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Renewal Processes and Random Walks

2.1 Introduction

In the first chapter we stated and proved various limit theorems for stopped
random walks. These limit theorems shall, in subsequent chapters, be used
in order to obtain results for random walks stopped according to specific
stopping procedures as well as for the families of stopping times (random
indices) themselves. However, before doing so we shall, in this chapter, survey
some of the basic facts about random walks.

Our emphasis will be on that part of the theory which is most relevant for
this book. Classical fluctuation theory, the combinatorial formulas, Wiener–
Hopf factorization etc. are therefore excluded in our presentation; we refer the
reader to the existing literature cited below. We furthermore assume that the
reader already has some familiarity with much of the material, so its character
will rather be a review than a through exposition. As a consequence proofs
will not always be given; in general only when they are short or in the spirit
of the present treatise.

We begin our survey by considering an important class of random walks
which has attended special interest; the class of renewal processes. Their spe-
cial feature is that they are concentrated on [0,∞), that is, the steps are non-
negative. A similar theory exists, of course, for random walks concentrated on
(−∞, 0]. Sections 2.2–2.7 are devoted to the study of renewal processes.

In the remaining sections of the chapter we treat random walks on
(−∞,∞) (and such that they are not concentrated on either half axis).
We give a characterization of the three possible kinds of random walks,
introduce ladder variables, the partial maxima and present some general limit
theorems.

We close this section by introducing some notation. Throughout (Ω,F , P )
is a probability space on which everything is defined, {Sn, n ≥ 0} is a
random walk with i.i.d. increments {Xk, k ≥ 1} and S0 = 0, or, equiva-
lently, {Xk, k ≥ 1} is a sequence of i.i.d. random variables with partial sums
Sn =

∑n
k=1Xk, n ≥ 0. We let F denote the (common) distribution of
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the increments (summands). To avoid trivialities we assume throughout that
P (X1 �= 0) > 0.

Depending on the support of the distribution function F we shall dis-
tinguish between two kinds of random walks (renewal processes). We say
that the random walk (renewal process) is arithmetic if F has its support
on {0,±d,±2d, . . .} ({0, d, 2d, . . . }) for some d > 0. The largest d with this
property is called the span. A random walk or renewal process which is arith-
metic with span d will also be called d-arithmetic. If F is not of this kind (for
any d) we say that the random walk or renewal process is nonarithmetic.

2.2 Renewal Processes; Introductory Examples

Example 2.1. Consider some electronic device, in particular, one specific com-
ponent. As soon as the component breaks down it is automatically and
instantly replaced by a new identical one, which, when it breaks down, is
replaced similarly etc. Let {Xk, k ≥ 1} denote the successive lifetimes and
set Sn =

∑n
k=1Xk, n ≥ 0. With this setup Sn denotes the (random) total

lifetime of the n first components. If, for example, {Xk, k ≥ 1} is a sequence
of i.i.d. exponentially distributed random variables, then Sn has a gamma
distribution.

In practice, however, it is more likely that one is interested in the random
number of components required to keep the device alive during a fixed time
interval rather than being interested in the accumulated random lifetime for
a fixed number of components.

In the exponential case, the stochastic process which counts the number
of components that are replaced during fixed time intervals is the well known
Poisson process.

Example 2.2. In a chemical substance the movement of the molecules can be
modeled in such a way that each molecule is subject to repeated (i.i.d.) random
displacements at random times. In analogy with the previous example, rather
than being interested in the accumulated displacement of a molecule after a
fixed number of steps, it is more natural to consider the location of a molecule
at a fixed time point.

Example 2.3 (The Bernoulli random walk). Here {Xk, k ≥ 1} are i.i.d. Be(p)-
distributed random variables, that is, P (Xk = 1) = 1 − P (Xk = 0) = p, and
Sn =

∑n
k=1Xk, n ≥ 0, denotes the random number of “successes” after n

trials, which has a Binomial distribution. If, instead, we consider the random
number of performances required to obtain a given number of successes we
are lead to the Negative Binomial process.

A common feature in these examples thus is that rather than studying
the random value of a sum of a fixed number of random variables one inves-
tigates the random number of terms required in order for the sum to attain a
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certain (deterministic) value. For nonnegative summands we are lead to the
part of probability theory called renewal theory and the summation process
{Sn, n ≥ 0} is called a renewal process. Examples 2.1 and 2.3 are exactly of
this kind and, under appropriate additional assumptions, also Example 2.2.

We now proceed to give stringent definitions and present a survey of the
most important results for renewal processes.

Some fundamental papers on renewal theory are Feller (1949), Doob (1948)
and Smith (1954, 1958). The most standard book references are Feller (1968),
Chapter XIII for the arithmetic case (where the treatment is in the context of
recurrent events) and Feller (1971), Chapters VI and XI for the nonarithmetic
case. Some further references are Prabhu (1965), Chapter 5, Cox (1967), Çinlar
(1975), Chapter 9, Jagers (1975), Chapter 5 and Asmussen (2003).

2.3 Renewal Processes; Definition and General Facts

Let {Xk, k ≥ 1} be i.i.d. nonnegative random variables and let {Sn, n ≥ 0} be
the partial sums. The sequence {Sn, n ≥ 0} thus defined is a renewal process.

We further let F denote the common distribution function of the sum-
mands and let Fn be the distribution function of Sn, n ≥ 0. Thus

F0(x) =

⎧⎨
⎩

0, x < 0,

1, x ≥ 0,
(3.1a)

F1(x) = F (x), (3.1b)

Fn(x) = Fn∗(x) (n ≥ 1), (3.1c)

that is, Fn equals the n-fold convolution of F with itself.
To avoid trivialities we assume throughout that P (X1 > 0) > 0.
The main object of interest in the study of renewal processes (in renewal

theory) is the renewal counting process {N(t), t ≥ 0}, defined by

N(t) = max{n: Sn ≤ t}. (3.2)

An alternative interpretation is N(t) = the number of renewals in (0, t] =
Card{n ≥ 1: Sn ≤ t}.
Remark 3.1. A case of particular importance is when F (x) = 1 − e−λx, x ≥ 0,
that is, when the lifetimes are exponentially distributed. In this case
{N(t), t ≥ 0} is a Poisson process with intensity λ (recall Example 2.1).
We also observe that the renewal process defined in Example 2.1 is nonarith-
metic. The renewal process defined in Example 2.3 is, however, arithmetic
with span 1 (1-arithmetic).
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Remark 3.2. The definition (3.2) is not the only existing definition of the
renewal counting process. Some authors prefer Card{n ≥ 0: Sn ≤ t}, thus
counting n = 0 as a renewal.

We are now ready for our first result.

Theorem 3.1.

(i) P (N(t) <∞) = 1;
(ii) E(N(t))r <∞ for all r > 0;
(iii) There exists s0 > 0 such that EesN(t) <∞ for all s < s0.

Proof. By assumption there exists x0 > 0 such that P (X1 ≥ x0) > 0. Since
scaling does not affect the conclusions we may, without loss of generality,
assume that x0 = 1. Now, define, for k ≥ 1,

X̄k =

⎧⎨
⎩

0, if Xk < 1,

1, if Xk ≥ 1,
(3.3)

S̄n =
∑n

k=1 X̄k, n ≥ 0, and N̄(t) = max{n: S̄n ≤ t}. Then, clearly, X̄k ≤
Xk, k ≥ 1, S̄n ≤ Sn, n ≥ 0, and, hence, N̄(t) ≥ N(t), t ≥ 0.

