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Universal algebra

The function of mathematical logic is to provide formal languages for
describing the structures with which mathematicians work, and the
methods of proof available to them. Obviously, the more
complicated we make our language, the more powerful it will be as an
instrument for expressing our ideas; but in these notes we are going to
begin with what is perhaps the simplest useful language, that of
universal algebra (sometimes called equational logic). Although
simple, it displays many of the characteristic features of more
complicated languages, which is why it makes a good introduction
to them.

Universal algebra begins by abstracting the common features of a
number of familiar mathematical structures, including groups, rings
and vector spaces. In each of these cases, the structure is defined to be
a set equipped with certain finitary operations, which satisfy certain
equations. For example, a group is a set G equipped with

a binary operation m:G x G - G (multiplication),

a unary operation i:G - G (inversion),

and a nullary operation e: G® — G (identity)
[note: we adopt the convention that G is a singleton set for any G, so
that a 0-ary operation — also called a constant — simply picks out a
single element of G], satisfying the equations

m(x, m(y, z)) = m(m(x, y),z) (associative law),

m(e,x)=Xx (left identity law),

and m(i(x),x)=e (left inverse law),
which are supposed to hold for all possible values of x, y,z in G.

We leave it as an exercise for the reader to write down similar
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descriptions of the notion of ring (with 1), and of the notion of K-
vector space for a given field K. Note that for the latter it is necessary
(or at least convenient) to take (scalar multiplication by) each element
of K as a unary operation; thus in general the set of operations and /or
equations required to define a given type of structure may be infinite.

Abstracting from the above examples, we introduce the notion of
an operational type. An operational type is a pair (Q, o) where Qisa
set of operation-symbols and « is a function assigning to each weQ a
natural number a(w), called its ariry. [N.B.: throughout these notes, 0
is considered to be a natural number.] Frequently, we suppress any
explicit mention of the function «, and simply write ‘Q is an
operational type’. Thus in our example above we have Q = {m, i, e}
with a(m) =2, a(i)= 1, a{e) =0.

Given an operational type (Q, a), a structure of type (Q,a) (or Q-
structure, or Q-algebra) is a set 4 equipped with functions
w,: A% > 4 for each weQ. We call w, the interpretation of the
abstract symbol o in the structure A; we also speak of the family of
functions (w4 | w Q) as an Q-structure on the set A. A homomorphism
f: A — B of Q-structures is a function such that

Sflo4ay,. .. 3aa(w))) =wg(flay),. .., f(aa(w)))

forall weQ and all a,,a,,...,a,, in 4.

So much for the operations; how about the equations? Before
answering this question, we turn to a seemingly different topic: the
notion of a term or derived operation. Let Q be an operational type
and X a set (whose elements we shall call variables; we assume for
convenience Q N X = (¥); then the set Fo(X) (or simply FX) of Q-
terms in X is defined inductively as follows:

(@) If xe X, then x e Fo(X).

b) If weQ, aw)=nr and t,,t,,...,t,€Fo(X), then
tyt, ... t,€Fo(X).

(c) That’s all.

[Inductive definitions of this type are very common in the
construction of formal languages. Formally, what this one means is
that Fo(X) is the smallest subset of the set (M, say) of all finite strings
of elements of Q U X which satisfies the closure properties (a) and (b),
i.e. the intersection of all such subsets.]
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Remark 1.7. Note in passing that we have a simple algorithm for
determining whether a given finite string in M belongs to F(X): start
at the right-hand end of the string with counter set to 0, and move
leftwards increasing the count by 1 each time you pass a variable, and
decreasing it by n — 1 each time you pass an n-ary operation-symbol.
Then the string belongs to FX iff the counter never falls below 1 after
your start, and finishes at 1. As illustrations, we show the counter
values for a number of strings where Q is the operational type of
groups and X = {x, y, z}; the first one is in FX, the other two are not.

1212332110 12221010 3323221090
memmixyiz; miixymz,; ixmeiyXx.

