
Chapter 2

Classical Probability Theories

In principle, those who are not interested in mathematical foundations of probabil-

ity theory might jump directly to Part II. One should just know that, besides the

Kolmogorov definition of classical probability as a probability measure, another

classical probability theory was developed by von Mises: probability was defined as

the limit of relative frequencies.

We are well aware of mathematical difficulties of the von Mises theory, cf., e.g.,

[305, 315, 300, 322, 234, 139]. These difficulties are consequences of von Mises’

definition of randomness through so-called place selections. There are few ways

to escape these difficulties. One way is to follow von Mises and choose a class of

place selections depending on a series of experiments under consideration, compare

also with Wald [315]. Another way for development was proposed by Kolmogorov.

This is complexity theory for random sequences: [223, 224, 50, 51, 288–290, 322,

304, 234, 282]. We also mention the theory of recursive statistical tests (initiated by

Kolmogorov and developed by Martin-Löf [244, 245]).

Besides these two mathematically advanced ways, it is possible to choose a very

pragmatic way of modification of von Mises’s theory to obtain a rigorous mathemat-

ical formalism. At the moment the problem of randomness of sequences of experi-

mental data is not of great interest in quantum physics. The quantum experimental

research is not yet so much devoted to randomness of statistical data. It is devoted

27



28 2 Classical Probability Theories

merely to the study of relative frequencies (which stabilize to probabilities in long

runs of experiments). Therefore we can forget (at least for a while) about von Mises’

attempt to provide a mathematical formalization of the notion of randomness.

We shall proceed by considering only statistical stabilization of relative frequen-

cies—existence of the limit of a sequence of relative frequencies. Thus we shall

enjoy all advantages of the von Mises frequency approach to probability and at the

same time we shall escape all difficulties related to a rigorous definition of random-

ness.

2.1 Kolmogorov Measure-Theoretic Model

The axiomatics of modern probability theory were proposed by Andrei Nikolaevich

Kolmogorov [222] in 1933.

2.1.1 Formalism

We recall some notions of measure theory. Let Ω be a set. A system F of subsets of

a set Ω is called an algebra if the sets ∅,Ω belong to F and the union, intersection

and difference of two sets of F also belong to F. In particular, for any A ∈ F,

complement Ā = Ω \ A of A belongs to F.

Denote by FΩ the family of all subsets of Ω. This is the simplest example of an

algebra.

Let F be an algebra. A map μ : F → R+ is said to be a measure if μ(A ∪ B) =
μ(A) + μ(B), for A,B ∈ F,A ∩ B = ∅. A measure μ is called σ -additive if, for

every sequence {An}∞n=1 of sets An ∈ F such that their union A = ⋃∞
n=1 An also

belongs to F, we have: μ(A) = ∑∞
n=1 μ(An). An algebra, say F , is said to be a σ -

algebra if, for every sequence {An}∞n=1 of sets An ∈ F , their union A = ⋃∞
n=1 An

belongs to F .
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Some books on probability theory use the terminology field and σ -field of sets,

instead of algebra and σ -algebra.

Let Ω1,Ω2 be arbitrary sets and let G1,G2 be some systems of subsets of Ω1

and Ω2, respectively. A map ξ : Ω1 → Ω2 is called measurable or more precisely

((Ω1,G1), (Ω2,G2))-measurable if, for any set A ∈ G2, the set ξ−1(A) ∈ G1.

Here ξ−1(A) = {ω ∈ Ω1 : ξ(ω) ∈ A}. We shall use the notation ξ : (Ω1,G1) →
(Ω2,G2) to indicate dependence on G1,G2. Typically we shall consider measura-

bility of maps in the case such that the systems of sets Gj , j = 1, 2, are algebras or

σ -algebras.

Let A be a set. The characteristic function IA of the set A is defined as IA(x) = 1,

x ∈ A, and IA(x) = 0, x ∈ Ā.

Let A = {a1, . . . , an} be a finite set. We shall denote the number of elements n

of A by the symbol |A|.

By the Kolmogorov axiomatics [222], see also [286], a probability space is a

triple

P = (Ω,F , P),

where Ω is an arbitrary set (points ω of Ω are said to be elementary events), F is

an arbitrary σ -algebra of subsets of Ω (elements of F are said to be events), P is a

σ -additive measure on F which yields values in the segment [0, 1] of the real line

and normalized by the condition P(Ω) = 1 (it is said to be probability).