But, {N̄(t), t ≥ 0} is the Negative Binomial process from Example 2.3
(cf. also Remark 3.1), for which the theorem is well known, and the conclusions
follow. �

An important relation upon which several proofs are based is the inverse
relationship between renewal processes and counting processes, namely

{N(t) ≥ n} = {Sn ≤ t}. (3.4)

As an immediate example we have

EN(t) =
∞∑
n=1

P (N(t) ≥ n) =
∞∑
n=1

P{Sn ≤ t} =
∞∑
n=1

Fn(t). (3.5)

Next we define the renewal function U(t) =
∑∞

n=1 Fn(t) and conclude, in
view of (3.5), that

U(t) =
∞∑
n=1

Fn(t) = EN(t). (3.6)

Remark 3.3. Just as there is no unique way of defining counting processes (see
Remark 3.2) there is also some ambiguity concerning the renewal function.
If one defines counting processes in such a way that n = 0 is also counted as a
renewal, then it is more natural to define the renewal function as

∑∞
n=0 Fn(t)

(for example, in order for the analog of (3.6) to remain true). In fact, some
authors begin by defining U(t) this way and then define N(t) so that U(t) =
EN(t), that is, such that N(t) = Card{n ≥ 0: Sn ≤ t}.
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By using the first equality in (3.6) twice we obtain

U(t) = F1(t) +
∞∑
n=1

Fn+1(t) = F (t) +
∞∑
n=1

(Fn ∗ F )(t)

= F (t) + (U ∗ F )(t),

which is one half of the following theorem.

Theorem 3.2 (The Integral Equation for Renewal Processes). The
renewal function U(t) satisfies the integral equation

U(t) = F (t) + (U ∗ F )(t) (3.7a)

or, equivalently,

U(t) = F (t) +
∫ t

0

U(t− s)dF (s). (3.7b)

Moreover, U(t) is the unique solution of (3.7), which is bounded on finite
intervals.

Remark 3.4. If the renewal process is d-arithmetic, then

U(nd) = u0 + u1 + · · · + un (n ≥ 0), (3.8a)

where

uk =
∞∑
j=1

P (Sj = kd) (k ≥ 0). (3.8b)

Moreover, with fk = P (X1 = kd), k ≥ 0, we obtain the discrete convolu-
tion formula

un = fn +
n∑
k=0

un−kfk. (3.9)

Remark 3.5. By defining indicator variables {Ij , j ≥ 1} by Ij = I{Sj = kd}
we note that

∑∞
j=1 I{Sj = kd} equals the actual number of partial sums equal

to kd, k ≥ 0, and that uk equals the expected number of partial sums which
are equal to kd, k ≥ 0. (Observe that S0 is not included in the count).

A mathematically important fact is that N(t) is not a stopping time (with
respect to the renewal process); for the definition of a stopping time we refer
to the end of Section A.2. To see this intuitively, we note that we cannot
determine whether or not the event {N(t) = n} has occurred without looking
into the future. It is therefore convenient to introduce the first passage time
process {ν(t), t ≥ 0}, defined by

ν(t) = min{n: Sn > t}, (3.10)
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because ν(t) is a stopping time for all t > 0. Moreover, it turns out that first
passage time processes are the natural processes to consider in the context of
renewal theory for random walks (see Chapter 3 below).

We now observe that
ν(t) = N(t) + 1, (3.11)

from which it, for example, follows that the conclusions of Theorem 3.1 also
hold for the first passage times.

The following formula, corresponding to (3.6) also follows.

Eν(t) = 1 + EN(t) = 1 +
∞∑
n=1

Fn(t) =
∞∑
n=0

Fn(t). (3.12)

However, whereas 0 ≤ SN(t) ≤ t, that is, SN(t) has moments of all orders
we cannot conclude that Sν(t) has any moments without further assumptions.
We have, in fact,

E(Sν(t))r <∞ ⇐⇒ E(X1)r <∞ (r > 0). (3.13)

This follows from Theorems 3.1, 1.5.1 and 1.5.2. We give no details, since such
an equivalence will be established for general random walks with EX1 = μ > 0
(and r ≥ 1) in Chapter 3; see Theorem 3.3.1.

In the following section we present some asymptotic results for renewal
counting processes, so-called renewal theorems, which, due to their nature
and in view of (3.11), also hold for first passage time processes. In fact, the
proofs of some of them are normally first given for the latter processes (because
of the stopping time property) after which one uses (3.11).

2.4 Renewal Theorems

Much of the early work on renewal processes was devoted to the study of the
renewal function U(t), in particular to asymptotics. In this section we present
some of these limit theorems.

Theorem 4.1 (The Elementary Renewal Theorem). Let 0 < μ =
EX1 ≤ ∞. Then

U(t)
t

→ 1
μ

as t→ ∞, (4.1)

the limit being 0 when μ = +∞.

Proof. Suppose first that 0 < μ < ∞. Since N(t) is not a stopping time we
consider ν(t) in order to apply Theorem 1.5.3. It follows that

U(t) = EN(t) = Eν(t) − 1 =
1
μ
ESν(t) − 1

=
t

μ
+

1
μ
E(Sν(t) − t) − 1,
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and, hence, that
U(t)
t

=
1
μ

+
E(Sν(t) − t)

μt
− 1
t
. (4.2)

Since Sν(t) − t ≥ 0 we obtain

lim inf
t→∞

U(t)
t

≥ 1
μ
. (4.3)

Next we note that

Sν(t) − t ≤ Sν(t) − SN(t) = Xν(t). (4.4)

Suppose that P (Xk ≤ M) = 1 for some M > 0, k ≥ 1. Then (4.2) and (4.4)
together imply that

U(t)
t

≤ 1
μ

+
M

t
(4.5)

and thus that

lim sup
t→∞

U(t)
t

≤ 1
μ
, (4.6)

which, together with (4.3), proves (4.1) for that case.
For arbitrary {Xk, k ≥ 1} the conclusion follows by a truncation procedure.

We define a new renewal process {S′
n, n ≥ 0}, by defining X ′

k = XkI{Xk ≤
M}, k ≥ 1. By arguing as in the proof of Theorem 3.1 we now obtain U(t) ≤
U ′(t) and, hence, that

lim sup
t→∞

U(t)
t

≤ 1
μ′ =

1
EX1I{X1 ≤M} . (4.7)

The conclusion follows by letting M → ∞.
Finally, if μ = +∞ we truncate again and let M → ∞. �

The following result is a refinement of Theorem 4.1. The arithmetic case
is due to Kolmogorov (1936) and Erdős, Feller and Pollard (1949) and the
nonarithmetic case is due to Blackwell (1948).

Theorem 4.2.

(i) For nonarithmetic renewal processes we have

U(t) − U(t− h) → h

μ
as t→ ∞. (4.8)

(ii) For d-arithmetic renewal processes we have

un =
∞∑
k=1

P (Sk = nd) → d

μ
as n→ ∞. (4.9)

The limits are 0 when μ = +∞.
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Theorem 4.2 is closely related to the integral equation (3.7). The following
theorem gives a connection.

Theorem 4.3 (The Key Renewal Theorem).

(i) Suppose that the renewal process is nonarithmetic. If G(t), t ≥ 0, is a
bounded, nonnegative, nonincreasing function, such that

∫∞
0
G(t)dt <

∞, then
∫ t

0

G(t− s)dU(s) → 1
μ

∫ ∞

0

G(s)ds as t→ ∞. (4.10)

(ii) Suppose that the renewal process is d-arithmetic. If G(t), t ≥ 0, is non-
negative and

∑∞
n=0G(nd) <∞, then

n∑
k=0

G(nd− kd)ukd → d

μ

∞∑
k=0

G(kd) as n→ ∞. (4.11)

If μ = +∞ the limits in (i) and (ii) are 0.

