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1 Introduction

In these notes we will consider a large class of variational problems in which
a concentration phenomenon occurs. This is a typical phenomenon in prob-
lems with scaling invariance as, for instance, semilinear problems involving
the critical Sobolev exponent. More precisely we will study the asymptotic
behaviour of problems of the form

SF
ε (Ω) := sup

{
ε2∗
∫

Ω

F (u) dx :
∫

Ω

|∇u|2dx ≤ ε2 , u = 0 on ∂Ω

}
, (1)

when ε → 0+, where Ω is a bounded domain of Rn, n ≥ 3, and F is a
nonnegative upper-semicontinuous function bounded from above by c|t|2∗

,
with 2∗ = 2n

n−2 being the critical Sobolev exponent.
If F is a smooth function the maximizers of (1) satisfy the following semi-

linear equation {
−∆u = λεf(u) in Ω,

u = 0 on ∂Ω,

where f = F ′ and the Lagrange multiplier λε tends to +∞ when ε→ 0+.
The, by now, classical approach for this type of semilinear problems is the

concentration-compactness alternative due to P.L. Lions [21]. For the case of
smooth F with critical growth (e.g. F (t) = |t|2∗

) he proved that the sequence
of maximizers either concentrates at a single point (in a sense that will be
clear in Section 2) or is compact in H1

0 (Ω). In particular in the case Ω �= Rn

one can exclude compactness and deduce that only concentration is allowed.
As a particular case of problem (1) with, possibly, non smooth (or degen-

erate) F , we can also obtain interesting free boundary problems as the plasma
problem or the Bernoulli free boundary problem (see for instance [16], [14] and
[9]). The latter can be consider as the weak Euler-Lagrange equation of the
following variational problem
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SV
ε = sup

{
ε−2∗ |A| : A ⊆ Ω , cap(A,Ω) ≤ ε2

}
,

where cap(A,Ω) denotes the harmonic capacity of the set A. The critical
case, corresponding to the choice F (t) = |t|2∗

, and the Bernoulli problem will
be described in details in Section 2 and can be considered as two “extreme”
particular cases for problem (1).

In order to deal with the general problem (1), the concentration-compact-
ness alternative has been generalized by Flucher and Müller in [13]. Again one
deduce concentration for the sequence of maximizers (or almost maximizers).

In this notes we propose a different method to deduce concentration and,
more in general, to study the asymptotic behaviour of problem (1).

We will use the notion of Γ -convergence which is the natural convergence
for functionals in order to deduce convergence of extrema.

The idea of Γ -convergence is to substitute a sequence of functionals {Fε}
by an effective Γ -limit functional F which captures the relevant features of
the sequence {Fε}. In particular, sequences of (almost) maximizers converge
to maximum points of F . Therefore, in terms of Γ -convergence, we study the
asymptotic behaviour of the functional

Fε(u) = ε−2∗
∫

Ω

F (εu) dx ,

with the constraint
∫

Ω
|∇u|2dx ≤ 1 and u ∈ H1

0 (Ω).
Analyzing the Γ -limit F we describe the asymptotic behaviour of Fε(uε)

along all weakly converging sequences and we also deduce concentration.
The approach of Γ -convergence for this kind of concentration phenomena

is recent and has been successfully used also in the study of Ginzburg-Landau
problem by Alberti, Baldo and Orlandi [1]. A delicate point, in general for Γ -
convergence and here in particular, is the choice of the topology which should
be strong enough in order to assure convergence of maxima and weak enough
in order to detect concentration.

A second natural question for this type of concentration results is whether
it is possible to characterize the concentration point, in particular whether its
position can be influenced by the shape of the domain.

A crucial role in the identification of the concentration point is played
by the Green’s function for the Dirichlet problem with the Laplacian. More
precisely we will see that the maximizing sequences concentrates at the har-
monic centers of Ω (the minima of the Robin function; i.e., the diagonal of
the regular part of the Green’s function).

2 Two classical examples

We introduce the problem starting with two examples: the Sobolev inequality
and the harmonic capacity.
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2.1 Sobolev inequality

Let us fix a domain Ω ⊂ Rn, with n ≥ 3. We know that the Sobolev space
H1

0 (Ω) is embedded continuously in Lp(Ω) for every p ≤ 2∗ = 2n
n−2 ; i.e., there

exists a constant Cp(Ω), depending on p and Ω, such that

∫

Ω

|u|pdx ≤ Cp(Ω)
(∫

Ω

|∇u|2dx
) p

2

(2)

for every u ∈ H1
0 (Ω). The embedding is also compact for p < 2∗. It is well

known that for p = 2∗ (the so-called critical case) the embedding is not
compact.

There is a large number of interesting and difficult analytical and geomet-
rical problems involving the critical growth and many interesting phenomena
arise from this lack of compactness.

Let us consider first the Sobolev inequality in Rn

∫

Rn

|u|2∗
dx ≤ S∗

(∫

Rn

|∇u|2dx
) 2∗

2

, ∀u ∈ C∞
0 (Rn) . (3)

Inequality (3) holds true for all functions in the Deny space D1,2(Rn)
obtained as the closure of C∞

0 (Rn) with respect to the topology induced by

the L2 norm of the gradient (D1,2(Rn) = C∞
0 (Rn)

‖∇u‖L2
) and S∗ is the best

Sobolev constant.

Question 1 Is S∗ achieved? In other words, does there exist a function u ∈
D1,2(Rn) such that (3) holds with equality?

In the case of Rn the answer is yes. This problem has been solved by Talenti
in ’76 ([23]), and all the possible solutions have been completely characterized.
Namely, all the solutions of the following variational problem

S∗ = max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫

Rn

|u|2∗
dx

(∫

Rn

|∇u|2
) 2∗

2

: u ∈ D1,2(Rn)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

or equivalently

S∗ = max
{∫

Rn

|u|2∗
dx : u ∈ D1,2(Rn) and

∫

Rn

|∇u|2 ≤ 1
}

, (4)

have been characterized.
Indeed, one can consider the Euler-Lagrange equation of (4) and, by a

rearrangement argument, prove that
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u1(x) =
1

(c2 + |x|2)n−2
2

, (5)

is a solution. Here the constant c is a renormalization which gives
∫

Rn

|∇u1|2dx = 1 .

All other solutions can be obtained by scaling and translating u1. Indeed,
both the Dirichlet integral on Rn and the L2∗

norm are invariant under the
following dilations and translations:

u(x) = σ− n
2∗ u1

(
x− y

σ

)
for σ > 0 and y ∈ Rn .

Namely |∇u(x)|2 = σ−n|∇u1

(
x−y

σ

)
|2 and |u(x)|2∗

= σ−n|u1

(
x−y

σ

)
|2∗

, and
thus, by a change of variables,
∫

Rn

|∇u|2dx =
∫

Rn

|∇u1|2dx and
∫

Rn

|u|2∗
dx =

∫

Rn

|u1|2
∗
dx .

Let us consider now the case Ω �= Rn, for instance consider the case Ω
bounded. In this case H1

0 (Ω) = D1,2(Ω) and the Sobolev inequality reads

∫

Ω

|u|2∗
dx ≤ S∗(Ω)

(∫

Ω

|∇u|2dx
) 2∗

2

∀u ∈ H1
0 (Ω) . (6)

Remark 1. Again by a scaling argument one can see that the best Sobolev
constant does not depend on the domain; i.e.,

S∗(Ω) = S∗ ∀ Ω ⊆ Rn .

Question 2 Is S∗ achieved in Ω ?

The answer in this case is no. In fact, otherwise, we would find solutions
for (4) with compact support and hence not of the form (5). Thus an other
question arise naturally.

Question 3 What we can expect from an optimal sequence; i.e., a sequence
uε ∈ H1

0 (Ω) such that
∫

Ω

|uε|2
∗
dx

(∫

Ω

|∇uε|2dx
) 2∗

2

= S∗ + o(1) ? (7)
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We may have a rather precise idea of the situation through the following
example: take the sequence vε such that vε(|x|) = ε−

n
2∗ u1(x

ε ) and Ω = BR

(BR denotes the ball centered in the origin of radius R). Clearly we have

lim
ε→0

∫

BR

|vε(|x|)|2
∗
dx = lim

ε→0

∫

BεR

|u1|2
∗
dx = S∗ .

In particular we get that the sequence |vε|2
∗

converges to S∗δ0 (δ0 denotes
the Dirac mass at zero) weakly∗ in the sense of measure. It is then easy to
see that uε(x) := (vε(|x|) − vε(R))+ ∈ H1

0 (Ω) satisfies (7). Moreover also uε

concentrates all the energy at zero; i.e., |uε|2
∗ ∗
⇀ S∗δ0 and |∇uε|2 ∗

⇀ δ0.

