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Theory and Principles of Operation
of Nanophotonic Functional Devices

S. Sangu, K. Kobayashi, A. Shojiguchi, T. Kawazoe, and M. Ohtsu

1 Introduction

1.1 Nanophotonics for Functional Devices

In response of the need for increased and faster information processing in
the near future, miniaturization of optical devices has progressed [1] to the
point that it has now almost reached the critical limit determined by the dif-
fraction of conventional propagating light [2,3]. Since 1990s, researchers have
anticipated that optical near-field devices may be one of the first important
technologies to overcome this limit; many studies have been performed in var-
ious fields such as fundamental physics in nanometric space, optical near-field
microscopy and spectroscopy, optical measurement, bioimaging, nanofabrica-
tion, and nanophotonic device architecture [4]. An optical near field is the
characteristic localized electromagnetic field around a nanometric object, and
its decay length, which is smaller than the wavelength of incident light, de-
pends on the size of the object. This size dependence means that optical near
fields cannot be separated from matter excitation; in nanometrics pace, the
incident electromagnetic field is modified by matter excitation in an object,
and the modified field also affects the object itself and another neighboring one
before releasing the energy as far-field photons. This nanometric light–matter
interaction must describe as a self-consistent field. The goal is to create nano-
metric functional devices that are free from light diffraction limits, in which
such optical near fields act as information carrier and control signals. These
devices are termed nanophotonic devices. The localization feature of nanopho-
tonic devices seems to resemble electronic devices in which an electric charge
always stays within the device, but in a nanophotonic device, the localized
field is able to leave an object and release photons in the far field via opti-
cal near-field interaction among several nanometric objects [5]. An important
component of nanophotonic devices and nanophotonic device operations is
dealing with light–matter interaction with a nanometric system, as well as dis-
sipation of matter excitation energy toward the outer field. Since the signal is
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eventually detected as far-field light, nanometric light–matter interaction also
needs to control the dissipation process. Hence, the inherent operation of a
nanophotonic device in nanophotonics differs from conventional optical and
electronic devices.

The advantages of nanophotonic devices include not only miniaturization
but also possibilities for novel principles of functional operations that are in-
herent to nanophotonics. As mentioned above, the physics of nanophotonic
devices includes typical matter excited states due to optical near-field interac-
tion, coupling between near- and far-field light, and coupling between matter
excitation and phonons. Many of these characteristics have not been consid-
ered in conventional optics; the structures within nanophotonic devices may
differ from those of conventional devices, since basic principles utilized differ
and nanophotonic devices can accomplish functions that have not been possi-
ble to date. It is important to consider how these devices should be designed,
and to learn how nanophotonic devices can coexist with other devices.

In this chapter, our discussion focuses on how to use the features inherent
to nanophotonics in functional device operations, what is possible, and how we
can realize the possibilities. Section 1.2 explains some characteristic features
of nanophotonics and provides a basic outline of nanophotonic devices.

1.2 Inherent Features to Nanophotonics

In general, the following features are indispensable to a functional device:
preparation of appropriate input states, propagation of a signal, and control
of the signal. Nanophotonics has characteristic features for all of these, none
of which are observed in far-field light. This section explains features inherent
to nanophotonics: a locally excited state that cannot be created using far-field
light, unidirectional energy transfer, and a dependence on excitation number
in which coupling between discrete energy levels and the optical near field
plays an important role. These are all key features for nanophotonic device
operations.

Locally Excited States

First, we will explain the difference between matter excitation of nanometric
objects using far- and near-field light. Figure 1a illustrates nanometric ob-
jects being irradiated by far-field light. Since objects located in an area much
smaller than the wavelength of the light are simultaneously excited by a uni-
form field, it is neither possible to examine the state of matter excitation in
each object independently nor does the detected far-field light provide any
information about the state of excitement in each object. Optical near-field
excitation can be accomplished by setting an optical near-field probe, such as
a nanometric metallic aperture, an optical fiber probe, and a single molecule.
This allows selective irradiation of individual object, and a locally excited
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Fig. 2. Identical two two-level systems which are coupled via optical near-field
interaction

state can be created because of the localized light around the probe. The ex-
cited object creates a secondary electromagnetic field that affects neighboring
fields via the optical near field, and consistently determining excited states
in the system using optical near-field interaction. Figure 1b shows schemat-
ics of optical near-field excitation. This asymmetric excitation also influences
far-field light which can be detected as an information signal.

The following describes these excited states as algebraic expressions. For
simplicity, the discussion is restricted to the coupling of two two-level systems
of excitons (see Fig. 2). For far-field excitation, nanometric objects are uni-
formly excited; a one-exciton state, in which an exciton exists in the system,
can thus be written as

|1〉s = (|e〉A|g〉B + |g〉A|e〉B)/
√

2 , (1)

where |e〉i and |g〉i represent exciton state and crystal ground state, respec-
tively. Subscripts, i = A and B, label two nanometric objects, and the meaning
of subscript s will be explained later. Equation (1) means that an exciton in
an isolated system cannot be distinguished because the exciton exists in both
object A and object B with equivalent probabilities.

On the other hand, as mentioned above, an optical near field allows an
exciton to be created in an individual object. The exciton prepared in this
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system leaves and returns between the two two-level systems for a period
depending on the strength of optical near-field coupling, referred to as near-
field optical nutation [6,7]. However, if the pumping time is much shorter than
the period of near-field optical nutation, locally excited states can be created
in this system. Such locally excited states with an exciton in the system can
be expressed by a linear combination of coupled states that extends between
two objects, as follows:

|e〉A|g〉B = (|1〉s + |1〉a)/
√

2 , (2)

|g〉A|e〉B = (|1〉s − |1〉a)/
√

2 . (3)

The right-hand terms in (2) and (3) described states coupled via an optical
near field, where the subscripts s and a refer to symmetric and anti-symmetric
states, respectively. It is clear that in the optical near-field excitation, there are
two coupled states while far-field light excites only the symmetric state. Note
that we did not show the anti-symmetric state in (1), since the state is optically
inactive for far-field light. This can be verified using the following relation:
a〈1|Ĥint|g〉 = 0, where |g〉 = |g〉A|g〉B and the interaction Hamiltonian refers
to (5). Locally excited states are quite important for functional operations in
our proposed nanophotonic devices, which are discussed in Sects. 3 and 4.