If, in particular, {Xk, k ≥ 1} are exponentially distributed with mean
λ−1, that is, if {N(t), t ≥ 0} is a Poisson process with intensity λ (recall
Example 2.1 and Remark 3.1), then μ = λ−1 and it follows, in particular,
that U(t) = EN(t) = λt = t/μ and that U(t) − U(t − h) = h/μ. Thus, there
is equality in Theorems 4.1 and 4.2 for all t in this case.

The renewal process in Example 2.3 (which is arithmetic with span 1) runs
as follows: First there is a geometric (with mean q/p) number of zeroes, then
a one, then a geometric (with mean q/p) number of zeroes followed by a one
and so on. It follows that the actual number of partial sums equal to k (recall
Remark 3.5) equals 1 + a geometric (with mean q/p) number. To see this we
observe that the first partial sum that equals n is obtained for Sk where k is
such that Sk−1 = n − 1 and Xk = 1 (and thus, Sk = n). After this there is
a geometric number of zeroes before the next one (which brings the sum to
n + 1) appears. We thus obtain un = 1 + (q/p) = 1/p = 1/μ (since μ = p).
Thus, formula (4.9) is exact for all n in this case.

Remark 4.1. In the classical proofs of Theorems 4.2 and 4.3 a lemma due
to Choquet and Deny (1960) plays an important role. In Doob, Snell and
Williamson (1960) a proof, based on martingale theory, is given; see also
Meyer (1966), pp. 192–193 or Jagers (1975), p. 107.

Remark 4.2. In the 1970s an old method due to Doeblin, called coupling
enjoyed a big revival. We only mention some references where proofs of renewal
theorems using coupling can be found; Lindvall (1977, 1979, 1982, 1986),
Arjas, Nummelin and Tweedie (1978), Athreya, McDonald and Ney (1978),
Ney (1981) and Thorisson (1987).
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Remark 4.3. The key renewal theorem (Theorem 4.3) has been generalized
by Mohan (1976) in the nonarithmetic case and by Niculescu (1979) in the
d-arithmetic case. They assume that G varies regularly with exponent α (0 ≤
α < 1) and conclude (essentially) that the LHS’s in (4.10) and (4.11) vary
regularly with exponent α. For a slightly different generalization, see Erickson
(1970).

2.5 Limit Theorems

In this section we present the strong law and the central limit theorem
for renewal counting processes. The strong law is due to Doob (1948) (a.s.
convergence) and Feller (1941) and Doob (1948) (convergence of the mean)
and Hatōri (1959) (convergence of moments of order > 1). The central limit
theorem is due to Feller (1949) in the arithmetic case and to Takács (1956) in
the nonarithmetic case. Here we present a proof based on Anscombe’s theorem
(Theorem 1.3.1). The asymptotic expansions of mean and variance are due
to Feller (1949) in the arithmetic case and Smith (1954) in the nonarithmetic
case.

Let us, however, first observe that, by (3.4), we have

N(t) → +∞ as t→ ∞. (5.1)

By (5.1) and (3.11) we also have ν(t) → ∞ as t→ ∞.

Theorem 5.1 (The Strong Law for Counting Processes). Let 0 < μ =
EX1 ≤ ∞. Then

(i)
N(t)
t

a.s.−−→ 1
μ

as t→ ∞;

(ii) E

(
N(t)
t

)r
→ 1

μr
as t→ ∞ for all r > 0.

For μ = +∞ the limits are 0.

Proof. Suppose that 0 < μ <∞.
(i) The relation

SN(t) ≤ t < Sν(t) (5.2)

and (3.11) together yield

SN(t)

N(t)
≤ t

N(t)
<
Sν(t)

ν(t)
· N(t) + 1

N(t)
. (5.3)
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An application of Theorem 1.2.3 now shows that the extreme members in
(5.3) both converge almost surely to μ as t→ ∞, which shows that

t

N(t)
a.s.−−→ μ as t→ ∞ (5.4)

and (i) follows.
(ii) We wish to show that

{(
N(t)
t

)r
, t ≥ 1

}
is uniformly integrable for all r > 0, (5.5)

because (ii) then follows from (i), (5.5) and Theorem A.1.1.
We prefer, however, to prove the equivalent fact (recall (3.11)) that

{(
ν(t)
t

)r
, t ≥ 1

}
is uniformly integrable for all r > 0. (5.6)

This result is, essentially, a consequence of the subadditivity of first passage
time processes. Namely, let t, s > 0 and consider ν(t + s). In order to reach
the level t + s we must first reach the level t. When this has been done the
process starts afresh. Since Sν(t) > t the remaining distance for the process to
climb is at most equal to s, and thus, the required number of steps to achieve
this is majorized by a random quantity distributed as ν(s). More formally,

ν(t+ s) ≤ ν(t) + min{k − ν(t): Sk − Sν(t) > s}

= ν(t) + ν1(s), (5.7)

where ν1(s) is distributed as ν(s).
Now, let n ≥ 1 be an integer. By induction we have

ν(n) ≤ ν1(1) + · · · + νn(1), (5.8)

where {νk(1), k ≥ 1} are distributed as ν(1). This, together with Minkowski’s
inequality (see e.g. Gut (2007), Theorem 3.2.6) and Theorem 3.1(ii), shows
that

‖ν(n)‖r ≤ n‖ν(1)‖r <∞. (5.9)

Finally, since ν(t) ≤ ν([t] + 1), we have, for t ≥ 1,

ν(t)
t

≤ 2
ν([t] + 1)
[t] + 1

(5.10)

and thus, in view of (5.9), that

‖ν(t)/t‖r ≤ 2‖ν([t] + 1)/([t] + 1)‖r ≤ 2‖ν(1)‖r <∞. (5.11)
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Since the bound is uniform in t it follows that {(ν(t)/t)p, t ≥ 1} is
uniformly integrable for all p < r. Since r was arbitrary, (5.6) (and hence
(5.5)) follows.

This concludes the proof for the case 0 < μ < ∞. For μ = +∞ the con-
clusion follows by the truncation procedure used in the proof of Theorem 4.1.
We omit the details. �

Remark 5.1. Theorem 5.1 also holds for {ν(t), t ≥ 0}. This is immediate from
Theorem 5.1, (3.11) and (5.6).

Theorem 5.2 (The Central Limit Theorem for Counting Processes).
Suppose that 0 < μ = EX1 <∞ and σ2 = VarX1 <∞. Then

(i)
N(t) − t/μ√

σ2t
μ3

d−→ N(0, 1) as t→ ∞,

(ii) If the renewal process is nonarithmetic, then

EN(t) =
t

μ
+
σ2 − μ2

2μ2
+ o(1) as t→ ∞ (5.12)

VarN(t) =
σ2t

μ3
+ o(t) as t→ ∞. (5.13)

If the renewal process is d-arithmetic, then

EN(nd) =
nd

μ
+
σ2 − μ2

2μ2
+

d

2μ
+ o(1) as n→ ∞ (5.14)

VarN(nd) =
σ2nd

μ3
+ o(n) as n→ ∞. (5.15)

Proof. (i) We first observe that

SN(t) −N(t)μ

σ
√
t/μ

≤ t−N(t)μ
σ
√
t/μ

<
Sν(t) − ν(t)μ

σ
√
t/μ

+
μ

σ

√
μ

t
(5.16)

by (3.11) and (5.2). In view of Theorem 5.1(i) and Remark 5.1 we now apply
Anscombe’s theorem (Theorem 1.3.1(ii)) with θ = μ−1 to the extreme mem-
bers of (5.16) and conclude that they both converge in distribution to the
standard normal distribution. Thus

t−N(t)μ
σ
√
t/μ

d−→ N(0, 1) as t→ ∞. (5.17)

which, in view of the symmetry of the normal distribution, proves (i).
(ii) Formulas (5.12) and (5.13) follow, essentially, from repeated use of

the key renewal theorem (Theorem 4.3(i)). Formulas (5.14) and (5.15) follow
similarly. �
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Remark 5.2. The classical proofs of Theorem 5.2(i) are based on the ordinary
central limit theorem and the inversion formula (3.4).