The scaling invariance of the problem is responsible for this phenom-
enon of concentration and in general for the lack of compactness in the
embedding theorem. This lack of compactness can be very well described,
and this has been done by P.L. Lions ([21]) by means of the concentration-
compactness principle. Generally speaking, it consists in the analysis of the
possible ways a bounded sequence of measures can loose compactness. In
the special case of the Sobolev embedding theorem he proves in particular
the following Concentration-compactness alternative.

We fix a sequence uε ∈ D1,2(Ω), with ‖∇uε‖L2 ≤ 1. Up to a subsequence
there exists a function u0 ∈ D1,2(Ω) such that

uε ⇀ u0 in L2∗
(Ω) and ∇uε ⇀ ∇u0 in L2(Ω) ;

i.e., uε ⇀ u0 in D1,2(Ω). We may also assume that there exist two measures
µ∗, ν∗ ∈M(Ω) := (C(Ω))′, such that

|uε|2
∗
dx

∗
⇀ ν∗ in M(Ω) and |∇uε|2dx ∗

⇀ µ∗ in M(Ω) .1

In order to study the possible lack of compactness for uε the idea of P.L.
Lions is to characterize the measures ν∗ in terms of µ∗.

Remark 2. Note that if ν∗ = |u0|2
∗
dx then we have compactness in L2∗

for
uε, while if we also know that µ∗ = |∇u0|2dx we conclude strong convergence
of uε in D1,2(Ω).

In general, by the lower semi-continuity of the norm, we get

µ∗ ≥ |∇u0|2 dx .

Thus we can isolate the atoms of µ∗, {xi}i∈J , and rewrite µ∗ as follows

1 Recall: we say that a sequence of measures µε
∗
⇀ µ in M(Ω) if and only if

lim
ε→0

∫

Ω

ϕ dµε =

∫

Ω

ϕ dµ ∀ ϕ ∈ C(Ω) .
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µ∗ = |∇u0|2dx +
∑

i∈J

µiδxi
+ µ̃ , (8)

where µi denotes the positive weight of the atom xi and µ̃ is the non-atomic
part of µ∗ − |∇u0|2dx.

Remark 3. Note that µ̃ in general may also contain a part which is absolutely
continuous with respect to the Lebesgue measure.

Lemma 1 ([21]) Let uε, u0 ∈ D1,2(Ω) be such that
∫

Ω
|∇uε|2 ≤ 1, uε ⇀ u0

in D1,2(Ω), |uε|2
∗
dx

∗
⇀ ν∗ and |∇uε|2dx ∗

⇀ µ∗ in M(Ω) for some measures
µ∗ and ν∗. Assume µ∗ be decomposed as in (8); then

1. there exist non-negative constants ν∗
i such that

i) ν∗ = |u0|2
∗
dx +

∑

i∈J

ν∗
i δxi

;

ii) |uε − u0|2
∗
dx

∗
⇀
∑

i∈J

ν∗
i δxi

in M(Ω);

iii) 0 ≤ ν∗
i ≤ S∗ (µi)

n
n−2 for all i ∈ J .

2. (Alternative) If ν∗(Ω) = S∗ and µ∗(Ω) = 1; i.e., uε is an optimal sequence
for the Sobolev embedding, then one of the two following situations is
possible
a) Concentration: there exists x0 ∈ Ω such that µ∗ = δx0 and ν∗ = S∗δx0 ;
b) Compactness: ν∗ = |u0|2

∗
dx.

Note that in the alternative b), by the optimality of uε we also get µ∗ =
|∇u0|2dx and hence uε → u0 in D1,2(Ω).

Remark 4.

1. In the case Ω �= Rn, by the fact that the Sobolev constant is never
achieved in Ω, we deduce that only alternative a) is possible; i.e., con-
centration occurs.

2. Part 1 of Lemma 1 is obtained by a fine use of the Sobolev inequality.
In particular note that ii) states that the only way a bounded sequence
in D1,2(Ω) can loose compactness in L2∗

(Ω) is by concentration (so an
oscillating bounded sequence for which the gradients weak converge but
do not concentrate, is always strongly convergent in L2∗

(Ω)).

2.2 Capacity and isoperimetric inequality for the capacity

We now introduce the notion of harmonic capacity for which we will see that
a similar concentration phenomenon arises.
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Definition 2 (Capacity) Given Ω ⊆ Rn and an open set A ⊂ Ω, the capacity
of A with respect to Ω is the following set function

cap(A,Ω) = inf
{∫

Ω

|∇u|2dx : u ≥ 1 a.e. in A , u ∈ H1
0 (Ω)

}
. (9)

Note that the constraint u ≥ 1 a.e. in A in the definition of the capacity
is convex and strongly closed in H1

0 (Ω) and hence it is closed in the weak
topology. So that there exists a unique minimum point for problem (9). It is
called the capacitary potential of A with respect to Ω.

Remark 5.

1. By a truncation argument we can show that the capacitary potential uA

satisfies uA = 1 a.e. in A.
2. The capacitary potential is also a weak solution of the following Euler-

Lagrange equation
⎧
⎪⎨

⎪⎩

−∆u = 0 in Ω \A
u = 1 on ∂A

u = 0 on ∂Ω .

(10)

The capacity theory is a classical tool in potential theory. In the variational
approach it is the natural object when studying problems in the Sobolev space
H1

0 (Ω). It is involved in regularity results for elliptic problems, fine behaviour
of Sobolev functions, etc. (for a very nice review of this subject see Frehse
[17]).

In general it is not very easy to compute explicitly the capacity of a set.
Let us consider the easiest case: two concentric balls.

Example 1. Fix 0 < r < R and compute the capacity of Br with respect to
BR. From now on we will denote by

K(ρ) =
γn

ρn−2
with γn =

1
(n− 2)|Sn−1|

the fundamental singularity of the Laplacian ∆ in Rn, n ≥ 3, and then
K(|x − y|) will be the fundamental solution with singularity at y. In par-
ticular K(|x|) is harmonic outside zero. Moreover K(|x|)−K(R) = 0 on ∂BR

and K(|x|)−K(R)
K(r)−K(R) = 1 on ∂Br. Thus we have that the capacitary potential of

Br with respect to BR is given by

u(x) = min
{
K(|x|)−K(R)
K(r)−K(R)

, 1
}

.

Then, using the fact that −∆K(|x|) = δ0 in the sense of distributions, we get
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cap(Br, BR) =
∫

BR

|∇u|2dx =
1

K(r)−K(R)

∫

BR\Br

∇K∇u dx

=
1

K(r)−K(R)
.

Similarly, we obtain

cap(Br,Rn) =
1

K(r)
.

The notion of capacity can be extended to any subset E of Ω as follows

cap(E,Ω) = inf{cap(A,Ω) : A open , A ⊇ E} .

Proposition 3 Let A and B be two given subsets of Ω. The following prop-
erties hold.

1. (Monotonicity) If A ⊂ B then

cap(A,Ω) ≤ cap(B,Ω) ;

2. (Subadditivity)

cap(A ∪B,Ω) ≤ cap(A,Ω) + cap(B,Ω) ;

3. (Scaling property) For any ρ > 0 we have

cap(ρA, ρΩ) = ρn−2cap(A,Ω) ;

4. If B is open and A ⊆ B ⊆ Ω, then

1
cap(A,Ω)

≥ 1
cap(A,B)

+
1

cap(B,Ω)

and equality holds if and only if B is a superlevel of the capacitary potential
uA of A in Ω.

The above properties can be easily deduced from the definition of the
capacity and making use of the capacitary potentials.

Note that in particular the capacity is an external measure, but in general
it is not additive (it can be proved that it is a measure only on the class of
zero capacity sets).

The “equivalent” of the Sobolev inequality in the case of the capacity is
the so-called isoperimetric inequality for the capacity: there exists a constant
SV (Ω) such that

|A| ≤ SV (Ω) (cap(A,Ω))
2∗
2 ∀ A ⊆ Ω . (11)

Question 4 Is this constant SV (Ω) achieved by a non-trivial set A? In other
words: there exists a subset A of Ω with cap(A,Ω) > 0, such that equality
holds in (11)?
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If Ω = Rn the answer is again yes. In fact we can also compute it explicitly.
It is given by

SV := SV (Rn) = max {|A| : cap(A,Rn) ≤ 1} .

