
Graphs, Networks and Algorithms

von
Dieter Jungnickel

Neuausgabe

Graphs, Networks and Algorithms – Jungnickel

schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG

Thematische Gliederung:

Informatik – Algorithmen & Datenstrukturen

Springer 2007

Verlag C.H. Beck im Internet:
www.beck.de

ISBN 978 3 540 72779 8

Inhaltsverzeichnis: Graphs, Networks and Algorithms – Jungnickel

http://www.beck-shop.de/Jungnickel-Graphs-Networks-Algorithms/productview.aspx?product=266645&utm_source=pdf&utm_medium=clickthru_lp&utm_campaign=pdf_266645&campaign=pdf/266645
http://www.beck-shop.de/Jungnickel-Graphs-Networks-Algorithms/productview.aspx?product=266645&utm_source=pdf&utm_medium=clickthru_lp&utm_campaign=pdf_266645&campaign=pdf/266645
http://www.beck-shop.de?utm_source=pdf&utm_medium=clickthru_lp&utm_campaign=pdf_266645&campaign=pdf/266645
http://www.beck-shop.de/trefferListe.aspx?toc=8305&page=0&utm_source=pdf&utm_medium=clickthru_lp&utm_campaign=pdf_266645&campaign=pdf/266645
http://www.beck-shop.de/trefferListe.aspx?toc=8286&page=0&utm_source=pdf&utm_medium=clickthru_lp&utm_campaign=pdf_266645&campaign=pdf/266645
http://www.beck.de
http://www.beck-shop.de/fachbuch/inhaltsverzeichnis/9783540727798_TOC_001.pdf

1

Basic Graph Theory

It is time to get back to basics.

John Major

Graph theory began in 1736 when Leonhard Euler (1707–1783) solved the well-
known Königsberg bridge problem [Eul36]1. This problem asked for a circular
walk through the town of Königsberg (now Kaliningrad) in such a way as to
cross over each of the seven bridges spanning the river Pregel once, and only
once; see Figure 1.1 for a rough sketch of the situation.

a

North

South

East

Fig. 1.1. The Königsberg bridge problem

When trying to solve this problem one soon gets the feeling that there is no
solution. But how can this be proved? Euler realized that the precise shapes

1 see [Wil86] and [BiLW76].

2 1 Basic Graph Theory

of the island and the other three territories involved are not important; the
solvability depends only on their connection properties. Let us represent the
four territories by points (called vertices), and the bridges by curves joining
the respective points; then we get the graph also drawn in Figure 1.1. Trying
to arrange a circular walk, we now begin a tour, say, at the vertex called a.
When we return to a for the first time, we have used two of the five bridges
connected with a. At our next return to a we have used four bridges. Now we
can leave a again using the fifth bridge, but there is no possibility to return
to a without using one of the five bridges a second time. This shows that the
problem is indeed unsolvable. Using a similar argument, we see that it is also
impossible to find any walk – not necessarily circular, so that the tour might
end at a vertex different from where it began – which uses each bridge exactly
once. Euler proved even more: he gave a necessary and sufficient condition for
an arbitrary graph to admit a circular tour of the above kind. We will treat
his theorem in Section 1.3. But first, we have to introduce some basic notions.

The present chapter contains a lot of definitions. We urge the reader to
work on the exercises to get a better idea of what the terms really mean.
Even though this chapter has an introductory nature, we will also prove a
couple of nontrivial results and give two interesting applications. We warn
the reader that the terminology in graph theory lacks universality, although
this improved a little after the book by Harary [Har69] appeared.

1.1 Graphs, subgraphs and factors

A graph G is a pair G = (V,E) consisting of a finite2 set V �= ∅ and a set E of
two-element subsets of V . The elements of V are called vertices. An element
e = {a, b} of E is called an edge with end vertices a and b. We say that a and
b are incident with e and that a and b are adjacent or neighbors of each other,
and write e = ab or a

e
— b.

Let us mention two simple but important series of examples. The complete
graph Kn has n vertices (that is, |V | = n) and all two-element subsets of V as
edges. The complete bipartite graph Km,n has as vertex set the disjoint union
of a set V1 with m elements and a set V2 with n elements; edges are all the
sets {a, b} with a ∈ V1 and b ∈ V2.

We will often illustrate graphs by pictures in the plane. The vertices of a
graph G = (V,E) are represented by (bold type) points and the edges by lines
(preferably straight lines) connecting the end points. We give some examples
in Figure 1.2. We emphasize that in these pictures the lines merely serve to
indicate the vertices with which they are incident. In particular, the inner
points of these lines as well as possible points of intersection of two edges (as
in Figure 1.2 for the graphs K5 and K3,3) are not significant. In Section 1.5 we

2 In graph theory, infinite graphs are studied as well. However, we restrict ourselves
in this book – like [Har69] – to the finite case.

1.1 Graphs, subgraphs and factors 3

will study the question which graphs can be drawn without such additional
points of intersection.

K2 K3 K4 K5 K3,3

Fig. 1.2. Some graphs

Let G = (V,E) be a graph and V ′ be a subset of V . By E|V ′ we denote the set
of all edges e ∈ E which have both their vertices in V ′. The graph (V ′, E|V ′)
is called the induced subgraph on V ′ and is denoted by G|V ′. Each graph of
the form (V ′, E′) where V ′ ⊂ V and E′ ⊂ E|V ′ is said to be a subgraph of G,
and a subgraph with V ′ = V is called a spanning subgraph. Some examples
are given in Figure 1.3.

a graph a subgraph

an induced subgraph a spanning subgraph

Fig. 1.3. Subgraphs

4 1 Basic Graph Theory

Given any vertex v of a graph, the degree of v, deg v, is the number of edges
incident with v. We can now state our first – albeit rather simple – result:

Lemma 1.1.1. In any graph, the number of vertices of odd degree is even.

Proof. Summing the degree over all vertices v, each edge is counted exactly
twice, once for each of its vertices; thus

∑
v deg v = 2|E|. As the right hand

side is even, the number of odd terms deg v in the sum on the left hand side
must also be even. ��

If all vertices of a graph G have the same degree (say r), G is called a regular
graph, more precisely an r-regular graph. The graph Kn is (n−1)-regular, the
graph Km,n is regular only if m = n (in which case it is n-regular). A k-factor
is a k-regular spanning subgraph. If the edge set of a graph can be divided
into k-factors, such a decomposition is called a k-factorization of the graph.
A 1-factorization is also called a factorization or a resolution. Obviously, a
1-factor can exist only if G has an even number of vertices. Factorizations of
K2n may be interpreted as schedules for a tournament of 2n teams (in soccer,
basketball etc.). The following exercise shows that such a factorization exists
for all n. The problem of setting up schedules for tournaments will be studied
in Section 1.7 as an application.

Exercise 1.1.2. We use {∞, 1, . . . , 2n − 1} as the vertex set of the complete
graph K2n and divide the edge set into subsets Fi for i = 1, . . . , 2n− 1, where
Fi = {∞i} ∪ {jk : j + k ≡ 2i (mod 2n − 1)}. Show that the Fi form a
factorization of K2n. The case n = 3 is shown in Figure 1.4. Factorizations
were first introduced by [Kir47]; interesting surveys are given by [MeRo85]
and [Wal92].

3 4

2 5

1

∞

Fig. 1.4. A factorization of K6

1.2 Paths, cycles, connectedness, trees 5

Let us conclude this section with two more exercises. First, we introduce
a further family of graphs. The triangular graph Tn has as vertices the two-
element subsets of a set with n elements. Two of these vertices are adjacent
if and only if their intersection is not empty. Obviously, Tn is a (2n − 4)-
regular graph. But Tn has even stronger regularity properties: the number of
vertices adjacent to two given vertices x, y depends only on whether x and y
themselves are adjacent or not. Such a graph is called a strongly regular graph,
abbreviated by SRG. These graphs are of great interest in finite geometry; see
the books [CaLi91] and [BeJL99]. We will limit our look at SRG’s in this book
to a few exercises.

Exercise 1.1.3. Draw the graphs Tn for n = 3, 4, 5 and show that Tn has
parameters a = 2n − 4, c = n − 2 and d = 4, where a is the degree of any
vertex, c is the number of vertices adjacent to both x and y if x and y are
adjacent, and d is the number of vertices adjacent to x and y if x and y are
not adjacent.

For the next exercise, we need another definition. For a graph G = (V,E),
we will denote by

(
V
2

)
the set of all pairs of its vertices. The graph G =

(V,
(
V
2

)
\E) is called the complementary graph. Two vertices of V are adjacent

in G if and only if they are not adjacent in G.

Exercise 1.1.4. Let G be an SRG with parameters a, c, and d having n
vertices. Show that G is also an SRG and determine its parameters. Moreover,
prove the formula

a(a − c − 1) = (n − a − 1)d.