Remark 5.3. Theorem 5.2 (with obvious modifications) also holds for
{ν(t), t ≥ 0} in view of (3.11).

To prove moment convergence in Theorem 5.1 we proceeded via uniform
integrability and Theorem A.1.1 (and the remarks there). For Theorem 5.2 we
referred to proofs based on direct computations. Now, in order to conclude,
from Theorem 5.2 that

{(
N(t) − t/μ√

t

)2

, t ≥ 1

}
is uniformly integrable (5.18)

we observe that this does not follow immediately from Theorem A.1.1 since
we are concerned with a family of random variables; recall Remark A.1.2.
It does, however, follow that

{(
N(n) − n/μ√

n

)2

, n ≥ 1

}
is uniformly integrable, (5.19)

which, together with the monotonicity of {N(t), t ≥ 0} proves (5.18).
Moreover, (5.18) and (3.11) together imply that (5.18) also holds for first

passage time processes, that is, that
{(

ν(t) − t/μ√
t

)2

, t ≥ 1

}
is uniformly integrable. (5.20)

Let us now consider the Poisson process and the Negative Binomial
process.

In the former case (recall the notation from above) we have μ = λ−1,
σ2 = λ−2, EN(t) = λt and VarN(t) = λt. The validity of the central limit
theorem is trivial. As for formulas (5.12) and (5.13) we find that

t

μ
+
σ2 − μ2

2μ2
= λt and that

σ2t

μ3
= λt,

that is, we have equalities (without remainder) as expected.
In the latter case we have μ = p, σ2 = pq (and d = 1). Here, however, it is

easier to see that Eν(n) = (n+1) · (1/p) and that Var ν(n) = (n+1) · (q/p2),
since ν(n) equals the number of performances required in order to succeed
more than n times (that is, n+1 times). Since N(n) = ν(n)−1 it follows that
EN(n) = ((n + 1)/p) − 1 and that VarN(n) = (n + 1)q/p2. (Alternatively
N(n) equals the sum of n independent geometric variables with mean 1/p
and one geometric variable with mean q/p.) Again the central limit theorem
presents no problem and it is easy to check that
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n

μ
+
σ2 − μ2

2μ2
+

1
2μ

=
n+ 1
p

− 1.

Finally,
σ2n

μ3
=
pqn

p3
=

(n+ 1)q
p2

− q

p2
,

that is, here we only have asymptotic equality with the leading term (but with
a remainder which is much smaller than o(n)).

Finally, some remarks for the case when VarX1 = +∞.
A generalization of (5.12) and (5.14) under the assumption that

E|X1|r <∞ for some r (1 < r < 2) has been proved in Täcklind (1944).
The remainder then is o(t2−r) as t→ ∞.

For nonarithmetic renewal processes it has been shown by Mohan (1976)
that EN(t)−(t/μ) (= U(t)−(t/μ)) is regularly varying with exponent 2−α iff
F belongs to the domain of attraction of a stable law with index α (1 < α ≤ 2).
Moreover, a generalization of (5.13) is obtained, see also Teugels (1968).

2.6 The Residual Lifetime

In view of the fact that the sequence {Xk, k ≥ 1} frequently is interpreted
as a sequence of lifetimes it is natural to consider, in particular, the object
(component) that is alive at time t. Its total lifetime is, of course, XN(t)+1 =
Xν(t). Of special interest is also the residual lifetime

R(t) = SN(t)+1 − t = Sν(t) − t. (6.1)

In this section we present some asymptotic results.
As a first observation we note that, if VarX1 = σ2 < ∞, then, by

Theorem 1.5.3, we have

ER(t) = ESν(t) − t = μ

(
Eν(t) − t

μ

)
. (6.2)

By combining this with Theorem 5.2(ii) and (3.11) the following result
emerges.

Theorem 6.1. Suppose that VarX1 = σ2 <∞.

(i) If the renewal process is nonarithmetic, then

ER(t) → σ2 + μ2

2μ
as t→ ∞. (6.3)

(ii) If the renewal process is d-arithmetic, then

ER(nd) → σ2 + μ2

2μ
+
d

2
as n→ ∞. (6.4)
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This result indicates that R(t), under appropriate conditions, may con-
verge without normalization. That this is, indeed, the case is shown next.

Theorem 6.2. Suppose that 0 < EX1 = μ <∞.

(i) If the renewal process is nonarithmetic, then, for x > 0, we have

lim
t→∞P (R(t) ≤ x) =

1
μ

∫ x

0

(1 − F (s))ds. (6.5)

(ii) If the renewal process is d-arithmetic, then, for k = 1, 2, 3, . . . , we
have

lim
n→∞P (R(nd) ≤ kd) =

d

μ

k−1∑
j=0

(1 − F (jd)) (6.6)

or, equivalently,

lim
n→∞P (R(nd) = kd) =

d

μ
P (X1 ≥ kd). (6.7)

Proof. We only prove (i), the proof of (ii) being similar.
It is more convenient to consider the tail of the distribution. We have

P (R(t) > x) =
∞∑
n=1

P (Sn−1 ≤ t, Sn > t+ x)

= P (X1 > t+ x) +
∞∑
n=2

∫ t

0

P (Xn > t+ x− s)dFn−1(s)

= 1 − F (t+ x) +
∫ t

0

(1 − F (t+ x− s))dU(s)

→ 0 +
1
μ

∫ ∞

0

(1 − F (x+ s))ds

=
1
μ

∫ ∞

x

(1 − F (s))ds as t→ ∞.

For the convergence we use the key renewal theorem (Theorem 4.3(i)) with
G(t) = 1−F (t+ x), t > 0, and the fact that

∫∞
0
G(t)dt =

∫∞
x

(1−F (s))ds ≤
EX1 <∞. �

Before we proceed, let us, as in Sections 2.4 and 2.5, consider the Poisson
process and the Negative Binomial process.

Due to the lack of memory property it is clear that R(t) is exponential
with mean μ = λ−1 for all t. It is now easy to check that μ−1

∫ x
0 (1−F (s))ds =

1− e−λx for x > 0 and that (σ2 +μ2)/2μ = λ−1, that is, we have equality for
all t in (6.3) and (6.5) as expected.
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For the Negative Binomial process R(n) = 1 a.s. for all n. Since μ = p
and σ2 = pq we have μ−1P (X1 ≥ 1) = 1 and (σ2 + μ2)/(2μ) + 1

2 = 1, that is,
there is equality in (6.7) and (6.4) for all n.

In Theorem 6.1 we have seen how the expected value of the residual lifetime
behaves asymptotically. The following result extends Theorem 6.1 to arbitrary
moments; however, we confine ourselves to the nonarithmetic case. The proof
is, essentially, due to Lai (1976), p. 65.

Theorem 6.3. Suppose that EXr
1 <∞ for some r > 1. If the renewal process

is nonarithmetic, then

E(R(t))r−1 → 1
rμ
EXr

1 as t→ ∞. (6.8)

Proof. We have

R(t) =
∞∑
n=1

I{Sn−1 ≤ t} · (Sn−1 +Xn − t)+ (t > 0), (6.9)

where all terms but one equal 0. We can thus raise the sum to any power
termwise. An elementary computation then shows that

E(R(t))r−1 = E((X1 − t)+)r−1 +
∫ t

0

G(t− s)dU(s), (6.10)

where
G(y) =

∫ ∞

y

(u− y)r−1dF (u) (6.11)

and U is the renewal function. Since
∫ ∞

0

G(y)dy =
1
r
EXr

1 <∞, (6.12)

an application of the key renewal theorem (Theorem 4.3(i)) yields

E(R(t))r−1 → 1
μ

∫ ∞

0

G(y)dy as t→ ∞, (6.13)

which, in view of 6.12, proves the theorem. �

Remark 6.1. Note that, for r = 2, we rediscover (6.3).