It easy to see, by a symmetrization argument, that the maximum is achieved
on balls; i.e. A = BR. Imposing the constraint cap(BR,Rn) = 1 the radius
R can be computed explicitly and hence the constant SV turns out to be the
following

SV = ωnγ
n

n−2
n , (12)

where γn = K(1) and ωn = |B1|.

Remark 6. Note that, thanks to the scaling property of the capacity (see
Proposition 3, 4)), the equality in the isoperimetric inequality (11) is achieved
for all balls. Indeed, if R is such that cap(BR,Rn) = 1 and |BR| = SV , then

|BρR| = ρn|BR| = SV ρn = SV (cap(ρBR,Rn))
n

n−2 .

In the case Ω �= Rn the answer is no. The constant SV is not achieved
by a non trivial set A for a reason which is similar to the one we saw in the
Sobolev embedding case. Indeed also in this case it can be seen, using the
scaling property of the capacity, that

SV (Ω) = SV ∀ Ω .

Moreover whenever cap(Rn \ Ω,Rn) �= 0 and cap(A,Ω) �= 0, it can be seen,
by using the maximum principle, that

cap(A,Ω) > cap(A,Rn)

and then, for any such A, the equality in (11) is not possible.
Thus also in this case we may wonder which is the behaviour of an optimal

sequence; i.e., a sequence of sets Aε such that

|Aε|
(cap(Aε, Ω))

n
n−2

= SV + o(1) . (13)

So, as above, to have an idea let us construct an optimal sequence by choosing
Aε = Brε

, with rε → 0. Then, for any R > 0,

(cap(Aε, Ω))
n

n−2 = (cap(Brε
, Ω))

n
n−2 =

(rε

R

)n
(

cap(BR,
R

rε
Ω)
) n

n−2

.

Now it can be proved that

lim
ε→0

cap(BR,
R

rε
Ω) = cap(BR,Rn) ,
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thus, if we choose R such that |BR| = SV , we clearly have that the sequence
satisfies (13).

Notice that the balls Brε
shrink to the origin. Again we have a concen-

tration phenomenon for the capacitary potentials similar to the case of the
Sobolev embedding.

More in general a way to construct an optimal sequence for (11) is to
consider the following variational problem

SV
ε (Ω) = ε−2∗

max
{
|A| : cap(A,Ω) = ε2

}
, (14)

where the factor ε−2∗
is the right scaling passing from the capacity to the

volume.

3 The general problem

We are now in a position to introduce a very general class of problems which
includes and unifies the two examples shown above as two extreme case of the
same phenomenon.

3.1 Variational formulation

We will consider the following family of variational problem depending on a
small parameter ε > 0

SF
ε (Ω) = ε−2∗

sup
{∫

Ω

F (u) dx : u ∈ D1,2(Ω) ,
∫

Ω

|∇u|2dx ≤ ε2

}
, (15)

with the following assumptions:

i) 0 ≤ F (t) ≤ c|t|2∗
for every t ∈ R;

ii) F �≡ 0 and upper semi-continuous.

To simplify the exposition we also assume

iii) there exist the following two limits

F0(t) = lim
t→0

F (t)
|t|2∗ and F∞(t) = lim

t→∞

F (t)
|t|2∗ .

With this formulation we recover the two examples seen before.
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Examples.

1. If F (t) = |t|2∗
, then (15) gives the Sobolev embedding problem and

SF
ε (Ω) = S∗ for every Ω ⊆ Rn.

2. We are allowed to choose F discontinuous, then we recover the case of the
capacity taking F of the form

F (t) =

{
0 if t < 1
1 if t ≥ 1.

We claim that, with this choice of F , problem (15) coincides with (14);
i.e.,

SV
ε (Ω) = sup

{
|{u ≥ 1}| : u ∈ D1,2(Ω) ,

∫

Ω

|∇u|2dx ≤ ε2

}
(16)

Clearly

SV
ε (Ω) ≥ sup

{
|{u ≥ 1}| : u ∈ D1,2(Ω) ,

∫

Ω

|∇u|2dx ≤ ε2

}
;

indeed any u ∈ D1,2(Ω) satisfying
∫

Ω
|∇u|2dx ≤ ε2 is a good competitor

for the computation of the capacity of the set A = {u ≥ 1} and gives
cap(A,Ω) ≤

∫
Ω
|∇u|2dx ≤ ε2. On the other hand, if A is an open set

such that cap(A,Ω) ≤ ε2 and uA is the capacitary potential of A, then
A ⊆ {uA ≥ 1} and

∫
Ω
|∇uA|2dx = cap(A,Ω) ≤ ε2; hence we get (16).

3. If F ∈ C1 we can compute the Euler-Lagrange equation and we have
{
−∆u = λεf(u) in Ω

u = 0 on ∂Ω,

where f = F ′ and λε is the Lagrange multiplier (one can show that
λε ≈ ε−

4
n−2 ).

4. In general the non-differentiability of F allows for free boundary prob-
lems. The easiest example is again the case of the capacity, whose Euler-
Lagrange equation is the so-called Bernoulli free boundary problem: look
for an open set A and a function u which is the weak solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∆u = 0 in Ω \A
u = 1 on ∂A

u = 0 on ∂Ω
∂u
∂ν = qε on ∂A,

where qε goes to infinity as ε → 0 and play the role of the Lagrange
multiplier. Another classical example covered by the problem is the so-
called plasma problem (see e.g. [16]).
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3.2 Generalized Sobolev inequality

Let us see first some general facts related to the scaling properties of our
problem. Denote by SF := SF

1 (Rn); i.e.,

SF = sup
{∫

Rn

F (u) dx : u ∈ D1,2(Rn) ,
∫

Rn

|∇u|2dx ≤ 1
}

. (17)

Lemma 4 1. SF
ε (Ω) ≤ SF for every ε > 0 and for every Ω ⊆ Rn;

2. The following Generalized Sobolev Inequality holds
∫

Ω

F (u) dx ≤ SF

(∫

Ω

|∇u|2dx
) 2∗

2

∀ u ∈ D1,2(Ω) ;

3. SF ≥ F0S
∗.

Remark 7. The above lemma is based on the following scaling argument: if
u ∈ D1,2(Ω) and s > 0, define

us(x) := u
(x
s

)
∈ D1,2(sΩ) .

Then we have
∫

sΩ

F (us) dx = sn

∫

Ω

F (u) dx and
∫

sΩ

|∇us|2 dx = sn−2

∫

Ω

|∇u|2 dx .

In particular if we choose s = ‖∇u‖
−2

n−2

L2 then we also obtain
∫

sΩ
|∇us|2dx = 1.

Taking us as a competitor for (17), one get the generalized Sobolev inequality.

By a cut-off argument the following result can be also proved.

Proposition 5 limε→0 SF
ε = SF .

The proof of Lemma 4 and Proposition 5 can be found in [13].

3.3 Concentration

From now on we will consider only the case of Ω bounded and we will write
H1

0 (Ω) instead of D1,2(Ω). Nevertheless most of the result we will present in
this lectures have been obtained for general domains, possibly unbounded.

We are interested in the asymptotic behaviour of maximizing sequences
for problem (15); i.e., sequences uε such that

ε−2∗
∫

Ω

F (uε) dx = SF
ε + o(1) , (18)

and, possibly, in saying something about their optimal profile.
The case of F ∈ C1(R) has been studied by P.L. Lions [21] as an ap-

plication of the concentration-compactness principle. The general case has
been considered by M. Flucher and S. Müller in ’99 [13] (see also the book of
Flucher [10] and the references therein), still in the spirit of to concentration-
compactness.
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Theorem 6 ([13], Theorem 3) Let uε be a maximizing sequence (i.e. satisfy-
ing (18)), then there exists x0 ∈ Ω such that :

i) The sequence uε concentrates at x0 in the following sense

|∇uε|2
ε2

∗
⇀ δx0 and

|uε|2
∗

ε2∗
∗
⇀ SF δx0 in M(Ω) ; (19)

ii) Suppose that SF > max{F0, F∞}. Then we identify the optimal profile for
the maximizing sequences. Namely there exists a sequence xε converging to
x0 such that the sequence wε(x) := uε(xε +ε

2
n−2 x) is compact in D1,2(Rn)

and every cluster point w is a solution for SF ; i.e., it is a maximum for
problem (17).

Remark 8. Let us spend a few words about the condition in part ii) of the
theorem. This is a natural condition for those who are familiar with the
concentration-compactness approach. It guarantees the existence of a ground
state and no concentration of optimal sequences for problem (17). In partic-
ular it gives a precise rate of concentration for maximizing sequences of the
scaled problem SF

ε (we will see that this condition can be slightly relaxed).
It is actually easy to see that SF ≥ max{F0, F∞} is always true. It is

enough to take an optimal function for S∗, e.g. u1, and define

us(x) = s−
n
2∗ u1

(x
s

)
.

