
The Integrated Architecture Framework Explained

Why, What, How

Bearbeitet von
Jack van't Wout, Maarten Waage, Herman Hartman, Max Stahlecker, Aaldert Hofman

1st Edition. 2010. Buch. XVIII, 246 S. Hardcover
ISBN 978 3 642 11517 2

Format (B x L): 15,5 x 23,5 cm
Gewicht: 558 g

Weitere Fachgebiete > EDV, Informatik > Informatik > Rechnerarchitektur

Zu Inhaltsverzeichnis

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft.
Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm
durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr

als 8 Millionen Produkte.

http://www.beck-shop.de/vant-Wout-Waage-Hartman-Integrated-Architecture-Framework-Explained/productview.aspx?product=262173&utm_source=pdf&utm_medium=clickthru_lp&utm_campaign=pdf_262173&campaign=pdf/262173
http://www.beck-shop.de/trefferliste.aspx?toc=8311
http://www.beck-shop.de/fachbuch/inhaltsverzeichnis/9783642115172_TOC_001.pdf


Chapter 2

IAF’s Architecture

2.1 Introduction

Explaining IAF must start with the basics, the core elements of the framework.
Actually, our aim is that you understand IAF’s own architecture. Once you
understand IAF’s structure and underlying ideas it will be easier to apply it to
the specific situation you are in. This chapter is all about helping you under-
stand the architecture behind IAF.

IAF applies the basics of general construction methods. All construction meth-
ods have a common approach. They address questions in a specific order. The
order is expressed as interrogative pronouns: Why, what, how, with what.
There are reasons for the sequence of the questions.

If you don’t understand why you need to do something, you can’t work out what
needs to be done. You have to understand the context before you can start
working effectively. Studying the context helps define the scope and objectives,
and thus helpswith staying focused. So understanding ‘why’ is the first thing to do.

If you don’t understand what needs to be done (the requirements), you will
never be able to craft the solution. You have to define the requirements before
creating the solution. Once you understand the requirements you are often able
to produce a concept of what is needed. So after understanding why you are
doing something you need to address the ‘what’ question by defining the
requirements (both functional and non-functional) and getting a concept of
the solution.

With a good understanding of the requirements you should be able to design a
logical solution to the problem, answering the question ‘How will the solution
look like’. In other words you structure the solution. You create the solution on
a logical level to enable flexibility. All architectures will take time to implement.
Circumstances as well as real life physical solutions change over time. By
describing the architecture on a logical level you will be able to deal better
with new insights and adapt it at the moment you physically implement a
specific part of the architecture.

J. van ’t Wout et al., The Integrated Architecture Framework Explained,
DOI 10.1007/978-3-642-11518-9_2, � Capgemini SA, 2010
Published by Springer-Verlag Berlin Heidelberg 2010 All Rights Reserved.

5



Finally you can decide with what physical things the solution can be realized.
This implies allocation of physical things to the logical solution.

A practical example will demonstrate how this all works.

Imagine you are living in a city that has
been built on both banks of a large river.
There are a number of bridges crossing the
river, but traffic has grown through time
and there are constant traffic jams. In two
years time the city is planning to host a big
cultural event, and it wants to show a
modern, young city that is well prepared
to handle all the tourists that are visiting
the event. So, the scope and context of the
problem become clear. A new bridge
needs to be built in the city within 2
years and it should reflect the ‘young,
modern’ look that the city wants. The
‘why’ question should be clear by now.

Now we need to address the ‘what’ question. We need
to find out what the bridge has to do. Does it have to
carry pedestrians? Does it have to carry cyclists? Does it
have to carry cars and trucks? Does it have to carry
trains? Howmany of each type does it have to be able to
carry during average and peak hours of usage? Which
types and numbers of boats have to be able to pass
under the bridge? What is the river’s required water

flow capacity and what would happen if that were reduced if the bridge were
to have many pillars? What does the patron want it to look like to reflect the
young, modern look? Once these types of questions are answered we have a
clear understanding of the ‘what’ question. We know the requirements and are
able to craft the solution.

The third main step is creating a logical model of the solution, thus answering the
‘how’ question. Now there is a slight snag here. Real life has shown us that there
never is one solution. There always choices, and all solutions are trade-off of
different aspects like cost and performance. So, in
effect, if you think there is only one solution, you
might have to think a little longer. There are solution
alternatives that have to be considered. In this case we
can identify different types of bridges that could pro-
vide sufficient river-crossing capabilities. Some of
them will fit the principles we have defined regarding
‘young and modern’ better than others. Others might
not be able to be built within 2 years. We could even

6 2 IAF’s Architecture



consider a temporary bridge, which would probablymake a financially interested
stakeholder happy, could be finished in a short period of time, avoids difficult
technological studies on water flows but the patron who dreams of grandeur and
eternal fame would be somewhat disappointed. In the end we present the best
alternatives to the stakeholders so they can choose.

Now real life physical archi-
tecture can start. We choose
the materials we need for
each part of the bridge. By
this time the cooperation
with various construction
engineering disciplines has
begun. First we jointly deter-
mine what is needed for the
foundation. Then we select
the rebar materials and con-
crete.We define which steel is
needed for the deck. We cre-
ate the specifications the

construction teams need to create the design of the bridge. We create other
visualizations of what the real life solution will look like. The ‘with what’
question has been answered. The architecture has been designed. It can be
handed over to the engineers who are actually going to build the bridge. The
architect will remain involved in order to solve issues that come up during
the construction phase and which might affect the starting points or principles
that underlie the entire idea behind the bridge.

We are going to explain IAF’s own architecture using the ‘why-what-how-with
what’ approach explained above.

2.2 The Context: The ‘‘Why’’ of IAF

2.2.1 Vision

The vision we had when we started to develop IAF consisted of a number of
elements. The most important goal was that we wanted to be able to provide
world-class services to our clients, and were convinced that architecture was key
in this. The ever increasing complexity and risk in the engagements we were
working on made this obvious. We also needed a robust and mature toolset to
deliver a constant quality of architecture services and a consistent experience
where a client is engaged many times over a period of time. The toolset had to
successfully address the alignment of business and IT. It had to be independent
of a specific architect: the way we work and approach architecture should be
common across all architects. In this perspective we now speak of IAF as a

2.2 The Context: The ‘‘Why’’ of IAF 7



‘design school’, with very specific style, approach and characteristics that we
feel make a difference: for us as Capgemini being a global company delivering
services, and for our clients ranging in size from the Fortune-500 to the local
medium enterprise. In addition to this it had to provide a platform on which we
could expand and improve the architecture profession. We decided up-front
that it had to be based on real-life experience, and not on pure theory. We knew
that we were embarking on a journey with an uncertain destination, and wanted
to base that journey on things that had been proven in the field.

