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Chapter 2
Detection Methods

Surprising though it may seem, practically all of the exoplanets that have been cur-
rently detected have never been ‘seen’ directly, in the sense that no images obtained
with a telescope exist for these objects. The reason is very simple, and lies in the
extreme difficulty of detecting these objects. This also explains why it was neces-
sary to wait for the beginning of the 1990s for the first systems to be discovered,
when far more exotic astrophysical objects (quasars, pulsars, etc.) had been imaged
for several decades. In this chapter, we discuss the different techniques employed to
detect and determine the properties of exoplanets and their environment.

2.1 The Extent of the Problem

The direct observation of an exoplanet — in the sense of being able to separate phys-
ically the photons from the planet from those of the central star, sufficient to obtain
an image of the two objects — is a problem that is as simple to state as it is difficult
to achieve in practice. It may be largely summarized by three critical points which
strongly influence the detection methods that may be envisaged:

the contrast between the star and the planet,

the angular distance between the two objects,

the environment of the Earth and of the exoplanet (and more generally, of the
exosystem as a whole).

2.1.1 Contrast Between Star and Planet

The contrast between an exoplanet and its parent star depends on several factors:
(a) the spectral region in which observations are made: The spectrum of an
exoplanet primarily consists of two components (see Chap. 7): one component aris-
ing from the reflection of the star’s light by the planet, and the other being its own
emission component. In the case of a planet like the Earth, orbiting a solar-type
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star (Fig. 2.1), the reflected component is dominant in the visible and near-infrared
regions, while the planet’s own emission component dominates in the thermal
infrared (beyond 4 um).

(b) the nature of the stellar and planetary objects: The two spectral compo-
nents just mentioned obviously depend on the nature of the various objects forming
the planetary system. The spectral distribution and the amplitude of the reflected
component depend on the star’s effective temperature (and thus on the type of star),
but also on the albedo, the size, and the distance of the planet from its star. The
planetary emission itself depends exclusively on the nature of the planet — whether
terrestrial or giant — and primarily on its effective temperature, but also on the atmo-
spheric composition, which is indicated by the presence of absorption lines in the
emission spectrum (Fig. 2.1).

(c) the distance between the objects: The distance between the star and the
planet is one of the essential factors involved in the calculation of the radiative
equilibrium temperature of the planet. For example, an object of the size of Jupiter
has an effective temperature of about 1500K at 0.05 AU (i.e., as is the case with a
hot Jupiter), whereas it is only about 110K at 5.2 AU (Jupiter’s location in the Solar
System). The contrast is directly affected: at a wavelength of 10 um it is about 10%
for a hot Jupiter, but it rises to 10° for a true Jupiter-like planet.

2.1.2 Angular Separation Between the Objects

Because of the significant distance between the Sun and the nearest stars — the
closest stars are several parsecs from us — exoplanetary systems subtend very small
angular distances. A Sun-Earth system, for example, at a distance of 10 parsecs
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would subtend an angle of one tenth of a second of arc. (One second of arc, ab-
breviated ‘arcsec’, is 1/3600th of a degree, one milliarcsec, abbreviated ‘mas’, is
1/1000th of an arcsec, one microsecond of arc abbreviated ‘pas’, is 1/1000th of a
mas.) This tiny angular separation means that methods with high angular resolution
must be used to carry out direct observation (see Sect. 2.3). An illustration of these
problems of contrast and angular separation may be framed as follows: Trying to
observe a planet like the Earth orbiting a star like the Sun, the whole system being
at a distance of 10 parsecs from us, resembles trying to observe a glow-worm 30 cm
from a lighthouse in Marseille, when the observer is in Paris (at a distance of about
700 km).

2.1.3 Environment of the Earth and Exoplanets

Apart from its suite of planets, the Sun is surrounded by a disk of dust resulting from
collisions between asteroids as well as cometary dust. This disk of dust lies in the
plane of the ecliptic. The dust, both illuminated and heated by the Sun, has its own
emission, which (in the visible region) is known as the zodiacal light. An observer
in the Solar System who is examining the sky in the infrared therefore records a
signal from this zodiacal emission. This emission is not negligible because, at a
wavelength of 10 um, the spatially integrated emission from the whole disk of dust
is 300 times the Earth’s emission.

In the same manner, it is not unreasonable to assume that exoplanetary systems
also contain a disk of debris (see Chap. 5), whose emission is certainly not negli-
gible, and may even be greater than that of the Solar System. The presence of this
disk therefore is a source of a parasitic signal in any radiation that is detected. To
illustrate this last point, we may return to our earlier analogy by imagining that this
time our glow-worm and our observer are both bathed in the light from Marseille
and Paris, which restricts the visibility of faint objects. If you need to be persuaded
of this, all you need do is compare the number of stars visible from the centre of
Paris with those visible on a clear night in the wide-open country.

Table 2.1 Properties of certain typical objects which are assumed to be orbiting a solar-type star,
lying at a distance of 10 parsecs

Object Radius Mass Dist. (AU)  Angular Contrast Contrast
Rg) Mg) separation (Vis) (IR)
(mas)
Jupiter 11.18 317.83 5.2 520 5% 108 5% 107
Saturn 9.42 95.15 9.54 954 2% 10° 5% 108
Neptune 3.94 17.23 30.06 3006 10! 1010
Earth 1 1 1 100 5% 10° 7 x 106

Hot Jupiter 10 300 0.05 5 4 % 10* 103
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Table 2.1 summarizes the main factors for different planetary objects, assuming
that they are in orbit around a star like the Sun, lying at a distance of 10 parsecs
from Earth.

2.2 The Indirect Detection of Exoplanets

We have seen that the direct detection of an exoplanet orbiting a star, even one close
to the Solar System, is extremely difficult. It is not, however, absolutely essential
to be able to obtain an image of the planet to reveal its presence. In certain cases
it is possible to detect the planet by observing the effect it has on its parent star,
thus by observing the star itself. The techniques that are based on this principle
are known as ‘indirect’ methods, in contrast to direct imaging. In this section we
discuss the principal indirect methods of detection. Here, we should explain that
these methods are by no means theoretical, but that, with a few exceptions, all the
exoplanets currently detected have been found by indirect methods.

2.2.1 The Effect of a Planet on the Motion of Its Star

It is commonly said that a planet orbits a star. This assertion is true if one neglects
the mass of the planet relative to that of the star, or if the motion of the planet
is considered in very rough terms. In reality, the star and its planet (or planets)
are bound by gravitation, and each of the bodies in the system (star and planet or
planets) has a motion about the centre of mass (the centre of gravity) of the system.
The position of the centre of mass G, in a system with N bodies, each of mass m;,
the centre of which is at O;, is defined by the following vector relationship:

—_— —
Y mi.GO; = 0 2.1
i

In particular, for a two-body system (the star being denoted by “* and the sin-
gle planet by ‘p’), the centre of mass lies between the star and the planet, and the
vectorial expression just given becomes an algebraic one:

.

GO, = 0.0 2.2
b = +mp b 2.2

where GO, denotes the distance between G and O, and O, O, the distance between
Oy and O,.

Each of the bodies thus follows an elliptical orbit, with the centre of mass of the
system at one of the foci. If a is the semi-major axis of the planet’s orbit around the
star, the semi-major axes of the stellar and planetary orbits relative to the barycentre
of the system at one of the foci may be written:
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m, My
a, = aand a, = a 2.3)
My +mp My +mp

In the general case, the ‘central’ star also describes an orbit that is more or less
complex depending on the number of planets in the system, certain properties of
which may be described by observing:

e stellar motion projected on the plane of the sky. Here, we observe a variation
in the position of the star relative to a fixed reference frame (consisting of very
distant bodies, such as quasars). This method is known as ‘astrometry’.

e stellar motion along the line of sight (radial motion). Here, we measure the star’s
velocity of approach or recession as a result of the motion around the centre
of mass. This measurement method is known as ‘radial velocimetry’ or ‘Doppler
velocimetry’ (after the experimental method used to measure the radial velocity).

In certain instances, when the star emits a periodic signal (as with a pulsar, for
example), the motion of the source may be deduced from the changes in the pulsar’s
period as it is measured here on Earth. We shall return to this technique at the end
of this section.

2.2.1.1 Astrometry

As the planet or planets move around the centre of mass, the central star also de-
scribes an orbit, the complexity of which depends on the number of planets in the
system. In the case of our Solar System, the motion of the Sun is primarily caused by
the presence of Jupiter, but also reveals the presence of other, less-massive planets
(Fig. 2.2).

In the case of a system with a single planet (or where one of the objects dominates
the others by a wide margin to such an extent that its effect masks those of all the
other planets), the motion of the star is an ellipse. We shall be particularly con-
cerned with such orbits, the general equation for which may be expressed, using
polar coordinates having their origin at the focus, and in the orbital plane, by:

a(l —é?
r(v) = (1 )

~ 1+e.cos(V) 24)

where a is the semi-major axis, e the eccentricity, and v the angular position of the
object relative to an origin given by the orbit’s periastron.

The motion, projected onto the plane of the sky is deduced from the preceding
expression by a change of reference frame that takes into account the orientation of
the orbital plane relative to that of the sky, and also the conventions regarding the
notation of the associated angles.

To describe the orientation of the orbit relative to the plane of the sky, it is normal
to use the astronomical equivalent of Euler angles. The following are thus defined
successively:



26 2 Detection Methods

- 0.001"

0.001"
| | | | |

|1~
| | | T | | | | |
2015 2005

Fig. 2.2 Motion of the Sun as a function of time (in years) on the plane of the sky as it would appear
from a location 10 parsecs away and perpendicular to the plane of the ecliptic. This movement is
mainly dominated by the giant planets (Jupiter, Saturn, Uranus, and Neptune). Note the scale: the
variations in positions are approximately 1 mas (0.001 arcsec noted 0.001”)

e the line of nodes: this is the straight line given by the intersection of the orbital
plane with the plane of the sky

e the ascending and descending nodes: these are the intersections of the line of
nodes and the object’s orbit. By convention, the ascending node is crossed when
the object recedes from the observer, and the descending node when the object
approaches the same observer

e the position angle of the ascending node, denoted Q. it describes the orientation
of the line of nodes on the plane of the sky relative to celestial north. This angle
lies between 0 and 180°

e the inclination, denoted i: this is the angle between the object’s orbit and the
plane of the sky. It is equal to O (or 180°) when the orbital plane and the plane of
the sky coincide; i lies between 0 and 90° when the apparent motion of the object
on the plane of the sky takes place in the trigonometrically direct sense, and lies
between 90 and 180° in the opposite case (Fig. 2.3).