Random variables on the Kolmogorov space P are by definition measurable

functions ξ : Ω → R, or in our notation ξ : (Ω,F ) → (R,B)), where B is the

Borel σ -algebra on the real line.1 We shall use the symbol RV (P) to denote the

space of random variables for the probability space P. The probability distribution

of ξ ∈ RV (P) is defined by Pξ (B) = P(ξ−1(B)) for B ∈ B. This is a σ -additive

1 Thus ξ−1(B) ∈ F for every B ∈ B.
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measure on the Borel σ -algebra. The average (mathematical expectation) of a ran-

dom variable ξ is defined by

Eξ =
∫

Ω

ξ(ω)dP(ω) (2.1)

In particular, if ξ = a1, . . . , an, . . . is a discrete random variable its average is given

by

Eξ =
∑

n

anP(ξ = an). (2.2)

Conditional probability will play an essential role in further quantum consid-

erations. In Kolmogorov’s probability model conditional probability is defined by

well-known Bayes’ formula. In many textbooks this formula is called Bayes’ theo-

rem. However, in the Kolmogorov model it is neither a theorem nor an axiom, but a

definition. Conditional probability is introduced in the Kolmogorov model through

the following definition:

P(B|A) = P(B ∩ A)/P(A), P(A) > 0. (2.3)

By Kolmogorov’s interpretation this is the probability that an event A occurs under

the condition of an event B having occurred.

The Kolmogorov probability model is given by the Kolmogorov probability space

endowed with conditional probability via the Bayes formula.

We remark that PA(B) ≡ P(B|A) is again a probability measure on F . The

conditional expectation of a random variable ξ is defined by

E(ξ |A) =
∫

Ω

ξ(ω)dPA(ω). (2.4)

In the Kolmogorov model two events A and B are said to be independent if

P(A ∩ B) = P(A)P (B) (2.5)

or
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P(B|A) = P(B), P(A) > 0. (2.6)

In our further considerations an important role will be played by the formula of

total probability - a theorem of Kolmogorov’s model. Let us consider a countable

family of sets Ak ∈ F , P(Ak) > 0, k = 1, . . . , such that

∞⋃

k=1

Ak = Ω, and Ak ∩ Al = ∅, k 	= l.

Such a family is called a measurable partition of the space Ω or a complete group

of disjoint events.

Theorem 2.1. Let {Ak} be a complete group of disjoint events. Then, for every set

B ∈ F , the following formula of total probability holds:

P(B) =
∞∑

k=1

P(Ak)P(B|Ak). (2.7)

Proof. We have

P(B) = P

(

B ∩
∞⋃

k=1

Ak

)

=
∞∑

k=1

P(B ∩ Ak) =
∞∑

k=1

P(Ak)
P(B ∩ Ak)

P(Ak)
.

Especially interesting for us is the case such that a complete group of disjoint

events is induced by a discrete random variable a taking values {αk}. Here

Ak = {ω ∈ Ω : a(ω) = αk}. (2.8)

Let b be another random variable. It takes values {βj }. Then we have:

P(b = β) =
∑

α

P(a = α)P(b = β|a = α). (2.9)

2.1.2 Discussion

The Kolmogorov axiomatics [222] played a crucial role in creation of the rigorous

mathematical formalism of probability theory, see, e.g., [286, 285]. The main prob-
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lem of this approach to probability is that by starting with an abstract Kolmogorov

space P = (Ω,F , P) we completely lose information on the intrinsic structure of

a physical statistical experiment. The main idea of Kolmogorov was that it is possi-

ble to proceed in a very abstract way without having to pay attention to structures

of concrete ensembles:

“To outline the context of theory, it suffices to single out from probability theory those elements

that bring out its intrinsic logical structure, but have nothing to do with the specific meaning of

theory.”

In quantum physics we cannot use one fixed Kolmogorov probability space P =
(Ω,F , P)—an absolute Kolmogorov space—to describe different experiments.2

This impossibility was considered as a contradiction between the classical and quan-

tum probabilistic descriptions.