Theorem 1.2. (i) Fo(X) has an Q-structure.
(ii) Fo(X) is the free Q-structure generated by X; i.e., given
any Q-structure 4 and any function f: X — A, there exists a
unique homomorphism f: Fo(X) — A extending f.

Proof. The existence of the Q-structure is immediate from clause (b)
of the definition: if w € Q (with a(w) =n, say) and ¢,,t,,...,t,€FX,
define
Wrxl(tista, . sty =Wty .,
(i.e. just erase the brackets and commas).
Part (ii) is essentially a matter of putting the brackets back in. Since

FX was defined inductively, we can define f inductively:

if t=xeX, then f(t)= f(x);

if t=wt, ...t, where w€Q, a(w)=n and [ has already been

defined at t,,...,t,eFX, then f(t) = w,(f(t,),. .., f(t,)).

It is then clear that f is a homomorphism, and that it is the unique
homomorphism extending f. []

Another important (and trivial) property of free Q-structures is
Lemma 1.3. For any X,
Fo(X)={Fo(X"|X's X, X finite}. [

Thus we may, for many purposes, restrict our attention to free
structures generated by finite sets. Let X, = {x;,x;,...,x,} be a
standard n-element set; let te FX,, and let A be any Q-structure.
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Then we may define a function t,: A" — 4 inductively as follows:
if t=x; (1 <i<n), then t, is projection onto the ith factor;
if t=wtyt,...t, where a(w) =m, then t, is the composite

({1 4> e 0s (tm) 4) wy

A" A™ — A.

In particular, if ¢ is the term wx,x,...Xx,, where a(w)=n, then
t,= w,4. The function t, is called (the interpretation in 4 of) the n-ary
derived operation corresponding to the term ¢ (in contrast to the
‘primitive operations’ which are the functions of the form w ). It is
easy to see that a homomorphism f:4— B of Q-structures
commutes with all derived operations as well as with primitive ones.

Now let us return to the equations. If we look, for example, at the
associative law for groups, we see that each side of the equation is a
ternary derived operation (let us call the corresponding terms s and
t); and the assertion that the associative law holds in a group G is just
the assertion that the functions s; and t,; are equal. We thus define an
n-ary equation (in an operational type Q) to be an expression (s = t),
where s and t are elements of Fo(X,), and we say an equation (s = t) is
satisfied in a structure A4 if s, =t,. Finally, we define an algebraic
theory to be a pair T = (Q, E) where Q is an operational type and E is
a set of equations in Q, and we define a model for T (or T-algebra) to
be an Q-structure which satisfies all the equations in E.

Thus, for example, a group is exactly an (Q, E)-model, where
Q= {m,i,e} as before and

E = {(mx;mx,x3 = mmx,x,x3), (mex; = x,), (mix,;x, = e)}.

[Note that, as in the third member of E above, it is not necessary for
each of the variables x, . . ., x, to appear explicitly on each side of an
n-ary equation. ]

Just as we did with operations, we may now enlarge the set E of
‘primitive’ equations to a larger set E of derived equations. [For
example, one proves in a first course on group theory that any Q-
structure satisfying the three equations in the particular E above also
satisfies the ‘right identity’ and ‘right inverse’ equations (mx, e = x,),
(mx,ix, = e).] Once again, we give an inductive definition of E:
(a) EcCE.
(b) E is an equivalence relation on the set of terms: thus

(i) for any term ¢, (t =t)e E;
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(i) if (s=t)eE, then (t=s)eE;
(iii) if (s=1) and (t = u) are in E, then (s=u)eE.
(c) E is closed under substitution, in two different ways:
(i) if (s = t)eE, x; is a variable involved in s and/or t and u is any
term, then (s[u/x;] = t[u/x.])e E, where s[u/x] denotes the effect
of replacing each occurrence of x; in s by the term u;
(i) if s is a term, x; a variable involved in s and (t = u) is in E, then
(s[t/x;] = s[u/x;]) e E.
(d) That’s all.
[As before, this definition really means that E is the smallest subset of
the set of all expressions (s = t) which is closed under (a), (b) and (c).]
If s and t are elements of Fo(X) for some X, let us write s ~f to
mean (s = t) € E; then by (b) above ~  is an equivalence relation, and
we can form the set Fq ,(X) of ~ g-equivalence classes.