Another quantity of interest is the age of the object that is alive at time
t, A(t) = t − SN(t). However, since this object will not be considered in
the sequel (it does not carry over in a reasonable sense to random walks), we
only mention here that it can be shown that, in the nonarithmetic case, the
limit distribution of the age is the same as that of the residual lifetime given
in Theorem 6.2 (a minor modification is necessary in the arithmetic case).
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We also note that R(t) is, mathematically, a more pleasant object, since it is
expressed in terms of a random quantity indexed by a stopping time, whereas
A(t) is not.

We finally mention that it is also possible to obtain the asymptotic distri-
bution of the lifetime, Xν(t) = A(t) +R(t), itself. One can, in fact, show that

lim
t→∞P (Xν(t) ≤ x) =

1
μ

∫ x

0

sdF (s). (6.14)

2.7 Further Results

An exhaustive exposition of renewal theory would require a separate book.
As mentioned in the introduction of this chapter our aim is to present a
review of the main results, with emphasis on those which are most relevant
with respect to the contents of this book. In this section we shall, however,
briefly mention some further results and references.

2.7.1

Just as for the classical limit theorems one can ask for limit theorems for the
case when the variance is infinite or even when the mean is infinite. How-
ever, one must then make more detailed assumptions about the tail of the
distribution function F .

In Feller (1971), pp. 373–74 it is shown that a limit distribution for N(t)
exists if and only if F belongs to some domain of attraction—the limit laws
are the stable distributions.

Concerning renewal theorems and expansions of U(t) (= EN(t)) and Var
N(t), suppose first that VarX1 = +∞. Then Teugels (1968) shows, essentially,
that if 1 − F (x) = x−αL(x), where 1 < α < 2 and L is slowly varying, then
U(t)− t/μ = EN(t)− t/μ varies regularly with exponent 2−α and Var (N(t))
varies regularly with exponent 3−α (see his Section 3). Mohan (1976) improves
these results. He also considers the case α = 2.

For the case EX1 = +∞ Teugels (1968) obtains asymptotic expansions
for the renewal function under the assumption that the tail 1 − F satisfies
1 − F (x) = x−α · L(x) as x → ∞, where 0 ≤ α ≤ 1 and L is slowly varying;
the result, essentially, being that U varies regularly with exponent α (see
his Theorem 1). For L(x) = const and 0 < α < 1 this was obtained by
Feller (1949) in the arithmetic case. Erickson (1970) generalizes the elementary
renewal theorem, Blackwell’s renewal theorem and the key renewal theorem
(Theorems 4.1–4.3 above) to this situation. For a further contribution, see
Anderson and Athreya (1987).

Garsia and Lamperti (1962/63) and Williamson (1968) study the arith-
metic case, the latter also in higher dimensions.



2.7 Further Results 65

Finally, if the mean is infinite and F belongs to the domain of attraction
of a (positive) stable law with index α, 0 < α < 1, then the limit distribution
for R(t)/t and A(t)/t (the normalized residual lifetime and age, respectively)
is given by a so-called generalized arc sine distribution, see Feller (1971),
Section XIV.3; see also Dynkin (1955) and Lamperti (1958, 1961). For the
case α = 1, see Erickson (1970).

2.7.2

There are also other kinds of limit theorems which could be of interest for
renewal processes, such as the Marcinkiewicz-Zygmund strong law, the law
of the iterated logarithm, convergence of higher moments in the central limit
theorem (Theorem 5.2(i)), remainder term estimates in the central limit
theorem etc.

It turns out that several such results have not been established separately
for renewal processes; the historic development was such that renewal theory
had been extended to renewal theory for random walks (on the whole real
line) in such a way that proofs for the random walk case automatically also
covered the corresponding theorems for renewal processes. In other words, the
generalization to random walks came first.

We remark, however, that Feller (1949) presents a law of the iterated
logarithm for renewal counting processes in the arithmetic case.

The following Berry–Esseen theorem for renewal counting processes, that
is, a remainder term estimate in the central limit theorem, Theorem 5.2(i), is
due to Englund (1980).

Theorem 7.1. Suppose that μ = EX1, σ
2 = Var X1 and γ3 = E|X1 − μ|3

are all finite. Then

sup
n

∣∣∣∣P (N(t) < n) − Φ

(
(nμ− t)

√
μ

σ
√
t

)∣∣∣∣ ≤ 4
(γ
σ

)3
√
μ

t
. (7.1)

This result is mentioned mainly because it has not yet been extended to
the random walk case.

Some large deviation results, that is, limit theorems for the ratio of the tail
of the normalized distribution function of N(t) and the tail of the standard
normal distribution, are obtained in Serfozo (1974).

2.7.3

In this subsection we briefly mention two generalizations.
Consider Example 2.1. It is completely reasonable to assume that the

initial component is not new, but has been used before. This amounts to the
assumption that X1 has a distribution different from F . Such a process is
called a delayed renewal process. The renewal processes discussed above are
then called pure renewal processes.
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Another generalization is to allow defective distributions, that is, distribu-
tions such that F (∞) < 1. The defect, 1−F (∞), corresponds to the probabi-
lity of termination. Such processes are called terminating, or transient renewal
processes. There are important applications of such processes, for example in
insurance risk theory, see e.g. Asmussen (2000, 2003).

2.7.4

It is possible to develop a renewal theory for random walks (on the whole real
line). We shall, in fact, do so in Chapter 3 (for the case EX1 > 0).

2.7.5

Some attention has also been devoted to renewal theory for Markov chains,
or Markov renewal theory; see Smith (1955), Çinlar (1975), Chapter 10 and
Asmussen (2003). Some further references in this connection are Kemperman
(1961), Spitzer (1965), Kesten (1974), Lalley (1984b, 1986) and papers by
Alsmeyer and coauthors listed in the bibliography. In some of these references
more general state spaces are considered. For a few lines on this topic, see
Section 6.13 below.

2.7.6

We conclude by mentioning multidimensional or multivariate renewal theory.
Some references are Chung (1952), Farrell (1964, 1966), Bickel and Yahav
(1965), Doney (1966), Stam (1968, 1969, 1971), Hunter (1974a,b, 1977),
Nagaev (1979), Gafurov (1980), Carlsson (1982) and Carlsson and Wainger
(1984).

2.8 Random Walks; Introduction and Classifications

Let {Xk, k ≥ 1} be a sequence of i.i.d. random variables and set Sn =∑n
k=1Xk, n ≥ 0, (where S0 = 0). The sequence {Sn, n ≥ 0} is called a

random walk. Throughout we ignore the trivial case Xk = 0 a.s., k ≥ 1.
One of the basic problems concerning random walks is to investigate the

asymptotics as n → ∞, that is, to investigate “where” the random walk is
after a “long time.” All the classical limit theorems provide some answer to
this problem. Another way of studying random walks is to investigate “how
often” a given point or interval is visited, in particular, if there are finitely
many visits or infinitely many visits and if the answer differs for different
points or intervals.