Unidirectional Energy Transfer

For functional device operations to manipulate information carriers, an exci-
tation or carrier must transfer unidirectionally from the input to the output
terminals. In conventional optical devices, a unidirectional energy transfer
can be accomplished by using an optical isolator, which generally uses polar-
ization to block reflected light. Unless polarization is used, the size of optical
devices is restricted by light wavelength. In electronic devices, a unidirectional
signal transfer is easily attained since electrons flow along an electrical poten-
tial. However, as electronic devices become smaller and quantum mechanical
effects arise, electrical signals are affected by noise because of universal quan-
tum fluctuations. In a nanophotonic device, signal isolation using light wave
characteristics is impossible because of the light diffraction limit, and a sig-
nal carrier is composed of electrically neutral quasi-particles of electrons and
holes. Thus, a static electrical potential cannot be used to drive them. How-
ever, unidirectional exciton energy transfer can be effectively realized using
a relaxation process among quantum discrete energy levels [8]. Figure 3 is
a schematic image of energy transfer via an optical near field in a system
that consists of two nanometric objects with two- and three-energy levels. As
mentioned in “Locally Excited States,” optical near-field coupling causes a
coherently coupled excited state between the E1-level in the two-level system
and the E2-level in the three-level system, which strengthens when both en-
ergies are equal. If excitation can be dropped into the lower E1-level in the
three-level system before the radiative lifetime of E1-level in the two-level sys-
tem (∼1 ns), excitation is confined to the energy level due to off-resonance,
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Fig. 3. Energy transfer between two-level and three-level systems. E2-level in the
three-level system is dipole inactive, and thus, the unidirectional energy transfer is
achieved only by mediating an optical near field

and irreversibility in the nanometric system is guaranteed except for radiation
from the energy level. Section 2 provides a detailed discussion about optical
near-field coupling and energy transfer dynamics. In the three-level system,
the E2-level is generally dipole inactive for far-field light, and thus, unidirec-
tional energy transfer can achieved by mediating the optical near field.

Since external far- or near-field light can cause excitations in dipole active
levels: the E1-levels in the two-level and the three-level systems, energy trans-
fer in this system is controllable. A simple switching operation can be con-
structed using the state-filling nature of excitons excited by the external field.
In Sect. 3, a nanophotonic switch that uses energy transfer and state-filling is
proposed, and the dynamics of excitation are evaluated both analytically and
numerically.

Dependence of Excitation Number

Although symmetric and anti-symmetric states in (1)–(3) describe one-exciton
states, a quite interesting feature is evident in the two-exciton state in the sys-
tem shown in Fig. 2. The two-exciton state, in which two excitons completely
occupy both two-level systems, is algebraically written as

|2〉p = |e〉A|e〉B , (4)

where number 2 in the left-hand side refers to the two-exciton state. It is
valuable to investigate energies for all base states, |1〉s, |1〉a, and |2〉p. The
Hamiltonian for the two-level systems coupled via an optical near-field inter-
action is given by

Ĥ = Ĥ0 + Ĥint , (5)

Ĥ0 = h̄ΩÂ†Â + h̄ΩB̂†B̂ , (6)

Ĥint = h̄U(Â†B̂ + ÂB̂†) , (7)

where Ĥ0 and Ĥint represent the unperturbed and interaction Hamiltonian,
respectively. (Â†, Â) and (B̂†, B̂) are the fermionic creation and annihilation
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Fig. 4. Conceptual structure of nanophotonic devices, which consists of a quantum
mechanical part and a classical dissipative part. Quantum mechanical part builds
up characteristic excited states and classical dissipative part identifies certain states
and connects to outer detection systems

operators in the two-level systems A and B, respectively. Since the excitations
are assumed to be fermionic excitons, and the optical near-field coupling U is
considered a completely coherent process; this is explained in detail in Sect. 2.
Energies for states are given as follows:

s〈1|Ĥ|1〉s = h̄(Ω + U) , (8)

a〈1|Ĥ|1〉a = h̄(Ω − U) , (9)

p〈2|Ĥ|2〉p = 2h̄Ω . (10)

Equations (8) and (9) indicate that the energies of the coupled states, |1〉s and
|1〉a, depend on the strength of optical near-field coupling, U , and differences
in the energy from the two-level system have opposite contributions in each
state. In the two-exciton states in (10), energy apparently degenerates because
both systems are completely filled. These properties are useful for selective
energy transfer in nanophotonic devices; sequential logic operations can be
realized by using the excitation number dependence in this system.

Figure 4 schematically illustrates how the above selectivity represents a
concept that is fundamental to nanophotonic devices. In the device, quantum
mechanical and classical parts coexist; some characteristic excited states are
created in the quantum mechanical part, and in order to connect a signal
to an outer detection system, these states must then be selectively extracted
from quantum mechanical part to classical dissipative one. This process is
key to driving the nanophotonic device. Functional operations based on such
conceptual structures are discussed in Sect. 4.

2 Optical Near-Field Coupling

In this section, we give a full account of energy transfer between locally excited
states via an optical near field. From our theoretical treatment of optical near-
field coupling, the readers will understand why dipole-inactive energy transfer



Theory and Principles of Operation of Nanophotonic Functional Devices 7

for far-field light changes allowed transition in the case of the optical near
field. Concrete numerical results of coupling strength in a CuCl quantum-dot
system are also provided, where the coupling strength determines operation
speed of nanophotonic devices discussed in Sects. 3 and 4.

