mined it is trivial to calculate the standard enthalpy. Often it is desirable to compare
electrochemically determined standard potentials with those calculated from tabu-
lated thermodynamic data. When these data are available, the standard values of the
thermodynamic functions G, H, and S of a reaction can be calculated from the stan-
dard values of formation (index f) of the products (index P) and reactants (index R),
as exemplified for H as follows:

�rH
© =

∑

R,P

(
νP�f H©

P − νR�f H©
R

)
(I.2.48)

Obviously, it will be possible to determine standard formation values of thermo-
dynamic functions from standard potentials, and of course vice versa (see oxygen
electrode).
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I.2.6.2 Data Derived from Formal Potentials

The measurement of formal potentials allows the determination of the Gibbs free
energy of amalgamation (cf. Eq. I.2.27), acidity constants (pKa values) (cf. Eq.
I.2.32), stability constants of complexes (cf. Eq. I.2.34), solubility constants, and all
other equilibrium constants, provided that there is a definite relationship between the
activity of the reactants and the activity of the electrochemical active species, and
provided that the electrochemical system is reversible. Today, the most frequently
applied technique is cyclic voltammetry. The equations derived for the half-wave
potentials in dc polarography can also be used when the mid-peak potentials derived
from cyclic voltammograms are used instead. Provided that the mechanism of the
electrode system is clear and the same as used for the derivation of the equations in
dc polarography, and provided that the electrode kinetics is not fully different in dif-
ferential pulse or square-wave voltammetry, the latter methods can also be used to
measure the formal potentials. However, extreme care is advisable to first establish
these prerequisites, as otherwise erroneous results will be obtained.
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