It can be shown (Bordé, 2003) that the position of the star in the reference frame
based on the plane of the sky may be deduced from that in the plane of the orbit by
3 successive rotations:

e arotation by the angle —€2 around the line of sight
e arotation by angle i around the line of sight
e arotation by angle  around the normal to the plane of the orbit
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The expression for the path on the plane of the sky is thus obtained in polar
coordinates, whose origin is the centre of mass of the system:

p :r\/l —sin?isin’(v + o) (2.5)

0 = arctan[cositan(v + )] + Q

which is still an elliptical path, and where the parameters defining it are the
parameters of the initial orbit (in the reference frame of the orbit) and the obser-
vational geometry.

To detect an exoplanet by the astrometric method, it is thus necessary to be able
to reconstruct the star’s apparent path on the plane of the sky. By using Eq. (2.4),
and by making the approximation that the star’s true path is circular, and in the
plane of the sky, it is possible to calculate the maximum value of the amplitude of
the motion, which may be written as:

ax mp a,
D m, D

66 = (2.6)
where m,, and m, are the masses of the planet and the star, respectively; a, is the
semi-major axis of the planet’s orbit, and D is the distance of the exoplanetary sys-
tem from Earth. The value of 66 may be calculated for different cases (Table 2.2).
This table and Eq. (2.6) show clearly that the astrometric method is more
sensitive (i.e., the amplitude of the motion of the star is the greater), if the planet is:

e massive
e located at a great distance from its star.

However, the greater the distance of the planet from the star, the longer the
planet’s orbital period — and consequently that of the star as well — (in accordance
with Kepler’s Third Law). This means that the time required to detect the planet
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Table 2.2 The amplitude of the apparent motion produced by the planets in the Solar System
acting on the Sun, as if the latter were being observed from 5, 10, or 15 parsecs

Object a.(re) 66 at Spc 66 at 10pc 66 at 15pc
(mas) (mas) (mas)

Jupiter 1.07 1.00 0.50 0.33

Saturn 0.59 0.55 0.27 0.18

Neptune 0.33 0.31 0.15 0.10

Uranus 0.18 0.17 0.08 0.06

Earth 6.5%x 10~ 6.0x 10~ 3.0x 10 2.0x 1074

(a significant fraction of the planet’s orbital period around the star) also increases
drastically with the planet’s distance from the star. Nevertheless, the astrometric
method remains one of the rare methods sensitive to low-mass objects, orbiting far
from their star. In the case where the system is multiple (in practice, as soon as there
are two planets with comparable effects), the path of the star rapidly becomes com-
plex (see Fig. 2.2), and the accuracy of the reconstruction becomes limited by the
resolution of the measurements.

Several techniques are possible to determine accurately the position of stars in
the sky, and consequently their proper motion. The common factor with all these
techniques is the necessity of being able to use a fixed reference frame, or one that
is considered as such, on the sky. The principal difficulty is obviously that of finding
the position of a fixed object in the sky to a greater degree of accuracy than the astro-
metric accuracy of the measurements (typically, to 1 parcsec for the most accurate
instruments). The positions of stars are generally referred to distant point objects,
if possible, extragalactic ones. Nowadays, the ultimate reference frames consist of
those based on quasars (quasi-stellar objects), which are actually the active nuclei of
extremely distant galaxies. In the past, the position of nearby stars (their distances
being determined by measurements of their parallax) was measured relative to more
distant stars lying within the same field of view.

The first astrometric measurements aimed at detecting the presence of low-mass
companions coincided with the systematic use of photographic plates for astrophys-
ical observations. Peter Van de Kamp, who, in 1963, announced the detection of
two planets orbiting Barnard’s Star (the closest star to the Sun after the Alpha Cen-
tauri triple system, one component of which, Proxima Centauri, is the closest star to
the Sun), based his measurements on the analysis of more than 2400 photographic
plates taken between 1916 and 1963 by the various successive astronomers who
used the 80-cm telescope at Sproul Observatory. In this case, a measurement con-
sisted of locating on the photographic plate the coordinates of the photocentre of
the reference objects (stars considered to be ‘fixed’), and of the star for which one
wanted to determine the proper motion. All that remained was to reconstruct the
star’s path, subtract the proper motion caused by parallax (the motion of the Earth
in the Solar System), and the motion of the star in the Galaxy, to obtain the motion
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of the star that reflected the possible presence of a planet. The principal difficulty
with this method is its low precision. The size of objects on a plate is, at best, 1
arcsec (that is the size of the physical spot forming the image with low atmospheric
turbulence), and it is difficult to obtain a measurement on a photographic plate with
anon-linear response, to better than one tenth of the size of the spot (i.e., 0.1 arcsec),
to compare with the values in Table 2.2. Even with systematic measurements over
several years, and using electronic cameras (CCD detectors), it is difficult, work-
ing from the ground and with classical telescopes, to obtain an astrometric accuracy
better than 10 mas, which is too great for us to hope to detect planets — even giant
ones.

The planets announced by Peter Van de Kamp remain, to this day, unconfirmed,
despite the arrival of radial-velocity techniques that are far more accurate than as-
trometry with photographic plates. It is highly likely that Van de Kamp did not know
how to overcome all the bias involved with the method.

Apart from the systematic use of electronic cameras (CCD devices), which have
appreciably increased the accuracy and reproducibility of astrometric methods, two
techniques have completely revolutionized this discipline and these are:

e observation from space
e interferometry.

Observation from space allows us to avoid all the problems arising from the
atmosphere. In particular, turbulence, with its accompanying differential refraction,
produces fluctuations in the position of an object against the plane of the sky. The
degree of these fluctuations depends on the meteorological conditions under which
the observations are made, and thus on the site’s astronomical quality. The European
whole-sky astrometric satellite, Hipparcos, was therefore able to obtain, with an
accuracy of a few mas, the position and the proper motion of more than 120000
stars in the Galaxy. This precision is at the upper limit for the detection of giant
planets (see Table 2.3). The European GAIA project should, in 2012, allow us to
attain an accuracy of a few pas. It will then be possible to search for giant planets
using astrometry.

Interferometry is a technique which uses two or more telescopes, the light from
which is recombined in pairs to obtain interference fringes. From measurements of
these fringes, one can deduce information about the spatial structure of the object
with an extremely high angular resolution (as would be obtained with a telescope
having a diameter equivalent to the distance between the interferometric telescopes).
In its astrometric mode, interferometry allows an extremely precise measurement of
the position of an object against the sky. A diagram showing the principles behind
the method is given in Fig. 2.4.

The light coming from the star of which one wants to measure the position,
arrives at telescope 2 with a delay relative to the light arriving at telescope 1. This
delay, caused by the angle 0 between the direction of the star and the baseline, B,
between the telescopes, creates an external path difference B.cos(0) between the two
rays. This path difference may be compensated by the delay line which enables the
optical path followed by the light from telescope 1 to be increased or decreased. Zero
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Fig. 2.4 The principle behind interferometry (described fully in the text)

50

path difference (the optical paths followed by the light gathered by both telescopes
1 and 2 being equal) is determined by observation of the interference pattern (on the
bottom of Fig. 2.4). It corresponds to the point at which the envelope over the inter-
ference fringes is a maximum. The precise determination of B, by optical metrology
(with an accuracy of a few nanometres), and measurement of the difference in the
external path length (B.cos 6) by measurement of the displacement of the delay line
relative to zero path difference (again, with an accuracy of some few nanometres),
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provides an accurate determination of the angle 6 between the telescope’s baseline
and the star on the sky.

In practice, interferometry, like the other methods, functions in a differential
mode to avoid the effects of diurnal rotation and of the variation in the baseline
during the observation. Here, the astrometric movement of the star is measured rel-
ative to a reference frame that is assumed to be fixed. The interferometer should
therefore examine at least two objects simultaneously. This standard of performance
should be obtained with the planned PRIMA (Phase Reference Imaging and Micro-
arcsecond Astrometry) instrument on the European Very Large Telescope Interfero-
meter (VLTI), under commissioning at the time this book was written.

The best astrometric measurements are currently obtained by radio interferome-
try with continental baselines (VLBI), where astrometric accuracy close to 100 pas
is being attained. The optical interferometers that will shortly enter service should
enable us to obtain astrometric accuracies that are at least 10 times better.

An additional stage in the search for the ultimate astrometric accuracy consists
of combining interferometry with observations from space. The American SIM mis-
sion is a space-borne optical interferometer, which, around 2015, should be able to
obtain an astrometric accuracy of 1 pas. To obtain such accuracy, it is necessary to
know the length of the baseline to an accuracy of a few tens of picometres (in other
words, the thickness on one atomic layer). Research and development efforts are
currently under way to reach this objective, and allow the mission to be developed.

2.2.1.2 Radial Velocimetry

The astrometric method that we have just discussed, should enable us to measure
and reconstruct the motion of the star in the plane of the sky. It omits, however, mea-
surement of the star’s motion along the line of sight, recession or approach relative
to the observer. It is, however, impossible to observe, from Earth, the radial location
of the star along the line of sight, because, by definition, the motion projected on the
sky is non-existent. It is, however, possible to measure the radial velocity of the star
by spectroscopy (see later). The expression for the radial velocity of the star may
be derived from Eq. (2.4) and from the change of reference frame introduced in the
preceding paragraph, which enables a conversion from the orbital reference frame
to that of the sky, namely by rotations by the angles —€, i, and w. The equation for
the position of the star on the line of sight is then written as:

z(t) = rsin(v(t) + ). sin(i) 2.7

By using Kepler’s Second Law (the law of areas), which is expressed, for an
elliptical orbit of period P, semi-major axis a, and eccentricity i, by the equation:

dv
r2

e 2P V1 - e? (2.8)
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and deriving the expression of the position of the star on the line of sight with respect
to time, we obtain the equation for the star’s radial velocity:

21 aysin(i)
TP -

In what follows, we will set:

.[cos(V+ @) + e.cos(®)] 2.9

_ 2m aysin(i)
: P J1-¢2

In the two-body case that we are considering, from the preceding equation, it is
thus possible to derive an equation that is a function of the mass of the planet and
the mass of the star. This equation is obtained using Kepler’s Third Law, applied to
the system consisting of the star and the planet:

(2.10)

a*(m, +m,)~' = P*G(4n*)™! (2.11)
where a = a, + a, and m,.a, = my.a,. As aresult we have:
a =P°G(4n*) " .m) (m.+mp)~* (2.12)
and we then obtain, using Egs. (2.9) and (2.12) the equation:

(mpsin(i))* P

= K3(1— )32 2.13
(mo+my)2 206 ¢ 2.13)

The above equation shows that measurement of the radial velocity (Eq. 2.9) does
not allow us to simultaneously determine m, and m,. However, if we assume that the
mass of the planet is negligible relative to the mass of the star, and also that the mass
of the star may be estimated by some other means (for example from the position of
the star on the Hertzsprung-Russel diagram, see Fig 1.12), then we may obtain an
estimate of the product m,,.sin(i):

- P\ 23,/ »
mpsin(i) ~ oG K.m/ \1—e (2.14)

It will be noted that, whatever we do, we cannot derive equations that omit the
system’s angle of inclination (7). So measurement of radial velocities only allows
us to derive a minimum mass for the planet. Only in the specific case where the
system is seen edge on, and where the planet may also be detected by its transit of
the star, is it possible to determine the individual masses of the system’s planets.
However, by assuming that planetary systems have a random orientation relative to
the plane of the sky, it is possible to ignore the orientation statistically, and obtain a
mass-distribution for the planets as a whole.