2.2.2 Scope

The original slogan we used in regard to IAF was: ‘For a system to work as a
whole, it must be architected as a whole’. This slogan nicely depicts many
elements that are part of the IAF scope.

The first striking word is ‘system’. What do we mean by ‘system’? We have small
projects that upgrade existing applications to very large programs in which we
support complete post merger integrations of global companies or companies
constantly reinventing themselves. All these types of projects potentially require
some form of architecture. They all create or change a ‘system’. Thus IAF’s scope
needs to cover all types of architecture engagements at all levels in an organization.
Enterprise level – spanning business units –, Business unit (business domain) level
and Solution level. Enterprise and Business unit level are commonly meant for
supporting planning activities. Solution level is aimed at guiding the engineering of
the solution.

The second important word in the
slogan that is related to IAF’s
scope is ‘whole’. Capgemini
always approaches IT from the
viewpoint that it has to support
the business. This implies that
architecture should always be jus-
tified in business terms and trace-
ability to business requirements.
Even when we are architecting a
purely IT system, the business
should provide the objectives
and drivers for the architecture.

The third word in the slogan that
is related with scope is ‘archi-
tected’. IAF is aimed at the architects profession, and should only describe
things for which the architect has the main responsibility. Therefore IAF does
not provide support for the creation of an organization’s vision, mission and
strategy. These are defined as input for IAF. Some basic input that the

8 2 IAF’s Architecture



architect usually derives from the vision, mission and strategy is contained in
IAF to assist architects in collecting input if it is not there. On the other end,
migration planning has also been put out of scope of IAF, because that
activity is not the architect’s main responsibility. In general, migration plan-
ning is a joint exercise with the engagement manager as the responsible person.
IAF also tries to avoid overlap with other professions like business analysis
and engineering. There are many touch points between the architects and
these professions, just like there are many touch points between architects
and engineers in real life construction architecture. This creates a gray area.
Where does the architect stop and the engineer start? The most pragmatic
answer to this question is that there is a difference in focus. The architect
focuses more on how the ‘system’ fits into its environment. The engineer
focuses more on the internal structure of the ‘system’, within the boundaries
that have been set by the architect. In other words: the architects focuses on
the behavior and non functional requirements (‘black box’) while the engineer
on the internal construction (‘white box’).

2.2.3 Objectives

Through time IAF’s objectives have not changed much. The framework has
evolved due to increased understanding of architecture in the IT industry as a
result of the pursuit of the objectives.

IAF’s core objective is to provide a common way of architecting. Originally it
was intended to do this within Capgemini. Nowadays more and more organiza-
tions also adopt this common way of working.

IAF also must provide a communication framework to achieve the common
way of architecting. This ‘common language’ needs to be adopted through-
out our organization and across the regions where we operate, particularly
when serving global clients such as General Motors. This objective has
proven to be difficult to realize – but we feel we succeeded. One word can
have the same definition in multiple countries and still be perceived to be
different. An example that is popular in Capgemini is the confusion we
had around the term ‘Business event’. In the Netherlands this was perceived
as ‘something that can happen in an organization’. In the UK it was
perceived as ‘something that has happened in an organization’. Therefore
it was very understandable for the Dutch to propose basing a to-be archi-
tecture on business events. The UK architects tended to disagree. Their coun-
terargument was: ‘How can you base a to-be architecture on something that has
happened in the past?’

Sometimes we have even invented new words to resolve terminology discus-
sions. A nice example is the term ‘archifact’ that was used in IAF version 3
because we could not come to an agreement at that time on the usage of the term

2.2 The Context: The ‘‘Why’’ of IAF 9



‘artifact’. Another example is the term ‘scenario’ which we later replaced by the
term ‘solution alternative’. Many US architects were confused with the term
‘scenario’, as they associated this term with the movie industry.

The common way of working and common language were enablers for the third
objective that was defined by Capgemini. We have always had the need to staff
large projects from around the world. One of the challenges in doing this was
getting the right person with the right skills in the right place. IAF has proven to
be a great help in achieving this objective specifically due to the common
language.

The fourth main objective also comes from the large projects we work on.
Managing their complexity and thereby reducing project risk is important for
Capgemini because it raises the quality level of the results we deliver to our
clients. Clients have the same objectives.

2.2.4 Constraints

One of the major constraints for IAF is related to its scope. IAF focuses on
things that are the architect’s main responsibility. Topics, that (a) we assist in
and (b) are the main responsibility of other roles in the project, are not to be
positioned within IAF. They will be covered in frameworks that the other roles
use to standardize and professionalize their work.

Another constraint we have implicitly used in the development of IAF is the
focus on business and IT. Real life has proven that any change in an organiza-
tion should be realized by addressing a large number of topics. An acronym that
is sometimes used to describe these topics is COPAFITHJ. In the preparation of
any organizational change we should consider theCommercial,Organizational,
Personnel, Administrative, Financial, Information processing, Technological,
Housing and Judicial impact of that change. In line with the mission of
Capgemini, IAF focuses on process, information and technology. However
the basic structure within IAF can be used to extend the topics that are
addressed. For example one client wanted to add a ‘product architecture’ to
the framework to address commercial aspects while another client wanted a
‘financial architecture’ to address financial aspects.

2.3 Requirements: The ‘What’ of IAF

The vision, scope, objectives and constraints mentioned in the prior sections
are the basis for the requirements that have been defined for IAF. This
section describes the requirements behind IAF. We have chosen an informal
descriptive approach of defining them, in contradiction to IAF based archi-
tectures itself, in which requirements are documented in a formal and

10 2 IAF’s Architecture



prescribed way. We have chosen the freedom to add examples or elaborate on

a topic more than we do in an architecture to help you understand the

background of the requirements. In each of the sections below we address a

specific requirement of IAF.

2.3.1 Requirement: Understand, Structure and Document
Architecture Input

An important aspect of IAF is the requirement to provide support to help the

architect understand, structure, and document the input that is needed to create

an architecture. This understanding, structuring, and documenting of input is

important. Things like strategy, vision, context, and scope are never standar-

dized products. Almost all consulting firms in that area have different

approaches to the topics. So what IAF needs to do is to provide the architect

with a checklist of things that can be used as input. Very often the input that is

relevant for the architect is scattered in multiple (large) documents and needs to

be derived. It is very inefficient to have all architects working on the architecture

to read all the input documents. Collecting the relevant input and documenting

it will speed up the ‘on boarding’ of architects. Topics that are to be part of the

input are:

� The strategy and vision that the architecture has to support;

Facts: No strategy, no architecture. No vision, no architecture.

� The scope of the architecture;

Fact: When you define and agree the scope with your principal, you
demonstrate to the client that you really understand the problem. This
frequently leads to a modified scope (larger, smaller, shifted) because
you show what the actual, real problem is.