Hint: Count the number of edges yz for which y is adjacent to a given vertex
x, whereas z is not adjacent to x.

1.2 Paths, cycles, connectedness, trees

Before we can go on to the theorem of Euler mentioned in Section 1.1, we
have to formalize the idea of a circular tour. Let (e1, . . . , en) be a sequence of
edges in a graph G. If there are vertices v0, . . . , vn such that ei = vi−1vi for
i = 1, . . . , n, the sequence is called a walk; if v0 = vn, one speaks of a closed
walk. A walk for which the ei are distinct is called a trail, and a closed walk
with distinct edges is a closed trail. If, in addition, the vj are distinct, the trail
is a path. A closed trail with n ≥ 3, for which the vj are distinct (except, of
course, v0 = vn), is called a cycle. In any of these cases we use the notation

W : v0
e1 v1

e2 v2 . . . vn−1
en vn

and call n the length of W . The vertices v0 and vn are called the start vertex
and the end vertex of W , respectively. We will sometimes specify a walk by

6 1 Basic Graph Theory

its sequence of vertices (v0, . . . , vn), provided that vi−1vi is an edge for i =
1, . . . , n. In the graph of Figure 1.5, (a, b, c, v, b, c) is a walk, but not a trail;
and (a, b, c, v, b, u) is a trail, but not a path. Also, (a, b, c, v, b, u, a) is a closed
trail, but not a cycle, whereas (a, b, c, w, v, u, a) is a cycle. The reader might
want to consider some more examples.

v

w u

a c

b

Fig. 1.5. An example for walks

Exercise 1.2.1. Show that any walk with start vertex a and end vertex b,
where a �= b, contains a path from a to b. Also prove that any closed walk of
odd length contains a cycle. What do closed walks not containing a cycle look
like?

Two vertices a and b of a graph G are called connected if there exists a walk
with start vertex a and end vertex b. If all pairs of vertices of G are connected,
G itself is called connected. For any vertex a, we consider (a) as a trivial walk
of length 0, so that any vertex is connected with itself. Thus connectedness
is an equivalence relation on the vertex set of G. The equivalence classes of
this relation are called the connected components of G. Thus G is connected if
and only if its vertex set V is its unique connected component. Components
which contain only one vertex are also called isolated vertices. Let us give
some exercises concerning these definitions.

Exercise 1.2.2. Let G be a graph with n vertices and assume that each vertex
of G has degree at least (n − 1)/2. Show that G must be connected.

Exercise 1.2.3. A graph G is connected if and only if there exists an edge
e = vw with v ∈ V1 and w ∈ V2 whenever V = V1

.
∪ V2 (that is, V1 ∩ V2 = ∅)

is a decomposition of the vertex set of G.

Exercise 1.2.4. If G is not connected, the complementary graph G is con-
nected.

1.2 Paths, cycles, connectedness, trees 7

If a and b are two vertices in the same connected component of a graph G,
there has to exist a path of shortest length (say d) between a and b. (Why?)
Then a and b are said to have distance d = d(a, b). The notion of distances in
a graph is fundamental; we will study it (and a generalization) thoroughly in
Chapter 3.

In the remainder of this section, we will investigate the minimal connected
graphs. First, some more definitions and an exercise. A graph is called acyclic
if it does not contain a cycle. For a subset T of the vertex set V of a graph G
we denote by G \T the induced subgraph on V \T . This graph arises from G
by omitting all vertices in T and all edges incident with these vertices. For a
one-element set T = {v} we write G \ v instead of G \ {v}.

Exercise 1.2.5. Let G be a graph having n vertices, none of which are iso-
lated, and n−1 edges, where n ≥ 2. Show that G contains at least two vertices
of degree 1.

Lemma 1.2.6. A connected graph on n vertices has at least n − 1 edges.

Proof. We use induction on n; the case n = 1 is trivial. Thus let G be a
connected graph on n ≥ 2 vertices. Choose an arbitrary vertex v of G and
consider the graph H = G \ v. Note that H is not necessarily connected.
Suppose H has connected components Zi having ni vertices (i = 1, . . . , k),
that is, n1 + . . . + nk = n − 1. By induction hypothesis, the subgraph of H
induced on Zi has at least ni − 1 edges. Moreover, v must be connected in
G with each of the components Zi by at least one edge. Thus G contains at
least (n1 − 1) + . . . + (nk − 1) + k = n − 1 edges. ��

Lemma 1.2.7. An acyclic graph on n vertices has at most n − 1 edges.

Proof. If n = 1 or E = ∅, the statement is obvious. For the general case,
choose any edge e = ab in G. Then the graph H = G \ e has exactly one more
connected component than G. (Note that there cannot be a path in H from a
to b, because such a path together with the edge e would give rise to a cycle
in G.) Thus, H can be decomposed into connected, acyclic graphs H1, . . . , Hk

(where k ≥ 2). By induction, we may assume that each graph Hi contains at
most ni − 1 edges, where ni denotes the number of vertices of Hi. But then
G has at most

(n1 − 1) + . . . + (nk − 1) + 1 = (n1 + . . . + nk) − (k − 1) ≤ n − 1

edges. ��

Theorem 1.2.8. Let G be a graph with n vertices. Then any two of the fol-
lowing conditions imply the third:
(a) G is connected.
(b) G is acyclic.
(c) G has n − 1 edges.

8 1 Basic Graph Theory

Proof. First let G be acyclic and connected. Then Lemmas 1.2.6 and 1.2.7
imply that G has exactly n − 1 edges.

Next let G be a connected graph with n − 1 edges. Suppose G contains a
cycle C and consider the graph H = G \ e, where e is some edge of C. Then
H is a connected with n vertices and n− 2 edges, contradicting Lemma 1.2.6.

Finally, let G be an acyclic graph with n − 1 edges. Then Lemma 1.2.7
implies that G cannot contain an isolated vertex, as omitting such a vertex
would give an acyclic graph with n−1 vertices and n−1 edges. Now Exercise
1.2.5 shows that G has a vertex of degree 1, so that G \ v is an acyclic graph
with n − 1 vertices and n − 2 edges. By induction it follows that G \ v and
hence G are connected. ��

Exercise 1.2.9. Give a different proof for Lemma 1.2.6 using the technique
of omitting an edge e from G.

A graph T for which the conditions of Theorem 1.2.8 hold is called a tree.
A vertex of T with degree 1 is called a leaf. A forest is a graph whose connected
components are trees. We will have a closer look at trees in Chapter 4.

In Section 4.2 we will use rather sophisticated techniques from linear al-
gebra to prove a formula for the number of trees on n vertices; this result
is usually attributed to Cayley [Cay89], even though it is essentially due to
Borchardt [Bor60]. Here we will use a more elementary method to prove a
stronger result – which is indeed due to Cayley. By f(n, s) we denote the
number of forests G having n vertices and exactly s connected components,
for which s fixed vertices are in distinct components; in particular, the num-
ber of trees on n vertices is f(n, 1). Cayley’s theorem gives a formula for the
numbers f(n, s); we use a simple proof taken from [Tak90a].

Theorem 1.2.10. One has f(n, s) = snn−s−1.

Proof. We begin by proving the following recursion formula:

f(n, s) =
n−s∑

j=0

(
n − s

j

)

f(n − 1, s + j − 1), (1.1)

where we put f(1, 1) = 1 and f(n, 0) = 0 for n ≥ 1. How can an arbitrary
forest G with vertex set V = {1, . . . , n} having precisely s connected compo-
nents be constructed? Let us assume that the vertices 1, . . . , s are the specified
vertices which belong to distinct components. The degree of vertex 1 can take
the values j = 0, . . . , n − s, as the neighbors of 1 may form an arbitrary sub-
set Γ (1) of {s + 1, . . . , n}. Then we have – after choosing the degree j of 1
– exactly

(
n−s

j

)
possibilities to choose Γ (1). Note that the graph G \ 1 is a

forest with vertex set V \ {1} = {2, . . . , n} and exactly s + j − 1 connected
components, where the vertices 2, . . . s and the j elements of Γ (1) are in dif-
ferent connected components. After having chosen j and Γ (1), we still have

1.2 Paths, cycles, connectedness, trees 9

f(n − 1, s + j − 1) possibilities to construct the forest G \ 1. This proves the
recursion formula (1.1).