In the case of a circular orbit (e = 0), Eq. (2.14) may be expressed numerically as:

2
mpsin(i) ~3.5102K..PYP and K. = 77 sin(i).a, 2.15)
my
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Table 2.3 Properties and radial-velocity changes induced on the star by various planetary objects

mp(Mg,) ap(AU) a,(re) P (days) K.(ms™ 1
Jupiter 317.83 5.2 1.07 4332.6 12.5
Saturn 95.15 9.54 0.59 10759.2 2.8
Uranus 14.54 19.18 0.18 30685.4 0.3
Neptune 17.23 30.06 0.33 60189 0.28
Earth 1 1 6.5x107*  365.25 0.09
51 Pegb 130 0.05 0.004 4.23 50.2

where K, is in m.s~!, P in Earth years, and m,, in Jupiter masses. Table 2.3 gives
the value of K, for various specific instances.

If we continue to neglect the mass of the planet relative to the mass of the star, we
may also deduce, from Kepler’s Third Law, the semi-major axis of the planet’s orbit
around the centre of gravity (and thus around the star, because in this approximation,
they are assumed to coincide) as a function of the mass of the star and of the orbital
period:

Ar?

As Table 2.3 clearly shows, measurement of the radial velocity of a star to deter-
mine the presence of possible planets is a method that is biased towards:

1/3
a,,:( G ) P3ml/3 (2.16)

massive objects (K, is proportional to the mass of the planet),
objects close to their parent star (K is proportional to P~1/3_ and therefore greater,
the smaller the value of P).

For massive objects, the radial-velocity method is therefore complementary to
the astrometric method, which is more sensitive to distant objects. As with astrom-
etry, to detect long-period objects the method requires regular observations and an
instrumental stability that is monitored over time. We shall return to this point in
the discussion of the equipment that enables these measurements to be carried out
(Chap. 8).

Unlike the astrometric method, and as indicated earlier, measurement of the ra-
dial velocity does not allow us to determine the mass to better than the sine of the
angle of inclination. So it does not allow us to observe systems that are viewed
face-on. Finally, we should mention that in the case of multiple systems, the radial
velocity, taken overall, consists of the sum of the different contributions of the plan-
ets, and of their periods of revolution. The detection of multiple systems (such as 55
Cancri, Upsilon Andromedae, etc.), is therefore carried out by analyzing the com-
ponents of the radial velocity by subtracting the principal component, followed by
analysis of the residuals until the measurement noise is reached.
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Measurement of the radial velocity of a star is based on the Doppler-Fizeau
effect:! any observer who receives a wave (of whatever nature) emitted at the fre-
quency V by a source in motion, detects it at the frequency v + 6v, where oV is
positive (greater frequency and thus shorter wavelength) if the object is approach-
ing, and negative (lower frequency and greater wavelength) if the object is receding.

A star is a source of electromagnetic waves: every object at a temperature 7,
has a thermal emission spectrum described, in the black-body model, by the Planck
function. The star, as a source of electromagnetic waves may therefore equally be
the source of a Doppler-Fizeau effect. The analogies with sound waves ceases here,
however, because electromagnetic waves are transverse waves which propagate in
a vacuum, whereas sound waves are longitudinal compression waves in a medium
(air) that they require to be propagated (sound does not propagate in a vacuum).

In the relativistic expression of the Doppler-Fizeau effect, the wavelength ob-
served is given as a function of the wavelength of the source by the equation:

1+V,/c

L _vi/e (2.17)

Afobs = }fsource

where V, is the radial velocity of the source, positive when the object is receding,
and c is the velocity of light in vacuum. From this expression we can derive the
relative shift in wavelength (or frequency) as:

A)L:V,:7Av 2.18)
A c %

So, for a hot Jupiter (V, ~ 50ms!), the relative shift in wavelength is about
1.5x 107"

Measurement of the radial velocity of a star is therefore carried out by high-
resolution spectroscopy. The spectrograph resolves the radiation from the star into
its different components (corresponding to the ‘notes’ in our analogy with sound).
Measurement of the shift in wavelength is made by observing the overall shift in
the heavy-element absorption lines in the spectrum. Given the low amplitude of the
shift (AL/A =5 x 10~7-108, depending on the object), two conditions are required
to obtain sufficient accuracy:

using numerous lines to analyze the shift

having a wavelength reference to calibrate the spectrum and obtain an absolute
measurement of the radial velocity, allowing comparison of results obtained over
several years (which is the time required to detect long-period planets).

The first point results in constraints on the spectral resolution of the spectrograph
(the value A /AL where AL is the spectral range covered by one element of the
spectrum). The spectral resolution should be several tens of thousands for the best

! Fizeau’s name should not be dissociated from that of Doppler. In fact, although we owe the
observation of the effect to the latter, the true understanding of the phenomena in terms of the
actual physics is the work of Fizeau.
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modern instruments. There is also a constraint on the choice of targets. Stars that
are too young, or are too hot, are difficult to observe (or have a reduced accuracy
of measurement), because their spectra do not exhibit sufficient narrow lines for the
amount of shift to be measured. The second point requires the use of a reference
source, generally a spectral lamp (thorium—argon), or a cell containing a gas, whose
absorption spectrum is known extremely accurately (generally a cell containing io-
dine vapour is used). In either of the solutions, the reference standard should be
essentially stable, and thus requires a thermal environment, which itself needs to
be stabilized. Measurements are made by exposing the spectrograph’s detector to
the stellar spectrum and the reference spectrum simultaneously. The best current in-
struments (such as HARPS on the 3.6-m telescope at La Silla) allow us to obtain a
radial velocity to an accuracy better than 1 ms~!, and stable over a period of several
years. The principal instruments used for the measurement of radial velocities and
their method of operation are described later (Chap. 8).

2.2.1.3 The Timing of Pulsars

The detection of radial motion (along the line of sight for an observer on Earth) in
a celestial body that is orbited by one or more planets may prove to be simplified if
the body periodically emits a signal — electromagnetic waves, for example.

This is particularly the case with pulsars, which are neutron stars that have re-
sulted from the explosion of a supernova, and which have the specific feature of
emitting electromagnetic waves in a cone, which sweeps the sky in time with the
rapid rotation of the star (with periods between a few milliseconds to several sec-
onds), rather like the beam from a lighthouse. Some of these pulsars are visible from
Earth, because the emission cone passes across the Earth at each rotation. They are
then detectable as a periodic signal, which is easy to time. If the pulsar exists on
its own, the Earth—pulsar distance does not vary and the period of the signal is ab-
solutely constant. If the pulsar has planets, just like the other stars we have been
discussing, then it will revolve around the centre of mass of the system, so that dur-
ing the course of its revolution, the Earth—pulsar distance will increase and decrease,
thus increasing or decreasing the travel time of the pulsar’s signal. This variation in
the travel distance, and thus in the travel time, is indicated by a variation in the
period of the pulsar over the course of time.

Assuming, as previously, that the pulsar describes an orbit with a semi-major axis
a, about the centre of mass, inclined at angle i relative to the plane of the sky (where
i = 0 when the orbit lies in the plane of the sky), the variation in the pulsar’s period
is given by:

a,sin(i)

5T, = (2.19)
C

where c is the propagation velocity of the wave from the pulsar in a vacuum (i.e.,
the velocity of light).
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Table 2.4 Amplitude of the period variations of a pulsar of one solar mass as a function of the
planets in orbit

a.(re) 6T, (ms)
Jupiter 1.07 250
Saturn 0.59 137
Uranus 0.18 42
Neptune 0.33 76
Earth 6.5x107*  0.15

Just as in the case of the variations in the radial velocity, these variations of the
pulsar’s period have a period of their own, which is set by the orbital characteristics
of the body orbiting the pulsar.

Table 2.4 gives the value of 0T, for a pulsar of one solar mass accompanied by
the bodies in our Solar System at their respective distances.

The accuracy of measurements of the variations in a pulsar’s period caused by
the presence of one or more companions increases with the intrinsic stability of
the pulsar. This is the case with the old millisecond pulsars with a stable internal
structure,” but which are revitalized by the accretion of material from a neighbouring
red giant (Davis et al., 1985). So this applies to a small number of objects. Currently,
the lowest-mass companions that are detectable are found in these systems, which
we are able to search thanks to the stability of these pulsars.

The chronometric accuracy currently attained with these objects is far better than
a millisecond (which is more than enough to detect a planet, even a terrestrial one).
The method has the potential to detect planets with the mass of the Moon. In ad-
dition, the simplicity and accuracy of the method explain why it was the first to
provide results. The first extrasolar planets detected, in 1992, were those around
PSR 1257+12 (Wolszczan and Frail, 1992). But the discovery did not attract a lot
of attention: the electromagnetic environment of the pulsar is, on the face of it, very
hostile, and so leaves little hope that these planets could be habitable.

2.2.2 The Effect a Planet has on Photometry of Its Star

We have seen in the preceding section that the presence of one or more planets,
orbiting a star, may be revealed indirectly by observing the movement of the star
that is caused by the planet. In certain cases, we may equally hope to detect the
presence of a planet by the effects produced on the luminosity of the star itself.
Two principal effects may be involved: the passage of a planet in front of the star (a
transit), or gravitationally induced amplification of the brightness of a background
star by a multiple target.

2 Unlike young pulsars, where deformation and changes in structure lead to irregularities in the
period.
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2.2.2.1 Planetary Transits

A planetary system observed edge-on (where the plane of the orbit is perpendicular
to the plane of the sky), is a specific, and very interesting, case. The planets may, in
fact, transit the star and cause micro-eclipses, which are detectable by continuously
measuring the star’s flux (Fig. 2.5). The amplitude of the extinction enables us to
obtain the diameter of the planet, to a close approximation, and the duration of the
phenomenon, and its periodicity, enables us to derive the planet’s orbital period and
hence its distance from the star.

