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Statistical and data analysis issues for new surveillance paradigms are quickly
emerging in public health. Among the key factors motivating their evolution
and development are

1. New requirements and resources to address a perceived bioterrorism threat
as well as emerging diseases.

2. Information system technology growth in general.
3. Recognition of surveillance integration as a priority.
4. Widely available data with unrealized potential for useful information.

The term syndromic surveillance is used here somewhat as a catch-all for refer-
ring to new surveillance system paradigms and should be interpreted broadly
[MH03, Hen04]. Biosurveillance has a much longer history for naturally occur-
ring morbidity and mortality (i.e., infectious diseases, birth defects, injuries,
immunization coverage, sexually transmitted diseases, HIV, medical product
adverse events, etc.) than for deliberately malicious exposures. The profes-
sional relationships and established roles among public health levels (local,
state, and federal) must be considered carefully as the context in which pub-
lic health surveillance activity and system maturity take place. To ignore this
extant infrastructure in advancing surveillance methodology involves the risk
of developing irrelevant ideas because they may not be feasible to implement.
However, if we do not extend beyond our applied creativity, we risk stag-
nation and incompetence. The balance is to identify the right size research,
development, and implementation steps that will enable palatable progress
and then take these steps quickly, frequently, and repeatedly in the same di-
rection. Implementation of national scope public health information system
change is extremely complex. This is a prologue designed to introduce and
sensitize the reader to factors that may serve as enablers in that complexity
for taking advantage of how to best consider the concepts asserted in the rest
of the articles dealing with biosurveillance.
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1 Evaluation

There is a growing body of literature on evaluation of “syndromic surveillance”
that ranges broadly. Topics include

1. Advice on what to consider as a framework [CDC04]
2. Assessment of specific data source validity [FSS04]
3. Algorithm performance [MRC04, SD03, BBC05]
4. General policy discourse [Rei03, SSM04]
5. Activity overview, etc. [BBC05]

The breadth of this subtopic attests to the interest of evaluation for a
relatively immature area in public health surveillance system development. It
does not seem reasonable to expect meaningful evaluative conclusions about
surveillance systems (e.g., cost/benefit utility) without a means to rigorously
evaluate system components individually.

Consider that for modern biosurveillance systems, there are

1. Information technology process segments for recording electronic transac-
tions and moving data.

2. Data preprocessing functions that include structuring an accessible ana-
lytic database architecture and ensuring data quality.

3. Data analysis components to apply methods for inference as well as de-
duction.

4. Support tools that operate in a decision theoretic framework for combining
evidence, other information, and communication to facilitate action in
near realtime.

To acquire useful evaluation measures for a surveillance system, subcategories
are required so that specific enough objectives could be established. By this ap-
proach, evaluation for the provincial notion of “whether or not” to do surveil-
lance gets replaced with the more practical notion of “how to do it better.”
Also, system complexity is reduced by decomposition. A risk here is to over-
segregate interdependent activities and create operational stovepipes among
professional skill sets. Good management and leadership must be alert and
proactive to prevent maladaptive marginalization of system development, data
management, statistical subject matter or end-user professionals in evaluation
research and subsequent development activities for surveillance. This is essen-
tial in order to “conquer” after dividing; or more specifically in this context,
to make sense out of algorithm performance characteristics after considering
them separately from other operational surveillance components.

Since much of the data used for public health surveillance are not collected
specifically for that purpose and/or are spontaneously generated, (1) they are
referred to as “secondary” or “opportunistic,” (2) the data require substan-
tial preprocessing for analytic use, (3) a sample-to-population mapping is
not probabilistically defined, and therefore, (4) the analytic signal detection
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methodologies are empirical in nature and do not lend themselves to conclu-
sions bearing well-defined inferential quantities such as confidence intervals
or p-values. There is generally no sampling design to define the probabilistic
relationship between the data and a specified population of interest, and a
design-based guide for an analytic strategy in a traditional sense is absent.
Therefore effective use of these systems is primarily empirical.