We now prove the desired formula for the f(n, s) by using induction on n.
The case n = 1 is trivial. Thus we let n ≥ 2 and assume that

f(n − 1, i) = i(n − 1)n−i−2 holds for i = 1, . . . n − 1. (1.2)

Using this in equation (1.1) gives

f(n, s) =
n−s∑

j=0

(
n − s

j

)

(s + j − 1)(n − 1)n−s−j−1

=
n−s∑

j=1

j

(
n − s

j

)

(n − 1)n−s−j−1

+ (s − 1)
n−s∑

j=0

(
n − s

j

)

(n − 1)n−s−j−1

= (n − s)
n−s∑

j=1

(
n − s − 1

j − 1

)

(n − 1)n−s−j−1

+ (s − 1)
n−s∑

j=0

(
n − s

j

)

(n − 1)n−s−j−1

=
n − s

n − 1

n−s−1∑

k=0

(
n − s − 1

k

)

(n − 1)(n−s−1)−k × 1k

+
s − 1
n − 1

n−s∑

j=0

(
n − s

j

)

(n − 1)n−s−j × 1j

=
(n − s)nn−s−1 + (s − 1)nn−s

n − 1
= snn−s−1.

This proves the theorem. ��

Note that the rather tedious calculations in the induction step may be
replaced by the following – not shorter, but more elegant – combinatorial
argument. We have to split up the sum we got from using equation (1.2) in
(1.1) in a different way:

f(n, s) =
n−s∑

j=0

(
n − s

j

)

(s + j − 1)(n − 1)n−s−j−1

=
n−s∑

j=0

(
n − s

j

)

(n − 1)n−s−j

−
n−s−1∑

j=0

(
n − s

j

)

(n − s − j)(n − 1)n−s−j−1.

10 1 Basic Graph Theory

Now the first sum counts the number of words of length n−s over the alphabet
V = {1, . . . , n}, as the binomial coefficient counts the number of possibilities
for distributing j entries 1 (where j has to be between 0 and n − s), and the
factor (n − 1)n−s−j gives the number of possibilities for filling the remaining
n − s − j positions with entries �= 1. Similarly, the second sum counts the
number of words of length n − s over the alphabet V = {0, 1, . . . , n} which
contain exactly one entry 0. As there are obvious formulas for these numbers,
we directly get

f(n, s) = nn−s − (n − s)nn−s−1 = snn−s−1.

Borchardt’s result is now an immediate consequence of Theorem 1.2.10:

Corollary 1.2.11. The number of trees on n vertices is nn−2. ��

It is interesting to note that nn−2 is also the cardinality of the set W of
words of length n − 2 over an alphabet V with n elements, which suggests
that we might prove Corollary 1.2.11 by constructing a bijection between W
and the set T of trees with vertex set V . This is indeed possible as shown by
Prüfer [Pru18]; we will follow the account in [Lue89] and construct the Prüfer
code πV : T → W recursively. As we will need an ordering of the elements of
V , we assume in what follows, without loss of generality, that V is a subset
of N.

Thus let G = (V,E) be a tree. For n = 2 the only tree on V is mapped to
the empty word; that is, we put πV (G) = (). For n ≥ 3 we use the smallest
leaf of G to construct a tree on n − 1 vertices. We write

v = v(G) = min{u ∈ V : degG(u) = 1} (1.3)

and denote by e = e(G) the unique edge incident with v, and by w = w(G)
the other end vertex of e. Now let G′ = G \ v. Then G′ has n − 1 vertices,
and we may assume by induction that we know the word corresponding to G′

under the Prüfer code on V ′ = V \ {v}. Hence we can define recursively

πV (G) = (w, πV ′(G′)). (1.4)

It remains to show that we have indeed constructed the desired bijection. We
need the following lemma which allows us to determine the minimal leaf of a
tree G on V from its Prüfer code.

Lemma 1.2.12. Let G be a tree on V . Then the leaves of G are precisely
those elements of V which do not occur in πV (G). In particular,

v(G) = min{u ∈ V : u does not occur in πV (G)}. (1.5)

Proof. First suppose that an element u of V occurs in πV (G). Then u was
added to πV (G) at some stage of our construction; that is, some subtree H
of G was considered, and u was adjacent to the minimal leaf v(H) of H. Now

1.2 Paths, cycles, connectedness, trees 11

if u were also a leaf of G (and thus of H), then H would have to consist only
of u and v(G), so that H would have the empty word as Prüfer code, and u
would not occur in πV (G), contradicting our assumption.

Now suppose that u is not a leaf. Then there is at least one edge incident
with u which is discarded during the construction of the Prüfer code of G,
since the construction only ends when a tree on two vertices remains of G.
Let e be the edge incident with u which is omitted first. At that point of the
construction, u is not a leaf, so that the other end vertex of e has to be the
minimal leaf of the respective subtree. But then, by our construction, u is
used as the next coordinate in πV (G). ��

Theorem 1.2.13. The Prüfer code πV : T → W defined by equations (1.3)
and (1.4) is a bijection.

Proof. For n = 2, the statement is clear, so let n ≥ 3. First we show that
πV is surjective. Let w = (w1, . . . , wn−2) be an arbitrary word over V , and
denote by v the smallest element of V which does not occur as a coordinate
in w. By induction, we may assume that there is a tree G′ on the vertex set
V ′ = V \ {v} with πV ′(G′) = (w2, . . . , wn−2). Now we add the edge e = vw1

to G′ (as Lemma 1.2.12 suggests) and get a tree G on V . It is easy to verify
that v = v(G) and thus πV (G) = w. To prove injectivity, let G and H be two
trees on {1, . . . , n} and suppose πV (G) = πV (H). Now let v be the smallest
element of V which does not occur in πV (G). Then Lemma 1.2.12 implies that
v = v(G) = v(H). Thus G and H both contain the edge e = vw, where w
is the first entry of πV (G). Then G′ and H ′ are both trees on V ′ = V \ {v},
and we have πV ′(G′) = πV ′(H ′). Using induction, we conclude G′ = H ′ and
hence G = H. ��

Note that the proof of Theorem 1.2.13 together with Lemma 1.2.12 gives
a constructive method for decoding the Prüfer code.

Example 1.2.14. Figure 1.6 shows some trees and their Prüfer codes for
n = 6 (one for each isomorphism class, see Exercise 4.1.6).

Exercise 1.2.15. Determine the trees with vertex set {1, . . . , n} correspond-
ing to the following Prüfer codes: (1, 1, . . . , 1); (2, 3, . . . , n − 2, n − 1);
(2, 3, . . . , n − 3, n − 2, n − 2); (3, 3, 4, . . . , n − 3, n − 2, n − 2).

Exercise 1.2.16. How can we determine the degree of an arbitrary vertex
u of a tree G from its Prüfer code πV (G)? Give a condition for πV (G) to
correspond to a path or a star (where a star is a tree having one exceptional
vertex z which is adjacent to all other vertices).

Exercise 1.2.17. Let (d1, . . . , dn) be a sequence of positive integers. Show
that there is a tree on n vertices having degrees d1, . . . , dn if and only if

d1 + . . . + dn = 2(n − 1), (1.6)

12 1 Basic Graph Theory

6

5

4

3

2

1

(2, 3, 4, 5)

5 6

4

3

2

1

(2, 3, 4, 4)

4 5 6

3

2

1

(2, 3, 3, 3)

4

3

6

5

2

1

(2, 3, 2, 5)

5 6

4

3

1 2

(3, 3, 4, 4)

5 4

1

6 3

2

(1, 1, 1, 1)

Fig. 1.6. Some trees and their Prüfer codes

and construct a tree with degree sequence (1, 1, 1, 1, 2, 3, 3). Hint: Use the
Prüfer code.

We remark that the determination of the possible degree sequences for
arbitrary graphs on n vertices is a considerably more difficult problem; see,
for instance, [SiHo91] and [BaSa95].

We have now seen two quite different proofs for Corollary 1.2.11 which il-
lustrate two important techniques for solving enumeration problems, namely
using recursion formulas on the one hand and using bijections on the other.
In Section 4.2 we will see yet another proof which will be based on the ap-
plication of algebraic tools (like matrices and determinants). In this text, we
cannot treat the most important tool of enumeration theory, namely generat-
ing functions. The interested reader can find the basics of enumeration theory
in any good book on combinatorics; for a more thorough study we recommend
the books by Stanley [Sta86, Sta99] or the extensive monograph [GoJa83], all
of which are standard references.

Let us also note that the number f(n) of forests on n vertices has been
studied several times; see [Tak90b] and the references given there. Takács
proves the following simple formula which is, however, not at all easy to derive:

f(n) =
n!

n + 1

�n/2�∑

j=0

(−1)j (2j + 1)(n + 1)n−2j

2jj!(n − 2j)!
.

1.3 Euler tours 13

Finally, me mention an interesting asymptotic result due to Rényi [Ren59]
which compares the number of all forests with the number of all trees:

lim
n→∞

f(n)
nn−2

=
√

e ≈ 1.6487.