Of course, it would be better if from the very beginning A. N. Kolmogorov de-

fined a probability space as a collection of conventional Kolmogorov probability

spaces corresponding to a family of contexts (complexes of experimental physical

conditions) C = {C} :

{PC : C ∈ C }, where PC = (ΩC,FC, PC). (2.10)

Unfortunately, A. N. Kolmogorov did not do this, cf. S. Gudder [106–108]: theory

of probabilistic manifolds. In our approach a structure which is similar to (2.10)

will appear as a special case of the general contextual probability space, see Part II,

Chap. 6 (Definition 6.8). It will be called the contextual multi-Kolmogorovian prob-

ability space. We remark that such a probabilistic construction does not contradict

the original ideas of Kolmogorov [222] who noticed that each complex of experi-

mental conditions generates its own (Kolmogorov) probability space. Thus opera-

tion with data collected for a few different complexes of, e.g., physical conditions

2 Cf. with attempts to use absolute Newton space in classical physics.
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should naturally induce families of (Kolmogorov) probability spaces—contextual

multi-Kolmogorovian spaces. As was pointed out, although Kolmogorov empha-

sized this ideologically, he did not proceed in this direction mathematically.

2.2 Von Mises Frequency Model

Let us recall the main notions of a frequency theory of probability [309–311] of

Richard von Mises (1919).3

2.2.1 Collective (Random Sequence)

Von Mises’ probability theory is based on the notion of a collective. Consider a

random experiment. Let a be some observable representing results of this random

experiment. The set of all possible results of this experiment is L = {s1, . . . , sm}—
the label set or the set of attributes. It will be finite in this book.

Consider N observations of a and write a result xj after each trial. We obtain the

finite sample: x = (x1, . . . , xN), xj ∈ L. A collective is an infinite idealization of

this finite sample:

x = (x1, . . . , xN , . . .), xj ∈ L, (2.11)

for which two von Mises’ principles are valid. Let us compute frequencies

νN(s; x) = nN(s; x)

N
, s ∈ L,

where nN(s; x) is the number of realizations of the attribute s in the first N trials.

3 In fact, already in 1866 John Venn tried to define a probability explicitly in terms of relative

frequencies.
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Principle S (Statistical stabilization of relative frequencies). For every label

s ∈ L, the frequency νN(s; x) approaches a limit as N approaches infinity.

In the frequency theory of probability the limit P(s) = lim νN(s; x) is the prob-

ability of the label s. Sometimes this probability will be denoted by Px(s) (to show

a dependence on the collective x).

Principle R (Randomness). The limits of relative frequencies have to be stable with

respect to a place selection (a choice of a subsequence) in (2.11).

Heuristically it is evident that we cannot consider, for example, the sequence z =
(0, 1, 0, 1, . . . , 0, 1, . . .) as a random object (generated by a statistical experiment).

Principle S holds for z and P(0) = P(1) = 1/2. But, the sequence z does not

satisfy Principle R. If we choose only even places, then we obtain the zero sequence

z0 = (0, 0, . . .), where P(0) = 1, P(1) = 0.

The average of observable a is defined as the average with respect to the proba-

bility distribution Px :

Exa =
∑

s∈L

sPx(s). (2.12)

Here x is a collective representing observations of a.

Finally, we recall the original von Mises thoughts about the notion of collective:

“We will say that a collective is a mass phenomenon or a repetitive event, or sim-

ply a long sequence of observations for which there are sufficient reasons to believe

that the relative frequency of the observed attribute would tend to a fixed limit if the

observations were infinitely continued. This limit will be called the probability of

the attribute considered within the given collective,” R. von Mises [311].

2.2.2 Difficulties with Definition of Randomness

However, this very natural notion of randomness was the hidden bomb in the foun-

dations of von Mises’ theory. The main problem was to define a class of place selec-
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tions which would induce a fruitful theory. A very natural restriction is that a place

selection in (2.11) cannot be based on the use of attributes of elements. For exam-

ple, we cannot consider a subsequence of (2.11) constructed by choosing elements

with the fixed label s ∈ L. Von Mises proposed the following definition of a place

selection:

(PS) “a subsequence has been derived by a place selection if the decision to retain

or reject the nth element of the original sequence depends on the number n

and on label values x1, . . . , xn−1 of the (n−1) presiding elements, and not on

the label value of the nth element or any following element”, see [87, p. 9].