Detection algorithm performance evaluation in an empirical setting is
problematic when events for detection are rare. In the absence of recorded
events of importance to train upon, thoughtful and informed simulation is
much needed to accelerate learning. Ideally, a realistically described scenario
can be translated into representation in data as a response to people’s be-
havior. Characteristics of the scenario that would affect representation in the
data could be modified with a consequential data representation. Monte Carlo
iterations of the simulated signal structured over real data absent of events
of interest could then be cycled with detection activities recorded. Thus, the
usual means to evaluate a statistical detection approach for its operating char-
acteristics under varying conditions could be established. What frequently
takes place is that the people or groups who develop and promote a detection
approach are the same ones who establish the simulation and the evaluation
criteria and interpret the outcome. This is certainly a reasonable first step but
this process leaves too much opportunity for scientific confounding — design-
ing the evaluation criteria to fit the object of evaluation. A more objective
approach would serve to advance the field more effectively.

In addition to (1) well-defined signals of importance, (2) the use of sim-
ulation, and (3) increased objectivity, the results of evaluation studies for
surveillance system performance are of much greater practical value if they
consider the realistic operational conditions under which data analysts must
make decisions. Three considerably influential factors are data “lag time,”
“time alignment,” and the “unlinked multiple data source” problem. Two
ways that data lag time can be considered are (1) the average time between a
population event (e.g., patient encounter or some other health-seeking behav-
ioral event) and the event’s data representation in an analytic system interface
or (2) the proportion of data available at the time a decision is needed (versus
at some later time). “Time alignment” refers to the differential health-seeking
behavior times relevant for various data sources that may be available in one
analytic system. For example, if one were able to view time series signals in
response to a population exposure that caused illness, it may appear earlier
for sales data than for emergency department (ED) data. The reasoning is
that people may generally purchase products for self-treatment before their
symptoms would be severe enough to warrant a trip to the ED. The “unlinked
data source” problem is an issue for the secondary use of data sources when
record linkage is either not possible or avoided for other reasons. Given that
much of the data used in automated surveillance is gathered for some other
purpose (treating patients, billing, market analysis, inventory, etc.) and that
protecting individual confidentiality is a motive, broad linkage of records is
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not generally feasible. Therefore, the extent of information overlap is unknown
across data streams. For example, if a system uses over-the-counter sales, ED,
and laboratory test order data, it is not known to what extent the same people
and their reactions to illness are manifest in the different sources. Without
consideration of these operational realities, simulations for determining oper-
ating characteristics of new surveillance paradigms are incomplete at best and
of marginal practical value.

2 Coordination for Information Exchange among
Jurisdictions: BioSense

This is an aspect of analyzing and using information that easily goes unno-
ticed or is not well understood by the technical data analysis professionals who
develop the analytic methodologies of surveillance systems. In public health
as well as many public service industries, local jurisdictions are the primary
users of information systems relating to situational awareness and their po-
tential need to respond in their communities. When situations cross juris-
dictional borders, coordinating response becomes a shared challenge. When
public health threats cross state borders, the federal government becomes
responsible for coordinating information. The time and efficiency of meet-
ing this challenge are facilitated greatly through the use of technology stan-
dards [Bra05]. Conversely, multiple and diverse system outputs are difficult to
exchange and consequently interpret. Thus, considering the potential public
health threat that bioterrorism poses, there is a critical need for standards in
data coding and preprocessing, data management procedures, analytic algo-
rithms, data monitor operating procedures, and documentation of anomaly
investigations. Further, since it could be any part of the nation that is at risk,
these standards need to be national in scope. The Centers for Disease Con-
trol and Prevention has launched an initiative called BioSense to serve as a
platform for standards development as part of the Public Health Information
Network [Loo04]. BioSense is intended to provide a national safety net ensur-
ing that early detection is enabled in all major metropolitan areas and works
to support and integrate with existing regional surveillance systems. Require-
ments, data characteristics, threshold tolerances for response potential, etc.
will likely continue to be different among local areas but it is certainly in
our interests to enable rapid exchange of analytic results across jurisdictions.
The goal is to have standard statistical and other data analytic conceptual
approaches that can be tailored to local needs using various user-defined set-
tings, results from which can be described coherently in a way that provides
interoperable information for national situation awareness.
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3 An Open Issue: Null Hypothesis Dilemma