Example 8.1. The simple random walk. Here P (Xk = +1) = p and P (Xk =
−1) = q = 1 − p (0 ≤ p ≤ 1).
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Set un = P (Sn = 0). It is well known (and/or easy to see) that

u2n =
(

2n
n

)
pnqn and u2n−1 = 0 (n ≥ 1). (8.1)

Thus, if p �= q, then
∑∞

n=1 un <∞ and it follows from the Borel–Cantelli
lemma that

P (Sn = 0 i.o.) = 0 for p �= q. (8.2)

If p = q = 1
2 , then

∑∞
n=1 un = +∞ and it follows (but not from the

Borel–Cantelli lemma) that

P (Sn = 0 i.o.) = 1 for p = q =
1
2
. (8.3)

A similar computation would show that the same dichotomy holds for returns
to any integer point on the real line.

The different behaviors for p �= q and p = q divide the simple random
walks into two separate kinds. An analogous characterization can be made for
all random walks. To this end we generalize the renewal function introduced
in Section 2.3 as follows. We define the renewal measure

U{I} =
∞∑
n=0

P (Sn ∈ I), (8.4)

where I ⊂ (−∞,∞) typically is an interval; here it is more convenient to let
the summation start with n = 0 (recall Remarks 3.2 and 3.3).

For renewal processes we thus have, in particular, that U{[0, t]} = 1 +
U(t) < ∞ for all t, that is U{I} < ∞ for all finite I. For random walks,
which are not concentrated on one of the half axes, the series may, however,
diverge even when I is a finite interval. This is far from obvious in general
(see however Example 8.1 with p = q = 1

2 and I = {0}) and gives, in fact,
rise to the characterization to follow.

First, however, we note the following result.

Theorem 8.1.

(i) If the random walk is nonarithmetic, then either U{I} < ∞ for every
finite interval I or else U{I} = +∞ for all intervals I.

(ii) If the random walk is arithmetic with span d, then either U{I} <∞ for
every finite interval I or else U{I} = +∞ for all intervals I containing
a point in the set {nd: n = 0,±1,±2, . . .}.

This naturally leads to the following definition.

Definition 8.1. A random walk is called transient if U{I} <∞ for all finite
intervals I and recurrent otherwise.
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Remark 8.1. Define the indicator variables {In, n ≥ 0} such that In = 1 on
{Sn ∈ I} and In = 0 otherwise and set Λ{I} =

∑∞
n=0 In. Then Λ{I} equals

the actual number of visit to I made by the random walk (including S0)
and U{I} = EΛ{I}, that is, U{I} equals the expected number of visits to I
(cf. Remark 3.5).

We now return to the simple random walk from Example 8.1 and note
that

U{0} =
∞∑
n=0

un. (8.5)

It thus follows from our computations there that U{0} <∞ (= ∞) when
p �= q (p = q). In view of Theorem 8.1 and Definition 8.1 it thus follows
that the simple random walk is transient when p �= q and recurrent when
p = q = 1

2 .
Moreover, it follows from the strong law of large numbers that Sn

a.s.−−→
+∞ as n → ∞ when p > q and that Sn

a.s.−−→ −∞ as n → ∞ when p < q.
In these cases the random walk drifts to +∞ and −∞, respectively. If p = q =
1
2 it follows from the law of the iterated logarithm that lim supn→∞ Sn = +∞
a.s. and that lim infn→∞ Sn = −∞ a.s. In this case the random walk oscillates
(between +∞ and −∞).

It turns out that these characterizations are not typical for simple random
walks only; in fact, most of the above facts remain true for arbitrary random
walks and all of them remain valid if, in addition, EX1 is assumed to exist
(that is, if E|X1| < ∞ or EX−

1 < ∞ and EX+
1 = +∞ or EX−

1 = ∞ and
EX+

1 <∞). We collect these facts as follows.

Theorem 8.2. Let {Sn, n ≥ 0} be a random walk. Then exactly one of the
following cases holds:

(i) The random walk drifts to +∞; Sn
a.s.−−→ +∞ as n → ∞. The random

walk is transient;
(ii) The random walk drifts to −∞; Sn

a.s.−−→ −∞ as n → ∞. The random
walk is transient;

(iii) The random walk oscillates between −∞ and +∞; −∞ = lim infn→∞
Sn < lim supn→∞ Sn = +∞ a.s. In this case the random walk may be
either transient or recurrent.

Theorem 8.3. Suppose, in addition, that μ = EX1 exists.

(i) If 0 < μ ≤ +∞ the random walk drifts to +∞;
(ii) If −∞ ≤ μ < 0 the random walk drifts to −∞;
(iii) If μ = 0 the random walk oscillates. Moreover, in this case it is recurrent.

Remark 8.2. Theorem 8.3 (i) and (ii) follow immediately from the strong law
of large numbers. The case EX1 = 0 is harder.
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The development so far is based on whether or not the measure U{I} is
finite, that is whether or not the expected number of visits to a given interval
is finite or not (recall Remark 8.1). However, it was shown in Example 8.1
that, for the simple random walk, the actual number of visits to 0 is a.s. finite
when p �= q and a.s. infinite when p = q. Now, if, for a general random walk,
U{I} = EΛ{I} <∞, where Λ{I} is as defined in Remark 8.1, then, obviously,
we have Λ{I} <∞ a.s.

However, it is, in fact, possible to show that the converse also holds. Con-
sequently,

U{I} <∞ ⇐⇒ Λ{I} <∞ a.s. for all finite I. (8.6)

Theorem 8.1 thus remains true with U{I} replaced by Λ{I} and transience
and recurrence can, equivalently, be defined in terms of Λ{I}. Moreover, since
Λ{I} < ∞ for all finite I iff |Sn| → +∞ as n → ∞ the following result
emerges.

Theorem 8.4. The random walk is transient iff |Sn| → ∞ a.s. as n→ ∞.

It is also possible to characterize random walks according to the tran-
sience or recurrence of points (rather than intervals). We refer to Chung and
Fuchs (1951) and Chung and Ornstein (1962). Just as for irreducible Markov
chains one can show that all points are of the same kind (where “all” has the
obvious interpretation in the arithmetic case). Furthermore, one can show that
the interval characterization and the point characterization are equivalent.

Remark 8.3. Note that we, in fact, studied the transience/recurrence of the
point 0 for the simple random walk. However, for arithmetic random walks any
finite interval consists of finitely many points of the form {nd; d = 0,±1, . . .}
so the distinction between points and intervals only makes sense in the non-
arithmetic case.

Some book references on random walks are (in alphabetical order) Chung
(1974), Feller (1968, 1971), Prabhu (1965) and Spitzer (1976).

2.9 Ladder Variables

Let {Sn, n ≥ 0} be a random walk with i.i.d. increments {Xk, k ≥ 1}. Set
T0 = 0 and define

T1 = min{n: Sn > 0},
Tk = min{n > Tk−1: Sn > STk−1} (k ≥ 2). (9.1)

If no such n exists we set Tk = +∞. The random variables thus
defined are called the (strong) (ascending) ladder epochs. The random variables
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Yk = STk
, k ≥ 0, are the corresponding (strong) (ascending) ladder heights

(with Y0 = ST0 = S0 = 0).
Further, define, for k ≥ 1,

Nk = Tk − Tk−1 and Zk = Yk − Yk−1 = STk
− STk−1 , (9.2)

provided Tk <∞.
It follows from the construction that {(Nk, Zk), k ≥ 1}, {Nk, k ≥ 1} and

{Zk, k ≥ 1} are sequences of i.i.d. random variables. Moreover, {Tn, n ≥ 0}
and {Yn, n ≥ 0} are (possibly terminating) renewal processes; the former, in
fact, being arithmetic with span 1.

Similarly, set T 0 = 0 and define

T 1 = min{n: Sn ≤ 0} and

T k = min{n > T k−1: Sn ≤ T k−1} (k ≥ 2). (9.3)

We call {Tk, k ≥ 0} the (weak) (descending) ladder epochs. The sequences
{Y k, k ≥ 0}, {Nk, k ≥ 1} and {Zk, k ≥ 1} are defined in the obvious
manner.