1.3 Euler tours

In this section we will solve the Königsberg bridge problem for arbitrary
graphs. The reader should note that Figure 1.1 does not really depict a graph
according to the definitions given in Section 1.1, because there are pairs of
vertices which are connected by more than one edge. Thus we generalize our
definition as follows. Intuitively, for a multigraph on a vertex set V , we want
to replace the edge set of an ordinary graph by a family E of two-element
subsets of V . To be able to distinguish different edges connecting the same
pair of vertices, we formally define a multigraph as a triple (V,E, J), where V
and E are disjoint sets, and J is a mapping from E to the set of two-element
subsets of V , the incidence map. The image J(e) of an edge e is the set {a, b}
of end vertices of e. Edges e and e′ with J(e) = J(e′) are called parallel. Then
all the notions introduced so far carry over to multigraphs. However, in this
book we will – with just a few exceptions – restrict ourselves to graphs.3

The circular tours occurring in the Königsberg bridge problem can be
described abstractly as follows. An Eulerian trail of a multigraph G is a trail
which contains each edge of G (exactly once, of course); if the trail is closed,
then it is called an Euler tour.4 A multigraph is called Eulerian if it contains
an Euler tour. The following theorem of [Eul36] characterizes the Eulerian
multigraphs.

Theorem 1.3.1 (Euler’s theorem). Let G be a connected multigraph. Then
the following statements are equivalent:
(a) G is Eulerian.
(b) Each vertex of G has even degree.
(c) The edge set of G can be partitioned into cycles.

Proof: We first assume that G is Eulerian and pick an Euler tour, say C. Each
occurrence of a vertex v in C adds 2 to its degree. As each edge of G occurs
exactly once in C, all vertices must have even degree. The reader should work
out this argument in detail.
3 Some authors denote the structure we call a multigraph by graph; graphs according

to our definition are then called simple graphs. Moreover, sometimes even edges e
for which J(e) is a set {a} having only one element are admitted; such edges are
then called loops. The corresponding generalization of multigraphs is often called
a pseudograph.

4 Sometimes one also uses the term Eulerian cycle, even though an Euler tour
usually contains vertices more than once.

14 1 Basic Graph Theory

Next suppose that (b) holds and that G has n vertices. As G is connected,
it has at least n− 1 edges by Lemma 1.2.6. Since G does not contain vertices
of degree 1, it actually has at least n edges, by Exercise 1.2.5. Then Lemma
1.2.7 shows that there is a cycle K in G. Removing K from G we get a graph
H in which all vertices again have even degree. Considering the connected
components of H separately, we may – using induction – partition the edge
set of H into cycles. Hence, the edge set of G can be partitioned into cycles.

Finally, assume the validity of (c) and let C be one of the cycles in the
partition of the edge set E into cycles. If C is an Euler tour, we are finished.
Otherwise there exists another cycle C ′ having a vertex v in common with
C. We can w.l.o.g. use v as start and end vertex of both cycles, so that CC ′

(that is, C followed by C ′) is a closed trail. Continuing in the same manner,
we finally reach an Euler tour. ��

Corollary 1.3.2. Let G be a connected multigraph with exactly 2k vertices of
odd degree. Then G contains an Eulerian trail if and only if k = 0 or k = 1.

Proof: The case k = 0 is clear by Theorem 1.3.1. So suppose k �= 0. Similar to
the proof of Theorem 1.3.1 it can be shown that an Eulerian trail can exist
only if k = 1; in this case the Eulerian trail has the two vertices of odd degree
as start and end vertices. Let k = 1 and name the two vertices of odd degree a
and b. By adding an (additional) edge ab to G, we get a connected multigraph
H whose vertices all have even degree. Hence H contains an Euler tour C by
Theorem 1.3.1. Omitting the edge ab from C then gives the desired Eulerian
trail in G. ��

Exercise 1.3.3. Let G be a connected multigraph having exactly 2k vertices
of odd degree (k �= 0). Then the edge set of G can be partitioned into k trails.

The line graph L(G) of a graph G has as vertices the edges of G; two edges
of G are adjacent in L(G) if and only if they have a common vertex in G. For
example, the line graph of the complete graph Kn is the triangular graph Tn.

Exercise 1.3.4. Give a formula for the degree of a vertex of L(G) (using the
degrees in G). In which cases is L(Km,n) an SRG?

Exercise 1.3.5. Let G be a connected graph. Find a necessary and sufficient
condition for L(G) to be Eulerian. Conclude that the line graph of an Eulerian
graph is likewise Eulerian, and show that the converse is false in general.

Finally we recommend the very nice survey [Fle83] which treats Eulerian
graphs and a lot of related questions in detail; for another survey, see [LeOe86].
A much more extensive treatment of these subjects can be found in two
monographs by Fleischner [Fle90, Fle91]. For a survey of line graphs, see
[Pri96].

1.4 Hamiltonian cycles 15

1.4 Hamiltonian cycles

In 1857 Sir William Rowan Hamilton (1805–1865, known to every mathemati-
cian for the quaternions and the theorem of Cayley–Hamilton) invented the
following Icosian game which he then sold to a London game dealer in 1859
for 25 pounds; it was realized physically as a pegboard with holes. The corners
of a regular dodecahedron are labelled with the names of cities; the task is
to find a circular tour along the edges of the dodecahedron visiting each city
exactly once, where sometimes the first steps of the tour might also be pre-
scribed. More about this game can be found in [BaCo87]. We may model the
Icosian game by looking for a cycle in the corresponding dodecahedral graph
which contains each vertex exactly once. Such a cycle is therefore called a
Hamiltonian cycle. In Figure 1.7 we give a solution for Hamilton’s original
problem.

Fig. 1.7. The Icosian game

Although Euler tours and Hamiltonian cycles have similar definitions, they
are quite different. For example, there is no nice characterization of Hamil-
tonian graphs; that is, of those graphs containing a Hamiltonian cycle. As we
will see in the next chapter, there are good reasons to believe that such a good
characterization cannot exist. However, we know many sufficient conditions
for the existence of a Hamiltonian cycle; most of these conditions are state-
ments about the degrees of the vertices. Obviously, the complete graph Kn is
Hamiltonian.

We first prove a theorem from which we can derive several sufficient con-
ditions on the sequence of degrees in a graph. Let G be a graph on n vertices.
If G contains non-adjacent vertices u and v such that deg u + deg v ≥ n,
we add the edge uv to G. We continue this procedure until we get a graph

16 1 Basic Graph Theory

[G], in which, for any two non-adjacent vertices x and y, we always have
deg x+deg y < n. The graph [G] is called the closure of G. (We leave it to the
reader to show that [G] is uniquely determined.) Then we have the following
theorem due to Bondy and Chvátal [BoCh76].

Theorem 1.4.1. A graph G is Hamiltonian if and only if its closure [G] is
Hamiltonian.

Proof. If G is Hamiltonian, [G] is obviously Hamiltonian. As [G] is derived
from G by adding edges sequentially, it will suffice to show that adding just
one edge – as described above – does not change the fact whether a graph
is Hamiltonian or not. Thus let u and v be two non-adjacent vertices with
deg u+deg v ≥ n, and let H be the graph which results from adding the edge
uv to G. Suppose that H is Hamiltonian, but G is not. Then there exists
a Hamiltonian cycle in H containing the edge uv, so that there is a path
(x1, x2, . . . , xn) in G with x1 = u and xn = v containing each vertex of G
exactly once. Consider the sets

X = {xi : vxi−1 ∈ E and 3 ≤ i ≤ n − 1}

and
Y = {xi : uxi ∈ E and 3 ≤ i ≤ n − 1}.

As u and v are not adjacent in G, we have |X|+|Y | = deg u+deg v−2 ≥ n−2.
Hence there exists an index i with 3 ≤ i ≤ n − 1 such that vxi−1 as well
as uxi are edges in G. But then (x1, x2, . . . , xi−1, xn, xn−1, . . . , xi, x1) is a
Hamiltonian cycle in G (see Figure 1.8), a contradiction. ��

xi−1

xi−2 xi

x3 xi+1

x2 xn−2

x1 = u xn−1

xn = v

xi−1

xi−2 xi

x3 xi+1

x2 xn−2

x1 = u xn−1

xn = v

Fig. 1.8. Proof of Theorem 1.4.1

In general, it will not be much easier to decide whether [G] is Hamiltonian.
But if, for example, [G] is a complete graph, G has to be Hamiltonian by

1.4 Hamiltonian cycles 17

Theorem 1.4.1. Using this observation, we obtain the following two sufficient
conditions for the existence of a Hamiltonian cycle due to Ore and Dirac
[Ore60, Dir52], respectively.