An open question that is worth consideration in both advancing probabilistic
methods for surveillance data analysis relates to the type I and type II error
concepts. If we consider the null condition to be the assumption of “no event
of importance in progress” and the alternative to be supported when there is
sufficient data to conclude that a countermeasure response is needed, then the
type I error is defined to be falsely concluding that a response is needed when
in fact it is not necessary. This seems like the less important “mistake” in that
if something were occurring that warranted a reaction and we did not respond,
lives would be lost and precious time would have passed in stopping an event
of importance. Thus, our general approach to controlling the type I error using
“alpha” for threshold setting is questionable in this setting. On the other hand,
being overly conservative at the expense of allowing too many false alerts may
fatigue readiness resulting in an inability to respond when truly needed. The
goal is to strike an informed balance between sensitivity maintenance and false
alert toleration. Currently implemented surveillance systems in public health
are based on inferential concepts that use p-values for thresholds under the
null assumption that the situation is expected with relation to the temporal
and/or geographical context. Given the situational consequences of failing
to alert to true events and too frequently alerting to unimportant events,
more refined bases for conclusions must be established as standard operating
procedures using decision theoretic approaches and specifying risk and utility
functions.

4 Summary and Directions

What has been commonly referred to as “syndromic surveillance” is not well-
defined and is quickly growing out of its previous characterization. The imple-
mentation of new operational models for early event detection and subsequent
situational awareness is creating opportunities for statistical and other data
analytic applications in public health. Challenges include the following:

• There is little collective working experience with secondary data use among
analysts.

• Data systems are new relative to the statistical methodologies employed.
• Data management tasks are large and the human resource skill sets for

accomplishing those tasks are rare and underrated.
• Successful information system operations require close communications

among staff of several interdependent disciplines.
• Analysis of these data requires inductive and deductive reasoning in com-

bination (results may be difficult to communicate concisely).
• Multiple data streams:

1. How can we best approach analysis: multiunivariate or multivariate?
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2. There is a knowledge gap for population behavioral response patterns
(the time alignment question).

The practice of binning population events into categories of likely associ-
ation with syndromes relating to known serious biological agents, counting,
comparing, and looking for patterns is currently the basis for most of the work
in this area. This seems a logical first iteration of maturity for a surveillance
system to enable earlier detection than would be possible otherwise. There
is a need to apply decision science concepts to support end-user’s threshold
determination. The use of prior knowledge in a Bayesian framework and more
refined pattern recognition seems like a promising direction for detection re-
finement, especially as more detailed data can be consolidated and means
to process it are built. As more diverse data sources are integrated (human
health, animal health, plant health, water quality, Internet traffic, utilities,
intelligence, etc.), analytic approaches and applied methodologies for com-
bining evidence from multiple and often conflicting sources will become even
more important [SF02]. In the meantime, simulation appears to be the most
promising method for accelerating available working knowledge of empirical
surveillance.

In the chapters of Part III that follow, Shmueli and Fienberg provide an
informed listing and brief conceptual characterization for a spectrum of detec-
tion approaches that either have already been implemented or hold promise for
utility in surveillance. Their attention is primarily on the statistical method-
ologies and use of data from multiple sources, a logical focus given the current
state of systems in application. Stoto et al. continue in this topic by creatively
comparing the empirical detection performance of algorithms using simulated
changes in patterns embedded in real health care data from Washington, DC.
Finally, Forsberg et al. develop in an elegant historical context, the elucidation
of how to take advantage of the space and time dimensions simultaneously in
identifying clusters of events.
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1 Introduction