Then from the generalized Sobolev inequality we obtain SF ≥ F0S
∗ and

SF ≥ F∞S∗ taking the limit as s → ∞ and s → 0 respectively. The idea is
that the strict inequality, in applying the concentration-compactness principle
to the sequence wε, is sufficient to rule out vanishing and concentration.

We will see a proof of the concentration result (part i) of Theorem 6) in
terms of the variational convergence introduced by De Giorgi in ’75 ([8]), the
Γ -convergence.

3.4 Γ +-convergence

We are considering maximum problems, so the natural variational convergence
is Γ+-convergence. Since in the literature it is mainly Γ−-convergence, the
suitable convergence for minimum problems, that is used, we recall quickly
the definition and the main properties of Γ+-convergence.

In what follows X will be a metric space and τ will denote its topology.

Definition 7 Let Fε : X → R, with R = R∪{∞}, be a family of functionals.
We say that the sequence Fε Γ+-converges to the functional F : X → R with
respect to τ ,

Fε
Γ+(X)−→ F ,

if the following two properties are satisfied
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i) for every sequence xε
τ→ x we have that

lim sup
ε→0

Fε(xε) ≤ F(x) ;

ii) for every x ∈ X, there exists a sequence xε, such that xε
τ→ x and

lim inf
ε→0

Fε(xε) ≥ F(x) ;

We usually refer to condition i) as the Γ+-limsup inequality and to condition
ii) as the existence of a recovery sequence.

The idea of Γ+-convergence is that the functional F describes the main
features of the sequence Fε in terms of maxima; i.e., it gives the best (maximal)
behaviour of the sequences Fε(xε) along maximizing sequences xε.

Remark 9.

1. The Γ+-limit F is upper-semicontinuous with respect to τ .
2. If the topology τ is separable, then Γ+-convergence is compact.
3. If there exists a compact set K ⊆ X such that

sup
x∈X
Fε(x) = sup

x∈K
Fε(x) ,

then
a) limε→0 supx∈X Fε(x) = supx∈X F(x) = maxx∈K F(x);
b) given a maximizing sequence; i.e., any sequence xε such that

lim
ε→0
Fε(xε) = lim

ε→0
sup
x∈X
Fε(x) ,

any cluster point x of xε is a maximum point for F .

A rigorous and complete treatment of the Γ−-convergence for the case
of minimum problems, whose definition is perfectly symmetric to the one we
gave for Γ+, can be found for instance in [7] or [4].

3.5 The concentration result in terms of Γ +-convergence

It is convenient to modify the functional, rescaling the functions by ε and
define

Fε(u) =

⎧
⎨

⎩
ε−2∗

∫

Ω

F (εu) dx if
∫

Ω

|∇u|2dx ≤ 1

0 otherwise in L2∗
(Ω).

(20)

The idea is to consider the functionals Fε and find a suitable topology and
a limit functional in order to capture the behaviour stated in Theorem 6 by
Flucher and Müller.
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Main requirements:

1) Choose a space X, to which possibly extend the functional Fε, rich enough
to give information on the maxima;

2) Find a topology which is compact on X in order to get convergence of
maxima.

In order to clarify our future choice let us go back to the approach of P.L.
Lions. Let uε be a sequence satisfying

∫
Ω
|∇uε|2dx ≤ 1. Define µε = |∇uε|2dx

and try to describe the limit of ε−2∗
F (εuε) dx in terms of the limit of µε.

Since
∫

Ω
|∇uε|2dx ≤ 1, we can always assume that uε converges weakly in

H1
0 (Ω) to some function u and that µε converges weakly∗ in M(Ω) to some

measure µ.
As above we may decompose µ as follows

µ = |∇u|2dx +
∑

i∈J

µiδxi
+ µ̃ , (21)

where µi denotes the positive weight of the atom xi and µ̃ is the non-atomic
part of µ− |∇u|2dx, and define

νε = ε−2∗
F (εuε) dx .

By the generalized Sobolev inequality we have

νε(Ω) ≤ SFµε(Ω)

and thus we have that up to a subsequence νε converges weakly∗ inM(Ω) to
some measure ν. On the other hand by Lemma 1 we know that

ν∗
ε = |uε|2

∗
dx

∗
⇀ ν∗ = |u|2∗

dx +
∑

i∈J

ν∗
i δxi

;

so that by assumption i) on F we get

ν ≤ c ν∗ . (22)

This implies that there exists a function g ∈ L1(Ω) and non-negative numbers
νi such that

ν = g(x) dx +
∑

i∈J

νiδxi
. (23)

Then it is clear that, in order to describe the behaviour of ε−2∗
F (εuε) dx

the weak limit in H1
0 (Ω) of uε is not enough, but we need also to take into

account “how” it converges weakly, which is detected by the weak∗ limit of
the measures µε. This suggests the choice of the space X(Ω) as

X(Ω) ⊂ H1
0 (Ω)×M(Ω)
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and precisely, in view of the constraint
∫

Ω
|∇u|2dx ≤ 1, we will choose

X(Ω) =
{
(u, µ) ∈ H1

0 (Ω)×M(Ω) : µ ≥ |∇u|2dx , µ(Ω) ≤ 1
}
. (24)

Consequently the topology τ will be chosen such that

(uε, µε)
τ→ (u, µ) ⇐⇒

{
uε ⇀ u in w − L2∗

(Ω)
µε

∗
⇀ µ inM(Ω).

(25)

Remark 10.

1. With this choice of the topology the space X(Ω) is metric and separable.
2. It is possible to show that all the pairs (u, µ) ∈ X(Ω) can be obtained as

a limit with respect to τ of pairs of the form (uε, |∇uε|2).
3. The topology τ is compact in X(Ω), then the Γ+-convergence of func-

tionals in this space implies the convergence of maxima.

Now that we have set the right space we have to extend our functional to
X(Ω) and this is done, by a little abuse of notation, in the natural way as
follows

Fε(u, µ) =

⎧
⎪⎪⎨

⎪⎪⎩

ε−2∗
∫

Ω

F (εu) dx if µ =
∫

Ω

|∇u|2dx,

0 otherwise in X(Ω).

(26)

Then we look for a functional F which is the Γ+-limit of Fε in X(Ω). Clearly
this Γ+-limit has to take into account both, the absolutely continuous part of
µ and its atomic part.

Theorem 8 ([2], Theorem 3.1) There exists a functional F : X(Ω) → R
which is the Γ+-limit of Fε in X(Ω) and it is given by

F(u, µ) := F0

∫

Ω

|u|2∗
dx + SF

∑

i∈J

(µi)
2∗
2 . (27)

Remark 11. By the Γ+-convergence result we immediately deduce the con-
centration result. Indeed, as already observed, we have that

sup
(u,µ)∈X(Ω)

Fε(u, µ) = SF
ε → max

(u,µ)∈X(Ω)
F(u, µ) ;

and hence, since by Proposition 5 we have that SF
ε → SF , we get SF =

max(u,µ)∈X(Ω) F(u, µ). On the other hand by the Sobolev inequality, Lemma 4
and the convexity of the function |t| 2

∗
2 we get
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F(u, µ) = F0

∫

Ω

|u|2∗
dx + SF

∑

i∈J

(µi)
2∗
2

(Sobolev inequality) ≤ F0S
∗
(∫

Ω

|∇u|2dx
) 2∗

2

+ SF
∑

i∈J

(µi)
2∗
2 (28)

(S∗F0≤SF ) ≤ SF

[(∫

Ω

|∇u|2dx
) 2∗

2

+
∑

i∈J

(µi)
2∗
2

]

≤ SFµ(Ω) ≤ SF .

Since the Sobolev constant is not attained in Ω the first inequality is strict
unless u = 0 and the third inequality is strict unless µ = δx0 for some x0 ∈ Ω.
In other words

F(u, µ) = SF = max
X(Ω)

F ⇐⇒ (u, µ) = (0, δx0) ,

which correspond to the concentration of the maximizing sequence at x0.