2.1 Theoretical Descriptions of an Optical Near Field

There are two ways to describe light–matter interaction theoretically; one is
to use the minimal coupling Hamiltonian p ·A [9], p being the electronic mo-
mentum and A the vector potential, and the other is to use the multipolar
QED Hamiltonian [10, 11] in the dipole approximation, µ · D, where µ and
D represent the electric dipole moment and electric displacement field, re-
spectively. The two descriptions of light–matter interaction are connected by
Power-Zienau–Woolley transformation [12], which is a unitary transformation
of the Coulomb-gauge Hamiltonian. Here, the multipolar QED Hamiltonian is
used because there are several advantages in the multipolar QED; first of all,
it does not contain any explicit intermolecular or interquantum-dot Coulomb
interactions in the interaction Hamiltonian and entire contribution to the fully
retarded result is from the exchange of transverse photons, while in the mini-
mal coupling, the intermolecular interactions arise both from the exchange of
transverse photons, which include static components, and from the instanta-
neous intermolecular electrostatic interactions [13]. Second, it clarifies physical
interpretation of the dipole inactive transition via the optical near field as we
will discuss later.

Since our purpose of discussions is to propose and investigate nanophotonic
solid devices, in the following, nanometric objects are assumed as quantum
dots with discrete energy levels. In order to explain an extremely important
feature in nanophotonics, internal electronic structures in a quantum dot
are regarded as a collection of local dipoles, which is convenient to express
the interactions between nanometric objects and an optical near field spa-
tially distributed in nanometric space. We can also depict a dipole in one-
body problem by using an effective mass approximation. Such theoretical
approach has already been published [14] where the enhancement of electric
quadrupole coupling was pointed out by assuming steep variation of elec-
tric field due to the optical near field. This phenomenon is equivalent to
our result of the dipole-inactive transition, but in our theoretical formula-
tion, in which field variation is caused by the coupling between the local
dipoles in the neighboring quantum-dot pair, it is easy to obtain a physical
interpretation.

In Sect. 2.2 interaction Hamiltonian is provided in the second-quantized
form in terms of electron basis functions satisfying the quantum-dot boundary
conditions, as well as transition dipole moments of excitons, and then, optical
near-field coupling is derived on the basis of the projection
operator method which is explained in Sect. 2.3.
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2.2 Excitation and Transition in a Quantum Dot

Interaction Hamiltonian

According to the dipole coupling in the multipolar QED Hamiltonian, the
interaction between photons and nanometric materials can be written as [11]

Ĥint = −
∫

ψ†(r)µ(r)ψ(r) · D̂(r)dr , (11)

where ψ†(r) and ψ(r) denote field operators for electron creation and annihi-
lation, respectively, and the dipole moment and the second-quantized electric
displacement vector at position r are expressed as µ(r) and D̂(r), respec-
tively. In a quantum dot, the electron field operators should be expanded in
terms of basis functions φνn(r) that satisfy the electron boundary conditions
in a quantum dot, that is analogy to those in bulk materials where the Bloch
functions satisfying periodic boundary condition are used. The field operators
are given by

ψ(r) =
∑

ν=c,v

∑
n

ĉνnφνn(r) , (12)

ψ†(r) =
∑

ν=c,v

∑
n

ĉ†νnφ∗
νn(r) , (13)

where ĉ†νn and ĉνn represent the creation and annihilation operators for the
electrons specified by (ν,n), respectively, and the indices ν = c, v denote the
conduction and valence bands. The discrete energy levels in the quantum dot
are labeled n. The basis functions satisfy the following completeness condition,
as well as orthonormalization:∑

ν=c,v

∑
n

φ∗
νn(r)φνn(r′) = δ(r − r′) . (14)

Simultaneously, we express the electric displacement vector D̂(r) using exciton–
polariton creation and annihilation operators (ξ̂†k, ξ̂k), where branch suffix of
the exciton–polariton is suppressed by taking only an upper branch. We con-
sider exciton–polaritons because a nanometric system in a near-field optical
environment is always surrounded by macroscopic materials, such as the sub-
strate, matrix, fiber probe, and so on. Previously [15,16], we proposed an effec-
tive interaction for such a nanometric system mediated by exciton–polaritons
that exists in mixed states between photons and macroscopic material exci-
tations instead of free photons. We showed that such a treatment provides a
good description of the characteristics of an optical near field [17]. Using this,
the electric displacement vector D̂(r) in (11) can be written as [18]

D̂(r) = i

√
2π
V

∑
k

2∑
λ=1

eλ(k)f(k)(ξ̂keik·r − ξ̂†ke−ik·r) (15)
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with

f(k) =
h̄ck√
E(k)

√
E2(k) − E2

m

2E2(k) − E2
m − h̄2c2k2

, (16)

where h̄, V , eλ(k), and k are the Dirac constant, the quantization volume,
the unit polarization vector, and the wavevector of the exciton–polaritons,
respectively. Here we assume eλ(k) as real. The speed of light in a vacuum is
c, and the exciton–polariton energy with a wavevector k and the macroscopic
material excitation energy are E(k) and Em, respectively. Substituting (12)
and (15) into (11) gives the interaction Hamiltonian in the second-quantized
representation as

Ĥint =
∑

νnν′n′kλ

(ĉ†νnĉν′n′ ξ̂kgνnν′n′kλ − ĉ†νnĉν′n′ ξ̂†kgνnν′n′−kλ) (17)

with

gνnν′n′kλ = −i

√
2π
V

f(k)
∫

φ∗
νn(r)(µ(r) · eλ(k))eik·rφν′n′(r)dr . (18)

Transition Matrix Element for Exciton States

In order to describe the creation and annihilation of excitons in a quantum
dot, it is convenient to use the Wannier representation in which electrons
are localized in an atomic site R. Then, the electron field operators can be
expanded using the Wannier functions wνR(r) instead of φνn(r)