Corollary 1.4.2. Let G be a graph with n ≥ 3 vertices. If deg u + deg v ≥ n
holds for any two non-adjacent vertices u and v, then G is Hamiltonian. ��

Corollary 1.4.3. Let G be a graph with n ≥ 3 vertices. If each vertex of G
has degree at least n/2, then G is Hamiltonian. ��

Bondy and Chvátal used their Theorem 1.4.1 to derive further sufficient
conditions for the existence of a Hamiltonian cycle; in particular, they ob-
tained the earlier result of Las Vergnas [Las72] in this way. We also refer
the reader to [Har69, Ber73, Ber78, GoMi84, Chv85] for more results about
Hamiltonian graphs.

Exercise 1.4.4. Let G be a graph with n vertices and m edges, and assume
m ≥ 1

2 (n− 1)(n− 2) + 2. Use Corollary 1.4.2 to show that G is Hamiltonian.

Exercise 1.4.5. Determine the minimal number of edges a graph G with six
vertices must have if [G] is the complete graph K6.

Exercise 1.4.6. If G is Eulerian, then L(G) is Hamiltonian. Does the converse
hold?

We now digress a little and look at one of the oldest problems in recre-
ational mathematics, the knight’s problem. This problem consists of moving
a knight on a chessboard – beginning, say, in the upper left corner – such
that it reaches each square of the board exactly once and returns with its last
move to the square where it started.5 As mathematicians tend to generalize
everything, they want to solve this problem for chess boards of arbitrary size,
not even necessarily square. Thus we look at boards having m × n squares.
If we represent the squares of the chessboard by vertices of a graph G and
connect two squares if the knight can move directly from one of them to the
other, a solution of the knight’s problem corresponds to a Hamiltonian cycle
in G. Formally, we may define G as follows. The vertices of G are the pairs
(i, j) with 1 ≤ i ≤ m and 1 ≤ j ≤ n; as edges we have all sets {(i, j), (i′, j′)}
with |i − i′| = 1 and |j − j′| = 2 or |i − i′| = 2 and |j − j′| = 1. Most of the
vertices of G have degree 8, except the ones which are too close to the bor-
der of the chess-board. For example, the vertices at the corners have degree
2. In our context of Hamiltonian graphs, this interpretation of the knight’s
5 It seems that the first known knight’s tours go back more than a thousand years

to the Islamic and Indian world around 840–900. The first examples in the mod-
ern European literature occur in 1725 in Ozanam’s book [Oza25], and the first
mathematical analysis of knight’s tours appears in a paper presented by Euler to
the Academy of Sciences at Berlin in 1759 [Eul66]. See the excellent website by
Jelliss [Jel03]; and [Wil89], an interesting account of the history of Hamiltonian
graphs.

18 1 Basic Graph Theory

problem is of obvious interest. However, solving the problem is just as well
possible without looking at it as a graph theory problem. Figure 1.9 gives a
solution for the ordinary chess-board of 8× 8 = 64 squares; the knight moves
from square to square according to the numbers with which the squares are
labelled. Figure 1.9 also shows the Hamiltonian cycle in the corresponding
graph.

34

49

22

63

36

51

24

1

21

10

35

50

23

64

37

52

48

33

46

11

62

27

2

25

9

20

61

28

45

12

53

38

32

47

44

13

60

29

26

3

19

8

59

30

43

14

39

54

58

31

6

17

56

41

4

15

7

18

57

42

5

16

55

40

Fig. 1.9. A knight’s cycle

The following theorem of Schwenk [Schw91] solves the knight’s problem
for arbitrary rectangular chessboards.

Result 1.4.7. Every chessboard of size m×n (where m ≤ n) admits a knight’s
cycle, with the following three exceptions:
(a) m and n are both odd;
(b) m = 1, 2 or 4;
(c) m = 3 and n = 4, 6 or 8. ��

The proof (which is elementary) is a nice example of how such problems
can be solved recursively, combining the solutions for some small sized chess-
boards. Solutions for boards of sizes 3 × 10, 3 × 12, 5 × 6, 5 × 8, 6 × 6, 6 × 8,
7× 6, 7× 8 and 8× 8 are needed, and these can easily be found by computer.
The version of the knight’s problem where no last move closing the cycle is
required has also been studied; see [CoHMW92, CoHMW94].

Exercise 1.4.8. Show that knight’s cycles are impossible for the cases (a)
and (b) in Theorem 1.4.7. (Case (c) is more difficult.) Hint: For case (a) use
the ordinary coloring of a chessboard with black and white squares; for (b)
use the same coloring as well as another appropriate coloring (say, in red and
green squares) and look at a hypothetical knight’s cycle.

1.4 Hamiltonian cycles 19

We close this section with a first look at one of the most fundamental
problems in combinatorial optimization, the travelling salesman problem (for
short, the TSP). This problem will later serve as our standard example of a
hard problem, whereas most of the other problems we will consider are easy.6

Imagine a travelling salesman who has to take a circular journey visiting n
cities and wants to be back in his home city at the end of the journey. Which
route is – knowing the distances between the cities – the best one? To translate
this problem into the language of graph theory, we consider the cities as the
vertices of the complete graph Kn; any circular tour then corresponds to a
Hamiltonian cycle in Kn. To have a measure for the expense of a route, we
give each edge e a weight w(e). (This weight might be the distance between
the cities, but also the time the journey takes, or the cost, depending on
the criterion subject to which we want to optimize the route.) The expense
of a route then is the sum of the weights of all edges in the corresponding
Hamiltonian cycle. Thus our problem may be stated formally as follows.

Problem 1.4.9 (travelling salesman problem, TSP). Consider the
complete graph Kn together with a weight function w : E → R

+. Find a cyclic
permutation (1, π(1), . . . , πn−1(1)) of the vertex set {1, . . . , n} such that

w(π) :=
n∑

i=1

w({i, π(i)})

is minimal. We call any cyclic permutation π of {1, . . . , n} as well as the
corresponding Hamiltonian cycle

1 π(1) . . . πn−1(1) 1

in Kn a tour. An optimal tour is a tour π such that w(π) is minimal among
all tours.

Note that looking at all the possibilities for tours would be a lot of work:
even for only nine cities we have 8!/2 = 20160 possibilities. (We can always
take the tour to begin at vertex 1, and fix the direction of the tour.) Of course
it would be feasible to examine all these tours – at least by computer. But for
20 cities, we already get about 1017 possible tours, making this brute force
approach more or less impossible.

It is convenient to view Problem 1.4.9 as a problem concerning matrices,
by writing the weights as a matrix W = (wij). Of course, we have wij = wji

and wii = 0 for i = 1, . . . , n. The instances of a TSP on n vertices thus
correspond to the symmetric matrices in (R+)(n,n) with entries 0 on the main
diagonal. In the following example we have rounded the distances between the
nine cities Aachen, Basel, Berlin, Dusseldorf, Frankfurt, Hamburg, Munich,
Nuremberg and Stuttgart to units of 10 kilometers; we write 10wij for the
rounded distance.
6 The distinction between easy and hard problems can be made quite precise; we

will explain this in Chapter 2.

20 1 Basic Graph Theory

Example 1.4.10. Determine an optimal tour for

Aa Ba Be Du Fr Ha Mu Nu St

Aa
Ba
Be
Du
Fr
Ha
Mu
Nu
St

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 57 64 8 26 49 64 47 46
57 0 88 54 34 83 37 43 27
64 88 0 57 56 29 60 44 63
8 54 57 0 23 43 63 44 41
26 34 56 23 0 50 40 22 20
49 83 29 43 50 0 80 63 70
64 37 60 63 40 80 0 17 22
47 43 44 44 22 63 17 0 19
46 27 63 41 20 70 22 19 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

An optimal tour and a tour which is slightly worse (obtained by replacing the
edges MuSt and BaFr by the edges MuBa and StFr) are shown in Figure 1.10.
We will study the TSP in Chapter 15 in detail, always illustrating the various
techniques which we encounter using the present example.

Ba

Mu

St

Nu

Fr

Aa

Du

Be

Ha

37

27

34

22

20

17

44

29

43

8

26

Fig. 1.10. Two tours for the TSP on 9 cities

Even though the number of possible tours grows exponentially with n,
there still might be an easy method to solve the TSP. For example, the number
of closed trails in a graph may also grow very fast as the number of edges

1.5 Planar graphs 21

increases; but, as we will see in Chapter 2, it is still easy to find an Euler tour
or to decide that no such tour exists. On the other hand, it is difficult to find
Hamiltonian cycles. We will return to these examples in the next chapter to
think about the complexity (that is, the degree of difficulty) of a problem.

1.5 Planar graphs

This section is devoted to the problem of drawing graphs in the plane. First,
we need the notion of isomorphism. Two graphs G = (V,E) and G′ = (V ′, E′)
are called isomorphic if there is a bijection α : V → V ′ such that we have
{a, b} ∈ E if and only if {α(a), α(b)} ∈ E′ for all a, b in V . Let E be a set
of line segments in three-dimensional Euclidean space and V the set of end
points of the line segments in E. Identifying each line segment with the two-
element set of its end points, we can consider (V,E) as a graph. Such a graph
is called geometric if any two line segments in E are disjoint or have one of
their end points in common.