Proof (Theorem 8). We give a detailed proof of the Γ+-limsup inequality
(condition i) of Definition 7); i.e. we will prove that for every sequence
(uε, µε)

τ→ (u, µ) then

lim sup
ε→0

Fε(uε, µε) ≤ F(u, µ) . (29)

We can assume (uε, µε) = (uε, |∇uε|2) otherwise the proof is trivial. We al-
ready know that in this case

Fε(uε, µε) = νε(Ω) = ε−2∗
∫

Ω

F (εuε) dx→
∫

Ω

g dx +
∑

i∈J

νi = ν(Ω). (30)

We will give the prove in several steps.
Step 1. (Localization of the generalized Sobolev inequality) For every δ > 0
there exists a constant k(δ) > 0 such that if 0 < r < R with r

R ≤ k(δ), then
for every x0 ∈ Ω

∫

Br(x0)

F (u) dx ≤ SF

(∫

BR(x)

|∇u|2dx + δ

∫

Ω

|∇u|2dx
) 2∗

2

(31)

for every u ∈ H1
0 (Ω).

In order to see this step let define the function

ϕR
r (x) = max

{
log |x0 − x| − logR

log r − logR
, 1
}

.

This function (the n-capacitary potential of the ball Br with respect to BR)
has the following property
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∫

BR(x0)

|∇ϕR
r |ndx→ 0 as

r

R
→ 0 .

Moreover it is a cut-off function between Br(x0) and BR(x0); i.e., ϕR
r (x) = 1

in Br(x0) and ϕR
r (x) = 0 in Rn \BR(x0).

Now by Hölder’s inequality and the Sobolev inequality, for any β > 0 and
for any u ∈ H1

0 (Ω), we get
∫

BR(x0)

|∇(ϕR
r u)|2dx

≤
(

1 +
1
β

)∫

BR(x0)

|∇ϕR
r |2|u|2dx + (1 + β)

∫

BR(x0)

|∇u|2dx

≤
(

1 +
1
β

)(∫

BR(x0)

|∇ϕR
r |ndx

) 2
n
(∫

BR(x0)

|u|2∗
dx

)n−2
2

+(1 + β)
∫

BR(x0)

|∇u|2dx

≤
∫

BR(x0)

|∇u|2dx +

⎛

⎝β +
(

1 +
1
β

)
S∗

[∫

BR(x0)

|∇ϕR
r |ndx

] 2
n

⎞

⎠
∫

Ω

|∇u|2dx .

Now if β ≤ δ/2 and the ratio between r and R is small enough we get
∫

BR(x0)

|∇(ϕR
r u)|2dx ≤

∫

BR(x0)

|∇u|2dx + δ

∫

Ω

|∇u|2dx.

Then the conclusion follows applying the Generalized Sobolev inequality to
the function ϕR

r u.
Step 2. We now prove that

νi ≤ SF (µi)
2∗
2 . (32)

For any δ > 0, for any atom xi ∈ Ω, with i ∈ J , and r
R ≤ k(δ) we

may apply the localization of the generalized Sobolev inequality (31) to the
functions εuε and recalling that

∫
Ω
|∇uε|2dx ≤ 1 we get

ε−2∗
∫

Br(xi)

F (εuε) dx ≤ SF

(∫

BR(xi)

|∇uε|2dx + δ

)
.

Taking the limit as ε→ 0 we have

ν(Br(xi)) ≤ SF (µ(BR(xi)) + δ)
2∗
2 ,

thus the conclusion follows taking the limit as r → 0, by the arbitrariness of
R and δ.
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Step 3.We finally prove that

g ≤ F0|u|2
∗
. (33)

Here the idea in that large values of uε do not contribute to the absolutely
continuous part of ν.

Fix an open subset U of Ω and δ > 0. Let tδ > 0 be such that

F (t) ≤ (F0 + δ)|t|2∗ |t| < tδ . (34)

Since U is open we have that ν(U) ≤ lim infε→0

∫
U
ε−2∗

F (εuε) dx and that
ν∗(U) ≥ lim supε→0

∫
U
|uε|2

∗
dx; hence, we get

∫

U

g dx ≤ ν(U) ≤ lim inf
ε→0

∫

U

ε−2∗
F (εuε) dx

≤ lim sup
ε→0

∫

U∩{|εuε|<tδ}
ε−2∗

F (εuε) dx

+ lim sup
ε→0

∫

U∩{|εuε|≥tδ}
ε−2∗

F (εuε) dx

≤ (F0 + δ)ν∗(U) + c lim sup
ε→0

∫

U∩{|εuε|≥tδ}
|uε|2

∗
dx , (35)

where for the last inequality we used (34) and the growth condition for F .
Now, by Lemma 1 and the fact that εuε converges to zero in measure we
obtain

lim sup
ε→0

∫

U∩{|εuε|≥tδ}
|uε|2

∗
dx

≤ 22∗
lim sup

ε→0

(∫

U∩{|εu|≥tδ}
|u|2∗

dx +
∫

U

|uε − u|2∗
dx

)

= 22∗
lim sup

ε→0

∫

U

|uε − u|2∗
dx =

∑

xi∈U

ν∗
i

This together with (35) implies

gdx ≤ F0|u|2
∗
dx +

∑

i∈J

(F0 + 22∗
c)ν∗

i δxi

which gives (33). Then the prove of the Γ+-limsup inequality is completed.

As for the prove of the existence of a recovery sequence we just sketch it
and we refer to [2] for the details. The main steps are the following:

Step I. In the case (u, µ) = (u, |∇u|2+µ̃), any sequence such that (uε, |∇uε|2)
converges to (u, |∇u|2 + µ̃) in the τ topology will do the job. Indeed, by



252 Adriana Garroni

Lemma 1, we know that uε converges strongly in L2∗
to u, and this, together

with the upper semi-continuity of F and the definition of F0, implies that

lim inf
ε→0

∫

Ω

ε−2∗
F (εuε) dx ≥

∫

Ω

F0|u|2
∗
dx .

Step II. By a localization argument we prove that the Γ+-limit exists in every
pair (0, δx), with x ∈ Ω, and coincides with SF = F(0, δx). In particular this
implies the existence of the recovery sequence for such class of pairs.

Step III. All the pairs of the form (0,
∑

i∈J µiδxi
), with xi ∈ Ω, are obtained

by scaling the recovery sequences for the single atoms in a small ball around
the atoms.

Step IV. The general case is recovered by a density lemma which permits to
glue the different contributions described above.

4 Identification of the concentration point

The next natural question, that we will address in this section, is the following:
is there a special point of Ω which is “preferred” for the concentration? For
instance, if problem (15) has a maximum for any ε, does the shape of the
domain Ω influence the concentration of the sequence of maxima?

If we look at the example of the capacity it is clear that in order to maxi-
mize the volume for fixed capacity the optimal set has to stay “far” from the
boundary. This “far” has to be understood in the sense of potential theory.
The object that will play a crucial role to make this concept precise is the
Green’s function for the Dirichlet problem in Ω with the Laplacian.

Example 2. Let us briefly explicitly show that in the case of the Volume
functional (see problem (14)), with Ω = BR(0), the concentration of opti-
mal sets is at the origin. Indeed let us denote by ρε the radius such that
cap(Bρε

(0), BR(0)) = ε2 and assume that Aε is a set for which the maximum
for SV

ε (BR(0)) is achieved. Let uε be its capacitary potential and u∗
ε be its

radial symmetrization. In particular we have that u∗
ε is the potential of the

set
A∗

ε = {u∗
ε ≥ 1} .

Moreover by symmetrization we also know that
∫

BR(0)

|∇u∗
ε|2dx ≤

∫

BR(0)

|∇uε|2dx = cap(Aε, BR(0)) = ε2

and the inequality is strict unless uε is itself radial. Thus if Aε �= Bρε
(0) and

denoting by ρ∗ε the radius of A∗
ε, then we have
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cap(Bρ∗
ε
(0), BR(0)) < ε2 ,

and hence ρ∗ε < ρε, which contradicts the maximality of Aε. In conclusion,
recalling that cap(Bρε

(0), BR(0)) = 1
K(ρε)−K(R) , we proved that the optimal

sets are given by

Bρε
(0) =

{
K(|x|)−K(R) > ε2

}
, (36)

and hence they concentrate at the origin.

In the example above we wrote the optimal sets in the form (36) in order
to underline the fact that they are given by super-level sets of the Green’s
function of −∆ in BR(0) and with singularity at the origin. In fact in this
case the Green’s function is given by

G0
BR(0)(x) = K(|x|)−K(R) .

We will soon see that this is a general fact; we can construct optimal sets
for problem SV

ε (Ω) using the super-level sets of the Green’s function in Ω
and this is related with the remarkable fact that the rescaled potentials of
concentrating sets converges to the Green’s function.

4.1 The Green’s function and the Robin function

Let us recall the definition and the main properties of the Green’s function.
Assume Ω be a bounded set with regular boundary (e.g. satisfying the prop-
erty of the external ball or, more precisely, regular in the sense of Wiener).