ψ(r) =
∑

ν=c,v

∑
R

ĉνRwνR(r) , ψ†(r) =
∑

ν=c,v

∑
R

ĉ†νRw∗
νR(r) , (19)

where c†νR and cνR denote the creation and annihilation operators of electrons
at site R in the energy band ν. These operators in the Wannier representation
are written in terms of ĉνn and ĉ†νn in (12) as follows:

ĉνR =
∑

ν′=c,v

∑
n

ĉν′n

∫
w∗

νR(r)φν′n(r) dr , (20)

ĉ†νR =
∑

ν′=c,v

∑
n

ĉ†ν′n

∫
wνR(r)φ∗

ν′n(r) dr . (21)

When we assume excitons in the weak-confinement regime, i.e., an exciton
Bohr radius to be smaller than the quantum-dot size, the exciton states in a
quantum dot specified by the quantum number m and µ can be described by
superposition of the excitons in the Wannier representation as [19]

|Φmµ〉 =
∑
R,R′

Fm(RCM)ϕµ(β)ĉ†cR′ ĉvR|Φg〉

=
∑
R,R′

Fm(RCM)ϕµ(β)
∑
n,n′

hRnR′n′ ĉ†cnĉvn′ |Φg〉 , (22)
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where Fm(RCM) and ϕµ(β) denote the envelope functions for the center of
mass and relative motions of the excitons, respectively. These are RCM =
(meR

′ + mhR)/(me + mh) and β = R′ − R, where me and mh are the
effective masses of the electrons and holes. The overlap integrals hRnR′n′ are
defined as

hRnR′n′ =
∫∫

w∗
vR(r2)wcR′(r1)φ∗

cn(r1)φvn′(r2)dr1 dr2 . (23)

The sum of ν′ in (20) is determined automatically as ĉ†cn and ĉvn′ because
the valence band is fully occupied in the initial ground state |Φg〉. Using (17)
and (22), the transition matrix element from the exciton state to the ground
state is obtained as

〈Φg|Ĥint|Φmµ〉 =
∑

n1,n2

∑
R,R′

Fm(RCM)ϕµ(β)

×
∑

k

2∑
λ=1

(ξ̂kgvn1cn2kλ − ξ̂†kgvn1cn2−kλ)hRn2R′n1
, (24)

where we use the following relation:

〈Φg|ĉ†vn1
ĉcn2 ĉ

†
cn3

ĉvn4 |Φg〉 = δn1,n4δn2,n3 . (25)

In addition, with the help of the completeness and orthonormalization of
φνn(r) [see (14)], we can simplify the product of g and h as∑
n1,n2

gvn1cn2kλhRn2R′n1 = −i

√
2π
V

f(k)
∫

w∗
vR(r)µ(r)wcR′(r) · eλ(k)eik·rdr

≈ −i

√
2π
V

f(k)(µcv · eλ(k))eik·RδR,R′ , (26)

where the transformation of the spatial integral in the first line of (26) into
the sum of the unit cells and the spatial localization of the Wannier functions
provides δR,R′ in the second line. The transition dipole moment for each unit
cell is defined as

µcv =
∫

UC

w∗
vR(r)µ(r)wcR(r)dr . (27)

We assume that the transition dipole moment is the same as that of the bulk
material, independent of the site R, and that the electric displacement vector
is uniform at each site. Finally, (24) is reduced to

〈Φg|Ĥint|Φmµ〉 = −i

√
2π
V

∑
R

∑
k

2∑
λ=1

f(k)(µcv · eλ(k))Fm(R)ϕµ(0)

×
(
ξ̂keik·R − ξ̂†ke−ik·R

)
. (28)

Here, we note that the exciton–polariton field expanded by the plane wave
with the wavevector k depends on the site R in the quantum dot because we do
not apply the long wave approximation that is usually used for far-field light.
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2.3 Optical Near-Field Coupling Between Quantum Dots

Formulation

Until now, we have derived the transition matrix element from the exci-
ton state to the ground state in a quantum dot. Considering operations of
nanophotonic devices, signal carrier corresponds to the energy transfer be-
tween nanometric objects, or quantum dots, which are electronically sepa-
rated, and the speed of the energy transfer is determined by the coupling
strength of an optical near field. In this stage, we derive the coupling strength

h̄U = 〈Ψf |Ĥint|Ψi〉 , (29)

where |Ψi〉 and |Ψf〉 represent exact initial and final states, respectively, in
which the states consist of quantum-dot states, photon fields, and some ex-
ternal degrees of freedom, such as a substrate and a glass fiber probe. Since
the exact states cannot be given rigorously, we deal with the problem for tak-
ing the minimum matter and photon states by using the projection operator
method, where the theoretical treatment in such complex system comes down
to two-body problem as we have reported in detail [16, 20].

We can rewrite the exact eigenstate as two substates which belong in
a relevant P-space and an irrelevant Q-space, which are expressed by using
projection operators P and Q as |ΨP

λ 〉 = P |Ψλ〉 and |ΨQ
λ 〉 = Q|Ψλ〉, respec-

tively, where λ = i, f. Here, P and Q are specified by the following relations:
P + Q = 1, P 2 = P , Q2 = Q, P † = P , and Q† = Q [21]. In the case of two-
quantum-dot system, P-space is constructed from the eigenstates of Ĥ0, i.e.,
a combination of the two energy levels for each quantum dot and the exciton–
polariton vacuum state. In Q-space, which is complementary to P-space, the
exciton–polariton states are not vacant. According to this notation, the exact
state can be formally expressed by using the state in P-space only as

|Ψλ〉 = ĴP (P Ĵ†ĴP )−1/2|ΨP
λ 〉 , (30)

where

Ĵ =
[
1 − (Eλ − Ĥ0)−1QĤint

]−1

, (31)

and Eλ represents the eigenenergy of the total Hamiltonian Ĥ. Using (30),
we can obtain the effective interaction Ĥeff as

〈Ψf |Ĥint|Ψi〉 = 〈ΨP
f |Ĥeff |ΨP

i 〉 , (32)

where
Ĥeff = (P Ĵ†ĴP )−1/2(P Ĵ†ĤintĴP )(P Ĵ†ĴP )−1/2 . (33)

To evaluate further (32), we approximate operator Ĵ and eigenvalue Eλ per-
turbativelly with respect to Ĥint; that is, Ĵ = 1 + (EP

0 − EQ
0 )−1Ĥint + · · ·.