A recent review of the literature on surveillance systems revealed an enor-
mous number of research-related articles, a host of websites, and a relatively
small (but rapidly increasing) number of actual surveillance systems, espe-
cially for the early detection of a bioterrorist attack [BMS04]. Modern bioter-
rorism surveillance systems such as those deployed in New York City, western
Pennsylvania, Atlanta, and Washington, DC, routinely collect data from mul-
tiple sources, both traditional and nontraditional, with the dual goal of the
rapid detection of localized bioterrorist attacks and related infectious diseases.
There is an intuitive notion underlying such detection systems, namely, that
detecting an outbreak early enough would enable public health and medical
systems to react in a timely fashion and thus save many lives. Demonstrating
the real efficacy of such systems, however, remains a challenge that has yet
to be met, and several authors and analysts have questioned their value (e.g.,
see Reingold [Rei03] and Stoto et al. (2004) [SSM04, SFJ06]). This article
explores the potential and initial evidence adduced in support of such sys-
tems and describes some of what seems to be emerging as relevant statistical
methodology to be employed in them.

Public health and medical data sources include mortality rates, lab re-
sults, emergency room (ER) visits, school absences, veterinary reports, and
911 calls. Such data are directly related to the treatment and diagnosis that
would follow a bioterrorist attack. They might not, however, detect the out-
break sufficiently fast. Several recent national efforts have been focused on
monitoring “earlier” data sources for the detection of bioterrorist attacks or
other outbreaks, such as over-the-counter (OTC) medication sales, nurse hot-
lines, or even searches on medical websites (e.g., WebMD). This assumes that
people who are not aware of the outbreak and are feeling sick, would gen-
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erally seek self-treatment before approaching the medical system and that
an outbreak signature will manifest itself earlier in such data. According to
Wagner et al. [WRT03], preliminary studies suggest that sales of OTC health
care products can be used for the early detection of outbreaks, but research
progress has been slow due to the difficulty that investigators have in acquir-
ing suitable data to test this hypothesis for sizable outbreaks. Some data of
this sort are already being collected (e.g., pharmacy and grocery sales). Other
potential nontraditional data sources that are currently not collected (e.g.,
browsing in medical websites, automatic body sensor devices) could contain
even earlier signatures of an outbreak.3

To achieve rapid detection there are several requirements that a surveil-
lance system must satisfy: frequent data collection, fast data transfer (elec-
tronic reporting), real-time analysis of incoming data, and immediate report-
ing. Since the goal is to detect a large, localized bioterrorist attack, the col-
lected information must be local, but sufficiently large to contain a detectable
signal. Of course, the different sources must carry an early signal of the attack.
There are, however, trade-offs between these features; although we require fre-
quent data for rapid detection, too frequent data might be too noisy to the
degree that the signal is too weak for detection. A typical solution for too
frequent data is temporal aggregation. Two examples where aggregation is
used for biosurveillance are aggregating OTC medication sales from hourly
to daily counts [GSC02] and aggregating daily hospital visits into multiday
counts [RPM03]. A similar trade-off occurs between the level of localization
of the data and their amount. If the data are too localized, there might be
insufficient data for detection, whereas spatial aggregation might dampen the
signal.

Another important set of considerations that limit the frequency and lo-
cality of collected data relate to confidentiality and data disclosure issues
(concerns over ownership, agreements with retailers, personal and organiza-
tional privacy, etc.). Finding a level of aggregation that contains a strong
enough signal, that is readily available for collection without confronting le-
gal obstacles, and yet is sufficiently rapid and localized for rapid detection, is
clearly a challenge. We describe some of the confidentiality and privacy issues
briefly here.

There are many additional challenges associated with the phases of data
collection, storage, and transfer. These include standardization, quality con-
trol, confidentiality, etc. [FS05]. In this paper we focus on the statistical chal-
lenges associated with the data monitoring phase, and in particular, data in
the form of multiple time series. We start by describing data sources that are

3 While our focus in this article is on passive data collection systems for syndromic
surveillance, there are other active approaches that have been suggested (e.g.,
screening of blood donors [KPF03]), as well as more technological fixes, such as
biosensors [Sul03] and “Zebra” chips for clinical medical diagnostic recording,
data analysis, and transmission [Cas04].
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collected by some major surveillance systems and their characteristics. We
then examine various traditional monitoring tools and approaches that have
been in use in statistics in general, and in biosurveillance in particular. We
discuss their assumptions and evaluate their strengths and weaknesses in the
context of biosurveillance. The evaluation criteria are based on the require-
ments of an automated, nearly real-time surveillance system that performs on-
line (or prospective) monitoring of incoming data. These are clearly different
than for retrospective analysis [SB03] and include computational complexity,
ease of interpretation, roll-forward features, and flexibility for different types
of data and outbreaks.