Recall that a random variable is proper if it is finite a.s. Otherwise it is
defective.

Theorem 9.1.

(i) If the random walk drifts to +∞, then T1 and Y1 are proper and T 1 and
Y 1 are defective. Moreover, ET1 <∞;

(ii) If the random walk drifts to −∞, then T1 and Y1 are defective and T 1

and Y 1 are proper. Moreover, ET 1 <∞;
(iii) If the random walk oscillates, then T1, Y1, T 1 and Y 1 are proper. More-

over, ET1 = ET 1 = +∞.

Theorem 9.2. If, in addition, μ = EX1 exists, then (i), (ii) and (iii) corres-
pond to the cases 0 < μ ≤ ∞, −∞ ≤ μ < 0 and μ = 0, respectively. Moreover,

EY1 <∞ and EY1 = μET1 when 0 < μ <∞ (9.4)

EY 1 > −∞ and EY 1 = μET 1 when −∞ < μ < 0. (9.5)

Remark 9.1. The equations in (9.4) and (9.5) are, in fact, special cases of
Theorem 1.5.3.

Remark 9.2. For the case EX1 = 0 we recall Example 1.5.1—the simple
symmetric random walk, for which Y1 = 1 a.s. and ET1 = +∞.

Remark 9.3. If μ = EX1 = 0 and, moreover, σ2 =Var X1<∞, then EY1<∞
and EY 1 <∞. Furthermore,
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σ2 = −2EY1 · EY 1 (9.6)

and
EY1 =

σc√
2

and EY 1 = − σ

c
√

2
, (9.7)

where 0 < c = exp{∑∞
n=1

1
n (1

2 − P (Sn > 0))} <∞.
These results are due to Spitzer (1960, 1976). The absolute convergence of

the sum was proved by Rosén (1961), see also Gut (2001), page 414.
For further results on the moments of the ladder heights we refer to Lai

(1976), Chow and Lai (1979) and Doney (1980, 1982).

The case EX1 > 0 will be further investigated in Chapter 3.

Remark 9.4. Weak ascending and strong descending ladder variables can be
defined in the obvious manner.

2.10 The Maximum and the Minimum of a Random
Walk

For a random walk {Sn, n ≥ 0} we define the partial maxima, {Mn, n ≥ 0},
by

Mn = max{0, S1, S2, . . . , Sn} (10.1)

and the partial minima, {mn, n ≥ 0}, by

mn = min{0, S1, S2, . . . , Sn}. (10.2)

In this section we show how these sequences can be used to characterize a
random walk and in Section 2.12 we present some general limit theorems for
Mn.

If the random walk drifts to +∞, then, since Mn ≥ Sn, it follows from
Theorem 8.2 that Mn

a.s.−−→ +∞ as n → ∞. Furthermore, with probability 1,
there is a last (random) epoch at which the random walk assumes a negative
value. Thus

m = min
n≥0

Sn > −∞ a.s. (10.3)

Since {mn, n ≥ 0} is nonincreasing it follows that mn → m monotonically
as n→ ∞. These facts, together with a similar (symmetric) argument for the
case when the random walk drifts to −∞, yield (i) and (ii) of the following
theorem. The proof of (iii) is immediate.

Theorem 10.1.

(i) If the random walk drifts to +∞, then

Mn
a.s.−−→ +∞ and mn

a.s.−−→ m = min
n
Sn > −∞ a.s. as n→ ∞;
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(ii) If the random walk drifts to −∞, then

Mn
a.s.−−→ M = max

n≥0
Sn <∞ a.s. and mn

a.s.−−→ −∞ as n→ ∞;

(iii) If the random walk is oscillating, then

Mn
a.s.−−→ +∞ and mn

a.s.−−→ −∞ as n→ ∞.

If, in addition, μ = EX1 exists, then (i), (ii) and (iii) correspond to the
cases 0 < μ ≤ +∞, −∞ ≤ μ < 0 and μ = 0, respectively.

2.11 Representation Formulas for the Maximum

The sequence of partial maxima {Mn, n ≥ 0}, defined in the previous section,
describes the successive record values of a random walk. However, so does the
sequence of strong ascending ladder heights. At every strong ascending ladder
epoch there is a new record value, that is, the sequence of partial maxima and
the sequence of strong ascending ladder heights both jump to a new, common,
record value. Thus, each Mn equals some strong ascending ladder height.

To make this argument more stringent, let {N(n), n ≥ 1} be the counting
process of the renewal process {Tn, n ≥ 0}, generated by the strong ladder
epochs. Thus,

N(n) = max{k: Tk ≤ n} (n ≥ 1), (11.1)

or, equivalently, N(n) equals the number of strong ascending ladder epochs
in [0, n].

The following lemma, which is due to Prabhu (1980), formalizes the
relation between the sequence of partial maxima and the sequence of ladder
heights.

Lemma 11.1. We have

Mn = YN(n) =
N(n)∑
k=1

Zk =
N(n)∑
k=1

(STk
− STk−1). (11.2)

Remark 11.1. A completely analogous relation holds between the sequence of
partial minima and the sequence of strong descending ladder heights.

The usefulness of this lemma lies in the fact that we have represented
Mn as a sum of a random number of i.i.d. positive random variables, which
permits us to apply the results obtained in Chapter 1 for such sums in order
to prove results for Mn. Note, however, that N(n) is not a stopping time,
since {N(n), n ≥ 1} is a renewal counting process.

There is, however, another and much simpler way to derive some of these
limit theorems, namely those concerning convergence in distribution or those
which only involve probabilities and here the following lemma is useful.
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Lemma 11.2. We have

(Mn,Mn − Sn)
d= (Sn −mn,−mn), (11.3)

in particular,
Mn

d=Sn −mn. (11.4)

Remark 11.2. This is Prabhu (1980), Lemma 1.4.1. The basis for the proof is
the fact that the original random walk has the same distributional properties
as the so-called dual random walk. In particular,

(S0, S1, S2, . . . , Sn)
d= (Sn − Sn, Sn − Sn−1, . . . , Sn − S1, Sn − S0). (11.5)

Lemmas 11.1 and 11.2 are thus used in different ways. Whereas Lemma 11.1
gives an actual representation ofMn, Lemma 11.2 (only) defines two quantities
which are equidistributed. Thus, if we are interested in the “sample function
behavior” of {Mn, n ≥ 0} we must use Lemma 11.1, since two sequences of
random variables with pairwise the same distribution need not have the same
sample function behavior; for example, one may converge a.s. whereas the
other does not. However, if we only need a “weak” result, then Lemma 11.2
is very convenient.

In the following section we shall use Lemmas 11.1 and 11.2 to prove (or
indicate the proofs of) some general limit theorems for Mn. In Section 4.4 we
shall exploit the lemmas more fully for random walks with positive drift.

We conclude this section by showing that we can obtain a representation
formula for M = maxn≥0 Sn for random walks drifting to −∞ by letting
n→ ∞ in (11.2).

Thus, suppose that the random walk drifts to −∞; this is, for example, the
case when EX1 < 0. We then know from Theorem 10.1(ii) that Mn

a.s.−−→ M =
maxn≥0 Sn as n→ ∞, whereM is a.s. finite. Furthermore,N(n) a.s.−−→ N <∞
a.s. as n→ ∞, where N equals the number of strong ascending ladder epochs
(note that, in fact, N(n) = N for n sufficiently large). This, together with
Theorem 1.2.4, establishes the first part of the following result, see Janson
(1986), Lemma 1.