Since the lowest order is 〈ΨP
f |PĤintP |ΨP

i 〉 = 0, (32) is rewritten within the
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second order as

h̄U =
∑
m

〈
ΨP

f |Ĥint|mQ
〉 〈

mQ|Ĥint|ΨP
i

〉 (
1

EP
0i − EQ

0m

+
1

EP
0f − EQ

0m

)
, (34)

where EP
0i , EP

0f , and EQ
0m represent the eigenenergies of the unperturbed

Hamiltonian for the initial and final states in P-space and the intermediate
state in Q-space, respectively. Since we focus on the interdot interaction of
(34), we set the initial and final states in P-space to |ΨP

i 〉 = |ΦA
mµ〉|ΦB

g 〉|0〉 and
|ΨP

f 〉 = |ΦA
g 〉|ΦB

m′µ′〉|0〉. Then, the intermediate states in Q-space that involve
exciton–polaritons with the wavevector k are utilized for the energy transfer
from one quantum dot to the other, according to |mQ〉 = |ΦA

g 〉|ΦB
g 〉|k〉 and

|ΦA
mµ〉|ΦB

m′µ′〉|k〉. The superscripts A and B are used to label two quantum
dots. Substituting (28), one can rewrite (34) as

h̄U = ϕA
µ (0)ϕB∗

µ′ (0)
∫∫

FA
m(RA)FB∗

m′ (RB)

×(YA(RA − RB) + YB(RA − RB))dRAdRB , (35)

where the sum of Rα (α = A,B) in (28) is transformed to the integral form.
The functions Yα(RAB), which connect the two spatially isolated two envelope
functions FA

m(RA) and FB
m(RB), are defined as

Yα(RAB) = − 1
4π2

2∑
λ=1

∫
(µA

cv · êλ(k))(µB
cv · êλ(k))f2(k)

×
(

eik·RAB

E(k) + Eα
+

e−ik·RAB

E(k) − Eα

)
dk , (36)

where RAB = RA − RB is used.
In order to obtain an explicit functional form of Yα(RAB), we apply the

effective mass approximation to the exciton–polaritons

E(k) =
h̄2k2

2mp
+ Em , (37)

where mp is the exciton–polariton effective mass. Using this approximation,
(36) can be transformed into

Yα(RAB) =

(µA
cv · µB

cv)
[
Wα+e−∆α+RAB

(
∆2

α+

RAB
+

∆α+

R2
AB

+
1

R3
AB

)
−Wα−e−∆α−RAB

(
∆2

α−
RAB

+
∆α−
R2

AB

+
1

R3
AB

)]
−(µA

cv · R̂AB)(µB
cv · R̂AB)

[
Wα+e−∆α+RAB

(
∆2

α+

RAB
+

3∆α+

R2
AB

+
3

R3
AB

)
−Wα−e−∆α−RAB

(
∆2

α−
RAB

+
3∆α−
R2

AB

+
3

R3
AB

)]
, (38)
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where RAB and R̂AB are the absolute value |RAB| and the unit vector defined
by RAB/RAB, respectively. The weight coefficients Wα± and decay constants
∆α± are given by

Wα± =

√
Ep

Eα

(Em − Eα)(Em + Eα)
(Em − Ep ∓ Eα)(Em ± Eα) − E2

m/2
, (39)

∆α± =
1
h̄c

√
Ep(Em ± Eα) , (40)

where the exciton–polariton effective mass is rewritten as Ep = mpc2. Since
the dipole moments µA

cv and µB
cv are not determined as fixed values, we assume

that they are parallel, and take a rotational average of (38). Therefore, 〈(µA
cv ·

R̂AB)(µB
cv · R̂AB)〉 = µA

cvµ
B
cv/3 with µα

cv = |µα
cv|, and we obtain the final form

of the function Yα(RAB) as

Yα(RAB) =
2µA

cvµ
B
cv

3RAB
(Wα+∆2

α+e−∆α+RAB − Wα−∆2
α−e−∆α−RAB) . (41)

Equation (41) is the sum of two Yukawa functions with a short and long inter-
action range (heavy and light effective mass) given in (40). We can estimate
the coupling strength between two quantum dots from the analytic form of the
interaction potential given by (35) and (41), and we can show the existence
of dipole-forbidden energy transfer driven by the optical near-field coupling,
as discussed in the following.

Numerical Results

In this section, we give typical values of the coupling strength of h̄U in (35)
using an example of CuCl quantum cubes embedded in an NaCl matrix. Due
to the effect of size confinement, the center of mass motion and relative motion
for an exciton in a CuCl quantum cube are [19]

Fα
m(Rα) =

(
2

Lα

)3/2

sin
(

πmxxα

Lα

)
sin

(
πmyyα

Lα

)
sin

(
πmzzα

Lα

)
, (42)