� The context of the solution;

Fact: When you clearly recap the context, more information about the
scope will emerge.

� The objective of the architecture;

Fact: When you don’t have a clear understanding of the objectives of the
architecture (the question which the architecture will answer), you will
not know when your architecture is good enough. A clear objective will
prevent you from going into details that are not relevant from the
perspective of the architecture.

2.3 Requirements: The ‘What’ of IAF 11



� The principles to be applied to the solution;

Fact: Without principles you will not be possible to design an architecture
that satisfies all stakeholders. Principles also help you to identify and
resolve conflicting requirements.

� The current state which the architecture has to take into account.

Fact: You will almost never architect a green field solution, in which you
will have no constraints from the current state on the architecture you are
designing.

2.3.2 Requirement: As Simple as Possible

Architecture in the IT industry needs to address complex problems. Com-

monly we encounter organizations with hundreds of business processes and

thousands of applications. This means we have to tackle very complex pro-

blems. This must not lead to a framework that is more complex than needed to

solve the problem.

2.3.3 Requirement: Split Complex Problems into Smaller,
Resolvable Ones

Many architectures can become relatively large and complex. A tried and tested

way to solve large and complex ‘configuration problems’ – which an architec-

ture is – is to split the overall problem into smaller ones that can be resolved, as

long as the identification of the smaller problems is in line with ideas that you

have about the overall solution. IAF is required to support this approach as we

typically design architectures in response to complex situations.

2.3.4 Requirement: Cover the Breadth and Depth of the
Architecture Topics Needed to Support Capgemini’s
Mission and Vision

Architecture is a supporting function. It is not a goal in itself. IAF needs to

support the Capgemini mission (‘enabling transformation’) and vision

(‘enabling freedom’). It is to enable its clients to transform and perform through

technologies. Business and IT transformation services always have been

Capgemini’s main focus. Therefore IAF must support them.

12 2 IAF’s Architecture



2.3.5 Requirement: Support All Relevant Types of Architecture

Construction architecture recognizes types of architecture like city planning
architecture, zone planning architecture and building architecture. We also
recognize different types of architecture in the IT industry. The types most
commonly identified are:

(1) Enterprise architecture, aimed at supporting enterprise wide decision mak-
ing and planning, and shaping the enterprise landscape;

(2) Domain architecture, aimed at supporting business unit level decision
making and planning, and shaping the domain landscape;

(3) Solution architecture aimed at providing architectural guidance to pro-
grams and projects;

(4) Software architecture, aimed at providing architectural guidance to soft-
ware development.

As Capgemini provides services in all these areas we need to be able to deliver all
types of architecture described above.

2.3.6 Requirement: Flexibility in Content

Not every type of architecture requires the same amount of detail when addres-
sing a given topic. For example interfaces might only need to be identified at
enterprise or domain level, while it is very relevant to specify them in detail when
working on a solution or software architecture. Also the granularity of the
architecture’s elements has to be variable. The topics we talk about at enterprise
level (sales, marketing, HR production and finances) are often larger than the
topics we talk about at solution level (order entry, stock level checking, order
picking and order packing).

The content of IAF must be able to cope with these differences and should not
depend on the industry sector where it is applied.

2.3.7 Requirement: Flexibility in Process

As Capgemini works for many different clients they encounter many differ-
ent situations. Ask any Capgemini architect if they have used the exact same
process to deliver an architecture twice. We promise you that they will say
‘no’ most of the time. For this reason we need to have process flexibility. In
fact we actually need to split process and content. Often we need to be able
to create similar content using different processes. We might be working
together with Capgemini transformation consultants in one engagement
and with consultants from another consulting firm in the other. Both

2.3 Requirements: The ‘What’ of IAF 13



groups have different approaches to transformation consulting that we have
to cope with.

2.3.8 Requirement: Traceability and Rationalization
of Architecture Decisions

Most architectures have to address a broad number of topics. Many topics
influence each other. For example, centralizing the financial administration of
5 business units into 1 shared service center will influence the decisions on IT
support that is required, which in turn will influence the infrastructure that is
required. As architectures will have to be maintained over time it is very
important to understand why a certain decision was made. Traceability of
decisions, and the documentation of the rationales behind the decision is of
paramount importance.

2.3.9 Requirement: Terminology Standardization

When you want to provide a common way of architecting, standardization of
terminology used is mandatory, especially in regard to the terminology the
architects use amongst each other. When they speak the same language, they
can work together better. Through time Capgemini has learned that we com-
monly have to adapt our architecture terminology to terms that our clients have
been using and are accustomed to. This in turn has led to the decision to
introduce the usage of synonyms into IAF. Synonyms have formally been
introduced into IAF version 4.5.

2.3.10 Requirement: Standardized Organization
of Architecture Elements

Where possible we need to solve similar problems in similar ways, thus working
toward the common way of architecting. By standardizing the organization of
architecture elements, we will discover similar problems and enable ourselves to
solve them in similar ways.

2.3.11 Requirement: Address Both Functional
and Non-functional Aspects

Many architecture frameworks provide average to good support for structuring
architecture from a functional point of view. They also commonly state that
non-functional aspects must be taken into account. However they do not

14 2 IAF’s Architecture



provide support for both functional and non-functional aspects. IAF must

cover this, in order to develop balanced functional solutions that perform as

desired; for instance, it makes a big difference if you need to support Straight

Through Processing of 100 million orders a day as opposed to manually

supporting 100 orders a day.

2.3.12 Requirement: Provide a Basis for Training
New Architects

Development of a framework is just one step into achieving a common way of

architecting. People will leave the company and new people will join. People

will decide to develop their career toward architecture. IAF needs to provide a

basis for its deployment by providing a basis for the creation of training

material.

2.3.13 Requirement: Provide Sufficient Information
for Engineers

If a building architect would deliver results that were insufficient for the

engineers to build the building correctly, the architect would be sued. The

same should go for IT architects. They have to deliver standards, rules, guide-

lines, and specifications in such a way that engineers can build the desired

solution. An additional dimension for this requirement is that engineers are

evolving their way of working, just as we are. When we started forming IAF,

linear development was commonplace, and RUP was just starting to be used.

Nowadays RUP is commonplace, andmethods like XP and Agile are becoming

more and more common. The different development methods have different

input requirements. IAF has to cope with that.

2.3.14 Requirement: Provide Sufficient Information
for Planners and Portfolio Managers

A city planning architect would also be fired if he could not deliver what the

city planners needed. Enterprise and domain level architectures are mainly

aimed at supporting planners and portfolio managers. Our output needs to

address their input requirements. Here too we need to be flexible, as planning

and portfolio management in the IT industry are not part of the business

fabric yet.