Lemma 1.5.1. Every graph is isomorphic to a geometric graph.

Proof. Let G = (V,E) be a graph on n vertices. Choose a set V ′ of n points in
R

3 such that no four points lie in a common plane (Why is that possible?) and
map V bijectively to V ′. Let E′ contain, for each edge e in E, the line segment
connecting the images of the vertices on e. It is easy to see that (V ′, E′) is a
geometric graph isomorphic to G. ��

As we have only a plane piece of paper to draw graphs, Lemma 1.5.1 does
not help us a lot. We call a geometric graph plane if its line segments all lie
in one plane. Any graph isomorphic to a plane graph is called planar.7 Thus,
the planar graphs are exactly those graphs which can be drawn in the plane
without additional points of intersection between the edges; see the comments
after Figure 1.2. We will see that most graphs are not planar; more precisely,
we will show that planar graphs can only contain comparatively few edges
(compared to the number of vertices).

Let G = (V,E) be a planar graph. If we omit the line segments of G from
the plane surface on which G is drawn, the remainder splits into a number
of connected open regions; the closure of such a region is called a face. The
following theorem gives another famous result due to Euler [Eul52/53].

Theorem 1.5.2 (Euler’s formula). Let G be a connected planar graph with
n vertices, m edges and f faces. Then n − m + f = 2.

7 In the definition of planar graphs, one often allows not only line segments, but
curves as well. However, this does not change the definition of planarity as given
above, see [Wag36]. For multigraphs, it is necessary to allow curves.

22 1 Basic Graph Theory

Proof. We use induction on m. For m = 0 we have n = 1 and f = 1, so
that the statement holds. Now let m �= 0. If G contains a cycle, we discard
one of the edges contained in this cycle and get a graph G′ with n′ = n,
m′ = m − 1 and f ′ = f − 1. By induction hypothesis, n′ − m′ + f ′ = 2 and
hence n − m + f = 2. If G is acyclic, then G is a tree so that m = n − 1, by
Theorem 1.2.8; as f = 1, we again obtain n − m + f = 2. ��

Originally, Euler’s formula was applied to the vertices, edges and faces
of a convex polyhedron; it is used, for example, to determine the five regu-
lar polyhedra (or Platonic solids, namely the tetrahedron, octahedron, cube,
icosahedron and dodecahedron); see, for instance, [Cox73]. We will now use
Theorem 1.5.2 to derive bounds on the number of edges of planar graphs. We
need two more definitions. An edge e of a connected graph G is called a bridge
if G \ e is not connected. The girth of a graph containing cycles is the length
of a shortest cycle.

Theorem 1.5.3. Let G be a connected planar graph on n vertices. If G is
acyclic, then G has precisely n− 1 edges. If G has girth at least g, then G can
have at most g(n−2)

g−2 edges.

Proof. The first claim holds by Theorem 1.2.8. Thus let G be a connected
planar graph having n vertices, m edges and girth at least g. Then n ≥ 3. We
use induction on n; the case n = 3 is trivial. Suppose first that G contains a
bridge e. Discard e so that G is divided into two connected induced subgraphs
G1 and G2 on disjoint vertex sets. Let ni and mi be the numbers of vertices and
edges of Gi, respectively, for i = 1, 2. Then n = n1 +n2 and m = m1 +m2 +1.
As e is a bridge, at least one of G1 and G2 contains a cycle. If both G1 and
G2 contain cycles, they both have girth at least g, so that by induction

m = m1 + m2 + 1 ≤ g((n1 − 2) + (n2 − 2))
g − 2

+ 1 <
g(n − 2)

g − 2
.

If, say, G2 is acyclic, we have m2 = n2 − 1 and

m = m1 + m2 + 1 ≤ g(n1 − 2)
g − 2

+ n2 <
g(n − 2)

g − 2
.

Finally suppose that G does not contain a bridge. Then each edge of G is
contained in exactly two faces. If we denote the number of faces whose border
is a cycle consisting of i edges by fi, we get

2m =
∑

i

ifi ≥
∑

i

gfi = gf,

as each cycle contains at least g edges. By Theorem 1.5.2, this implies

m + 2 = n + f ≤ n +
2m

g
and hence m ≤ g(n − 2)

g − 2
. ��

In particular, we obtain the following immediate consequence of Theorem
1.5.3, since G is either acyclic or has girth at least 3.

1.5 Planar graphs 23

Corollary 1.5.4. Let G be a connected planar graph with n vertices, where
n ≥ 3. Then G contains at most 3n − 6 edges. ��

Example 1.5.5. By Corollary 1.5.4, the complete graph K5 is not planar, as
a planar graph on five vertices can have at most nine edges. The complete
bipartite graph K3,3 has girth 4; this graph is not planar by Theorem 1.5.3,
as it has more than eight edges.

Exercise 1.5.6. Show that the graphs which arise by omitting one edge e
from either K5 or K3,3 are planar. Give plane realizations for K5 \ e and
K3,3 \ e which use straight line segments only.

For the sake of completeness, we will state one of the most famous re-
sults in graph theory, namely the characterization of planar graphs due to
Kuratowski [Kur30]. We refer the reader to [Har69], [Aig84] or [Tho81] for
the elementary but rather lengthy proof. Again we need some definitions.
A subdivision of a graph G is a graph H which can be derived from G by
applying the following operation any number of times: replace an edge e = ab
by a path (a, x1, . . . , xk, b), where x1, . . . , xk are an arbitrary number of new
vertices; that is, vertices which were not in a previous subdivision. For conve-
nience, G is also considered to be a subdivision of itself. Two graphs H and
H ′ are called homeomorphic if they are isomorphic to subdivisions of the same
graph G. Figure 1.11 shows a subdivision of K3,3.

Fig. 1.11. K3,3, a subdivision and a contraction

Exercise 1.5.7. Let (V,E) and (V ′, E′) be homeomorphic graphs. Show that
|E| − |V | = |E′| − |V ′|.

Result 1.5.8 (Kuratowski’s theorem). A graph G is planar if and only
if it does not contain a subgraph which is homeomorphic to K5 or K3,3. ��

In view of Example 1.5.5, a graph having a subgraph homeomorphic to K5

or K3,3 cannot be planar. For the converse we refer to the sources given above.
There is yet another interesting characterization of planarity. If we identify
two adjacent vertices u and v in a graph G, we get an elementary contraction
of G; more precisely, we omit u and v and replace them by a new vertex w
which is adjacent to all vertices which were adjacent to u or v before;8 the
8 Note that we introduce only one edge wx, even if x was adjacent to both u and v,

which is the appropriate operation in our context. However, there are occasions

24 1 Basic Graph Theory

resulting graph is usually denoted by G/e, where e = uv. Figure 1.11 also
shows a contraction of K3,3. A graph G is called contractible to a graph H if
H arises from G by a sequence of elementary contractions. For the proof of
the following theorem see [Wag37], [Aig84], or [HaTu65].

Result 1.5.9 (Wagner’s theorem). A graph G is planar if and only if it
does not contain a subgraph which is contractible to K5 or K3,3.

Exercise 1.5.10. Show that the Petersen graph (see Figure 1.12, cf. [Pet98])
is not planar. Give three different proofs using 1.5.3, 1.5.8, and 1.5.9.

Fig. 1.12. The Petersen graph

Exercise 1.5.11. Show that the Petersen graph is isomorphic to the comple-
ment of the triangular graph T5.

The isomorphisms of a graph G to itself are called automorphisms; clearly,
they form a group, the automorphism group of G. In this book we will not
study automorphisms of graphs, except for some comments on Cayley graphs
in Chapter 9; we refer the reader to [Yap86], [Har69], or [CaLi91]. However,
we give an exercise concerning this topic.

Exercise 1.5.12. Show that the automorphism group of the Petersen graph
contains a subgroup isomorphic to the symmetric group S5. Hint: Use Exercise
1.5.11.

Exercise 1.5.13. What is the minimal number of edges which have to be
removed from Kn to get a planar graph? For each n, construct a planar graph
having as many edges as possible.

where it is actually necessary to introduce two parallel edges wx instead, so that
a contracted graph will in general become a multigraph.

1.6 Digraphs 25

The final exercise in this section shows that planar graphs have to contain
many vertices of small degree.

Exercise 1.5.14. Let G be a planar graph on n vertices and denote the num-
ber of vertices of degree at most d by nd. Prove

nd ≥ n(d − 5) + 12
d + 1

and apply this formula to the cases d = 5 and d = 6. (Hint: Use Corollary
1.5.4.) Can this formula be strengthened?