Theorem 1.4. (i) F q ;(X) inherits an Q-structure from Fq(X), and
it satisfies the equations in E.
(ii) F g 5(X) is the free (Q, E)-model generated by X.

Proof. (i) Clause (c)(ii) of the definition of E says that the
interpretations in Fo(X) of the operations of Q respect the
equivalence relation ~,, and hence induce operations on the
quotient set Fq ;(X). The fact that these induced operations satisfy
the equations in E follows from ((a) and) (c)(i), since every element of
Fq £(X) is the equivalence class of some term.

(ii) Let E denote the set of expressions (s =¢) where s and ¢ are
elements of Fo{X) such that h(s) = h(t) for every Q-homomorphism h
from Fo(X) to an (Q, E)-model A. Then it is easily verified that E
satisfies the closure properties (a), (b) and (c) [for (c), this requires the
observation that h(s[u/x;])="h(s), where h is the unique
homomorphism sending x; to h(u) and the other elements of X to
their images under h]; so E< E, and hence every homomorphism
h: F(X) = A factors through the quotient map Fo(X) = F g 5(X). In
particular, if & = f is the unique homomorphism extending a given
map f: X — A (as in Theorem 1.2(ii)), we obtain a homomorphism
7 Fr(X)—> A, which is clearly the unique homomorphism
extending f. [

Corollary 1.5. Let (Q, E) be an algebraic theory. Then an equation
(s =1t) belongs to E iff it is satisfied in every (Q, E)-model.
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Proof. One direction is easy: the set of equations satisfied in a given
(Q, E)-model (and hence, the set of equations satisfied in every (Q, E)-
model) has the closure properties (a), (b) and (c), and so contains E.
Conversely, if (s=1t} is satisfied in every (€, E)-model, then it is
satisfied in F g £(X,) for any n; in particular (assuming for notational
convenience that both s and ¢ involve exactly the variables
X{sX3,...,X,), W& have

SF(Q,E)(X")([xl]? X)) = tF(Q,E)(x,,)([xJ, s XD (*)
(where the square brackets denote ~ j-equivalence classes). But by
definition we have

SF(n,E)(X,.)([XIJ’ CRRR [X,,]) = [SFQ(X,,)(X19 s ’xn)] = [S] >

and similarly the right-hand side of (x) equals [t]; so [s]=[¢], i.e.
s=teE O

Corollary 1.5 is our first example of a completeness theorem, i.e. a
theorem asserting (for some class of theories) that the things which
are true (i.e. are satisfied in every model of a given theory) coincide
with the things which are provable (i.e. are derivable from the
postulates of the theory — in this case, the primitive equations — by a
specified deduction process — in this case, the closure properties (b)
and (c)). Clearly, the acid test of any formal deduction-system is
whether we can prove a completeness theorem for it. The existence of
free models, as we have seen, makes the completeness theorem for
algebraic theories comparatively easy to prove; in the next two
chapters we shall prove completeness theorems in other contexts
where we have to do a good deal more work to show that every true
statement is provable.

However, even for algebraic theories not everything in the garden
is rosy. In contrast to the situation for terms, there is in general no
algorithm for determining whether or not a given equation (s = t) is
derivable from a given theory. For some particular theories (e.g. that
of groups — see Exercise 1.6) we can find such an algorithm; but in
Chapter 4 we shall give an explicit example of an algebraic theory for
which we can prove that no such algorithm exists. The problem of
finding such an algorithm, for a given T, is called the word problem for
T ['Word’ is an old-fashioned synonym for ‘term’.]