Currently, the most advanced surveillance systems routinely collect data
from multiple sources on multiple data streams. Most of the actual statistical
monitoring, however, is typically done at the univariate time series level, us-
ing a wide array of statistical prediction methodologies. Ideally, multivariate
methods should be used so that the data can be treated in an integrated way,
accounting for the relationships between the data sources. We describe the
traditional statistical methods for multivariate monitoring and their short-
comings in the context of biosurveillance. Finally, we describe monitoring
methods, in both the univariate and multivariate sections, that have evolved
in other fields and appear potentially useful for biosurveillance of traditional
and nontraditional temporal data. We describe the methods and describe their
strengths and weaknesses for modern biosurveillance.

2 Types of Data Collected in Surveillance Systems

Several surveillance systems aimed at rapid detection of disease outbreaks
and bioterror attacks have been deployed across the United States in the last
few years, including the Realtime Outbreak and Disease Surveillance system
(RODS) and National Retail Data Monitor (NRDM) in western Pennsylvania,
the Early Notification of Community-Based Epidemics system (ESSENCE) in
the Washington, DC, area (which also monitors many Army, Navy, Air Force,
and Coast Guard data worldwide), the New York City Department of Health
and Mental Hygiene (NYC-DOHMH) system, and recently the BioSense sys-
tem by the Centers for Disease Control and Prevention. Each system collects
information on multiple data sources with the intent of increasing the cer-
tainty of a true alarm by verifying anomalies found in various data sources
[PMK03]. All of these systems collect data from medical facilities, usually at
a daily frequency. These include emergency rooms admissions (RODS, NYC-
DOHMH), visits to military treatment facilities (ESSENCE), and 911 calls
(NYC-DOHMH). Nontraditional data include OTC medication and health-
care product sales at grocery stores and pharmacies (NRDM, NYC-DOHMH,
ESSENCE), prescription medication sales (ESSENCE), HMO billing data
(ESSENCE), and school/work absenteeism records (ESSENCE). We can think
of the data in a hierarchical structure; the first level consists of the data source
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(e.g., ER or pharmacy), and then within each data source there might be mul-
tiple time series, as illustrated in Fig. 1.

This structure suggests that series that come from the same source should
be more similar to each other than to series from different sources. This can
influence the type of monitoring methods used within a source as opposed
to methods for monitoring the entire system. For instance, within-source se-
ries will tend to share variation sources such as holidays, closing dates, and
seasonal effects. Pharmacy holiday closing hours will influence all medication
categories equally but not school absences. From a modeling point of view this
structure raises the question whether a hierarchical model is needed or else
all series can be monitored using a flat multivariate model. In practice, most
traditional multivariate monitoring schemes and a wide range of applications
consider similar data streams. Very flexible methods are needed to integrate all
the data within a system that is automatic, computationally efficient, timely,
and with low false alarms. In the following sections we describe univariate
and multivariate methods that are currently used or can potentially be used
for monitoring the various multiple data streams. We organize and group the
different methods by their original or main field of application and discuss
their assumptions, strengths, and limitations in the context of biosurveillance
data.

 

ER admissions 
(ICD-9 codes) 

Over-the-counter 
medication sales 

Nurse hotlines 
 

Respiratory 

School absence 

Cough 

Viral infection 

Analgesics  

Cough relief

Nasal decongestant 

Allergy treatment 

Data Source Information collected 

Fig. 1. Sketch of data hierarchy; each data source can contain multiple time series.
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3 Monitoring Univariate Data Streams

The methods used in biosurveillance borrow from several fields, with statistical
process control being the most influential. Methods from other fields have also
been used occasionally, with most relying on traditional statistical methods
such as regression and time series models. Although different methods might
be more suitable for different data streams or sources, there are advantages
to using a small set of methods for all data streams within a single surveil-
lance system. This simplifies automation, interpretability, and coherence, and
the ability to integrate results from multiple univariate outputs. The princi-
ple of parsimony, which balances performance and simplicity, should be the
guideline.