Definition 9 The Green’s function Gx0
Ω (x) for the Dirichlet problem, with the

Laplace operator in the domain Ω and singularity x0, is the function satisfying

Gx0
Ω ∈ H1(Ω \Bρ(x0)) ∩W 1,p

0 (Ω) ∀ ρ > 0 and ∀ p <
n

n− 1

and it is a solution in the sense of distribution of the following problem
{
−∆Gx0

Ω = δx0 in Ω

Gx0
Ω = 0 on ∂Ω.

(37)

The Green’s function depends on Ω through its regular part. Actually we
can rewrite it as

Gx0
Ω (x) = K(|x− x0|)−HΩ(x0, x) , (38)

where K(| ·−x0|) is the fundamental solution and HΩ(x0, ·), the regular part,
is the solution in the sense of H1 of the following Dirichlet problem

{
−∆HΩ(x0, ·) = 0 in Ω

Gx0
Ω (x) = K(|x− x0|) if x ∈ ∂Ω.

(39)
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In order to make the ansatz suggested by Example 2 more precise let us
fix x0 ∈ Ω and let us consider the set Aε = {Gx0

Ω > ε−2}. First we compute
cap(Aε, Ω). Since Gx0

Ω is harmonic in Ω \ {x0} and it is zero on the boundary
of Ω, the potential uε of Aε is given by

uε = ε2
(
Gx0

Ω ∧ ε−2
)
∈W 1,∞

0 (Ω) .

Then

cap(Aε, Ω) =
∫

Ω

|∇uε|2dx = ε4

∫

Ω\Aε

|∇Gx0
Ω |2dx

= ε4

∫

Ω

∇Gx0
Ω ∇(Gx0

Ω ∧ ε−2) dx = ε2 ;

i.e., Aε is a good competitor for problem SV
ε (Ω). Let us see now heuristically

how the volume of the set Aε depends on x0. Note that Aε = {y ∈ Ω :
K(|x0 − y|) − HΩ(x0, y) > ε−2} is contained in a small ball centered in x0.
Indeed HΩ(x0, ·) is harmonic, and hence bounded, and K(|x0 − ·|) is radial
around x0. Moreover, by the uniform continuity of HΩ(x0, ·) we get that

HΩ(x0, y) = HΩ(x0, x0) + o(1) as |x0 − y| → 0 . (40)

Then we can rewrite

Aε =
{
γn|x0 − y|2−n > ε−2 + H(x0, y)

}

=

{
|x0 − y| <

[
γn

ε−2 + H(x0, y)

] 1
n−2
}

=

{
|x0 − y| < ε

2
n−2

[
γn

1 + ε2(H(x0, x0) + o(1))

] 1
n−2
}

.

This, recalling that SV = ωnγ
n

n−2
n , implies that

|Aε| = SV ε2∗
[

1
1 + ε2H(x0, x0) + o(ε2)

] n
n−2

= SV ε2∗
[
1− n

n− 2
ε2H(x0, x0) + o(ε2)

]
.

Remark 12. In the computation above, the quantity which determines the
volume of Aε, when x0 varies in Ω is the regular part of the Green’s function,
more precisely HΩ(x0, x0).
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Definition 10 The diagonal of the regular part of the Green’s function is
called the Robin function of Ω; i.e.,

τΩ(x) := HΩ(x, x) .

We call the harmonic radius of Ω at x, the positive number ρΩ(x) such that

K(ρΩ(x)) = τΩ(x) .

The points of Ω where τ(x) attains its minimum (the maxima for ρΩ(x)) are
called the harmonic centers of Ω.

Remark 13. The computation that we did before shows that among all the
super-level sets of the Green’s function, with given capacity, the biggest are
those corresponding to the singularity in the harmonic centers of Ω; and hence
which concentrates at this points.

In the case of a ball BR = BR(0) the Robin function and the harmonic
radius can be computed explicitly and they are given by

τBR
(x) = γn

∣∣∣∣R−
|x|2
R

∣∣∣∣
2−n

and ρBR
(x) = R− |x|

2

R
.

Hence τBR
attains its minimum at the origin and tends to infinity when x

approaches the boundary.
Note that in general the harmonic radius of a domain Ω at a point x is

the radius of the ball whose corresponding Robin function evaluated at the
origin agrees with τΩ(x).

Remark 14.

1. In general, if the boundary of Ω is regular then the Robin function τΩ(x)
tends to infinity as x approaches the boundary. Indeed in this case the
regular part of the Green’s function, HΩ(x, ·), attains the boundary con-
dition continuously. We will see that we can extend all these notions to
the case of general domains (possibly irregular) and that in some cases
this property may be false.

2. In the case of the ball the harmonic center is unique and coincides with
the center of the ball. It has been proved by Cardaliaguet and Tahraoni
[6] that for any bounded convex domain there exists only one harmonic
center.

3. The role of the Green’s function for similar problems involving the criti-
cal Sobolev exponent was first conjectured by Brezis and Pelletier [5]. In
particular the conjecture says that the solutions of the following problem

⎧
⎪⎨

⎪⎩

−∆u = up−1 in Ω

u = 0 on ∂Ω

u > 0 in Ω ,

(41)
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with p < 2∗, concentrate at critical points of the Robin function of Ω as
p→ 2∗. Namely the points xp where a solution up of problem (41) attains
the maximum, converge to a critical point of τΩ(x). This conjecture has
been then proved by Rey [22] and Han [18] independently. Later, Flucher
and Wei [15] proved that the variational solutions; i.e., the maximizers of

Sp(Ω) = sup

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

Ω

|u|pdx
(∫

Ω

|∇u|2dx
) p

2
: u ∈ H1

0 (Ω) u �= 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

concentrate at the harmonic center of Ω.

In view of the example of the capacity, we expect for our general variational
problem SF

ε (Ω) a result similar to that described in Remark 14 (3).
We know that for any maximizing sequence uε, namely Fε(uε) = SF

ε (Ω)+
o(1), there exist a subsequence (still denoted by uε) and a point x0 ∈ Ω such
that uε concentrates at x0. On the other hand for any x0 ∈ Ω we can construct
a maximizing sequence which concentrates at x0.

Now the question is the following: if we look at maximizing sequences
which converge faster, is the concentration point determined by the shape
of the domain Ω? This problem has been considered in [11] by means of an
asymptotic expansion of the energy. The same result can be stated in terms
of Γ+-convergence (see [2]). In the latter approach a way to select among
maximizing sequences is to consider a first order expansion in Γ+-convergence
(a sort of Taylor expansion in Γ+-convergence).

4.2 Asymptotic expansion in Γ+-convergence

Assume that a sequence of functionals Fε, defined in a metric space X, Γ+-
converges with respect to the topology τ to some functional F : X → R.
Suppose now that, following an ansatz, we know that

sup
X
Fε = max

X
F + O(λε)

for some λε = o(1). We then consider the following functional

F1
ε (x) =

Fε −max
X
F

λε
.

If the Γ+-limit F1 of F1
ε exists, then it clearly will be finite at most on the

maxima of F . Furthermore under the usual compactness condition for the
topology, we deduce that

lim
ε→0

sup
X
F1

ε = lim
ε→0

sup
X
Fε −max

X
F

λε
= max

X
F1 , (42)
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which gives an asymptotic expansion for the suprema of Fε; i.e.,

sup
X
Fε = max

X
F + λε max

X
F1 + o(λε) . (43)

In addition we have that any maximizing sequence xε for F1
ε ; i.e., such that

F1
ε (xε) = sup

X
F1

ε + o(1) ,

converges, up to a subsequence, to a maximum of F1. In particular such a
maximizing sequence will also satisfy

Fε(xε) = sup
X
Fε + o(λε) . (44)

In this sense the first order Γ+-limit selects, among all maximizing sequences
for Fε, those which converge faster.