Observation of a planetary transit is possible ONLY if the system is seen very
close to edge-on. To calculate the likely probability of seeing a transit, consider
Fig.2.6

The transit will be visible only if the line of sight intercepts the cylinder, con-
structed on the orbit, of radius a, and height 2r,. Assuming that the orientation
of planetary systems with respect to the plane of the sky is essentially uniform,
the probability pr of actually observing a transit is thus expressed as the ratio be-
tween the surface of the cylinder that we have just described (the total number of
favourable orientations of the line of sight) to the sphere of radius a,, (the total num-
ber of possible orientations of the line of sight.) For a circular orbit, the following
relationship may be derived:

2ray2ry 1y
pr= 47ra%7 B ap (2.20)
where r, is the radius of the star, and a, is the semi-major axis of the planet’s
orbit. This relationship may equally be expressed as a function of the planet’s orbital
period P, by the application of Kepler’s Third Law, and becomes:
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Fig. 2.5 Diagram illustrating the principles of a planetary transit in front of a star, and the associ-
ated photometric light-curve
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Fig. 2.6 The geometry for observing a transit

1/3
T 472
pr = P23 (Gm*> 2.21)

This probability is shown in Fig. 2.7, for a star that has a radius equal to the solar
radius.

It will be seen that the probability decreases rapidly with the planet’s orbital dis-
tance (and thus period). Detection of planets by observing their transits of a star will,
therefore, independently of any considerations of detectability, be more favourable
for planets at short distances from their parent star. The probability of observing a
transit of a hot Jupiter is thus about 10 per cent (with a period of 3—4 days), whereas
the probability of observing the transit of a planet such as the Earth (with a period
of 365 days) is only about 0.5 per cent.

To calculate the duration of a transit, we will make the simplifying assumption
that the orbit is circular, and consider the geometry shown in Fig. 2.8.

1 2 3 4 5 6 7 500 1000 1500 2000 2500 3000 3500 40p0
0.1 0.1
z z
5 3
€ 001 § oot
[ <
o o \\
0.001 0.001
0.0001 0.0001
Distance to the star (AU) Period (days)

Fig. 2.7 Probability of a transit by a planet orbiting a solar-type star as a function of its distance
from the star (left) and its orbital period (right)
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TAB

Fig. 2.8 Geometry of a transit

The duration of a transit corresponds to the time required for the planet to tra-
verse the chord AB (Fig. 2.9). The impact parameter (denoted b and not p, to avoid
confusion with notation used previously for the orbital period and the transit prob-
ability), is determined by the inclination of the orbit, i, relative to the line of sight
and the relationship:

b.r, = ap.cos(i) (2.22)

The length of the chord AB is:
[ =211 b2 (2.23)

The time taken to traverse it, for a circular orbit of period P, at velocity v =
2.m.a,/P. From this we may derive the duration of the transit: 74 = 1/v, which
may be written, replacing P by its expression as a function of a,, using Kepler’s
Third Law, as:

2.7V 1— b2 1/2_(2n)2/3.2r*\/1—b2.P,/3

ay? = 2.24
Gt (G.m)/3 @29

TAB =

These equations may be written more simply, by taking a,, in astronomical units
(the mean Earth—Sun distance), P in days, and m, and R, in solar units, to give:
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Fig. 2.9 Duration of a planetary transit (in hours) as a function of the orbit’s semi-major axis (left)
and of the orbital period (right)
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s 1™
Tap = 13.0V/1 —b2.ml/2.a,'/2 —1.8V/1 —b2m1/3 P!/ (2.25)

The relative amplitude of the extinction during a transit is, to a first approxima-
tion, equal to the ratio of the apparent surfaces of the planet and the star, and may

be written:
AF T
= (2.26)

So the transit of a giant planet like Jupiter causes a photometric extinction of
1 per cent, and that of a terrestrial planet like Earth an extinction of 0.01 per cent
(10™%). To detect a planet by the transit method, it is therefore necessary to be able to
carry out photometry of the star to better than the relative extinction. So, to detect a
giant planet, a photometric accuracy of roughly a fraction of one per cent is required,
while for a terrestrial planet, the photometric accuracy needs to be around some
1073,

Although the detection of giant planets is possible from the ground, where one
may achieve accuracies of around 1073, limited by atmospheric turbulence, the de-
tection of terrestrial-type planets may only be contemplated from space. The differ-
ence in the accuracy of an observation made from the ground and one made from
space is illustrated in Fig. 2.10, which shows the same transit, that of a giant planet
passing in front of HD 209458, observed from the ground and from space.

The method’s potential is not limited to just the identification of planetary can-
didates. In fact, when combined with the radial-velocity method (where the indeter-
minacy of the angle of inclination relative to the plane of the sky is removed by the
observation of a transit), detection of a transit enables us to derive:

e the size of the object (the amplitude of the extinction)

e its mass (by measurement of the radial velocities)

e and, as a result, the density of the object, thus allowing us to distinguish between
a gaseous planet and a terrestrial-type planet.

In some cases, when the observation may be made with a good signal-to-noise
ratio, by using differential spectroscopy before and during the transit, it is possible
to determine the composition (or at least the presence of certain elements) in the
planet’s atmosphere. This point will be discussed in Chap. 7. We should also men-
tion that the transit method has been used in the infrared, exploiting the fact that the
planet is eclipsed when it passes behind the star (known as a secondary transit). Ac-
curate knowledge of the ephemerides of the system allows us, by subtraction of the
flux during the secondary transit (star alone) from that before the secondary transit
(planet + star), to derive some spectral information about the object. To date, this
method has been applied to two objects: TrEs1 and HD 209459, using the Spitzer
space telescope. It set limits on the flux emitted by the objects in four spectral bands
(see Chap. 7). It should become more generally available when the James Webb
Space Telescope (JWST) enters service.

At present there are more than twenty, ground-based projects for the systematic
observation of transits, generally with small, automated, wide-field telescopes (see
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Fig. 2.10 A transit of HD 209458b observed (left) from the ground (Charbonneau et al., 2000) and
(right) from space with the HST (Brown et al., 2001)

Chap. 8). In this case, the primary difficulties are the handling of a large quantity
of data and the extraction of relative photometry of the objects, when the observa-
tions have been obtained under what are sometimes extremely varied conditions (in
particular, the influence of local meteorology and the succession of day and night,
which do not guarantee continuity of observation). The A-STEP project, with an
observing programme from Dome-C in Antarctica is an extreme example of these
ground-based observational programmes. The excellent atmospheric conditions as-
sociated with the long Antarctic night appear to be serious advantages for this pro-
gramme. Nevertheless, the ultimate photometric accuracy of all these ground-based
programmes appears to restrict the method to the detection of giant planets.
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Two space missions designed to search for planets by the transit method are
envisaged for the near future, and are discussed in detail in Chap. 8:

e the CoRoOT mission, led by CNES, launched in late 2006, began operation in
January 2007 and should be able to identify objects of a few terrestrial radii,
orbiting close (with periods of less than 75 days) to their star;

e NASA’s KEPLER mission should, from 2008, be able to detect terrestrial planets
with periods up to about one Earth year.

2.2.2.2 Gravitational Microlensing

One of the most surprising aspects of Einstein’s theory of relativity is the phe-
nomenon of the gravitational lens (Einstein, 1936). In his theory, Einstein introduced
energy/matter equivalence,® with the consequence that the photon, the quantum of
electromagnetic energy, is subject to gravitation, just like ‘classical’ baryonic mat-
ter, whose weight we all experience.

So a photon that passes at distance » from an object of mass M, which is assumed
to be a point, undergoes a deflection « relative to its direction of propagation, and
this is given by the following equation:

o= 4§M _ 2R (2.27)
cor r
where R; is known as the ‘Schwarzschild radius’ of the gravitational lens caused by
the point mass.

When a massive object lies between the observer and the object being observed,
the image of the latter is thus deformed by the mass of the deflecting object. The
amplitude of the phenomenon depends on the mass and position of the deflector.
When the deflecting object is sufficiently massive — in which case o is greater
than the resolution of the instrument being used for the observation — the effect
is known as a ‘macrolens’: the image of the object is multiplied into an odd num-
ber of secondary images. Historically, this was the first type of lens to be observed.
The image of the double quasar Q09574561 obtained by Huchra in 1985 revealed
a symmetrical multiple structure related to the presence of a galaxy on the line of
sight (Huchra, 1985). When the mass of the deflecting object is low and « is less
than the angular size of the observing instrument’s diffraction disk, the situation is
described as a ‘microlens’ and multiplication of the image is not observed (although
it still exists), but the mean lensing effect effect instead, which takes the form of
an overall amplification of the intensity of the source being observed. The first ob-
servation of a gravitational microlensing event was that of the quasar Q223740305
(Racine, 1992).

3 This is the famous equation E = mc?, where E is the rest energy of the particle, m its mass, and
¢ the velocity of light. In the case of the photon, the rest energy is 4v, where 4 is Planck’s constant
and v the frequency of the wave associated with the radiation.
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In a completely similar manner, if a massive object passes across the line of sight
to a star, the latter’s brightness is increased by the effect just described, simulta-
neously revealing the presence of the object that serves as a lens (Fig. 2.11). The
gravitational amplification effect may, therefore, allow the transient observation of
an object that cannot be detected prior to the microlensing event.

Gravitational amplification is given by the following relationship (Sackett, 1999):

2
A T2 (2.28)
uvu? +4
where u = 05 /6g, with 65 the angular distance between the source and the deflector,
and Og the Einstein radius, which is itself defined as:

12
6 = <4GM dis > (2.29)

C2 'dL.dS

where G is the gravitational constant, M the mass of the lens, ¢ the velocity of
light, d the distance between the observer and the lens, dg the distance between the
observer and the source, and dg; the distance between the source and the lens.

The variation in the brightness of the object during the passage of the lens is
shown in Fig. 2.12.

In the case of a simple lens, the variation in luminosity is symmetrical, and cen-
tred on the position of the lensing star. The overall set of the apparent positions of

Fig. 2.11 The gravitationally amplified event 98-SMC-01 detected by the MACHO team, and
which had a gravitational amplification factor of about 100. These images show the object during
the amplification phase (left) and then following the amplification and the passage of the lensing
body (right). The field size is about 70 x 70 arcsec. This particular event has been attributed to a
low-mass binary deflector in the Small Magellanic Cloud
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Fig. 2.12 The theoretical gravitational amplification curve as a function of time, for a simple lens

the lens where the flux of the star is amplified by a factor of 1.34, is a circle, whose
radius is precisely the Einstein radius,* as defined by Eq. (2.29).

This method has been used since 1995 by various groups (EROS, MACHOS,
OGLE) to try to detect dark matter in the Galaxy. The theory to be verified is that
dark matter consists of massive, compact, and non-luminous objects, whose overall
mass could explain the difference between the mass deduced from the dynamics of
the Galaxy, and that which is directly observable (stars and gas).’