Much more on planarity (including algorithms) can be found in the mono-
graph by [NiCh88].

1.6 Digraphs

For many applications – especially for problems concerning traffic and trans-
portation – it is useful to give a direction to the edges of a graph, for example
to signify a one-way street in a city map. Formally, a directed graph or, for
short, a digraph is a pair G = (V,E) consisting of a finite set V and a set
E of ordered pairs (a, b), where a �= b are elements of V . The elements of V
are again called vertices, those of E edges; the term arc is also used instead
of edge to distinguish between the directed and the undirected case. Instead
of e = (a, b), we again write e = ab; a is called the start vertex or tail, and
b the end vertex or head of e. We say that a and b are incident with e, and
call two edges of the form ab and ba antiparallel. To draw a directed graph,
we proceed as in the undirected case, but indicate the direction of an edge by
an arrow. Directed multigraphs can be defined analogously to multigraphs; we
leave the precise formulation of the definition to the reader.

There are some operations connecting graphs and digraphs. Let G = (V,E)
be a directed multigraph. Replacing each edge of the form (a, b) by an undi-
rected edge {a, b}, we obtain the underlying multigraph |G|. Replacing parallel
edges in |G| by a single edge, we get the underlying graph (G). Conversely,
let G = (V,E) be a multigraph. Any directed multigraph H with |H| = G is
called an orientation of G. Replacing each edge ab in E by two arcs (a, b) and
(b, a), we get the associated directed multigraph

→
G; we also call

→
G the com-

plete orientation of G. The complete orientation of Kn is called the complete
digraph on n vertices. Figure 1.13 illustrates these definitions.

We can now transfer the notions introduced for graphs to digraphs. There
are some cases where two possibilities arise; we only look at these cases ex-
plicitly and leave the rest to the reader. We first consider trails. Thus let
G = (V,E) be a digraph. A sequence of edges (e1, . . . , en) is called a trail if
the corresponding sequence of edges in |G| is a trail. We define walks, paths,
closed trails and cycles accordingly. Thus, if (v0, . . . , vn) is the corresponding

26 1 Basic Graph Theory

G |G| (G) An orientation of (G)

Fig. 1.13. (Directed) multigraphs

sequence of vertices, vi−1vi or vivi−1 must be an edge of G. In the first case,
we have a forward edge, in the second a backward edge. If a trail consists of
forward edges only, it is called a directed trail; analogous definitions can be
given for walks, closed trails, etc. In contrast to the undirected case, there
may exist directed cycles of length 2, namely cycles of the form (ab, ba).

A directed Euler tour in a directed multigraph is a directed closed trail con-
taining each edge exactly once. We want to transfer Euler’s theorem to the
directed case; this requires some more definitions. The indegree din(v) of a ver-
tex v is the number of edges with head v, and the outdegree dout(v) of v is the
number of edges with tail v. A directed multigraph is called pseudosymmetric
if din(v) = dout(v) holds for every vertex v. Finally, a directed multigraph G
is called connected if |G| is connected. We can now state the directed analogue
of Euler’s theorem. As the proof is quite similar to that of Theorem 1.3.1, we
shall leave it to the reader and merely give one hint: the part (b) implies (c)
needs a somewhat different argument.

Theorem 1.6.1. Let G be a connected directed multigraph. Then the following
statements are equivalent:
(a) G has a directed Euler tour.
(b) G is pseudosymmetric.
(c) The edge set of G can be partitioned into directed cycles. ��

For digraphs there is another obvious notion of connectivity besides simply
requiring that the underlying graph be connected. We say that a vertex b of
a digraph G is accessible from a vertex a if there is a directed walk with start
vertex a and end vertex b. As before, we allow walks to have length 0 so that
each vertex is accessible from itself. A digraph G is called strongly connected if
each vertex is accessible from every other vertex. A vertex a from which every
other vertex is accessible is called a root of G. Thus a digraph is strongly
connected if and only if each vertex is a root.

Note that a connected digraph is not necessarily strongly connected. For
example, a tree can never be strongly connected; here, of course, a digraph
G is called a tree if |G| is a tree. If G has a root r, we call G a directed tree,

1.6 Digraphs 27

an arborescence or a branching with root r. Clearly, given any vertex r, an
undirected tree has exactly one orientation as a directed tree with root r.

We now consider the question which connected multigraphs can be oriented
in such a way that the resulting graph is strongly connected. Such multigraphs
are called orientable. Thus we ask which connected systems of streets can be
made into a system of one-way streets such that people can still move from
each point to every other point. The answer is given by the following theorem
[Rob39].

Theorem 1.6.2 (Robbins’ theorem). A connected multigraph is orientable
if and only if it does not contain any bridge. ��

We will obtain Theorem 1.6.2 by proving a stronger result which allows
us to orient the edges one by one, in an arbitrary order. We need some more
terminology. A mixed multigraph has edges which are either directed or undi-
rected. (We leave the formal definition to the reader.) A directed trail in a
mixed multigraph is a trail in which each oriented edge is a forward edge, but
the trail might also contain undirected edges. A mixed multigraph is called
strongly connected if each vertex is accessible from every other vertex by a
directed trail. The theorem of Robbins is an immediate consequence of the
following result due to Boesch and Tindell [BoTi80].

Theorem 1.6.3. Let G be a mixed multigraph and e an undirected edge of G.
Suppose that G is strongly connected. Then e can be oriented in such a way
that the resulting mixed multigraph is still strongly connected if and only if e
is not a bridge.

Proof. Obviously, the condition that e is not a bridge is necessary. Thus sup-
pose that e is an undirected edge of G for which neither of the two possible
orientations of e gives a strongly connected mixed multigraph. We have to
show that e is a bridge of |G|. Let u and w be the vertices incident with e,
and denote the mixed multigraph we get by omitting e from G by H. Then
there is no directed trail in H from u to w: otherwise, we could orient e from
w to u and get a strongly connected mixed multigraph. Similarly, there is no
directed trail in H from w to u.

Let S be the set of vertices which are accessible from u in H by a directed
trail. Then u is, for any vertex v ∈ S, accessible from v in H for the following
reason: u is accessible in G from v by a directed trail W ; suppose W contains
the edge e, then w would be accessible in H from u, which contradicts our
observations above. Now put T = V \ S; as w is in T , this set is not empty.
Then every vertex t ∈ T is accessible from w in H, because t is accessible
from w in G, and again: if the trail from w to t in G needed the edge e, then
t would be accessible from u in H, and thus t would not be in T .

We now prove that e is the only edge of |G| having a vertex in S and a
vertex in T , which shows that e is a bridge. By definition of S, there cannot
be an edge (s, t) or an edge {s, t} with s ∈ S and t ∈ T in G. Finally, if

28 1 Basic Graph Theory

G contained an edge (t, s), then u would be accessible in H from w, as t is
accessible from w and u is accessible from s. ��

Mixed multigraphs are an obvious model for systems of streets. However,
we will restrict ourselves to multigraphs or directed multigraphs for the rest of
this book. One-way streets can be modelled by just using directed multigraphs,
and ordinary two-way streets may then be represented by pairs of antiparallel
edges.

We conclude this section with a couple of exercises.

Exercise 1.6.4. Let G be a multigraph. Prove that G does not contain a
bridge if and only if each edge of G is contained in at least one cycle. (We
will see another characterization of these multigraphs in Chapter 7: any two
vertices are connected by two edge-disjoint paths.)

Exercise 1.6.5. Let G be a connected graph all of whose vertices have even
degree. Show that G has a strongly connected, pseudosymmetric orientation.

Some relevant papers concerning (strongly connected) orientations of
graphs are [ChTh78], [ChGT85], and [RoXu88].

Exercise 1.6.6. Prove that any directed closed walk contains a directed cycle.
Also show that any directed walk W with start vertex a and end vertex b,
where a �= b, contains a directed path from a to b.

Hint: The desired path may be constructed from W by removing directed
cycles.

1.7 An application: Tournaments and leagues

We conclude this chapter with an application of the factorizations mentioned
before, namely setting up schedules for tournaments9. If we want to design
a schedule for a tournament, say in soccer or basketball, where each of the
2n participating teams should play against each of the other teams exactly
once, we can use a factorization F = {F1, . . . , F2n−1} of K2n. Then each edge
{i, j} represents the match between the teams i and j; if {i, j} is contained
in the factor Fk, this match will be played on the k-th day; thus we have to
specify an ordering of the factors. If there are no additional conditions on the
schedule, we can use any factorization. At the end of this section we will make
a few comments on how to set up balanced schedules.

Of course, the above method can also be used to set up a schedule for a
league (like, for example, the German soccer league), if we consider the two
rounds as two separate tournaments. But then there is the additional problem
of planning the home and away games. Look at the first round first. Replace
9 This section will not be used in the remainder of the book and may be skipped

during the first reading.