2.3 Requirements: The ‘What’ of IAF 15



2.3.15 Requirement: Take Stakeholders and Social
Complexity into Account

Different stakeholders and their concerns need to be addressed and con-
tinuously managed as stakeholders have concerns with respect to the
system architected. Depending on the stakeholder these concerns will
differ. The architect will be working with a number of stakeholders, each
with their own concerns on the result being architected. There is a need to
not only consider one aspect area (such as business, applications, infra-
structure, security, etc.) in isolation, but rather to see all aspect area as
being part of an integrated whole. The concerns of stakeholders, especially
when considered in parallel, are hardly ever limited to one aspect area
only. Stakeholders will want to gain insight into these aspect areas, their
interdependencies, and the possible impact of future developments on their
concerns. We must be able to communicate with a possibly large and
diverse group of stakeholders, addressing their individual concerns while
at the same time working on a shared understanding and commitment of
the result architected.

2.3.16 Requirement: Enable a Sound Approach
to Solution Alternatives

Architecture in the IT industry is all about trade-offs. The best perform-
ing solution might not be secure enough, or it might cost too much.
There is never one solution that perfectly answers all requirements. IAF
has to provide an approach to define and compare different solution
alternatives in order to support the analysis of the alternatives and
decision making.

2.3.17 Requirement: Follow Open Standards Where
They Add Value

Capgemini has always adopted open standards where they added value to
the products that were being delivered. We have also contributed to an
early architecture standard, IEEE 1003.23. This standard is now obsolete.
It provided input for the famous IEEE 1471/2000 standard, which is
commonly known and used in IT architecture. IEEE 1471 is now also
ISO/IEC 42010. Currently Capgemini is member of The Open Group. We
participate in the development of TOGAF, The Open Group Architecture
Framework.

16 2 IAF’s Architecture



2.3.18 Requirement: Be Able to Effectively Demonstrate
Completeness and Consistency

Common questions IT architects have to answer are: ‘How do you knowwe have
everything?’ and ‘How do you know everything is consistent?’. Many times our
only answer was: ‘You have provided me with the input. You know your
business. Aren’t you confident that we are complete and consistent?’. Of course
this is the wrong answer. IT architects need to be able to demonstrate complete-
ness and consistency. IAF needs to provide mechanisms that demonstrate it.

2.3.19 Requirement: Service Oriented Principles
Have to Be Applied

Thinking in terms of service orientation has been adopted in very early stages
within Capgemini. It clearly added value because it helped address a number of
requirements.

Services have to be defined in such a way that they provide value to the service
consumer. So the consumer has to be able to understand what the service will
provide. This makes communication to the different stakeholders easier, and
helps us to get decisions made.

Services encapsulate their internal structure and expose themselves through well
defined, standardized interfaces. This helps manage complexity and thus sup-
ports one of the main reasons architecture has become a necessity in the IT
industry – managing that complexity.

The quality of service that a service can deliver has to be well defined in order to
the consumer to judge its value. Quality of service covers many non-functional
aspects of the architecture.

Cost reduction is one of the ubiquitous requirements in our industry. Re-use of
services is one of the things we use to reduce costs. Service orientation promotes
re-use.

All the reasons above clarify why IAF needs to apply service oriented principles.
Please note that we use the concept of a service not only in a technological way.
We use this concept as well at business level, e.g. drilling a whole to find oil.

2.3.20 Requirement: Provide Support for Implementation
Independent Models

It takes time to implement any architecture. The fact that it takes time will result
in changes in the environment that could not be foreseen at the moment the
architecture was created. We might want to take advantage of changes in the

2.3 Requirements: The ‘What’ of IAF 17



environment through time, simply because they might solve a problemwe could

not solve at the moment we created the architecture. One major example in this

area is network bandwidth. Who could have imagined the speed we currently

have 5 years ago? This is the reason to support ‘implementation independent

models’. These models show the structure of the architecture, but do not

contain real life constraints. They can be used as a reference model at the time

a certain part is being implemented.

2.3.21 Requirement: To Be Independent of, Yet Accommodating,
Different Architecture Styles and Technology Innovations

As our industry is still rapidly evolving, different architecture styles are also

evolving. Two tier client-server has been succeeded by 3-tier and cloud comput-

ing. Product oriented business organization is being replaced by customer

oriented business organization. IAF has to be independent of these evolving

architecture styles to be stable. On the other hand, IAF also has to be able to use

the styles to create a specific architecture.

2.3.22 Requirement: Tool Independence

Different customers will have different tools to create and maintain architec-

tures.Wewill have to be able to use the different tools in combination with IAF.

We will not link ourselves to one tool environment. Capgemini has developed

a meta model and certification scheme for tool vendors so they can embed IAF

support in their tools.

2.3.23 Requirement: Diagramming Model Independence

IAF must not prescribe diagramming models. We need to be able to adapt to

the diagramming models that are used in the customer’s environment. We do

however recommend that UML should be considered where appropriate

because it is so widespread.

2.4 Logical Structure: The ‘How’ of IAF

2.4.1 Introduction

The previous section has described the requirements we have defined for IAF.

Here we will describe the logical structure that has been created to fulfill the

requirements.

18 2 IAF’s Architecture



2.4.2 IAF content

2.4.2.1 Abstraction Levels

IAF recognizes abstraction
levels. The abstraction levels
are aimed at splitting one pro-
blem into smaller ones that
are easier to solve. We follow
the famous ‘Why, what, how,
with what’ order in defining
abstraction levels. First get
the drivers, objectives, princi-
ples and scope right – the
answer to the why question –, then understand the requirements – what services
the solution has to support – , thirdly design how the ‘ideal’ solution will support
the requirements, and finally decide with what physical components to imple-
ment the ideal solution. Abstraction levels need to be applied to all architecture
topics, so they will be positioned horizontally across the topics.

2.4.2.2 Aspect Areas

The Aspect Areas in the
IAF describe a formal
boundary between elements
of the architecture solution
that are usually considered
within their own context.
Each aspect area focuses
on one particular dimen-
sion of the architecture,
and adds information to
the overall architecture.
Commonly specific knowledge and background is required to be able to success-
fully address an aspect area. Aspect areas cover the what, how and with what
abstraction levels. This is because the ‘why’ abstraction level contains observations
and driving elements for the architecture such as strategies and trends that are
applicable in all aspect areas.

Aspect areas are positioned vertically in the IAF diagram.

2.4.2.3 Third Dimension Aspect Areas

IAF also recognizes aspects that are fundamentally part of all other aspect areas,
but often need to be addressed separately to ensure completeness and consistency.