Lemma 11.3. If the random walk drifts to −∞, then

M = max
n≥0

Sn = YN =
N∑
k=1

Zk =
N∑
k=1

(STk
− STk−1), (11.6)

where N equals the number of strong ascending ladder epochs and

P (N = n) = p(1 − p)n, n ≥ 0, and p = P (T1 = +∞) = P (M = 0) > 0.

Moreover, the conditional distribution of Zk given that N ≥ k is independent
of k and Z1, . . . , Zk−1 and Zk are independent given that N ≥ k.
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Proof. Formula (11.6) was proved above. For the remaining part of the proof
we observe that {Tk, k ≥ 1} is a sequence of defective stopping times and that
the random walk after Tk is independent of the random walk up to Tk on the
set {Tk <∞}. Thus

P (N ≥ k+ 1|N ≥ k) = P (Tk+1 <∞|Tk <∞) = P (T1 <∞) = 1− p. (11.7)

By rewriting this as

P (N ≥ k + 1) = P (T1 <∞)P (N ≥ k), (11.8)

it follows that N has a geometric distribution as claimed. Also, since
P (N < ∞) = 1, we must have p = P (T1 = +∞) > 0. The final claim
about independence follows as above (cf. (11.7)). �

Remark 11.3. A consequence of Lemma 11.3 is that, for a random walk drifting
to −∞ we can represent the maximum, M , as follows:

M
d=

N∑
k=1

Uk, (11.9)

where {Uk, k ≥ 1} is a sequence of i.i.d. random variables, which, moreover, is
independent of N . Furthermore, the distribution of U1 equals the conditional
distribution of Y1 (= ST1) given that T1 < ∞ and the distribution of N is
geometric as above.

Remark 11.4. Results corresponding to Lemmas 11.1 and 11.3 also hold for the
weak ascending ladder epochs. Since P (ST1 > 0) ≥ P (X1 > 0) > 0 it follows
that the sums corresponding to (11.2) and (11.6) consist of a geometric number
of zeroes followed by a positive term, followed by a geometric number of zeroes
etc. Equivalently, the terms in (11.2) and (11.6) consist of the positive terms
in the sums corresponding to the weak ascending ladder epochs.

Remark 11.5. A result analogous to Lemma 11.3 also holds for the minimum
m = minn≥0 Sn if the random walk drifts to +∞.

2.12 Limit Theorems for the Maximum

Having characterized random walks in various ways we shall now proceed
to prove some general limit theorems for the partial maxima of a random
walk. We assume throughout that the mean exists (in the sense that at least
one of the tails has finite expectation). All results for partial maxima have
obvious counterparts for the partial minima, which we, however, leave to the
reader.
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Theorem 12.1 (The Strong Law of Large Numbers). Suppose that
−∞ ≤ μ = EX1 ≤ ∞. We have

Mn

n

a.s.−−→ μ+ as n→ ∞. (12.1)

Proof. Suppose first that 0 ≤ μ ≤ ∞. Since Mn ≥ Sn it follows from the
strong law of large numbers that

lim inf
n→∞

Mn

n
≥ μ a.s. (12.2)

If μ = +∞ there is nothing more to prove, so suppose that 0 ≤ μ < ∞.
It remains to prove that

lim sup
n→∞

Mn

n
≤ μ a.s. (12.3)

Now, let ε > 0 and choose ω ∈ Ω such that

lim sup
n→∞

Mn(ω)
n

> μ+ ε. (12.4)

Then there exists a subsequence {nk, k ≥ 1} tending to infinity such that

Mnk
(ω)

nk
> μ+ ε (k ≥ 1). (12.5)

Define τnk
= min{n: Sn = Mnk

}. Since τnk
≤ nk it follows from (12.4)

(suppressing ω) that

Sτnk

τnk

=
Mnk

τnk

≥ Mnk

nk
> μ+ ε. (12.6)

However, in view of the strong law of large numbers the set of ω such that
this is possible must have probability 0, that is, (12.4) is a.s. impossible and
(12.3) follows. This completes the proof for the case 0 ≤ μ <∞.

Finally, suppose that −∞ ≤ μ < 0. We then know from Theorem 10.1
that Mn converges a.s. to an a.s. finite random variable, M . This immediately
implies that

Mn

n

a.s.−−→ 0 = μ+ as n→ ∞ (12.7)

and we are done. �

Remark 12.1. We just wish to point out that if 0 < EX1 < ∞ we can use
Lemma 11.1 to give an alternative proof of Theorem 12.1 by arguing as follows.

By the representation (11.2) we have

Mn

n
=
Z1 + · · · + ZN(n)

n
, (12.8)

where, again, N(n) = max{k: Tk ≤ n}.
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Now, from Theorem 9.2 we know that EZ1 = EY1 < ∞. From renewal
theory (Theorem 5.1(i)) we thus conclude that

N(n)
n

a.s.−−→ 1
ET1

as n→ ∞, (12.9)

which, together with Theorem 1.2.3(iii), yields

Z1 + · · · + ZN(n)

n

a.s.−−→ EZ1 · 1
ET1

as n→ ∞. (12.10)

The conclusion now follows from Theorem 1.5.3 (or directly from formula
(9.4)).

Remark 12.2. The same proof also works when EX1 = 0 provided we also
assume that Var X1 <∞. This is necessary to ensure that EY1 = EZ1 <∞.

Next we assume that, in addition, Var X1 < ∞. The resulting limit laws
are different for the cases EX1 = 0 and EX1 > 0, respectively, and we begin
with the former case.

Theorem 12.2. Suppose that EX1 = 0 and that σ2 = Var X1 < ∞.
Then

Mn√
n

d−→ |N(0, 1)| as n→ ∞. (12.11)

Sketch of Proof. By Lemma 11.1 we have (cf. (12.8))

Mn√
n

=
Z1 + · · · + ZN(n)

N(n)
· N(n)√

n
. (12.12)

The idea now is that, since EZ1 < ∞ (cf. Remark 9.3), it follows from
Theorem 1.2.3 that the first factor in the RHS of (12.12) converges a.s. to
EZ1 as n→ ∞. Furthermore, one can show that

N(n)
c
√

2n
d−→ |N(0, 1)| as n→ ∞. (12.13)

where c is the constant in Remark 9.3. The conclusion then follows from
Cramér’s theorem and the fact that EZ1 = EY1 = σc/

√
2 (recall (9.7)). �

We now turn to the case EX1 > 0.

Theorem 12.3 (The Central Limit Theorem). Suppose that 0 < μ =
EX1 <∞ and that σ2 = Var X1 <∞. Then

Mn − nμ

σ
√
n

d−→ N(0, 1) as n→ ∞. (12.14)
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Proof. By Lemma 11.2 we have

Mn − nμ

σ
√
n

d=
Sn − nμ

σ
√
n

− mn

σ
√
n
. (12.15)

Since mn
a.s.−−→ m > −∞ a.s. as n→ ∞ (Theorem 10.1) it follows that

mn√
n

a.s.−−→ 0 as n→ ∞. (12.16)

This, together with the ordinary central limit theorem and Cramér’s theorem,
shows that the RHS (and hence the LHS) of (12.15) converges in distri-
bution to the standard normal distribution as n → ∞, which proves the
theorem. �

Theorem 12.1 is part of a more general theorem (see Theorem 4.4.1(i)) due
to Heyde (1966). The present proof is due to Svante Janson. Theorems 12.2
and 12.3 are due to Erdős and Kac (1946) and Wald (1947), respectively.
Chung (1948) proves both results with a different method (and under
additional assumptions). The proofs presented here are due to Prabhu (1980),
Section 1.5.

In Section 4.4 we present further limit theorems for the maximum of
random walks with positive drift.