Thus a place selection can be defined by a set of functions

f1, f2(x1), f3(x1, x2), f4(x1, x2, x3), . . . ,

each function yielding the values 0 (rejecting the nth element) or 1 (retaining the

nth element). There are some examples of place selections: (1) choose those xn for

which n is prime; (2) choose those xn which follow the word 01; (3) toss a (different)

coin; choose xn if the nth toss yields heads.

The first two selection procedures may be called lawlike, the third random. It is

more or less obvious that all of these procedures are place selections: the value of

xn is not used in determining whether to choose xn.

The principle of randomness ensures that no strategy using a place selection rule

can select a subsequence that allows different odds for gambling than a sequence

that is selected by flipping a fair coin. This principle can be called the law of ex-

cluded gambling strategy.

The definition (PS) induced some mathematical problems. If a class of place

selections is too extended, then the notion of the collective is too restricted (in fact,

there are no sequences where probabilities are invariant with respect to all place

selections). This was the main critical argument against von Mises’ theory.
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However, von Mises himself was totally satisfied by the following operational

solution of this problem. He proposed [311] to fix for any collective a class of place

selections which depends on the physical problem described by this collective. Thus

he moved the problem outside the mathematical framework. For any concrete ex-

periment, one should find a special class of place selections which would be appro-

priative for this experiment.

2.2.3 S-sequences

As probability is defined on the basis of the principle of the statistical stabilization

of relative frequencies, it is possible to develop a quite fruitful probabilistic calculus

based only on this principle. Instead of the notion of a collective, we can consider a

more general notion.

Definition 2.1. A sequence x, see (2.11), which satisfies the principle of the statis-

tical stabilization of relative frequencies is said to be an S-sequence.

Thus the limits of relative frequencies in an S-sequence x need not be invariant

with respect to some class of place selections.

It seems that the machinery of randomness has no applications in quantum phys-

ics. Experimenters are only interested in the statistical stabilization of relative fre-

quencies.

2.2.4 Operations for Collectives

On many occasions R. von Mises emphasized that frequency probability theory is

not a calculus of probabilities, but is the calculus of collectives which generates

the corresponding calculus of probabilities. We briefly discuss some of the basic

operations for collectives (see [311] for the details) and S-sequences (see [139] for

details).
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(a) Operation of mixing of labels in an S-sequence (or collective) and addi-

tivity of probabilities. Let x be an S-sequence (in particular, it can be a collective)

with the (finite) label space Lx = {s1, . . . , sm}:

x = (x1, . . . , xN , . . .), xj ∈ Lx, (2.13)

and let E = {si1, . . . , sid } be a subset of the set of labels Lx. The sequence (2.13) of

x is transformed into a new sequence yE by the following rule:

If xj belongs to the set E, then we write 1; if xj does not belong to the set E then

we write 0.

Thus the label set of the sequence yE constructed on the basis of this rule is

LyE
= {0, 1}. R. von Mises called this operation on sequences, x → yE, the op-

eration of mixing of labels. We take a subset E of the label set Lx and we “mix”

elements of E into a new label, y = 1; elements of the complement of E are mixed

into the label y = 0.

Proposition 2.1. If a sequence of labels x satisfies the principle of statistical sta-

bilization (so it is an S-sequence), then, for any subset E of the label set Lx, the

sequence yE also satisfies the principle of statistical stabilization (so it is also an

S-sequence).

Proof. For example, for the label 1 we have:

PyE
(1) = lim

N→∞ νN(E; x) = lim
N→∞

d∑

k=1

νN(sik ; x) =
d∑

k=1

Px(sik ), (2.14)

where νN(E; x) ≡ νN(1; yE) = nN(1; yE)/N is the relative frequency of 1 in

yE. To obtain (2.14) we have only used the fact that the addition is a continuous

operation on the field of real numbers R.

We can also show that if a sequence x satisfies the principle of randomness (so it

is a collective), then the sequence yE also satisfies the principle of randomness (so

it is also a collective), see [311, 139].
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By this operation any S-sequence (in particular, any collective) x generates a

probability distribution on the algebra FLx of all subsets of the label set Lx. By

definition we have:

Px(E) = PyE
(1) =

∑

s∈E

Px(s).