For planet hunters, the interesting case is when the deflector is accompanied by
one or more planets (a multiple lensing event). The structure of the amplification
zone is then no longer symmetrical. Because of the presence of planets, a line ap-
pears between the star and the planet, known as a caustic, where the gravitational
amplification is theoretically infinite for point sources such as stars. In the case of a
simple lens (without a planet), the only point of infinite gravitational amplification is
the position of the lens itself, i.e., when the source, lens, and observer are perfectly
aligned. In the case of a multiple lens, the apparent intensity of the source undergoes
significant variations when the apparent path of the source relative to the lens, ap-
proaches or crosses the caustic.® It is the structure of the gravitational-amplification
curve (Fig. 2.13) and, more especially, the study of its artefacts (number, duration,
and intensity) that enables us to determine the characteristics of the planet, or planets
(mainly the mass and projected angular distance), by use of a model that incorpo-
rates a significant number of parameters that may be adjusted to the data. The error
bars associated with this method are rather large.

4 The Einstein radius is also the radius of the circle that is the image of the source produced by the
deflecting object, when the source, the deflector, and the observer are perfectly aligned.

3 Calculations actually reveal an enormous mass-deficit (a problem which is known in cosmology
as the ‘missing-mass problem’). A possible solution to this problem was to consider the existence
of a vast number of brown dwarfs, which were not detectable by direct observation. This explana-
tion, however, does not appear to be a convincing solution.

6 The most spectacular effects occur when the apparent path of the source star crosses the caustic,
giving a gravitational-amplification curve that is extremely variable, depending on the exact case.
The most frequent case is that when the path approaches the caustic, but does not cross it. In such
a case, we observe anomalies in the characteristic Gaussian curve of a simple lens.
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Fig. 2.13 The trace of the gravitational-amplification event OB-05-390, where the artefact indi-
cates the presence around the deflecting star of an object of 5.8 M (After Beaulieu et al., 2006)

This method is, in principle, extremely sensitive, and enables giant planets to
be detected — for example, the candidate associated with the MACHO-97 BLG-41
event, with a mass estimated as about three Jupiter masses (Bennett et al., 1999).
It also allows lower-mass planets (terrestrial planets) to be detected. It was using
this method that, in 2005, Beaulieu et al. detected the object OB-05-390 b, which is
currently the lightest planet (5.8 Mg, to within a factor of 2) ever detected orbiting a
star other than a pulsar (Beaulieu et al., 2005). The difficulty in this case occurs in
monitoring the gravitational-amplification event. The teams that are carrying out the
search for planets by this method are dependent on other teams who provide details
of the gravitational-amplification targets as soon as an event begins. To search for
planets, as continuous a curve as possible is required so that it may be examined for
artefacts. To obtain adequate sampling (about one point every 30 min) and continu-
ous coverage of the amplification events, a collaborative effort (PLANET) has been
devised, using several telescopes around the world to obtain 24-h coverage of any
event.

The gravitational microlensing method is most sensitive to objects at a moderate
distance (a few AU) from their parent star. It is not suitable for close objects (but
there are the transit and radial-velocity methods for that). It allows the preferen-
tial detection of objects orbiting cool stars, because the stellar population of lenses
is dominated by low-mass (and low-mass) objects. The object OB-05-390 b is or-
biting a cold star (of spectral type M) at a distance of 2.6 AU. Given the distance
of the objects, the surface temperature of this planet cannot be higher than 50 K,
which means that it compares with that of a Pluto-type object in our own Solar
System.
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At present only the OGLE and MOA teams are continuing to issue the
gravitational-amplification alerts that are likely to lead to the discovery of other
planets by suitable follow-up observations. The permanence of the method thus de-
pends, in a crucial manner, on these programmes of systematic observations.
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Fig. 2.14 A diagram summarizing the domains over which the various methods of indirect detec-
tion are most sensitive

2.2.3 Comparison of the Different Indirect Methods

In the previous sections we have considered the different methods for the indirect
detection of extrasolar planets, their sensitivities, as well as their bias, either intrin-
sic, or linked to the choice of observational sample. Figure 2.14 summarizes the best
observational domains for the different methods, with a diagram that plots the mass
of the object against its distance from the central star (assuming the star to be of
solar type).

2.3 Direct Detection of Exoplanets

In this section we intend to discuss direct detection of an exoplanet, in the sense of
being able to detect directly photons arising from the planet, and not the effects of
the latter on the central star. The objective of direct detection is to be able to separate
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the photons from the star from those from the planet, to enable us to make a spec-
troscopic analysis and to deduce details of the planet’s composition, or at least that
of its atmosphere. Strictly speaking, however, the transit method, when carried out
in the infrared, is a direct-detection method, in particular when the secondary transit
is observed (the passage of the planet behind the star). By measuring the thermal
flux before and during this secondary transit, we obtain, by subtraction, a measure
of the flux from the planet. This method was used on HD 209458b and TrEs-1 with
the help of the Spitzer space observatory, and enabled spectral information to be
gathered in four channels between 5 and 25 um(Charbonneau et al., 2005).

Here, however, we shall restrict discussion to the collection and analysis of pho-
tons from planets.

2.3.1 Choice of Spectral Region

The choice of a spectral region for direct observation involves a compromise be-
tween the contrast between the star and the planet (typically between 10* and 10'°,
depending on the nature of the companion and the spectral region chosen), and the
angular resolution of the instrument, which primarily depends on the size of the
collector. The limiting angular resolution is set by diffraction. The image of a point
at infinity through a telescope is not a point but a disc, the form and size of which
depend on the shape and size of the telescope’s aperture. For a circular aperture, the
diffraction disc appears as shown in Fig. 2.15.
The radius r of the central diffraction disc is given by:

A
r= 1.22D (2.30)

Fig. 2.15 Form of the diffraction disc given by a circular aperture with no central obstruction
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where A is the observational wavelength and D is the diameter of the aperture (the
telescope’s primary mirror).

To ‘image’ an exoplanetary system, taking account of its spatial size, the com-
promise finally comes down to a choice between two domains:

e The visible and near infrared. Here, the star-and-planet pair is spatially resolved
by a telescope a few metres in diameter. The difficulty lies in overcoming the
contrast, which is 10°~10'° for a terrestrial-type planet. In this instance, corona-
graphic methods are used, possibly together with adaptive optics.

e The thermal infrared (around 10 um). Here, the contrast is optimal (107 for a
terrestrial planet), but we have to resort to interferometry to obtain the angular
resolution of the star-and-planet pair, because it would require a monolithic tele-
scope several tens of metres in diameter to resolve the system.

The luminous flux of the objects also needs to be taken into account. This point is
particularly important when we want to consider the question of imaging planetary
surfaces. Table 2.5 gives an estimate of this flux.

Table 2.5 Flux received from an Earth-like planet at 10 parsecs from the Solar System

Spectral region Integrated flux received on Earth
(omitting atmospheric absorption)

0.3-2 um 0.3 photon/s/m?
6-20 pm 10 photons/s/m?

Let us now discuss the different direct-detection techniques, together with the
associated instrumentation.

2.3.2 Coronagraphic Methods and Adaptive Optics

2.3.2.1 A Historical Retrospect: The Lyot Coronagraph

The coronagraph was invented by Bernard Lyot at the beginning of the 1930s to
observe the solar corona at times other than eclipses (Lyot, 1931; 1939). The princi-
pal approach — which was, nevertheless, empirical — that guided its inventor was to
achieve the maximum reduction in the light scattered and diffracted by the optics.
The principle of this instrument is shown in Fig. 2.16.

Lyot’s trick was to re-image the primary image plane, and to place a diaphragm
at the associated pupil plane to eliminate the effects of diffraction caused by the
mask located as the primary image focal plane. This method, in conjunction with
the use of extremely high-quality optics (with homogenous glass and exceptionally
high quality polishing) enabled light scattered within the instrument to be reduced
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Fig. 2.16 The basic principles of the Lyot coronagraph

by a factor of between 10 and 100. Lyot’s coronagraph thus allowed observation of
the solar corona a few arcminutes from the solar limb.

An elegant description of how Lyot’s coronagraph works may be made using
Fourier optics and image formation theories. A good introduction to these topics
may be found in Goodman, 1996.

From the point of view of the theory of the formation of images, the principle
behind Lyot’s coronagraph may be described in the way shown in Fig. 2.17:

(a) at the entry pupil plane: the infinite (i.e., nominally plane) wavefront is sampled
by the pupil

Fig. 2.17 The Airy function (Airy disk): the diffraction pattern produced by a circular diffracting
aperture
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(b) at the primary image plane (the focus of the main mirror): The image of a

single point at an infinite distance (which is known as the Point-Spread Func-
tion, PSF) is the square of the modulus of the pupil’s Fourier transform. (The
Fourier transform is a mathematical function that allows the transformation of
a function into another, known as the frequency domain representation of the
original function. For instance, a function of time may be transformed into one
of frequency. Among the main characteristics of the Fourier transform is the
fact that the operation known as a convolution, whereby two functions are ma-
nipulated to provide a third, may be simply represented in Fourier space by a
single multiplication of the Fourier transform.) This point-spread function may
thus be multiplied by the mask’s transmission (1-I1, where II is the aperture
function, corresponding to a mask with an occulting centre. In this image plane
we therefore have:

image = PSF — PSF x I1 (2.31)

(c) at the secondary pupil plane: the new pupil is once again the Fourier transform

of the primary image, in other words: The Fourier transform of the Airy func-
tion (i.e., the initial pupil) less the convolution product of the Fourier transform
of the Airy function (the initial pupil) with the Fourier transform of the aperture
function (another Airy function with a size that is inversely proportional to the
size of the mask). It will be recalled that the Airy function is the result of the
diffraction of light by a circular aperture (Fig. 2.17). The final transmission of
a coronagraph is thus equal to 0 on the optical axis, and there remains only an
annulus (of scattered light), which is eliminated by the Lyot stop at the pupil
(Fig. 2.18), which may be written as:

pupil =IT—-TI® Airy (2.32)

where the symbol ® represents the second magnitude convolution product.

This method, with some variants, has been employed in all solar coronagraphs,

including those installed on satellites such as SOHO (Koutchmy, 1988), as well as
in certain stellar coronagraphs which, when combined with adaptive-optics systems,

a) entrance pupil b) primary-image focal plane ¢) intermediate-pupil plane

X .

Fig. 2.18 Lyot coronagraph: (a) and (b) wavefront and image at the pupil planes and successive
images. (c¢) in red, residual light in the plane of the secondary pupil, which is a ring of light elim-
inated by the Lyot stop. All photons from a source on the optical axis are therefore, in theory,
completely eliminated
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have attained remarkable performance (Malbet, 1996), such as the detection of a
companion lying 10 Airy radii from a highly luminous star, which is 10° times as
bright (Beuzit et al., 1997).