There is one case where the word problem always has a trivial
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solution. Let Q be an operational type, and let o = {4, 4,,..., 4,}
be a finite set of finite Q-structures. Then if we define E to be the set of
all equations which are satisfied in every A4,, it is clear that we already
have E=E; and so to determine whether (s=1¢) is a (derived)
equation of this theory it suffices to compute s, and ¢, for each i -
which is a finite process since each A4; is finite.

An important example of a theory of this kind is the theory of
Boolean algebras, which may be loosely described as ‘everything you
can say about a two-element set’ (that is, if you confine yourself to the
language of universal algebra). There are various ways of presenting
this theory: a highly generous one uses two nullary operations T
(true) and L (false), a unary operation — (not), and four binary
operations A (and), v (or), = (implies) and <> (iff). The set 2 = {0, 1}
is given a structure for this operational type by setting

a)=1-a
A 5{a, by = min{a, b}
v ,(a, b) = max{a, b}
=,(a,b)=01iffa=1and b=0
<,(a,b)y=11iffa=b.
We then define a Boolean algebra to be an (Q, E)-model;, where Q is as
above and E is the set of all equations satisfied in 2. [ Note: henceforth
we shall generally revert to the more familiar ‘algebraic’ way of
writing binary operations: (x A y)instead of A xy,etc.] Of course, the
above presentation is highly inefficient, because E contains a good
many equations which tell us that some of the seven primitive
operations are definable in terms of the others. For example, it is easy
to verify that E contains
(T=(L=1)
(Tx=(x=1)
(xvy)=(Tx=y)
((xAy)="(Txv 7y)
and (x<=y)=(x=y) Aly=x)),
so that every Q-term is ~ gj-equivalent to one involving only the
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primitive operations L and =. Henceforth, we shall regard 1 and =
as the only primitive operations in the theory of Boolean algebras,
and regard the above equations as defining T, 7, v, A and < as
(shorthand for) certain derived operations. There are many other
ways of reducing the number of primitive operations; this one has the
(small) merit that it gets the number down to the least possible (see
Exercise 1.10).

This reduction has not exhausted all the equations in E; there are
still others that we need to consider. We note, however, that (s =¢)
belongs to E iff ((s<>t)= T) does; therefore we can restrict our
attention to equations of the form (t= T). We say a term ¢ is a
tautology if (t = T) is in E (equivalently, if ¢, is the constant function
2" — 2 with value 1, where n is the number of variables in t). It is easy
to verify that the following are tautologies:

@) (x=(y=x)),

b) (x=(y=2)=(x=y)=(x=2),

© (x=1)=1)=x).
(c) looks more familiar if we write it as (7 7'x = x); but we wanted to
empbhasize that = and L are now our only primitive operations. We
shall be meeting these three tautologies quite frequently in future.

Exercises

1.1. Let Q={t,b,u,c} with a(t)=3, a(b) =2, a{u)= 1, a(c) =0, and let
X, y, z be variables. Which of the following are Q-terms?
(i) ttxbucyzzz (i) xubytcz (iii) tcucbucc
(iv) bbbxbybyybxbzbyyy (V) bxytczuz (vi) thxxxxx.

1.2. Show that the following definition of the derived operation induced by
a term is equivalent to the one given in the text:
‘If teFo(X,) and ay, ... ,a, are elements of an Q-structure A4, then
tgay,...,a,)=f(t), where f:Fo(X,)— A is the unique homo-
morphism extending the map f: X, - A with f(x})=a; (1<i<n)’

1.3. Lets,tand ube Q-terms (for some fixed Q), and let x; and x; be distinct
variables. We write s[t,u/x;,x;] for the term obtained from s on
simultaneously replacing each occurrence of x; by ¢ and each
occurrence of x; by u. Show that s[t, u/x;, x;] is not in general the same
as s[t/x;][u/x;], but that it is the same as s[¢[x,/x;]/x;][u/x;][x;/x.],
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provided # is chosen so large that x, does not occur anywhere in s, t or
u. Hence show that if (s=¢'), (t=1) and (u=u’) are all derived
equations of some theory (Q, E), so is (s[t, u/x;, x;] = s'[t',t//x;, x;]).
14. Let T be an algebraic theory. Show that the one-element set {0} hasa
unique T-model structure, and that the empty set has a T-model

structure iff T contains no nullary operations.