ϕ1s(r) =
1√
πa3

e−r/a , (43)

respectively, where the atomic site and the quantum number are repre-
sented by Rα = (xα, yα, zα) with α = A, B and m = (mx,my,mz) with
mx,my,mz = 1, 2, 3, · · ·. The variables Lα and a denote a width of the quan-
tum cube and the Bohr radius of the exciton, respectively. Here, we assume
relative motion in the 1s state. The coupling strength is obtained numeri-
cally by substituting (41) and (42) into (35). In Fig. 5a, the calculation results
are plotted as a function of the intercube distance. The curve with square
dots represents the coupling between the dipole-active exciton levels, i.e.,
m = m′ = (1, 1, 1), in two quantum cubes. When we set the intercube dis-
tance and a width of the quantum cubes as d = 5 nm and LA = LB = 10 nm,
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Fig. 5. (a) Coupling strength of the optical near field between pairs of CuCl quan-
tum cubes embedded in an NaCl matrix. The curves shown with square and cir-
cular dots correspond to quantum numbers for the exciton center of mass motion
m = m′ = (1, 1, 1), and m = (1, 1, 1) and m′ = (2, 1, 1), respectively. The energy
level m′ = (2, 1, 1) is a dipole-inactive state for conventional far-field light. The pa-
rameters are set as EA = EB = 3.22 eV, Em = 6.9 eV, µA

cv = µB
cv = 1.73 × 10−2 eV,

LA = 10nm, LB = 10 and 14.1 nm (m′ = (1, 1, 1) and (2, 1, 1)), and a = 0.67 nm.
(b) Schematic illustration of a transition between dipole-active and dipole-inactive
states via the optical near-field coupling. Steeply gradient optical near field enables
to excite near side local dipoles in a quantum dot with dipole-inactive (2, 1, 1)-level

respectively, the coupling strength is about 89 µeV (U−1 = 7.4 ps). The curve
with circular dots is the result for m = (1, 1, 1) and m′ = (2, 1, 1). For con-
ventional far-field light, m′ = (2, 1, 1) is the dipole-inactive exciton level,
and it follows that the optical near-field interaction inherently involves such
a transition because of the finite interaction range. Figure 5b is a schematic
illustration of the dipole-inactive transition, in which the optical near field
enables to excite the local dipoles at the near side in a quantum dot with
dipole-inactive level for far-field light. This coupling strength is estimated
from Fig. 5a as h̄U = 37 µeV (U−1 = 17.7 ps) for d = 5 nm, and h̄U = 14 µeV
(U−1 = 46.9 ps) for d = 15 nm, where the cube sizes are set as LA = 10 nm
and LB = 14.1 nm to realize resonant energy transfer between the exciton
state in QD-A and the first exciton excitation state in QD-B. The coupling
strength (m �= m′) is approximately half that of m = m′ at the same inter-
cube distance, but it is strong enough for our proposed nanophotonic devices.
For functional operations, the difference between the coupling strengths is im-
portant to divide the system into two parts, i.e., a quantum mechanical part
and a classical dissipative part, as illustrated in Fig. 4.

2.4 Summary

In this section, we formulate a optical near-field coupling by using appropriate
bases which are constructed form typical excitonic states in a quantum dot and



Theory and Principles of Operation of Nanophotonic Functional Devices 15

exciton–polariton state in a surrounding system, and not using the long wave
approximation which often applies to a conventional optical interaction in an
atomic system. Although we have derived the coupling in the lowest order as
given in (34), our formulation would be exact if we take rigorous eigenstate of
exciton–polaritons as the intermediate states, instead of the simple effective
mass approximation which is applied in the above discussion. However, in
the following sections, our interests are characteristic functional operations of
nanophotonic devices on the basis of certain coupling strength of the optical
near field, rather than to understand fundamental properties of optical near-
field coupling. More rigorous description of the optical near-field coupling will
discuss elsewhere.

From numerical results shown in Fig. 5, the coupling strength of optical
near field depends on the interdot distance, which is one of key features for
nanophotonic device operations. By using this, we can control the dynamics
of energy flow in nanometric space and develop some functional operations
inherent to nanophotonic devices. Furthermore, we showed that dipole inactive
energy transfer can occur when a distance between isolated quantum systems
becomes enough small, which is related to the energy states in nanometric
objects as well as steeply gradient spatial distribution of the optical near
field. Especially, the dipole-inactive energy transfer between the states with
different quantum numbers enables to realize unidirectional energy transfer
in a nanometric system with the help of fast relaxation of exciton sublevels.
This is a quite important feature for signal isolation in nanophotonic devices.
In Sects. 3 and 4, we discuss operation principles of various functional devices
by using such features of the optical near-field coupling skillfully.

3 Nanophotonic Switch Based on Dissipation Control

In Sect. 2, we had theoretically explained that an exciton in a dipole-inactive
energy level can be excited by using an optical near field. A relaxation time
of the exciton in the dipole-inactive level, the higher energy sublevel, is gen-
erally in the order of a few ps because of the strong coupling between an
exciton and a phonon reservoir in a surrounding system [22]. Since the cou-
pling strength of the optical near field corresponds to about subhundred ps,
which has been estimated in Sect. 2, the intra-sublevel relaxation is as a figure
fast as in the order of energy transfer between two quantum dots. Therefore,
unidirectional energy transfer can be realized in a two or more quantum-
dot system by mediating the intra-sublevel relaxation. On the other hand,
we can create and annihilate an exciton in an exciton ground state by using
external pumping light. Excitons in a quantum-dot system affect exciton–
exciton interaction in a quantum dot, because more than an exciton confined
to nanometric space. We have qualitatively regarded the excitons as fermi-
onic particles, that is of course exact. When the lowest energy sublevel is
occupied, the exciton population cannot drop into the lowest energy level,
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Fig. 6. A nanophotonic switch consisting of three quantum cubes with discrete
energy levels showing the (a) OFF- and (b) ON-states

and thus, we can change the dissipation path selectively by arranging several
quantum dots. This selectivity reads the origin of a nanophotonic switching
operation.