Now we find the properties of this probability. We start with a simple, but extremely

important result.

Theorem 2.2. For any S-sequence x, the frequency probability Px yields values in

the segment [0, 1].

Proof. As Px(E) = limN→∞ νN(E; x) and 0 ≤ νN(E) ≤ 1, then (by an elemen-

tary theorem of real analysis)

0 ≤ Px(E) ≤ 1.

We emphasize that in frequency probability theory this is a theorem and not an

axiom (as it is in the Kolmogorov measure-theoretic model). Another very simple,

but extremely important result is also an axiom in the Kolmogorov model, but a

theorem in the von Mises model.

Theorem 2.3. For any S-sequence x, the frequency probability Px is normalized

by 1.

Proof. As the S-sequence yLx corresponding to the whole label set Lx does not

contain zeros, we obtain that for any N the relative frequency νN(Lx; x) ≡
νN(1; yLx ) ≡ 1 and, consequently,

Px(Lx) =
∑

s

Px(s) = 1. (2.15)

Finally by (2.14) we find that the set function

Px : FLx → [0, 1]
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is additive. Thus we have obtained

Theorem 2.4. The frequency probability Px is additive.

Thus Px is a normalized measure on the set-algebra FLx which yields values in

[0, 1].
(b) Operation of partition of an S-sequence (or a collective) and conditional

probabilities. Let x be an S-sequence (or even a collective). We take a subset, say

O, of the label set Lx such that Px(O) 	= 0. Thus Px(s) = limN→∞ νn(s; x) > 0

for at least one label s ∈ Lx. We now derive a new sequence z(O) by the following

rule:

There are retained only those elements of x which belong to subset O and all

other elements are discarded.

The label set of the sequence z(O) coincides with the set O. This operation is

obviously not a place selection, since the decision to retain or reject an element of x

depends on the label of just this element.4

Proposition 2.2. For any S-sequence x and any subset O of the label set Lx such

that Px(O) 	= 0, the sequence z(O) is again an S-sequence.

Proof. Suppose that s ∈ O and let yO be the S-sequence generated by x with the

aid of the mixing operation. Then

Pz(O)(s) = lim
N→∞ νN(s; z(O)) = lim

k→∞ νNk
(s; z(O)),

where Nk → ∞ is an arbitrary sequence. As P(O) 	= 0, then

Mk = nk(1; yO) → ∞.

4 It is important to remark that this operation is not based on a new measurement. We just operate

with data which was collected via a measurement represented by an S-sequence (collective) x;
compare with considerations that will be presented in Part II, Chap. 1.
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This is the number of labels belonging to O among the first k elements of x. Thus

we have:

Pz(O)(s) = lim
k→∞ νMk

(s; z(O)) = lim
k→∞ nMk

(s; z(O))/Mk

= lim
k→∞[nMk

(s; z(O))/k] : [Mk/k] = Px(s)/Px(O). (2.16)

We have used the property that nMk
(s; z(O))—the number of occurrences of the

label s among first Mk elements of z(O)—is equal to nk(s; x)—the number of oc-

currences of the label s among first k elements of x.

It is also possible to show that if x is a collective, then the sequence z(O) is again

a collective, see [309, 139].

Definition 2.2. The probability Pz(O)(s) is called the conditional probability of the

label s ∈ Lx under the condition that it belongs to the subset O of the label set Lx.

This probability is denoted by Px(s|O). For any B ⊂ O, we define conditional

probability by

Px(B|O) = Pz(O)(B) =
∑

s∈B

Px(s|O).

Sometimes we shall use the symbol P(B|O). However, if we forget that, in fact,

the probability P depends on a collective x, then the symbol P(B|O) might induce

misunderstanding (as it happens in applications of the Kolmogorov model).