4.3 The result

In our case the scaling suggested by the computation for the super-level set of
the Green’s function is λε = ε2. Thus our next goal is to compute the Γ+-limit
of the following functionals

F1
ε (u, µ) =

Fε(u, µ)− SF

ε2
. (45)

In order to obtain a non trivial limit for F1
ε we have to assume an additional

condition. Indeed we cannot aspect in general a precise rate of convergence
of maximizing sequences. For instance in the critical case F (t) = |t|2∗

, we
may have optimal sequences converging to S∗ with any rate. We then need an
assumption which forbids this scaling invariance effect. As we already briefly
mentioned a sufficient condition is given by

SF > max{F0, F∞}S∗ . (46)

Under this condition we know that there exists a ground state w for SF . The
qualitative behaviour of such a solution has been stated by Flucher and Müller
in [12]. Among other things they prove that there exists a point x0 ∈ Rn and a
ball BR0(x0) such that w is radial around x0 outside this ball. More precisely
they find a constant W∞ such that

w(x) = W∞K(|x− x0|)(1 + o(r−2)) ∀x : r = |x− x0| ≥ R0; (47)

in other words w is asymptotically proportional to the fundamental solution.
The constant W∞ is given by

W 2
∞ =

2(n− 1)
nSF

∫

Rn

F (w(x))
K(|x|) dx.
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Set now w∞ > 0 such that

w2
∞ :=

2(n− 1)
nSF

inf
{

lim inf
k→∞

∫

Rn

F (wk(x))
K(|x|) dx

}
, (48)

where the infimum is taken among radial maximizing sequences for SF . By
using the concentration compactness principle it is shown in [11] that condition
(46) implies

0 < w∞ < +∞ . (49)

We now are ready to state the theorem on the identification of the con-
centration point in terms of Γ+-convergence.

Theorem 11 ([11] and [2]) Under condition (46) we have that there exists
the Γ+-limit F1 of F1

ε defined by (45) in the space X(Ω) = H1
0 (Ω)×M(Ω)

and it is given by

F1(u, µ) =

⎧
⎪⎪⎨

⎪⎪⎩

− n

n− 2
SF w∞ τΩ(x0) if (u, µ) = (0, δx0)

−∞ otherwise.

As a consequence of this Γ+-convergence result we can deduce the result
of concentration for sequences of almost maximizers; i.e., satisfying

ε−2∗
∫

Ω

F (εuε) dx = SF
ε (Ω) + o(ε2) . (50)

Theorem 12 Under condition (46), all sequences of almost maximizers, in
the sense of (50), up to a subsequence, concentrate at a harmonic center of
Ω.

Proof. Theorem 11 implies that the sequence uε, being a maximizing sequence
for F1

ε , up to a subsequence, must concentrate at a point x0 ∈ Ω which satisfies

F1(0, δx0) = max
X(Ω)

F1(u, µ) ,

and this implies that τΩ(x0) = minΩ τΩ ; hence we deduce the concentration
at a harmonic center of Ω.

In order to obtain the result above, condition (46) can be relaxed assum-
ing directly condition (49). More details about the importance of condition
(49) can be found in [11]. Here we will consider in detail only the proof of
Theorem 11 in the case of the Volume problem in (14). In this case we already
saw that the solution for SV is given by

w(x) = K(|x|) ∧ 1 ,

and hence w∞ = 1.
In the following we will prove Theorem 11 in the capacity case. Namely

we will prove
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(i) (Existence of the recovery sequence) For every x0 ∈ Ω there exists a
sequence of sets Aε which concentrates at x0 such that cap(Aε, Ω) = ε2

and

lim inf
ε→0

ε−2∗ |Aε| − SV

ε2
≥ −SV n

n− 2
τΩ(x0)

(ii) (Γ+-limsup inequality) For every sequence of sets Aε which concentrates
at some x0 and satisfies cap(Aε, Ω) ≤ ε2, we have

lim sup
ε→0

ε−2∗ |Aε| − SV

ε2
≤ −SV n

n− 2
τΩ(x0) .

Here with concentration of the sets Aε at x0, we mean

|∇uε|2
ε2

∗
⇀ δx0 ,

where uε denotes the capacitary potential of Aε, or equivalently the pair
(uε/ε, |∇uε|2/ε2) converges to (0, δx0) in the topology of X(Ω).

Proof (i). The existence of the recovery sequence essentially has been already
proved when we computed the volume of the super-level sets of the Green’s
function. Thus the recovery sequence is given by Aε = {Gx0

Ω > ε−2} and we
have

|Aε| ≥ ε2∗
SV

(
1− n

n− 2
τΩ(x0)ε2 + o(ε2)

)
.

The proof of the Γ+-limsup inequality is based on an asymptotic formula
for the capacity of the small sets. The crucial lemma is the following.

Lemma 13 Let x0 ∈ Ω and let Aε be a sequence of subsets of Ω, with |Aε| >
0, such that

|∇uε|2
cap(Aε, Ω)

∗
⇀ δx0 ,

where uε is the corresponding capacitary potential, then

lim inf
ε→0

1
cap(A∗

ε,Rn)
+

1
cap(Aε, Ω)

≥ τΩ(x0) . (51)

Remark 15. The assumption of concentration for the sets Aε given in the
lemma above can be given in the following weaker form

χAε

|Aε|
∗
⇀ δx0

(which is actually what we need for the proof of the theorem in the general
case).

A complete proof of Lemma 13 can be found in [11], Lemma 16. Let us see
now how we obtain the proof of the Γ+-limsup inequality using the lemma.
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Proof. (ii) Without loss of generality we may assume that Aε satisfies

lim sup
ε→0

cap(Aε, Ω)
ε2

= 1 .

Otherwise the sequence Aε will not be a maximizing sequence and the Γ+-
limsup would be trivially satisfied. Then we can apply Lemma 13. By sym-
metrization we have

|A∗
ε| = |Bρε

| = |Aε| with ρε =
(
|Aε|
ωn

) 1
n

and hence

cap(A∗
ε,R

n) =
1

K(ρε)
=

1
γn

(
|Aε|
ωn

)n−2
n

=
(
|Aε|
SV

)n−2
n

.

Thus Lemma 13 implies

(
SV

|Aε|

)n−2
n

− 1
ε2
≥ τΩ(x0) + o(1) .

Then

|Aε|
ε2∗ ≤

SV

[1 + (τΩ(x0) + o(1))ε2]
n

n−2
= SV

(
1− n

n− 2
(τΩ(x0) + o(1))ε2

)
,

which gives the Γ+-limisup inequality.

In the proof of the identification of concentration points for the case of the
Volume Functional, Lemma 13 plays a crucial role. It measures the contribu-
tion of the boundary of Ω in the computation of the capacity with respect to
Ω. We will not give the proof of Theorem 11 in the general case. The proof
of the Γ+-limsup inequality uses similar ideas, but it requires a fine analysis
of the asymptotic behaviour of a maximizing sequence and the corresponding
super-level sets. We just give a few hints for the construction of the recovery
sequence for the general case. This indeed gives us the occasion to recall a re-
arrangement technique which is one of the main tools to get lower bounds for
this kind of problems. This is the classical technique of harmonic transplan-
tation. Introduced by Hersch in ’69 ([20]) it provides information somehow
complementary to the information obtained by radial rearrangement.

4.4 Harmonic transplantation

Definition 14 Denote by G0
B the Green’s function of the ball B = BR(0)

with singularity at 0. Given an arbitrary radial function



Γ -convergence for concentration problems 261

U : BR(0)→ R

we can write it as
U = ϕ ◦G0

B ,

for a suitable real function ϕ. Now fix x0 ∈ Ω. The harmonic transplantation
of U from (BR(0), 0) to (Ω, x0) is the function

u = ϕ ◦Gx0
Ω : Ω → R .

Theorem 15 The harmonic transplantation u of U from (BR(0), 0) to (Ω, x0)
satisfies

1. The Dirichlet integral is preserved; i.e.,
∫

Ω

|∇u|2dx =
∫

BR(0)

|∇U |2dx ;

2. If R = ρ(x0) is the harmonic radius of x0 in Ω, then
∫

Ω

F (u) dx ≥
∫

BR(0)

F (U) dx

for every non-negative function F ;
3. If Uε is a sequence of radial functions, with Uε = ϕε ◦G0

B, which concen-
trate at 0 in the sense that |∇Uε|2 ∗

⇀ δ0, then the corresponding harmonic
transplantation uε = ϕ ◦ Gx0

Ω from (BR, 0) to (Ω, x0) are concentrates at
x0.

Proof. Part 1 is a consequence of the co-area formula. Indeed, by using Gx0
Ω ∧t

as test function in problem (37) and integrating by parts, it can be easily seen
that ∫

{G
x0
Ω

=t}
|∇Gx0

Ω | dHn−1 = 1 ∀ t > 0 ∀ Ω .