‘With what’

‘How’

‘What’

‘Why’

‘With what’

‘How’

‘What’

‘Why’

Aspect area 1 Aspect area 2 Aspect area n

2.4 Logical Structure: The ‘How’ of IAF 19



Aspect areas in the third
dimension commonly address
topics regarding quality or
non-functional aspects like
security and governance, as
these are the product of all
aspect areas.

2.4.2.4 Artifacts

Artifacts are the core ele-
ments of IAF and fundamentally describe the architecture.

There are a number of core types of artifact within IAF that are essentially the
same across any of the aspect areas in which they reside. This section describes
these core artifacts. Other artifacts that are specific to an aspect area and
abstraction level will be elaborated in Chap. 3.

Architecture Principles set out the general characteristics of the desired archi-
tecture and why it should be as it is. Principles are initially represented at the
start of an architecture engagement; however they are often expanded and
enumerated throughout the architecture process as architecture details are
expanded, or as a result of better understanding of the business objectives.

Services are the architecture’s fundamental building blocks. A service describes
an ‘element of behavior’ or function needed in the architecture. The description
of a service describes what it does, rather than how it is done. This implies that
services are defined in the ‘what’ abstraction level.

Components are sets of services that are organized in accordance with the
Architecture Principles and business objectives. The way IAF works with
services and components is much different frommany other architecture frame-
works. See Sect. 2.4.2.10 for a detailed explanation. Components are defined in
the ‘how’ and ‘with what’ abstraction level.

Collaboration contracts describe the interaction behavior between services and
components. In effect they capture the non-functional aspects of the architec-
ture. They document for example how often, how fast, how secure, and how
controlled the interaction needs to take place.

Standards are documented statements that describe what has to be adhered to
during the realization of the architecture. We often distinguish two types of
standards, based on themoment they have to be adhered to. If a standard can be
adhered to in the next change of the system, then it is a normal standard, and
can be treated as described. If adherence to the statement has to be realized
before a certain date, like with law changes, then we use the term ‘rule’.
Commonly standards and rules are non-negotiable. Senior business manage-
ment needs to decide if they can be breached.

‘With what’

‘How’

‘What’

‘Why’

Aspect area 1 Aspect area 2 Aspect area n
3rddimension Aspect area 

20 2 IAF’s Architecture



Guidelines provide guidance and direction (requirements) for the realization of
the architecture. They should normally be adhered to. Commonly specific
procedures are put in place to manage adherence to guidelines. One has to
obtain waivers if it’s not possible to adhere to guidelines.

Specifications describe how specific architecture components should be built,
configured and implemented.

2.4.2.5 Viewpoints and Views

Views are a structured organization of the architecture artifacts in accordance
with a given criteria. Views are primarily the constructs for representing the
architecture (usually of structure) from different perspectives or viewpoints.

A view is the representation of an artifact or the combination of artifacts from
one or more aspect areas with a specific objective. A view is a very flexible
element of IAF. Depending on the architecture engagement an architect will
create different views, each providing different insights. Views are very effective
as a means for communicating the architecture. They are also a critical tool
when analyzing the problem; by looking at the problem from a specific view-
point we can identify areas of concern, look for gaps, etc.

Interaction Models and Cross-references are two fundamental Views used in
IAF to show the basic architecture structure and relationships. Interaction
Models typically describe the relationships between similar artifacts within a
specific Aspect Area and Cross-references typically describe relationships
between artifacts across different Aspect Areas. Cross-references are one of
the key mechanisms for traceability and decision justification in IAF.

Other Views are selected as required usually driven by the Architecture Scope
and Objectives. Views are therefore something that the architect selects based
on need of the stakeholder and as such there is no definitive list of Views within
the IAF.

Some views however are regularly used and are instrumental in describing
significant relationships within the IAF.

IEEE 14711 uses the following descriptions for view and viewpoint:

A view is a collection of models that represents the whole systemwith respect to a set
of related concerns. A view belongs to a particular architectural description. For
example, a structural view of a system might include a model showing components,
their interfaces and the classes comprising them, and a model of their dependencies
and inheritance relationships. A performance view might consist of models for
resource utilization, timing schedules and cause-effect diagrams. We use terms like

1 IEEE Computer Society (1999) IEEE P1471 Recommended Practice for Architectural
Description. IEEE, US.

2.4 Logical Structure: The ‘How’ of IAF 21



‘operational view’ and ‘performance view’ where others have used terms like ‘opera-
tional architecture’ and ‘performance architecture.’

A viewpoint captures the rules for constructing and analyzing a particular kind of
view. It is a template for a view which can be reused across many architectural
descriptions. The term ‘view type’ was considered as an alternative for viewpoint
because of the strong analogy of view and viewpoint to instance and type; but we
chose ‘viewpoint’ because of its use in existing standards and the requirements
engineering literature.

TOGAF version 82 and 93 use the following definitions:

View: A ‘view’ is a representation of a whole system from the perspective of a related
set of concerns. A view is what is seen from a viewpoint. An architecture view may be
represented by a model to demonstrate to stakeholders their areas of interest in the
architecture. A view does not have to be visual or graphical in nature.

In capturing or representing the design of a system architecture, the architect will
typically create one or more architecture models, possibly using different tools. A
view will comprise selected parts of one ormoremodels, chosen so as to demonstrate
to a particular stakeholder or group of stakeholders that their concerns are being
adequately addressed in the design of the system architecture.

Viewpoint: A definition of the perspective from which a view is taken. It is a
specification of the conventions for constructing and using a view (often by means
of an appropriate schema or template). A view is what you see; a viewpoint is where
you are looking from – the vantage point or perspective that determines what you see.

IAF uses views and viewpoints in the same way that IEEE 1471 and TOGAF
do. Often we define the stakeholder and the concern the stakeholder has along
with the description of the view. We do not prescribe modeling or diagramming
techniques in the viewpoints as that would be in contradiction with our require-
ment regarding diagramming model independence.

2.4.2.6 Solution Alternatives

It is most common that a single solution does not exist that will meet all
stakeholders requirements. IAF supports a technique to investigate different
solution alternatives and to discuss these with the stakeholders. The place where
this should be considered is in the abstraction levels ‘How’ and ‘With what’
because these levels are the places where decisions are made regarding the
structural elements of the architecture. Commonly solution alternatives are
defined per aspect area, especially at the logical level. This is done to simplify
the analysis of the different alternatives. Of course the solution alternatives per

2 The Open Group (2007) TOGAF Version 8.1.1 Enterpise Edition. The Open Group, US.
3 The Open Group (2009) TOGAF Version 9. The Open Group, US.

22 2 IAF’s Architecture



aspect area can be merged into one overall analysis of the solution alternatives
for the whole architecture. There are two basic approaches to solution alter-
natives, the ‘fast track’ and the ‘full analysis’ approach.