In this section, we investigate our proposed nanophotonic switch, which
is a basic element of nanophotonic devices [23]. Figure 6 illustrates a switch
that consists of three quantum dots (cubes) with discrete exciton energy levels
depending on the quantum-dot size. The one-side lengths of these cubes are
chosen in the ratio 1:

√
2:2, so that the adjacent quantum dots have resonant

energy levels. The principle of operation of the switch is as follows: as shown
in Fig. 6a, an exciton or population is created at the (1, 1, 1)-level in QD-I as
an initial condition. Then the population is transferred to QD-O and QD-C as
a result of an optical near-field coupling. Owing to the fast relaxation between
sublevels in each dot via exciton–phonon coupling, the population is trans-
ferred to lower energy levels, and finally collected at the lowest (1, 1, 1)-level in
QD-C. This corresponds to the OFF-state of the switch, and, consequently, we
obtain no output signals from the output port, i.e., the (1, 1, 1)-level in QD-O.
By contrast, in the ON-state of the switch (Fig. 6b), the (1, 1, 1)-level in QD-C
is initially filled by the control light, isolating QD-C from the other two quan-
tum dots. The input population only reaches the (1, 1, 1)-level in QD-O and
can be detected as output signals, either by the optical near-field coupling to
the detector or by far-field light emitted with electron–hole recombination.

From the above explanation, we understand that the key parameters de-
termining the response time of the device are the coupling strength between
two quantum dots via an optical near fields, and that between excitons and a
phonon reservoir. In Sect. 3.1, dynamics of exciton population is formulated
on the basis of quantum mechanical density matrix formalism, where we con-
sider the phonon field as well as the optical near field discussed in Sect. 2, and
roles of some key parameters in such a quantum-dot system are numerically
clarified. This allows us to discuss the temporal dynamics of our proposed
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nanophotonic. We evaluate the response time of the CuCl quantum-cube sys-
tem as a numerical example, which have been extensively examined in exper-
imental and theoretical studies of quantum dots [19, 22, 24, 25]. Section 3.2
devotes to evaluate switching operations in a three quantum-dot system as
shown in Fig. 6, where the effect of state-filling is introduced phenomenolog-
ically. Furthermore, faster iterative switching operations can be achieved in
the order of 100 ps, when we apply appropriate control light pulse for utiliz-
ing stimulated absorption and emission effectively, which will be discussed by
means of numerical analysis in Sect. 3.3.

3.1 Dynamics in a Two-Quantum-Dot System with Dissipation

As mentioned above, relaxation in the exciton sublevels guarantees the uni-
directional energy transfer in a system with several quantum dots. The re-
laxation originates from coupling between exciton excited state and lattice
vibrations in a quantum dot and surrounding matter which are regarded as
a phonon reservoir. In order to understand energy transfer dynamics in such
a quantum-dot system, which goes through a dissipative process, we first ex-
amine a two-quantum-dot system coupled to the phonon reservoir.

Formulation

In Fig. 7, we schematically illustrate a considered two-quantum-dot system
and a phonon reservoir system, in which all energy transfer paths are depicted
except for the coupling to far-field light because of different time scales. The
Hamiltonian of the system is modeled as

Ĥ = Ĥ0 + Ĥint + ĤSR (44)

†A A
†B1B1

†B2B2
†bn

QD-A QD-B

bn
E1

en

Phonon reservoir

U gn

E2

0

Fig. 7. Two-quantum-dot system. QD-A and QD-B are resonantly coupled due to
an optical near-field interaction, and the sublevels in QD-B are coupled with the
phonon reservoir



18 S. Sangu et al.

and

Ĥ0 = h̄Ω2Â
†Â + h̄Ω1B̂

†
1B̂1 + h̄Ω2B̂

†
2B̂2 + h̄

∑
n

ωnb̂†nb̂n , (45)

Ĥint = h̄U(Â†B̂2 + B̂†
2Â) , (46)

ĤSR = h̄
∑

n

(gnb̂†nB̂†
1B̂2 + g∗nb̂nB̂†

2B̂1) . (47)

When we assume that initial and final states are constructed only in
terms of one-exciton states, the creation (annihilation) operators of excitons
can be written as follows: Â† = [|e〉〈g|]A (Â = [|g〉〈e|]A), B̂†

1 = [|e〉〈g|]B1 ,
(B̂1 = [|g〉〈e|]B1), and B̂†

2 = [|e〉〈g|]B2 , (B̂2 = [|g〉〈e|]B2). We can easily under-
stand the following commutation relations: [B̂†

i , B̂j ] = δi,j([|e〉〈e|]Bi
−[|g〉〈g|]B)

and [B̂i, B̂j ] = [B̂†
i , B̂

†
j ] = 0 (i, j = 1, 2). Therefore, the operators are neither

bosonic nor fermionic. Bosonic operators (b̂†n, b̂n) are for the phonons with
eigenenergy h̄ωn. For simplicity, the rotating wave approximation is used in
the interaction Hamiltonian Ĥint as (Â+Â†)(B̂2+B̂†

2) ≈ Â†B̂2+ÂB̂†
2. Phonon

reservoir is assumed to be a collection of multiple harmonic oscillators la-
beled n. Note that the exciton–polariton degrees of freedom have already
been traced out, and thus the coupling strength of the optical near field, h̄U ,
appears in (46). Dynamics of an exciton in this system is given by the following
Liouville equation [26,27]

˙̂ρ(t) = − i
h̄

[Ĥ, ρ(t)] , (48)

where ρ(t) represents the density operator, traced out the exciton–polariton
degrees of freedom. In order to express the second-order temporal correlation
clearly, the formal solution of (48) in the integral form is again substituted
into the right-hand side of (48), and thus

˙̂ρ
I
(t) = − i

h̄

[
Ĥint + ĤI

SR(t), ρ̂I(0)
]

− 1
h̄2

∫ t

0

[
Ĥint + ĤI

SR(t),
[
Ĥint + ĤI

SR(t′), ρ̂I(t′)
]]

dt′ , (49)

where the superscript I means the interaction picture, and the relation
ĤI

int(t) = Ĥint is used [26]. Since we are interested in the exciton population
in the two-quantum-dot system, we take a trace with respect to the degrees of
freedom of the phonon reservoir as ρ̂I

S(t) = TrR[ρ̂I(t)]. Here, the density oper-
ator is assumed to be a direct product of the quantum-dot system part ρ̂I