The stellar version of the Lyot coronagraph, even though it may be effective
down to 2 arcsec of the star that is being occulted, when used with a telescope in
the 4-m class, cannot observe beyond that limit. In fact, the closer to the star that
one attempts to observe, the smaller the occulting disc needs to be, and the greater
the diffraction that it creates, requiring a stop whose aperture rapidly becomes very
small. In practice, the Lyot stop cannot cover less than the star’s Airy disk. Yet it is
precisely within this region that we want to observe. Short of using a large-diameter
telescope which ‘super-resolves’ the system and eliminates the residual contrast,
Lyot’s original method cannot be used, as such, to search for terrestrial planets.

2.3.2.2 The Phase-Mask Coronagraph

An alternative to the Lyot coronagraph was suggested by Francois and Claude
Roddier in 1997. It replaces the circular amplitude mask in the focal plane of the
Lyot coronagraph with a circular phase mask. (The mask modifies the phase of the
wavefront passing through it.) This mask is smaller, covering half (of the area) of
the Airy disk, and applies an achromatic phase change () or, at least, one that is
very weakly chromatic, given the low dispersion in the chosen spectral band. Light
from the star is extinguished by destructive interference by virtue of the source’s
symmetry relative to the mask (which must be precisely located on the image spot),
and rejected outside the geometric pupil, where it is blocked by the Lyot stop.

Several variants of a phase mask have been suggested. Among the most promis-
ing are the four-quadrant mask suggested by Daniel Rouan (Fig. 2.19). The theoret-
ical performance of such a mask suggests that extinctions of 1010 may be attained,
even inside the diffraction spot. The great advantage of this mask geometry is that
it is ‘spatially’ achromatic (unlike Roddier mask, the size of which depends on the
wavelength). Here, the efficiency does not depend on the size of the image spot
but, uniquely, on the ability for the phase-change 7, introduced by two of the four
segments of the mask, to be achromatic.

Coronagraphs, whether of the amplitude mask or phase mask type, have requi-
sites in common: the necessity for the stellar source to be perfectly centred on the
centre of the mask, and for the stellar image to be as symmetrical as possible. Any
deviation from symmetry results in a stellar residue, which may mask the image of
the companion that is being sought. It is therefore essential:

e to have the best possible image of the star
e to permanently monitor the telescope’s alignment relative to the centre of the star.

This is why all current coronagraphic systems operating from the ground are used
in conjunction with adaptive optics.
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Fig. 2.19 The principle of the 4-quadrant coronagraph: (a) appearance of the phase mask (white:
no phase-change, black: phase-change m); (b) image in the primary focal plane; (¢) the complex
amplitude after passing through the mask; (d) secondary pupil plane before the Lyot spot; (e) sec-
ondary image plane; (f) central portion of the secondary image focal plane (After Rouan et al.,
2000)

2.3.2.3 The Phase-Induced Amplitude Apodization Coronagraph (PIAAC)

The PIAAC instrument has been proposed by Guyon et al., and is in fact the com-
bination of two optical devices (Guyon et al., 2005):

e ahigh performance coronagraph
e a pupil ‘remapper’ to adapt the pupil shape of the telescope to the coronagraph.

The PIAAC concept comes from the observation that the diffraction pattern pro-
duced by a classical telescope leads to the presence of light (diffraction rings) far
from the on-axis direction. Such diffraction rings are classically removed or reduced
by ‘apodized’ apertures such as Gaussian apertures that can smoothen the aperture
edge effects. The main drawback of such a technique is a drastic reduction of the
source flux through modification of the pupil shape and thus its transmission, be-
cause of partial occultation of the pupil. Guyon proposes apodizing the pupil by a
modification of the intensity distribution within the pupil This is done by a global
wavefront phase distortion, using aspheric mirrors (Guyon, 2003). This method al-
lows apodizing the pupil without changing its overall transmission.

The PIAAC combines a first stage of apodization, which optimizes the shape
of the pupil, and a coronagraph (which may be either a phase- or an amplitude-
coronagraph). The principle of PIAAC is given in Fig. 2.20.

This concept has been demonstrated in the laboratory and is currently under test
on the sky. It could also be adapted to a space-borne mission concept.

2.3.2.4 Adaptive Optics and Accurate Pointing: The Keys to Performance

Because of atmospheric turbulence, the image of a star in a large-diameter telescope
is never the theoretical diffraction image as set by the limiting size of the telescope’s



2.3 Direct Detection of Exoplanets 53

-

Non-apodized telescope beam L Focal plane

Non-apodized beam
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occulting mask

Fig. 2.20 Principle of a Phase-Induced Amplitude Apodization Coronagraph. The beam is
apodized before reaching the first focal plane where the coronagraph mask is located. The beam
is then apodized backwards to revert to its initial form and to retain the initial phase information
contained in the entrance pupil. It is then imaged in the detection focal plane (After Guyon, 2003)

aperture. The star’s image is, in fact, the sum of multiple ‘speckles’, the number and
size of which depend on the level of turbulence (which is a characteristic of the site
and the construction of the telescope), and of the telescope’s size. During a long
exposure the speckles give rise to an integrated image that is distinctly spread out,
and the size of which is determined by the turbulence. In terms of resolution, the
degradation of the image reduces the performance of these telescopes to those of
smaller instruments, typically by a few centimetres to some tens of centimetres,
depending on the quality of the site and the wavelength under observation. (A thor-
ough introduction to atmospheric optics is given by Léna, 1996). The degradation
of the image into speckles results from aberration of the wavefront emitted by the
star during its passage through the atmosphere. This aberration affects the phase of
the wave emitted by the source. Adaptive optics (Fig. 2.21) is a system that allows:

e the analysis of the aberration of the wavefront caused by its passage through
the atmosphere: this is the role of the wavefront sensor. To do this the sensor
monitors a bright star within the field of view. This star serves as a point-source
reference.

e the partial compensation of the degradation by means of one or more deformable
mirrors, which, acting locally, will add or subtract a phase element to the wave-
front in such a fashion that it will restore the wavefront’s plane form that it had
before passing through the atmosphere. These mirrors are actuated by a control
system which uses, in real time, the information from the wavefront-sensor to
calculate the correction that needs to be applied by means of the deformable
MIrrors.

Current ‘mono-conjugate’ systems correct atmospheric turbulence by assuming
that it is limited to a specific atmospheric layer (and have a sole adaptive mirror).
This solution proves to be inadequate as soon as one wishes to image the field around
the reference object. Studies are under way to realize ‘multi-conjugate’ systems,
which take into account turbulence at several different altitudes in the atmosphere.
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Fig. 2.21 Schematic diagram of an adaptive-optics system. The wavefront that has been deformed
by the atmosphere is analyzed, and the effects of turbulence are corrected by use of a deformable
mirror (by courtesy of ONERA)

Several parameters may be used to quantify the efficiency of an adaptive-optics
system. Among these, we may mention the Strehl ratio, which is defined as the ratio
between the peak intensity of the image of a star (i.e., the point-spread function) and
the theoretical peak intensity for an image solely limited by diffraction. A Strehl
ratio of 1 corresponds to an image that is fully coherent and perfect. An image that
is not corrected by adaptive optics has a low Strehl ratio, which depends on the
severity of atmospheric turbulence. Current, fine adaptive-optics systems are able
to attain a Strehl ratio of 0.6. Future projects for the detection and investigation of
extrasolar planets from the ground will require Strehl ratios of at least 0.9.

Use of a coronagraph requires a high-quality wavefront, and which it is therefore
essential to correct by adaptive optics when observations are made from the ground.
In the specific case of a phase-mask coronagraph, the guiding constraints (on po-
sitioning and on centring the mask) are extremely tight (the functioning of these
systems is based on the symmetry of the stellar image relative to the phase mask).
These constraints are met by a fast-response, tip-tilt mirror ahead of a high-quality
adaptive system which stabilizes the position of the image at the image plane.

Most 8-metre-class telescopes are now fitted with adaptive-optics systems. Some
also incorporate new-generation phase-mask coronagraphs. We may mention in
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particular the NAOS-CONICA instrument on the VLTI. This instrument allowed
Chauvin and his collaborators to obtain the first image of an exosystem (2M1207).
In a few years’ time, this instrument should be followed by the SPHERE instru-
ment, which consists of a highly efficient adaptive-optics system coupled with a
4-quadrant coronagraph (see Chap. 8). These innovations, mainly developed in
Europe, and more particularly in France, should, in due course, also be incorpo-
rated into American instruments.

2.3.3 Interferometry

As we have already seen in the section on astrometry, it is possible to measure the
position and the proper motion of a star relative to a fixed reference by using in-
terferometry. In that method, the position of the group of interference fringes and
the length of the baseline are measured to derive the astrometric information. In
this section we will show how analysis of the structure of the interference fringes
allows us to extract information about the object itself and its environment. To
understand this technique, one needs to understand some additional principles of
interferometry.

2.3.3.1 Some Principles of Optical Interferometry
The Temporal-Spatial Coherence of Two Waves

When two sources of illumination are mutually coherent, superimposing the two
waves produces a phenomenon known as ‘interference’. Here, the intensity is not
everywhere the sum of the intensities of the two beams taken separately, but is the
result of an interference function, which we shall explain later.

Mathematically, the concept of temporal-spatial coherence is expressed by a
quantity known as the ‘complex degree of coherence’, denoted ¥;,(7), and which is
expressed as the equation:

<E(P1,I+T)E*(P2,I) >

T2(7) = (2.33)

1/2
[<IEPLOP ><|EP0) >]

In this equation, E(P,t) is the electric field (complex notation) at point P at time
t; < E(P;t) > is the temporal mean of this field, and 7 represents the delay of wave
1 relative to wave 2. ¥12(7) is a complex number where the modulus lies between 0
(no coherence) and 1 (complete coherence). In this expression, if Py = P, and T # 0,
we are dealing with the wave’s spatial coherence, and if T =0, and P; # P>, we are
investigating the wave’s spatial coherence.
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Interferometry and Visibility

In observational astrophysics, an interferometer (Fig. 2.22) is, above all, an instru-
ment that measures the degree of temporal-spatial coherence of the electromagnetic
field emitted by a source and sampled by two telescopes.

Positions P; and P, are those of the two telescopes, the delay 7 is obtained by
modifying the observational configuration (the position of the object on the sky and
the setting of the delay line).

If I, and I, are the intensities in the two arms of the interferometer and if d = c.T
is the path difference, then the intensity at the exit from the beam combiner may be
written as:

I(d) =11+ L +2vVLLRe(y2(d/c)) (2.34)

Measurement of /(d) allows us to measure the complex degree of coherence
(or at least its real part) for each of the positions P, and P;. In the case of two
monochromatic plane waves of wavelength A, spatially and temporally coherent,
the preceding equation becomes:

I1(d) =1 +L+2VL1.cos (2;d> (2.35)

This equation is interferometry’s characteristic equation.