1.5. Let Q={m,i, e} with a(m)=2, a(i) = a(€) = 1, and let E consist of the
four equations (mxmyz=mmxyz), (ex=eéy), {(méxx=x) and
(mixx = &x). Show that every group is an (Q, E)}-model in a natural

way. Is the converse true?

1.6. Let Q be the operational type of groups. We say that an Q-term is
reduced if it is either the single symbol e or of the form mm ... mw,
where w is a string of symbols involving only variables and the
operation i, and not including any substring of the form ii, ixx or xix

(except as part of a substring ixix).

(i) Describe an algorithm which, given an arbitrary Q-term ¢,
produces a reduced term ¢ for which (¢t =1) is a derived equation of

the theory of groups.

(ii) Show that the set of all reduced terms in a given set X of variables
can be made into a group RX containing X as a subset. By considering
the induced homomorphism FX — RX, where FX is the free group
generated by X (defined as in Theorem 1.4), show that if s and ¢ are
reduced terms for which (s = t) is a derived equation, then s and t are

identical.

(iii) Use (i) and (ii) to solve the word problem for groups.

[Feel free to use everything you know about group theory in

answering this question.]

1.7. (i) Let T be an algebraic theory, and suppose T contains a ternary

(possibly derived) operation p for which

(pxyy=x) and (pxxy=y)

(*)

are (possibly derived) equations of T. Let A be a T-model, and let R be
a sub-T-model of 4 x 4 which contains {(a,a) | a € A} (i.e., considered
as a binary relation on A, R is reflexive). Show that R is also symmetric

and transitive.

(ii) Conversely, if T is an algebraic theory such that every reflexive
submodel of the square of a T-model is also symmetric, show that T
contains a ternary operation satisfying (*). [Hint: let F be the free T-
model generated by {x, y}, and consider the sub-T-model of F x F

generated by {(x, x), (x, ¥}, (¥, »)}.]
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1.8.

1.9.

1.10.
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(iii) Give an example of an operation p satisfying (*) when T is the
theory of groups, but show that there is no such operation in the theory
of semigroups (i.e. the theory obtained from that of groups by deleting
the operation i and the equation in which i occurs).
(i) Let Q = {e,m} with a(e) =0, a(m) =2, and let E consist of the two
equations (mex = x) and (mxe = x). Suppose a set 4 has two (Q, E)-
model structures (e;,m,) and (e,,m,) such that the operations of the
second structure are Q-homomorphisms 1 - Aand 4 x A — A4 for the
first structure. Show that A satisfies the equations (e, =¢,) and
(m m,xzm, yt = mym,xym, zt}, and deduce that m, = m, and that m, is
commutative and associative.
(ii) Ask an algebraic topologist to explain what this has to do with the
result that the fundamental group of a topological group is abelian.
Let 2 = {0, 1} with its usual Boolean algebra structure, and let n be a
natural number. Show that every function 2" — 2 is (the interpretation
of) an n-ary derived operation of the theory of Boolean algebras.
[Hint: use induction on n.] Deduce that the free Boolean algebra on n
generators has 27" elements.
Let B be the theory of Boolean algebras, and let | be the (derived)
binary operation of B defined by

(xly)="xnry).
Show that the subtheory B, of B generated by | (i.. the set of all
operations derivable from | ) contains all of B except the two constants.
Show also that no single operation can generate the whole of B; and
that B cannot be generated by either A or v plus one other operation.
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