S(t)
and the reservoir system part ρ̂I

R(t). If the reservoir has a very large volume,
deviation from the initial value can be neglected, and the density operator is
approximated as

ρ̂I(t) = ρ̂I
S(t)ρ̂I

R(t) ≈ ρ̂I
S(t)ρ̂R(0) , (50)
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which corresponds to the Born approximation [26]. Taking a trace on both
sides of (49) about the reservoir operator, we obtain

˙̂ρ
I

S(t) = −iU(r)[Â†B̂2 + B̂†
2Â]

−
∑

n

n(ωn, T )
[
({ĈĈ†, ρ̂I

S(t)} − 2Ĉ†ρ̂I
S(t)Ĉ) ⊗ γr

n(t)

− i[ĈĈ†, ρ̂I
S(t)] ⊗ γi

n(t)
]

−
∑

n

[1 + n(ωn, T )]
[
({Ĉ†Ĉ, ρ̂I

S(t)} − 2Ĉρ̂I
S(t)Ĉ†) ⊗ γr

n(t)

+ i[Ĉ†Ĉ, ρ̂I
S(t)

]
⊗ γi

n(t) , (51)

where the curly brackets {·} represent the anti-commutation relation, and
the notation ⊗ designates the convolution integral. In order to avoid verbose
expression, we make the following replacement: Ĉ† = B̂†

2B̂1 and Ĉ = B̂†
1B̂2.

Since we assume that the reservoir system is at equilibrium, the terms includ-
ing TrR[b̂†nρ̂R(0)] and TrR[b̂nρ̂R(0)] disappear in (51). The number of phonons
in the equilibrium state is written as n(ωn, T ) = TrR[b̂†nb̂nρ̂R(0)], and it follows
Bose–Einstein statistics as

n(ωn, T ) =
1

eh̄ωn/kBT − 1
. (52)

The real and imaginary parts of function

γn(t) = |gn|2ei(∆ω−ωn)t (53)

with h̄ω = h̄(Ω2 − Ω1) are represented as γr
n(t) and γi

n(t), respectively, and
are related to the relaxation (real part) and energy shift (imaginary part) of
the energy level in QD-B that is originated from the coupling to the phonon
reservoir. The convolution integral in (51) expresses a memory effect due to
time delay in the phonon reservoir. However, if the dynamics of the reservoir
system are much faster than those of the two-quantum-dot system, one can
approximate the density operator of the two-dot system as ρ̂I

S(t − t′) = ρ̂I
S(t)

(a Markov approximation). Using this approximation, and rewriting the sum-
mation as

∑
n =

∫ ∞
0

D(ω) dω, with D(ω) being the density of states for each
phonon, we can express the convolution integral analytically as∑

n

n(ωn, T )ρ̂I
S(t) ⊗ γn(t)

= ρ̂I
S(t)

∫ ∞

0

n(ω, T )D(ω)|g(ω)|2
(∫ t

0

ei(∆ω−ω)t′dt′
)

dω

≈ ρ̂I
S(t)

[
πn(∆ω, T )D(∆ω)|g(∆ω)|2

+iP
∫ ∞

0

n(ω, T )D(ω)|g(ω)|2
∆ω − ω

dω

]
. (54)
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Here, we extend the upper limit of the time integration to infinity. The equa-
tion of motion for the dot system is finally reduced to

˙̂ρ
I

S(t) = iU(r)[Â†B̂2 + B̂†
2Â, ρ̂I

S(t)] − nγ({ĈĈ†, ρ̂I
S(t)} − 2Ĉ†ρ̂I

S(t)Ĉ)

−(1 + n)γ({Ĉ†Ĉ, ρ̂I
S(t)} − 2Ĉρ̂I

S(t)Ĉ†) , (55)

where n ≡ n(∆ω, T ) and γ ≡ πD(∆ω)|g(∆ω)|2. The terms indicating the
energy shift are neglected in (55) because the shift is usually small in the case
of weak coupling between the quantum-dot system and phonon reservoir.

Let us consider one-exciton dynamics in the system, using three bases, as
illustrated in Fig. 8. The equations of motion for the matrix elements are then
read in the Schrödinger picture as

ρ̇11(t) = iU(r)[ρ12(t) − ρ21(t)], (56)

ρ̇12(t) − ρ̇21(t) = 2iU(r)[ρ11(t) − ρ22(t)] − (1 + n)γ[ρ12(t) − ρ21(t)], (57)

ρ̇22(t) = −iU(r)[ρ12(t) − ρ21(t)] − 2(1 + n)γρ22(t) + 2nγρ33(t), (58)

ρ̇33(t) = 2(1 + n)γρ22(t) − 2nγρ33(t) , (59)

where ρmn(t) ≡ 〈Φm|ρ̂S(t)|Φn〉 is employed. When the temperature, T , equals
zero (n = 0), (56–59) can be solved analytically. The diagonal parts repre-
senting the population probability for each energy level in QD-A and QD-B,
as well as the off-diagonal parts representing quantum coherence, are given as

ρ11(t) =
1

Z2
e−γt

[γ

2
sinh(Zt) + Z cosh(Zt)

]2

, (60)

ρ22(t) =
U2

Z2
e−γt sinh2(zt) , (61)

ρ33(t) = 1 − [ρ11(t) + ρ22(t)] , (62)

ρ12(t) = −ρ21(t) = i
U

Z2
e−γt sinh(Zt)

[γ

2
sinh(Zt) + Z cosh(Zt)

]
, (63)

where Z ≡
√

(γ/2)2 − U2, and initial conditions ρ11(0) = 1 and ρ12(0) =
ρ21(0) = ρ22(0) = ρ33(0) = 0 are used. We define the state-filling time τS as
ρ33(τS) = 1 − e−1, which corresponds to the time for the excitation energy

f 1 f 2 f 3

Fig. 8. Three bases of the single-exciton state in a two-quantum-dot system