1.7 An application: Tournaments and leagues 29

each 1-factor Fk ∈ F by an arbitrary orientation Dk of Fk, so that we get a
factorization D of an orientation of K2n – that is, a tournament as defined in
Exercise 7.5.5 below. Then the home and away games of the first round are
fixed as follows: if Dk contains the edge ij, the match between the teams i
and j will be played on the k-th day of the season as a home match for team
i. Of course, when choosing the orientation of the round of return matches,
we have to take into account how the first round was oriented; we look at that
problem later.

Now one wants home and away games to alternate for each team as far as
possible. Hence we cannot just use an arbitrary orientation D of an arbitrary
factorization F to set up the first round. This problem was solved by de Werra
[deW81] who obtained the following results. Define a (2n × (2n − 1))-matrix
P = (pik) with entries A and H as follows: pik = H if and only if team i has
a home match on the k-th day of the season; that is, if Dk contains an edge
of the form ij. De Werra calls this matrix the home-away pattern of D. A
pair of consecutive entries pik and pi,k+1 is called a break if the entries are the
same; that is, if there are two consecutive home or away games; thus we want
to avoid breaks as far as possible. Before determining the minimal number of
breaks, an example might be useful.

Example 1.7.1. Look at the case n = 3 and use the factorization of K6

shown in Figure 1.4; see Exercise 1.1.2. We choose the orientation of the five
factors as follows: D1 = {1∞, 25, 43}, D2 = {∞2, 31, 54}, D3 = {3∞, 42, 15},
D4 = {∞4, 53, 21} and D5 = {5∞, 14, 32}. Then we obtain the following
matrix P :

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

A H A H A
H A H A H
H A A H A
A H H A H
H A H A A
A H A H H

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where the lines and columns are ordered ∞, 1, . . . , 5 and 1, . . . , 5, respectively.
Note that this matrix contains four breaks, which is best possible for n = 3
according to the following lemma.

Lemma 1.7.2. Every oriented factorization of K2n has at least 2n−2 breaks.

Proof. Suppose D has at most 2n − 3 breaks. Then there are at least three
vertices for which the corresponding lines of the matrix P do not contain any
breaks. At least two of these lines (the lines i and j, say) have to have the
same entry (H, say) in the first column. As both lines do not contain any
breaks, they have the same entries, and thus both have the form

H A H A H . . .

30 1 Basic Graph Theory

Then, none of the factors Dk contains one of the edges ij or ji, a contradiction.
(In intuitive terms: if the teams i and j both have a home match or both have
an away match, they cannot play against each other.) ��

The main result of de Werra shows that the bound of Lemma 1.7.2 can
always be achieved.

Theorem 1.7.3. The 1-factorization of K2n given in Exercise 1.1.2 can al-
ways be oriented in such a way that the corresponding matrix P contains
exactly 2n − 2 breaks.

Sketch of proof. We give an edge {∞, k} of the 1-factor Fk of Exercise 1.1.2
the orientation k∞ if k is odd, and the orientation ∞k if k is even. Moreover,
the edge {k + i, k− i} of the 1-factor Fk is oriented as (k + i, k− i) if i is odd,
and as (k − i, k + i) if i is even. (Note that the orientation in Example 1.1.3
was obtained using this method.) Then it can be shown that the orientated
factorization D of K2n defined in this way has indeed exactly 2n − 2 breaks.
The lines corresponding to the vertices ∞ and 1 do not contain any breaks,
whereas exactly one break occurs in all the other lines. The comparatively
long, but not really difficult proof of this statement is left to the reader.
Alternatively, the reader may consult [deW81] or [deW88]. ��

Sometimes there are other properties an optimal schedule should have. For
instance, if there are two teams from the same city or region, we might want
one of them to have a home game whenever the other has an away game.
Using the optimal schedule from Theorem 1.7.3, this can always be achieved.

Corollary 1.7.4. Let D be the oriented factorization of K2n with exactly
2n− 2 breaks which was described in Theorem 1.7.3. Then, for each vertex i,
there exists a vertex j such that pik �= pjk for all k = 1, . . . , 2n − 1.

Proof. The vertex complementary to vertex ∞ is vertex 1: team ∞ has a home
game on the k-th day of the season (that is, ∞k is contained in Dk) if k is
even. Then 1 has the form 1 = k − i for some odd i, so that 1 has an away
game on that day. Similarly it can be shown that the vertex complementary
to 2i (for i = 1, . . . , n − 1) is the vertex 2i + 1. ��

Now we still have the problem of finding a schedule for the return round
of the league. Choose oriented factorizations DH and DR for the first and
second round. Of course, we want D = DH ∪DR to be a complete orientation
of K2n; hence ji should occur as an edge in DR if ij occurs in DH . If this is
the case, D is called a league schedule for 2n teams. For DH and DR, there
are home-away patterns PH and PR, respectively; we call P = (PHPR) the
home-away pattern of D. As before, we want a league schedule to have as few
breaks as possible. We have the following result.

Theorem 1.7.5. Every league schedule D for 2n teams has at least 4n − 4
breaks; this bound can be achieved for all n.

1.7 An application: Tournaments and leagues 31

Proof. As PH and PR both have at least 2n − 2 breaks by Lemma 1.7.2,
P obviously contains at least 4n − 4 breaks. A league schedule having ex-
actly 4n − 4 breaks can be obtained as follows. By Theorem 1.7.3, there
exists an oriented factorization DH = {D1, . . . , D2n−1} of K2n with exactly
2n−2 breaks. Put DR = {E1, . . . , E2n−1}, where Ei is the 1-factor having the
opposite orientation as D2n−i; that is, ji ∈ Ei if and only if ij ∈ D2n−i. Then
PH and PR each contain exactly 2n− 2 breaks; moreover, the first column of
PR corresponds to the factor E1, and the last column of PH corresponds to
the factor D2n−1 which is the factor with the opposite orientation of E1. Thus,
there are no breaks between these two columns of P , and the total number of
breaks is indeed 4n − 4. ��

In reality, the league schedules described above are unwelcome, because
the return round begins with the same matches with which the first round
ended, just with home and away games exchanged. Instead, DR is usually
defined as follows: DR = {E1, . . . , E2n−1}, where Ei is the 1-factor oriented
opposite to Di. Such a league schedule is called canonical. The following result
can be proved analogously to Theorem 1.7.5.

Theorem 1.7.6. Every canonical league schedule D for 2n teams has at least
6n − 6 breaks; this bound can be achieved for all n. ��

For more results about league schedules and related problems we refer
to [deW80, deW82, deW88] and [Schr80]. In practice, one often has many
additional secondary restrictions – sometimes even conditions contradicting
each other – so that the above theorems are not sufficient for finding a solution.
In these cases, computers are used to look for an adequate solution satisfying
the most important requirements. As an example, we refer to [Schr92] who
discusses the selection of a schedule for the soccer league in the Netherlands
for the season 1988/89. Another actual application with secondary restrictions
is treated in [deWJM90], while [GrRo96] contains a survey of some European
soccer leagues.

Back to tournaments again! Although any factorization of K2n can be used,
in most practical cases there are additional requirements which the schedule
should satisfy. Perhaps the teams should play an equal number of times on
each of the n playing fields, because these might vary in quality. The best one
can ask for in a tournament with 2n − 1 games for each team is, of course,
that each team plays twice on each of n − 1 of the n fields and once on the
remaining field. Such a schedule is called a balanced tournament design. Every
schedule can be written as an n× (2n−1) matrix M = (mij), where the entry
mij is given by the pair xy of teams playing in round j on field i. Sometimes
it is required in addition that, for the first as well as for the last n columns
of M , the entries in each row of M form a 1-factor of K2n; this is then called
a partitioned balanced tournament design (PBTD) on 2n vertices. Obviously,
such a tournament schedule represents the best possible solution concerning a
uniform distribution of the playing fields. We give an example for n = 5, and

32 1 Basic Graph Theory

cite an existence result for PBDT’s (without proof) which is due to Lamken
and Vanstone [LaVa87, Lam87].

Example 1.7.7. The following matrix describes a PBTD on 10 vertices:
⎛

⎜
⎜
⎜
⎜
⎝

94 82 13 57
83 95 46 02
56 03 97 81
12 47 80 96
07 16 25 43

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

06
17
42
53
98

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

23 45 87 91
84 92 05 63
67 01 93 85
90 86 14 72
15 37 26 04

⎞

⎟
⎟
⎟
⎟
⎠

Result 1.7.8. Let n ≥ 5 and n /∈ {9, 11, 15, 26, 28, 33, 34}. Then there exists
a PBTD on 2n vertices. ��

Finally, we recommend the interesting survey [LaVa89] about tournament
designs, which are studied in detail in the books of Anderson [And90, And97].