/|

Delay line

Delay line

Fig. 2.22 A schematic diagram illustrating the principle of a twin-telescope interferometer of the
VLTI type. The rays of light from the two telescopes are led to the beam combiner by a series of
mirrors forming the optical train. The path difference is adjusted by using a delay line. (After
ESO Internet site: www.eso.org.)
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In practice, one records all or part of an ‘interferogram’ (Fig. 2.23), obtained by
fixing positions P; and P, and varying 7 (by means of a delay line).

From the graph of I(d) we may determine a quantity known as the ‘visibility’,
denoted V, and which is defined by:

V= Inax — Imin (2.36)
Imax + Imin

In the absence of instrumental perturbation, the visibility is a measure of the
degree of mutual coherence. In practice, the experimental visibility (as measured) is
the product of three terms:

the intrinsic visibility of the object

a term linked to the instrument function of the interferometer

a term linked to atmospheric perturbations (for observation from the ground) or
to the environment.

The last two terms are estimated by observing a ‘calibration’ object, which is
a star whose intrinsic visibility is known, and generally a star that is not resolved
with the interferometric baseline, and which is thus completely coherent (having an
intrinsic visibility of 1).
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Fig. 2.23 An example of an interferogram obtained by varying the path difference by use of a
delay line. For a path difference greater than 5 um, there is no temporal coherence. The spatial
coherence is not perfect (the visibility is about 0.7)
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Various studies may be found in the literature of the factors that degrade visibility,
in particular, atmospheric turbulence. We shall not, therefore, discuss this aspect in
detail here.

Visibility of the Source’s Structure

The relationship between what may be observed (the experimental visibility) and
the astrophysical source is obtained by employing the Zernicke-Van Cittert theorem,
which may be expressed as follows:

If both the linear dimensions of the source of quasi-monochromatic radiation and the dis-
tance between the two points on the screen (here, the distance between the two telescopes,
i.e., the distance between P; and P) are small relative to the distance between the source and
the screen (here, between the source and the Earth), then the modulus of the complex de-
gree of coherence (the experimental visibility) is equal to the modulus of the spatial Fourier
transform of the intensity of the source, normalized to the total intensity of the source.

In other words, there is a simple Fourier relationship between the spatial structure
of the source and the visibility function, measured at several different baselines
(several spatial frequencies) as shown in Fig. 2.24.

In practice, the opposite problem has to be tackled. The visibility curve is ob-
tained, and then, generally by adapting the model, one can deduce the structure
and parameters of the source. For example, in the case of a stellar source, the sim-
plest model is one consisting of an evenly illuminated disk. In this case, interpola-
tion from the measured visibility points enables one to determine the diameter of
the source (by determining the point at which the visibility function first becomes
zero). Obviously, this requires the source to be resolved by the interferometer; that
is that the object’s angular resolution should be greater than the angular resolution
determined by the interferometer’s baseline (the value A /B, where B is the distance
between the telescopes and A is the observational wavelength).

It should, however, be noted that the object space (the plane of the sky, where
the coordinates are denoted by x and y), as well as the associated Fourier space
(i.e., the one dealing with spatial frequencies and where the conjugate coordinates
in x and y are denoted by u and v, described as the (u, v) plane), are two-dimensional

Intensity “Resolved point”
>
| TF| =
@ N
X > \|
a —_
Baseline

Fig. 2.24 The relationship between an object’s spatial structure and the measured visibility func-
tion. An interferometer allows the visibility to be measured as a function of the length of the
baseline. By adjusting one’s model to fit the experimental points, one can then obtain the structure
of the source by an inverse Fourier transform
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spaces that are being sampled point by point. To reconstruct a correct representation
of the astronomical object, it is essential, if the second dimension is to be properly
covered, to have several observational baselines (several separations between the
telescopes) and, equally, several different orientations of these baselines relative to
the plane of the sky. In practice, it is generally the rotation of the Earth that alters the
orientation of the fixed baselines, as, in particular, it is with the VLTI. In the case of
a space interferometer, several different distances between the telescopes need to be
employed, as well as several different orientations of those baselines relative to the
sky. (It needs to be possible to turn the interferometer or, at the very least, to change
its orientation relative to the line of sight to the target.)

One of the difficulties of interferometry by measuring visibility (apart, as we
have seen, from measuring the actual visibilities accurately), is the necessity for
having precise models that allow for the study of the visibility and its variations, in
particular as a function of the observational wavelength (chromatic models). While
it is not necessary for there to be a systematic knowledge of the visibility in absolute
terms, it is often useful, or even indispensable, to study the relative variations of this
value as a function of wavelength (for the observation of gaps in protoplanetary
disks, for example — see Chap. 7).

2.3.3.2 Detection of Planets via Modulation of the Visibility

A star and a planet in orbit may be considered as a combination of two mutually
incoherent sources, with a high level of contrast. In this case, the visibility of this
combination via interferometry is equal to the sum of the visibilities, weighted to
account for the relative intensity of the sources. Mathematically, this visibility may
be expressed by the equation (Bordé, 2003):

_ V12+V22+2rV] V, cosy

!
V2= where r = (2.37)

(1 +r )2 I]
Vi and V; are the visibilities of the individual objects, /| and I their relative inten-
sities and W denotes the angular position of the star/planet system relative to the
interferometer’s baseline. This visibility function is shown graphically in Fig. 2.25.
Detection of objects with very low luminosity (high contrast) therefore requires
an extremely accurate measurement of visibility. The maximum accuracy over sev-
eral observations is in the region of 1073.

2.3.3.3 Cancellation Interferometry

Cancellation interferometry, also known as dark fringe interferometry or interfer-
ence coronagraphy, differs uniquely from the method just described in its recombi-
nation technique. A diagrammatic representation of such an interferometer is shown
in Fig. 2.26.
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Fig. 2.25 Visibility functions for binary systems where the contrast is 1 (fop left), 10 (top right),
100 (bottom left) and 1000 (bottom right) (After Bordé, 2003.)
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Fig. 2.26 Schematic diagram of a dark-fringe interferometer. Light arriving from the direction
in which the instrument is aimed arrives simultaneously at the two telescopes. The achromatic
dephaser, 7, ensures destructive interference at the recombiner. Light from a point away from the
target direction (from the planet) arrives at Telescope 1 with a delay relative to Telescope 2, because
it has to cover an additional distance (D.sin 0). By altering the distance between the telescopes (by
varying D), it is possible to compensate for the 7 phase shift by the additional optical path, such that
the interference is constructive in the direction of the planet. We thus obtain an instrument where

the transmission is zero along the direction in which the instrument is pointed, and adjustable
between 0 and 1 around that axis
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Let us consider two telescopes 71 and 7>, which, because of diffraction are not
able individually to resolve the star/planet pair. We point the two telescopes exactly
in the direction of the star, and merge the beams of light from the two telescopes with
an optical recombiner. In the direction of the star (i.e., where the two telescopes are
pointing), the wavefront arrives simultaneously at 77 and 75. If we recombine the
two beams, they will be in phase and will produce constructive interference. If we
than add an achromatic dephaser, i, in one arm of the interferometer (for example,
the path from T3), the light from the two telescopes will be recombined with opposite
phases. In other words, the interference will be destructive and everything coming
from the star’s direction (in particular the star’s flux) will be extinguished. In the di-
rection of the planet (which typically lies at an angle 6 ~ 0.1 arcsec for a terrestrial
analogue orbiting a star at a distance of 10 pc), we introduce a delay for 7 relative
to T that is equal to D.sin(0), where D is the distance between the two telescopes.
If D is altered (by moving the telescopes), this may be done so that at an average
wavelength (for example at the centre of a spectral band, or at two wavelengths
so chosen as to maximize the spectral coverage) the difference in the path-lengths
D.sin(0) compensates for the dephasing that it introduces into the arm incorporating
T;. This results in constructive interference in the direction of the planet. To sum-
marize, such an instrument allows the observation of a faint object that lies outside
the optical axis, where the theoretical transmission is zero. The response obtained
with such an instrument is shown in Fig. 2.27. In its original version, the Bracewell
interferometer was rotated such that the signal from the planet was modulated rel-

Fig. 2.27 Plot of the transmission of a dark-fringe interferometer with two telescopes (a Bracewell
interferometer). The star is located on the dark fringe (it is extinguished), and the planet on a bright
fringe
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ative to the leakage of light from the star (because of the non-zero size of the star
and of the finite size of the zone with zero transmission, the star is not perfectly
extinguished).

In practice, a dark-fringe interferometer and its associated detection system
(which may, in principle, be a single-pixel detector), behaves as a photometer with
the spatial transmission shown in Fig. 2.27. In particular, measurements obtained
with this instrument are measurements of the flux, which consists of several indi-
vidual contributions:

the off-axis object (for example, the planet),
leaks from the star (because the central fringe is not perfectly dark and the star is
not a perfect point), and the associated noise and fluctuations,

e other contributions related to the source, for example, a portion of the zodiacal
disk in a planetary system,

e thermal emission from the instrument itself (in cases where such wavelengths are
a problem).

The specific remedy that needs to be applied is to try to separate these different
contributions to be able to isolate the component linked to the off-axis object that
one is trying to detect and analyze. One classic technique consists of taking the ge-
ometry of the signals into account (the emission from a disk of zodiacal light is over-
all centrally symmetrical with respect to the plot of transmission, whereas that from
the planet is not). To do this, the system is observed at several orientations of the
interferometer, enabling discrimination of the different contributions. Another pos-
sibility is to use an internal modulation between several subsidiary interferometers.

This concept of a dark-fringe interferometer is the basis of the proposal for
the DARWIN space mission and its American counterpart TPF (Terrestrial Planet
Finder), described in Chap. 8.

It is interesting to note that from the instrumental point of view, the two inter-
ferometric concepts: the ‘measurement of visibility’ and dark-fringe interferometry,
may, potentially, be combined in a single instrument. In particular, the achromatic
dephaser does not prohibit the measurement of the experimental visibility. In such a
case, it is necessary to limit exploration of the interference fringes to a small num-
ber of fringes, the characteristics of which (the amplitude and the phase) have been
determined by a method that is precisely comparable with the classic method of
measuring the visibility.

2.3.4 Interferometry and Imagery: Hypertelescopes

We have seen that the spatial resolution of a telescope is intrinsically limited by
diffraction and, in practice, by the diameter of the telescope. The size of instruments
is limited by current technology to:

e telescopes between 10 and 42 metres in diameter (ESO’s current Extremely
Large Telescope projects). The largest current telescope is a multi-mirror system
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with an elliptical pupil (10 x 11m): the Hobby Eberly Telescope, which is
slightly larger than the two Keck telescopes (10m in diameter). The largest
monolithic telescopes are the two mirrors of the Large Binocular Telescope (each
8.4 m in diameter);

e space telescopes of a few metres in diameter. (The JWST is to have a diameter
of about 6.5m. This is the largest space instrument observing in the visible or
infrared that has ever been constructed or is in the course of construction.)