Within each approach you need to define the criteria that are used to compare
the different alternatives. After that the different alternatives need to be identi-
fied. It is best practice to base alternatives on architecture principles that have
been defined. That enables you to rationalize the identification of the solution
alternative, and the scoring against the defined criteria and principles.

The fast track approach scores each solution alternative against each criterion.
The amount in which the alternative fulfills the criterion determines the score.
The solution alternative that fits all criteria the best, wins.

The full analysis approach enables the usage of relative weights for the different
criteria, thusmaking some criteria more important than others. The table below
shows how it works.

This approach takes more time because you do not only have to agree the
criteria and scores, but also the weight of each criterion.

Solution alternatives obviously should also take the different interests different
stakeholders have into account. For example, centralization might be in the
interest of the corporate staff departments, whilst being strongly opposed by
business unitmanagement because centralization implies loss of control for them.

2.4.2.7 Domains

Architectures can become relatively large, simply because they have to describe
many services and components. An enterprise level architecture can easily
contain hundreds of services and components. It is especially difficult to com-
municate and visualize services, as they are the fundamental building blocks of
the architecture, and therefore the most abundant. Architects using IAF have
implicitly solved the communication and visualization challenges they had with
services by grouping them together in ways the stakeholders can relate with.
They often used the term ‘domain’ or ‘segment’ to describe the groups. As of
IAF 4.5 we have formalized the usage of domains, especially in the ‘what’
abstraction level, as that is where services are defined. There has been much
debate regarding this subject, as many people argue that grouping services into
domains implies creating a structure, and thus is part of the ‘how’ abstraction
level. There is a fundamental difference between the way we use domains and
the way we construct components.

Solution Criterion 1 Criterion 2 Criterion n End
result

alternative Weight Score Result Weight Score Result Weight Score Result

Alternative 1 3 3 9 2 3 6 1 1 1 16

Alternative 2 3 2 6 1 3 3 1 1 1 10

2.4 Logical Structure: The ‘How’ of IAF 23



Domains are based on things we want to communicate and stakeholders can
relate with. Common examples of domains are business units or geographical
locations. The intention of domains is to visualize and communicate services so
they can be validated by stakeholders.

Components are constructed on the basis of architecture principles, which can
be very different from the basis used for domains. An example is architecture
principle ‘buy before build’. This implies that we should group our services in
such a way that they reflect what we want to have in a package we are
potentially going to select.

2.4.2.8 Synonyms

For a long time we did not have a formal mechanism to document the terms we
use to communicate artifacts to non-architect stakeholders. This has lead to
situations in which architecture teams caused confusion due to incorrect usage
of terminology. As of IAF version 4.5 we have formally introduced the usage of
synonyms. The IAF glossary has been extended to allow the definition and
usage of synonyms. This can be done on a per project or per client basis.
Another advantage of synonyms is that it makes it easier to link to terminology
that is already being used in the organization.

2.4.2.9 Mechanisms

Wikipedia4 describes the term ‘mechanism’ like this:

Amechanism is some technical aspect of a larger process or mechanical device, or
combination of parts designed to perform a particular function. Sometimes an
entire machine may be referred to as a mechanism. Examples are the steering
mechanism in a car, or the winding mechanism of a wristwatch.

The term ‘mechanism’ was used in IAF version 1 and 2 to describe parts of the
overall architecture that provided a distinct function. Often they consisted of
combinations of artifacts from multiple aspect areas. The mechanisms were
even described in mechanism catalogues. The usage of the concept mechanism
has been less prominent in the current versions of IAF. This does not mean that
they cannot be used.

Common and current usage of mechanisms is often within quality related areas.
Mechanisms that ensure specific quality aspects can be described and even re-
used in different parts of the architecture. Examples of mechanisms that could be
described are a high availability mechanism that prescribes the different services
and components that need to be used to achieve a certain level of availability, like
synchronous replication and hot standby. Another example could be the use of
biometrics mechanism for implementing strong authentication as opposed to
weak authentication based on the combination user-id + password.

4 Information available via Wikipedia. Http://en.wikipedia.org. Accessed December 2008.

24 2 IAF’s Architecture



2.4.2.10 Creating Components

Many architecture frameworks take a top down approach to the creation of the
architecture. They start high level, and decompose down to the level required to
document what the architecture consists of, much like in the figure below. This
approach has advantages and drawbacks.

The main advantage is that stakeholders can easily relate to the structures and
therefore easily validate them.

The main drawbacks of this approach are: (1) It’s not that easy to define and
analyze solution alternatives, as thinking is guided and influenced by the
hierarchical structure that is being created. The structure makes it harder to
think out of the box. (2) The architect is implicitly combining the ‘what’ and
the ‘how’ question, because he is defining the structure along with the
definition of the requirements. This contradicts the requirements we intend to
meet within IAF.

IAF takes a different approach. First we define the services at the level of

detail required without explicitly putting them into a hierarchical structure.

Then we define grouping criteria that are based on the architecture

principles. After that we create components by grouping the services into

components based on the grouping criteria. The figure below visualizes the

IAF approach.

2.4 Logical Structure: The ‘How’ of IAF 25



Advantages of the IAF approach are that it is easy to define and create solution

alternatives as we are not influenced by structures already created. We also

explicitly split the ‘what’ from the ‘how’ question by first defining services and

then grouping them. Of course there is a drawback to this approach: visualiza-

tion and communication of the services is more complex. This has been solved

by the introduction of domains.

A group of services is a component for which a solution as a whole exists, and

that can function as a whole. In general each architecture will only contain one

group for each required set of services.

2.4.2.11 Policy and Collaboration Contracts

To create an architecture that works, there has to be a balance between supply

and demand. In other words, the services have to be able to supply what the

service consumers demand from them. An example will clarify the importance:

If a pizza restaurant can bake 10 pizza’s a time, and it receives one customer that

orders 8 pizzas, all is fine. If a second customer comes in and orders 5 pizza’s

there is a problem. To be able to balance supply and demand we need to

document both of them. As stated in Sect. 2.4.2.4, the collaboration contract

is used to document the interactions between services and components. This

implies that they document the non-functional attributes of what the service

consumer demands. To be theoretically correct there would have to be a second

type of contract to document the supply side, a so called ‘policy contract5’.

Services and components could have multiple policy contracts to document

their different capabilities (e.g. a service request that requires immediate

response, and one that can be deferred). This would lead to a jungle of services,

components, collaboration contracts and policy contracts. To simplify things,

IAF has decided to incorporate the attributes that describe the policy contract

into the attributes of the services and components. If a specific architecture

needs to, they can remove the attributes from the services and components, and

introduce policy contract artifacts.