Then, using the level sets of the Green’s function and recalling that u = ϕ◦Gx0
Ω

and U = ϕ ◦G0
B , we can write

∫

Ω

|∇u|2dx =
∫

Ω

|ϕ′(Gx0
Ω )|2|∇Gx0

Ω |2dx

=
∫ +∞

0

|ϕ′(t)|2
∫

{G
x0
Ω

=t}
|∇Gx0

Ω | dHn−1 dt =
∫ +∞

0

|ϕ′(t)|2dt ,

independently of Ω.
Part 2 is a consequence of the following Mean Value Inequality: Fix x0 ∈

Rn, t > 0 and ρ > 0; then among all Ω such that x0 ∈ Ω and ρ = ρΩ(x0) the
following quantity ∫

∂{G
x0
Ω

>t}

1
|∇Gx0

Ω |
dx
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is minimal for Ω = Bρ(x0). This fact can be proved using the isoperimetric
inequality on the level sets of the Green’s’ function and the properties of the
harmonic radius (see [3] for a detailed proof). Using this result we then have

∫

Ω

F (u) dx =
∫ +∞

0

F (ϕ(t))
∫

∂{G
x0
Ω

>t}

1
|∇Gx0

Ω |
dx dt ≥

∫

Bρ(x0)

F (u) dx.

As we said harmonic transplantation is the basic tool in order to construct
a recovery sequence in the general case. To understand how to make use of
this tool, let us briefly show the main lines in the construction. Suppose that
we are able to construct a recovery sequence in the special case Ω = BR(0)
with concentration at the center; namely suppose that we have a sequence
Uε : BR(0) → R of radial functions which concentrates at the origin, with∫

BR
|∇Uε|2dx = 1 and satisfying

lim inf
ε→0

ε−2∗
∫

BR(0)

F (εUε) dx− SF

ε2
≥ − n

n− 2
w∞τBR

(0) . (52)

Now given Ω ⊆ Rn, x0 ∈ Ω and fix R = ρΩ(x0) the harmonic radius of Ω
at x0, by harmonic transplantation we get a sequence uε : Ω → R, which
concentrates at x0, such that

∫

Ω

|∇uε|2dx = 1,

and from the form of the Robin function for a ball, the definition of the
harmonic radius and (52) satisfies

lim inf
ε→0

ε−2∗
∫

Ω

F (εuε) dx− SF

ε2
≥ lim inf

ε→0

ε−2∗
∫

BR(0)

F (εUε) dx− SF

ε2

≥ − n

n− 2
w∞τBR

(0)

= − n

n− 2
w∞K(ρ(x0))

= − n

n− 2
w∞τΩ(x0) ;

hence (uε, |∇uε|2) is a recovery sequence for (0, δx0).

Remark 16. The case Ω = BR(0), with concentration in the center can be done
by hand, taking into account that the solution w for SF is radial and behaves
as the fundamental solution at ∞. Then one can construct Uε truncating w
and scaling it (see [11] for details).
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5 Irregular domains

In this last section we will briefly consider the case of domains Ω with possibly
irregular boundary. In order to deal with this case we should be able to define
the Robin function and the harmonic radius up to the boundary for possibly
irregular domains. Indeed if the domain is irregular in general one can not
aspect the harmonic center being attained at an interior point (see Example 3).

With the following example we exhibit a domain whose harmonic center
is at the boundary.

Example 3. Let Ω0 = B1(0) and let τΩ0 be the corresponding Robin func-
tion. The harmonic center for Ω0 is 0 and τΩ0 is strictly convex. The idea
is to construct two symmetric sequences of small balls centered in the points
( 1
2n , 0, . . . , 0) and (− 1

2n , 0, . . . , 0) respectively with radii which go to zero, in a
way that the set obtained from Ω0 by subtracting a finite number of symmetric
pairs of balls has its unique harmonic center in the origin.

Fig. 1. The set Ωn = Ω0 \ (∪n
i=1(Bρi(x

+
i ) ∪ Bρi(x

−
i )))

Let us denote by x±
n = (± 1

2n , 0, . . . , 0), n ∈ IN and let ε1 > 0 be such that
0 < ε1 < minΩ0\B 1

4
(0)τΩ0 − minB 1

4
(0)τΩ0 . Fix 0 < α < 1/2, let ρ1 > 0 and

denote Ω1 = Ω0 \ (Bρ1(x
+
1 )∪Bρ1(x

−
1 )). It is easy to check that τΩ1 converges

uniformly to τΩ0 , as ρ1 tends to zero, in Ω0 \ (Bρα
1
(x+

1 ) ∪ Bρα
1
(x−

1 )) and the
same is true for the derivatives. Thus we can choose ρ1 small enough such that
τΩ1 is strictly convex on Ω0 \ (Bρα

1
(x+

1 ) ∪ Bρα
1
(x−

1 )), Bρα
1
(x±

1 ) ∩ B 1
4
(x±

1 ) = ∅
and we have

τΩ0(x) ≤ τΩ1(x) ≤ τΩ0(x) +
ε1

2
∀ x ∈ Ω0 \ (Bρ1(x

+
1 ) ∪Bρ1(x

−
1 )) .

This implies that the harmonic center of Ω1 is unique, and arguing by sym-
metry, we conclude that it is in the origin.

By induction we can construct a sequences {ρn}, such that the sets Ωn =
Ω0 \ (∪n

i=1(Bρi
(x+

i ) ∪Bρi
(x−

i ))) have a unique harmonic center at the origin.
In particular dist(0, ∂Ωn)→ 0 as n→∞.
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Question: what happens in domains with irregular boundary? Can we still
prove a concentration result like Theorem 4.3?

Note that all the techniques we used in the previous section make use of
the fact that the concentration point is an interior point for Ω. Nevertheless
the answer to the second question is yes, in order to state and prove the con-
centration result we need a good definition of the Robin function for irregular
domains up to the boundary. This can be done in three steps.
Step 1. For any x0 ∈ Ω we can define the regular part of the Green’s function
HΩ(x0, ·) as the solution in the sense of Perron-Wiener-Brelot of the following
Dirichlet problem

⎧
⎪⎨

⎪⎩

∆yHΩ(x0, y) = 0 in Ω,

HΩ(x0, y) = K(|x0 − y|) on ∂Ω;
(53)

i.e., HΩ(x0, ·) is the infimum of all superharmonic functions u such that

lim inf
z→y

z∈Ω

u(z) ≥ K(|x0 − y|)

for every y ∈ ∂Ω (see [19]). Note that K(|x0 − ·|) is an admissible boundary
condition in order to get a unique solution for problem (53).
Step 2. We may extend H(x0, ·) to the boundary of Ω as follows

H̃Ω(x0, y0) = lim inf
y→y0
y∈Ω

H(x0, y) .

Step 3. We now can define the Robin function up to the boundary as

τΩ(x0) = H̃Ω(x0, x0) .

With the definition above of τΩ we can state and prove Theorem 4.3 for
any domain, possibly irregular.

Remark 17. One could be tempted to define the Robin function up to the
boundary simply taking the lower semi-continuous extension of τΩ(x) =
HΩ(x, x) with x ∈ Ω. In dimension n ≥ 5 one can construct an example
which shows that the two procedures do not give the same function; i.e., the
Robin function defined by Step 3 can be strictly smaller at the boundary than
its lower semi-continuous extension from Ω.

The definition of τΩ permits also to show that it satisfies the following
properties.
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Proposition 16 a) τΩ is lower semi-continuous in Ω;
b) For any ρ > 0 and any x0 ∈ Ω we denote by τρ the Robin function corre-
sponding to the domain Ω ∪Bρ(x0). Then we have that τρ converges increas-
ingly to τΩ as ρ→ 0.

Remark 18. Note that property b) in the proposition above is essential to
extend the result to arbitrary domains. The idea is that it permits to consider
a boundary point of Ω as an interior point for a slightly perturbed domain
and hence use the same techniques used in the regular case. Indeed first it
can be shown that with this definition of τΩ , harmonic transplantation works
up to the boundary. Second, it permits to extend Lemma 13 for sets which
concentrates at points x0 of the boundary where τΩ(x0) < ∞. In fact the
lemma does not require regularity, but it require x0 to be an interior point.
Then it can be applied to the set Ω ∪Bρ(x0) and gives

lim inf
ε→0

1
cap(A∗

ε,Rn)
+

1
cap(Aε, Ω ∪Bρ(x0))

≥ τρ(x0) .

By the fact that cap(Aε, Ω ∪Bρ(x0)) < cap(Aε, Ω) and the previous proposi-
tion we get

lim inf
ε→0

1
cap(A∗

ε,Rn)
+

1
cap(Aε, Ω)

≥ τΩ(x0) .

Remark 19. Proposition 16 shows that τΩn
(x) constructed in Example 3 con-

verges to the Robin function τΩ∞(x) for the set

Ω∞ = Ω0 \ (∪∞i=1(Bρi
(x+

i ) ∪Bρi
(x−

i ))) ,

for every x ∈ Ω∞. In particular, since {τΩn
} is an increasing sequence, 0 is

the harmonic center of Ω∞ and by construction belongs to the boundary of
Ω∞.
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