Theorem 2.5 (Bayes formula). For any S-sequence (collective) x and any subset

O of the label set Lx, such that Px(O) > 0, the Bayes formula for conditional

probability holds:

P(B|O) = Px(B ∩ O)

Px(O)
. (2.17)

Proof. We have

Pz(O)(B) =
∑

s∈B∩O

Px(s|O) =
∑

s∈B∩O

Px(s)/Px(O).
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Thus in the von Mises model the Bayes formula for conditional probabilities is

a theorem and not a definition; compare with the Kolmogorov model. By using the

Bayes’ formula (2.17) we obtain:

Theorem 2.6 (Formula of total probability). Let x be an S-sequence and let {Ok}
be a partition of the label set Lx :

Lx =
⋃

k

Ok and Ok ∩ Ol = ∅,

and Px(Ok) > 0 for any k. Then, for any C ⊂ Lx, we have:

Px(C) =
m∑

k=1

Px(Ok)Px(C|Ok). (2.18)

2.3 Combining and Independence of Collectives

The material presented in this section will not be used in our contextual probabilistic

considerations. We present it simply to give a more complete picture of the von

Mises model. Therefore it is possible to read this section later. One might jump

directly to Part II.

In the two basic operations, mixing and partition, discussed in Sect. 2.2, one

single S-sequence (or collective) x served each time as the point of departure for

the construction of a new S-sequence (collective). We now consider the problem of

combining of two or more given S-sequences (collectives).

Let x = (xj ) and y = (yj ) be two S-sequences with label sets Lx and Ly ,

respectively. We define a new sequence

z = (zj ), zj = (xj , yj ). (2.19)

In general such a z is not an S-sequence with respect to the label set Lz = Lx ×Ly.
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Let β ∈ Lx and α ∈ Ly . Among the first N elements of z there are nN(α; z)

elements with the second component equal to α. As nN(α; z) = nN(α; y) is a

number of yj = α among the first N elements of y, we obtain that

lim
N→∞

nN(α; z)

N
= Py(α).

Among these nN(α; z) elements, there are a number, say nN(β|α; z), of elements

whose first component is equal to β.5 The frequency νN(β, α; z) of elements of the

sequence z labeled (β, α) will then be equal to

nN(β|α; z)

N
= nN(β|α; z)

nN(α; z)

nN(α; z)

N
.

We set

νN(β|α; z) = nN(β|α; z)

nN(α; z)
.

Let us assume that:

For each α ∈ Ly , the subsequence x(α) of x which is obtained by choosing xj

such that yj = α is an S-sequence.6

Then, for each α ∈ Ly , β ∈ Lx , there exists

Pz(β|α) = lim
N→∞ νN(β|α; z) = lim

N→∞ νN(β; x(α)) = Px(α)(β).

The existence of Pz(β|α) implies the existence of

Pz(β, α) = lim
N→∞ νN(β, α; z).

Moreover, we have

Pz(β, α) = Py(α)Pz(β|α) (2.20)

or

5 We remark again that it is assumed that all data was collected in the sequence z and we need not

perform new measurements to obtain all these numbers.

6 In general such a choice of the subsequence x(α) of x is not a place selection.
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Pz(β|α) = Pz(β, α)/Py(α), (2.21)

if Py(α) 	= 0. Thus in this case the sequence z is an S-sequence with the probability

distribution Pz(β, α). This is the “joint probability distribution” of S-sequences of

observations x and y. We can repeat all previous considerations for collectives (i.e.,

take into account the principle of randomness), see R. von Mises [311].

Definition 2.3. S-sequences (collectives) x and y are said to be combinable if the

sequence z = (x, y) is S-sequence (collective).

Definition 2.4. Let x and y be combinable. Quantities Pz(β|α) are called condi-

tional probabilities.

This is the definition of conditioning of one S-sequence (collective) with respect

to another. It differs from the conditioning with respect to a subset O of the label set

of a single S-sequence (collective), Sect. 2.2.

Definition 2.5. Let x and y be S-sequences (collectives). The x is said to be inde-

pendent from y if all x(α), α ∈ Ly , have the same probability distribution which

coincides with the probability distribution Px of x.7

This implies that

Pz(β|α) = lim
N→∞ νN(β|α; z) = lim

N→∞ νN(β; x(α)) = Px(β),

hence

Pz(β, α) = Py(α)Px(β). (2.22)

Thus the independence implies the factorization of the two-dimensional probability

Pz(a, b).

7 We recall again that the choice of a subsequence x(α) of x based on a label α for y is not a place

selection in x. Thus in general there are no grounds for coincidence of probabilities Px(α) with the

probability Px .
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