2.4.3 IAF Process: Engagement Roadmaps

IAF deliberately separates the process of architecting from architecture con-

tent, because the content is relatively stable and the process by which the

engagement is run, will be different for each engagement. The process depends

5 This term was chosen to align with the open standard WS-Policy, which describes how the
capabilities of a web service can be documented and published.

26 2 IAF’s Architecture



on the context of the engagement: time frames, stakeholders, organizational

culture, the architects team, etc will differ by situation.

We have defined the term engagement roadmap as ‘a process pattern describing

how to run an architectural engagement for specific architectural objectives within

a specific client. It specifies architecture content as well as the engagement

process’. The concept of roadmap allows us to apply the line of thought from

IAF in various sequences, depending on the type of assignment. Since IAF

provides an artifact framework, it will provide consistency in the registration of

and reasoning behind deliverables. The term ‘Engagement Roadmap’ is used

explicitly to differentiate the process of architecture fromArchitecture, Product

or Technology Roadmaps which describe the evolution of the architecture,

product or technology.

Ideally Roadmaps are documented in the same way as patterns are. That

facilitates re-use. Roadmap descriptions should have the following

attributes:

A set of commonly used roadmaps can be found in Sect. 5.5.

Name [Identify the roadmap]

Version & date

Description [Provide an overview of the roadmap – an introduction.]

Context [Describe the context that led to the definition of the roadmap.]

Architecture areas
covered

[Identify which aspect areas and abstraction levels are
covered]

Design decisions &
rationales

[Provide insight into how and why the roadmap was constructed]

Pre and post
conditions

[Help the user understand when the roadmap can be used, and
what the effect of its use will be.]

Open issues [Make the reader aware of things that have not been addressed in
the roadmap.]

Potential pitfalls [Make the user aware of potential risks or problems associated
with the use of this roadmap.]

Newly created
problems

[Make the reader aware of additional/new things that have to be
addressed as a consequence using this roadmap.]

Contacts [Provide information on where to get more details about the
roadmap.]

See also links [Links to related roadmaps, patterns and case studies that have
applied this roadmap.]

Roadmap details [The detailed description of the roadmap]

2.4 Logical Structure: The ‘How’ of IAF 27



2.5 Physical Elements: The ‘With What’ of IAF

2.5.1 Introduction

In Sect. 2.2 we addressed the ‘why’ question in regard to IAF. Sect. 2.3 describes
IAF’s requirements and thereby addresses the ‘what’ question. The ‘how’
question has been addressed in Sect. 2.4 by describing IAF’s logical elements.
This section uses the logical elements to describe which real life physical
elements are part of IAF. An example: We described that we use abstraction
levels in Sect. 2.4.2. In Sect. 2.5 we will describe which physical abstraction
levels are really there.

2.5.2 Physical Content

2.5.2.1 Abstraction Levels

The real life abstraction
levels that have been
defined in IAF are fairly
obvious. We have been
using them throughout
this chapter. The names
for the abstraction levels
were adopted from a large
architecture project Capge-
mini had executed at the
Bibliothèque nationale de
France in Paris. The project was about implementing distributed computing in
the French library. There they captured requirements in terms of ‘conceptual
servers’. They translated the requirements into the logical structure of the comput-
ing environment, and called the different components ‘Logical servers’. And of
course the next one is easy to guess –The real life serverswere called physical servers.

Through time we also introduced synonyms for the terms ‘What’, ‘How’ and
‘With what’. The diagram maps the interrogative pronouns with the more
formal IAF name of the abstraction layers: Contextual, Conceptual, Logical
and Physical. In effect the ‘what’ level is all about defining architecture require-
ments. The ‘how’ level actually creates the logical structure of the architecture.
In the ‘with what’ level the logical components are allocated to real life, physical
things you can buy, hire or build.

In the past there has been debate about defining a fifth level, which would address
the ‘when’ question. The ‘when’ question is all about transformation and migra-
tion planning – when will we transform or migrate which part of the architecture.
As transformation and migration planning is not the sole responsibility of the

Physical - ‘With what’ (Allocate)

Logical - ‘How’ (Structure)

Conceptual - ‘What’ (Define)

Contextual - ‘Why’

28 2 IAF’s Architecture



architect, and as the planning depends on many other aspects, it has not been
incorporated as a formal part of the IAF model.

2.5.2.2 Aspect Areas

IAF consists of four physical aspect areas, Business, Information, Information
systems and Technology infrastructure.

There are a number of
rationales behind the choice
of these aspect areas. The
rationales are based upon 2
questions: (1) What do
I need to know to deliver
the overall architecture in
such a way that it serves its
purpose and (2) Which cap-
abilities are required to
answer the different types
of questions we need to
address in the architecture.

To answer the first question: IAF was originally designed to support the
creation of architectures for Capgemini’s business. Capgemini’s business is
all about business and technology transformation. So the topics we need to
address are:

1. The structure of the business itself, otherwise we will not be able to under-
stand which technology is needed to support or enable the business;

2. The way in which the business wants to process its information, as informa-
tion processing is what the supporting technology does;

3. The structure of the information systems that support the business, to be able
to understand which information systems have to be built and bought, along
with the interfaces between them;

4. The computing systems, network technology and other infrastructural ele-
ments needed to make the information systems work.

The second question is actually implicitly answered by the first question. The
capabilities a person needs to be able to structure a business are different from
those needed to structure the information household of the business. In the first
instance one needs to know the pros and cons of different business models and
the way processes are structured within the differentmodels. People that need to
structure the information household of a company need to know what informa-
tion modeling is all about. An information modeler does not have the skills that
information systems people have. Information systems architects need to know
the different packages that are available for a specific area, they also need
to know all about interfacing mechanisms, data conversion and migration

‘With what’

‘How’

‘What’

‘Why’

Business Information Information
systems

Technology
infrastructure

2.5 Physical Elements: The ‘With What’ of IAF 29



topics etc. People with information systems skills do not naturally have the
capabilities to define and structure the computing systems and network tech-
nology needed to let the information systems run.

This all leads to the conclusion that the four aspect areas defined in IAF are
needed to create an architecture that supports business and technology trans-
formation, and that each area requires distinct skills which helps in getting the
right architect in the right place, enabling effective communication across the
borders of each architect’s discipline.

2.5.2.3 Third Dimension Aspect Areas

Next to the four aspect
areas covered so far,
IAF has included two
third dimension aspect
areas, Security and Gov-
ernance in previous ver-
sions. Security is a topic
that must be addressed
holistically, across aspect
areas, to ensure that all
security related topics in
the different areas work
together to provide the desired level of security. You can enforce very tight
security within an information system, but if you do not ensure that access control
to buildings in which the information system is used is also at the desired level, it
will be relatively easy for a hacker to enter the building and access the system
through the workplace of one of the employees that has left his desk. Security
architecture is also a topic that requires specific knowledge, so it also fits the
rationales of the aspect area definition.