However, if we are to contemplate the observation of planetary systems in the
thermal infrared, or even direct imagery of exoplanetary surfaces in the visible, we
will require diameters that are distinctly larger, and also with significantly greater
collecting surfaces, because the flux from planets is weak. We soon encounter the
limit for monolithic instruments — or at least with unified pupils (all points of the
pupil are available without leaving the pupil).

Table 2.6 gives the minimal baseline (diffraction limited) as well as the collecting
surface required to image the surface of a planet such as the Earth at a distance of 10
parsecs, with the corresponding spatial resolution (given as the number of pixels).
The assumptions used for these calculations are:

e image of a planet like the Earth orbiting a solar analogue in the visible/near IR
spectral region (0.1 photon/s/m? at the Earth, in the 0.3—1 um spectral region,
in three colours, to obtain chromatic information i.e., to differentiate vegetation,
continents, oceans, etc.);

e the integration time should be sufficiently short to ‘freeze’ the planet’s possible
rotation and avoid a blurred image. In this calculation, the integration time is
limited to one hour, but could be adapted according to the target if the rotation
period were known;

e observation of the planet is limited by photon noise with a signal-to-noise ratio
of 10 per pixel. As a result, an average flux of 100 planetary photons is required
per bright pixel. (This relatively stringent assumption enables an estimate of the
observation’s minimal characteristics.);

e at 10 parsecs, an Earth-like body would have an angular diameter of 8.5 x 107°
arcsec;

e the overall transmission of the photometric chain (including the telescope and
the detector’s efficiency) is assumed to be equal to 0.2.

Table 2.6 Parameters for imaging a terrestrial planet at a distance of 10 parsecs

Image size (pixels) Collecting Minimum Integration
surface (m?) baseline (km) time

16 x 16 20000 450 3 min

32x32 20000 900 12 min

128 x 128 20000 3600 50 min

256 x 256 320000 7200 50 min

512x 512 1300000 15000 50 min

1024 x 1024 5000 000 30000 1h
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The minimum size of instruments required for planetary imagery clearly shows
that we will have to abandon the idea of monolithic instruments and instead examine
the possibility of imaging via interferometry.

The concept of imaging via interferometry is quite old, and several different con-
figurations have been suggested. However, to obtain a field around the target, only
the so-called Fizeau form is suitable. It is, nevertheless, very difficult to implement
because it requires an optical system that guarantees homothetic mapping of the
entry pupil to the exit pupil, and the accuracy of which increases as the spatial
resolution increases (i.e., as the number of pixels in the image increases). If this
homothetic mapping is not attained, the field is limited to the target direction (the
centre of the image).

In addition, if we consider the baselines required to image planets (several
100km), we are faced with the necessity of using small-sized telescopes (a few
metres in diameter), separated by great distances (unless we use a large number of
telescopes). As a result, if we want to preserve the homothetic mapping between
the instrument’s entry and exit pupils, the image will be very poor, and not capable
of being exploited in terms of spatial frequencies. (Coverage of spatial frequencies
is given by the pupil’s autocorrelation function, which introduces many gaps in the
frequency space if we use small telescopes separated by large distances) In other
words, the image will be of very poor quality because it will contain few spatial
frequencies.

An elegant solution for obtaining very-high-spatial-resolution imagery has been
suggested by Labeyrie (1996), and this consists of combining the imaging capabil-
ities of classic telescopes with the angular resolution given by interferometers. This
concept, which has been called a ‘hypertelescope’ (Fig. 2.28), consists of several
small telescopes that lie on the fictional mirror of a larger telescope (like Fizeau
interferometers). An arrangement called a ‘densified pupil’ enables the frequency

Fig. 2.28 A diagrammatic representation of the principle of a hypertelescope. Several small tele-
scopes synthesize a larger aperture (shown schematically by a single lens). The intermediate im-
age (FF) lacks spatial frequencies because the pupil is only weakly sampled. The densified-pupil
combiner (L; + GT + L) enables a PSF to be attained that is comparable to that of a monolithic
telescope with a size equal to the sum of those of the small telescopes. This gain is at the expense
of the field that is covered. A compromise must be made between field size and frequency coverage
(After Labeyrie, 1996)
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coverage to be increased by assuming an equivalence between the sub-pupils of the
hypertelescope’s entry pupil. Admittedly, one then loses the homothetic mapping
of the pupil (and thus reduces the field observed), but the whole interest in this
arrangement is to find the best compromise between field and frequency coverage.
The other special feature of hypertelescopes is that the (virtual) primary mirror that
is covered with the small, individual telescopes is spherical. (The reason being that
it simplifies the problem.) An optical corrector (a Mertz corrector) is then used to
re-establish a stigmatic configuration at infinity, and to restore a large field.

The hypertelescope concept is currently being investigated. The Carlina project
(see Chap. 8) should, in a few years’ time, allow it to be validated and allow the
first actual instruments to be defined, with initial baselines of a few hundred metres.
The extension of this concept to baselines measured in kilometres or even more,
and particularly within the framework of a space-borne implementation, will need
to be accompanied by complementary efforts into positioning in precise formation.
A hypertelescope in space, with long baselines, cannot be designed as a rigid struc-
ture. The sampling telescopes will therefore need to be autonomous in operation
and positioning. The overall instrument will need to be maintained in a precise po-
sition, most especially when being aimed at a target, and during the observation.
Several studies are under way, most notably within the framework of the DARWIN
project (a dark-fringe interferometer), to validate ideas about formation positioning.
Be that as it may, imaging the surface of a terrestrial-like exoplanet remains an ex-
tremely difficult task, which will require several generations of instruments before
it becomes a reality. Intermediate stages will be necessary, such as imaging a whole
planetary system. Luckily, it is not necessary to image the surface of a planet to
obtain spectroscopic information about the planet itself, and thus be able to study it.
This less sensitive method will therefore be favoured initially.

2.3.5 Detection by Radio

The problem of direct detection of exoplanets is generally described in terms of
contrast and angular separation. This is, after all, the way in which we have initially
attacked the subject. There is one spectral region where the contrast between the
stellar flux and the planetary flux may be very low: this is a radio wavelengths, in
particular at decametric wavelengths. In fact, planets with magnetic fields produce
non-thermal auroral emissions (i.e., interactions between charged particles and the
magnetic field in the polar regions as in the aurorae that occur on Earth). The inten-
sity of these emissions is comparable, at these frequencies, with the emission from
the star itself. The auroral emissions are very specific (Zarka et al., 1997):

e they have a typical duration of 30-300ms on the planets in our Solar
System,
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e their frequency spectrum is relatively uniform and broad (from less than 20 kHz
to more than 40 MHz), with a typical spectral power that lies between 0.1 and
100 W Hz !, corresponding to a flux density that varies between 0.4 and 400 Jy.”

Detecting auroral emission from the Solar System’s planets or from exoplanets
is, however, rather tricky because of the presence of two main sources of parasitic
signals:

e fluctuations in the sky background, of galactic origin, which have a very high
brightness temperature (30 000-50 000 K at 25 MHz)

e parasitic signals of terrestrial (and human) origin. Such signals have the charac-
teristic of being limited to relatively narrow frequency bands; and this obviously
depends on the properties of the transmitter. Take, for example, CB® signals,
which completely saturate a frequency band around 27 MHz. On the other hand,
the bands allotted to these emissions are numerous, spread out, and constantly
being developed (Denis and Zarka, 1996).

In addition, at these wavelengths, the angular resolution is very low: the antenna’s
lobe is relatively broad (about 1° for an antenna 1km in diameter, so the signals
from both the star and the planet are detected simultaneously within the lobe). This
breadth tends to increase the contribution of the galactic background in the signal
that is detected. It is interesting to note that in this case it is not the noise in the detec-
tion chain that limits the sensitivity of the method, but the galactic contribution and
any parasitic signals. Any detector, for example, can work at ambient temperatures.

Radio astronomers have suggested an observational strategy appropriate to these
signals, and its specific features are as follows (Zarka et al., 1997):

e a receiving surface with a large area, so that the angular size of the antenna’s
lobe is reduced. In practice, the UTR-2 array at the Radio Astronomy Institute
at Kharkov (Ukraine), which is currently the largest, and which is being used
pending the commissioning of the future LOFAR (LOw Frequency ARray) and
SKA (Square Kilometric Array) systems. The north-south arm of UTR-2 has an
effective area of about 50 000 m?;

e the use of an acousto-optic spectrograph, which would enable time-frequency
diagrams to be obtained with a temporal resolution (integration time) of about
250ms, and spectral resolution of a few dozen kHz. The short duration of au-
roral emissions forbids the use of long integration times, because these would
distinctly increase the contributions from parasitic signals and from the galac-
tic background in every sample. It appears more sensible to integrate for short
periods with durations that are comparable with those of the emission, and to
eliminate empty samples so that only samples containing a signal are retained
for integration;

71Jy=1Jansky = 1072 Wm~2Hz"!.

8 Radio transmitting equipment, generally employed on vehicles. The development of mobile tele-
phony (in a higher frequency region), however, is tending to marginalize their use, which appears
to be restricted to professional drivers.
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e handling the data with thorough observational and computational procedures,
designed to eliminate parasitic signals (Zarka et al., 1997). In crude terms, this
means detecting signals of terrestrial origin by observing two neighbouring areas
of the sky, one on axis (and thus containing the astrophysical target), and the other
off-axis. This technique may be used at Kharkov because the array’s set of delay
lines enables the array to be pointed in two different directions with an angular
separation of 1°, and observations carried out in both lobes simultaneously.

Given the level of the background and parasitic signals, and using the method
just described, it may be shown that, using UTR-2, it would be possible to detect
Jupiter at about 0.2 parsec. This is, unfortunately, insufficient to even offer the hope
of detecting extrasolar planets (remember that the star closest to the Sun, Prox-
ima Centauri, lies at a distance of about 1.3 parsecs). On the other hand, Zarka
has also shown that, in the case of giant planets close to their parent star (i.e., hot
Jupiters), one could expect a mechanism that generated radio emission 10°-10°
times as strong as that produced by Jupiter. Under such circumstances, we could
hope to detect emissions out to about 20-25 parsecs, which makes the method dis-
tinctly more attractive.

A series of observations has been made with UTR-2, but the complex process-
ing to which the data are subject means that, to date, no candidates have yet been
identified. When the SKA array is commissioned, it should increase the sensitivity
of the method by reducing the size of the antenna’s lobe and, as a result, the level of
the galactic background.
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