Governance, the other third dimension aspect area, has a bit of a strange name,
especially if you look at what topics it addresses. Capgemini still considers the
options to cover many more topics within this aspect area, including subjects
like compliance or corporate governance. We have started with addressing
quality of service (QoS) aspects within this area. Thus, the aspect area ‘‘gov-
ernance’’ is all about ensuring that the desired quality of service is delivered at
the defined acceptable level of cost. Of course quality of service is not only
delivered by IT. There are many processes around IT that have their own
information processing requirements and information systems. Simply think
of topics like incident management, change management and availability
management.

During the creation of IAF version 4 we have merged Security and Governance
into the main aspect areas. The rationale for this was the observation that

‘With what’

‘How’

‘What’

‘Why’

Governance
Security

Business Information Information
systems

Technology
infrastructure

30 2 IAF’s Architecture



security and governance were often neglected as topics, were only addressed at
the end of the process and then required the collection of additional information
from the business, and at this point were often looked at only from an IT
perspective. People were only focusing on the main aspect areas. The merge
was done by the addition of attributes to artifacts in the main aspect areas and
defining mandatory security and governance views in the relevant cells of IAF.
This has the effect of both ensuring that the information can be collected from
the business as early as possible, relates directly to the business needs and is
treated in a holistic manner across the whole architecture.

2.5.2.4 Artifacts

As Chap. 3 will describe all artifacts per aspect area and abstraction level, we
will use this section to explain where artifact types are positioned in the IAF.

The contextual level is the area where all our ‘input’ is positioned. The
input help us understand (1) the context of the business (mission, strategy,
drivers, . . .), (2) the architecture engagement (scope, objective, . . .) and (3) the
architecture principles.

Services and collaboration contracts are used in the conceptual level to docu-
ment architecture requirements. What services are needed and how do they
collaborate? Services are defined within all aspect areas, so they can be business
services or technology services.

Actually this way of documentation can be used to describe functional and non-
functional aspects of anything. The service describes what can be delivered
(functional aspects) and how it should behave (non-functional aspects). The
collaboration contract describes the way in which it is to be delivered in terms of
the communication mechanism to be used and the syntax and semantics of how

it can be requested. The communication
mechanism effectively defines how fast,
how secure, how often etc things can hap-
pen. An example will clarify this. If you
were in a conversation and you were
asked what your age is, then nine out of
ten times you would answer the question
within a few seconds. This is an example of
two services executing a collaboration con-
tract with each other. The requested and
delivered service are: ‘Collect age’ and
‘Provide age’. The communication
mechanism is sound waves generated by

vocal chords. Syntax and semantics are the English language. The communica-
tion mechanism implicitly defines behavior: you know the other expects an
answer within a few seconds. You also know you can lie about your age, and the

2.5 Physical Elements: The ‘With What’ of IAF 31



other might not mind. However, if we used another communication mechan-
ism, your reaction would be different. If the question was asked in an email, you
might answer it. You have the choice not to. You can also wait a week before
you answer. The requestor knows that. And you can still lie about your age.

Components are positioned in the
logical and physical levels within
IAF. They are sets of one or more
services, represented either in a logical
or physical manner. Each main aspect
area contains components. Compo-
nents also have collaboration con-
tracts between them, as they are sets
of one or more services and services
have collaboration contracts.

Standards, guidelines and specifica-

tions can be relevant in every aspect

area. As they are key deliverables that

are to be used to guide realization of

the architecture, they are positioned in

the physical level. So IAF identifies

business standards, information stan-

dards, information systems standards

and technology infrastructure stan-

dards. Where relevant you can also define security and governance standards.

Guidelines and specifications are treated in the same way.

2.6 Recap: IAF’s Meta-meta Model

This paragraph brings several topics from the previous paragraphs together

to show how they are linked. The meta-meta model depicted in the figure

visualizes the relationships. Services are defined in the conceptual level.

Interaction between services is documented in collaboration contracts. Ser-

vices in different aspect areas will have relations with each other. These

relationships are commonly documented in cross-references. Services do

not need to have one-to-one relationships with services in other aspect

areas. It is not uncommon to encounter one-to-many and even many-to-

many relationships.

Services are grouped into logical components. Grouping is based on principles.

Grouping always implies trade-offs, which we assess using the architecture

principles. Different groupings can be made and compared with each other.

The name we use for a set of groupings is a solution alternative.

32 2 IAF’s Architecture



The collaboration contracts between services are the basis for collaboration
contracts between components. Collaboration contracts between components
can be the result of merged collaboration contracts between services, if their
characteristics allow them to be merged. If they cannot be merged, then we
can conclude that there will be two ‘interface types’ between the components.
A simple example is one interface for single, high priority service requests,
e.g. airline ticket bookings. The second interface type could then be grouped
requests for lists of bookings done during the last 24 hours. Collaboration
contracts in one area also form the basis for the collaboration contracts in
other areas. A business area collaboration contract could define the max-
imum business response time for a service request to be 3 seconds. We can use
that as the basis for the response time for the IS services that support the
business service. We could assume that IS processing would take 2 seconds.
That implies that the maximum infrastructure response time would have to
be 1 second.

Logical components are ‘allocated’ to physical components. What does this
‘allocation’ actually mean?Well, in its essence the mechanism is simple. Logical
processes are mapped to the real life physical parts of the organization that will
be executing the processes. Logical IS components are allocated to products
that have been selected to implement them, or we have decided to build them in
a specific physical environment like .NET or Java. Logical TI components like a

‘With what’–
Physical –
Allocate

‘How’–
Logical –
Structure

‘What’-
Conceptual –
Define

Aspect area 

Collaboration
contract

Collaboration
contract

Collaboration
contract

Collaboration
contract

Collaboration
contract

Collaboration
contract

Aspect area 

Has relation with 1 or more

Is grouped into

...
Service

Is allocated to

Logical
...

component

Logical
...

component

Physical
...

component

Physical
...

component

Descr
ibes in

teractio
n between

Is basis for
Is basis for

Is grouped into
Is allocated to

Is basis for
Is basis for

...
Service

Descr
ibes in

teractio
n between

Descr
ibes in

teractio
n between

Descr
ibes in

teractio
n between

Descr
ibes in

teractio
n between

Descr
ibes in

teractio
n between

2.6 Recap: IAF’s Meta-meta Model 33



server, mobile workstation, SAN or backbone switch have been allocated to the
real life physical products with which they will be implemented.

This basic approach and meta-meta model has proven to work in all architec-
ture aspect areas. It keeps the overall architecture as simple as possible and
ensures traceability across aspect areas.

34 2 IAF’s Architecture