We start by evaluating some of the commonly used monitoring methods
and then describe other methods that have evolved or have been applied in
other fields, which are potentially useful for biosurveillance.

3.1 Current Common Approaches

Statistical Process Control

Monitoring is central to the field of statistical process control. Deming, She-
whart, and others revolutionized the field by introducing the need and tools
for monitoring a process to detect abnormalities at the early stages of pro-
duction. Since the 1920s the use of control charts has permeated into many
other fields including the service industry. One of the central tools for pro-
cess control is the control chart, which is used for monitoring a parameter of
a distribution. In its simplest form the chart consists of a centerline, which
reflects the target of the monitored parameter and control limits. A statistic
is computed from an iid sample every time point, and its value is plotted on
the chart. If it exceeds the control limits, the chart flags an alarm, indicating
a change in the monitored parameter. Statistical methods for monitoring uni-
variate and multivariate time series tend to be model-based. The most widely
used control charts are Shewhart charts, moving average (MA) charts, and cu-
mulative sum (CuSum) charts. Each of these methods specializes in detecting
a particular type of change in the monitored parameter [BL97].

We now briefly describe the different charts. Let yt be a random sample
of measurements taken at time t (t = 1, 2, 3, . . .). In a Shewhart chart the
monitoring statistic at time t, denoted by St, is a function of yt:

St = f(yt). (1)

The statistic of choice depends on the parameter that is monitored. For in-
stance, if the process mean is monitored, then the sample mean (f(yt) = yt)
is used. If the process variation is monitored, a popular choice is the sample
standard deviation (f(yt) = st). The monitoring statistic is drawn on a time
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plot, with lower and upper control limits. When a new sample is taken, the
point is plotted on the chart, and if it exceeds the control limits, it raises an
alarm. The assumption behind the classic Shewhart chart is that the monitor-
ing statistic follows a normal distribution. This is reasonable when the sample
size is large enough relative to the skewness of the distribution of yt. Based on
this assumption, the control limits are commonly selected as ±3 standard de-
viations of the monitoring statistic (e.g., if the sample mean is the monitoring
statistic, then the control limits are ±3σ/

√
n) to achieve a low, false-alarm

rate of 2φ(−3) = 0.0027. Of course, the control limits can be chosen differently
to achieve a different false-alarm rate. If the sample size at each time point is
n = 1, then we must assume that yt are normally distributed for the chart to
yield valid results. Alternatively, if the distribution of f(yt) (or yt) is known,
then a valid Shewhart chart can be constructed by choosing the appropriate
percentiles of that distribution for the control limits as discussed in [SFJ06].

Shewhart charts are very popular because of their simplicity. They are very
efficient at detecting moderate-to-large, spike-type changes in the monitored
parameter. Since they do not have a “memory,” a large spike is immediately
detected by exceeding the control limits. However, Shewhart charts are not
useful for detecting small spikes or longer-term changes. In those instances
we need to retain a longer “memory.” One solution is to use the “Western
Electric” rules. These rules raise an alarm when a few points in a row are too
close to a control limit, even if they do not exceed it. Although such rules are
popular and are imbedded in many software programs, their addition improves
detection of real aberrations at the cost of increased false alarms. The trade-off
turns out to be between the expected time-to-signal and its variability [SC03].

An alternative is to use statistics that have longer memories. Three such
statistics are the MA, the exponentially weighted moving average (EWMA),
and the CuSum. MA charts use a statistic that relies on a constant-size window
of the k last observations:

MAt =
k∑

j=1

f(yt−j+1)/k. (2)

The most popular statistic is a grand mean (
∑k

j=1 yt−j+1/k). These charts are
most efficient for detecting a step increase/decrease that lasts k time points.

The original CuSum statistic defined by 1
σ

∑t
i=1(yt − μ) keeps track of

all the data until time t [HO98]. However, charts based on this statistic are
awkward graphically. A widely used adaptation is the tabular CuSum, which
restarts the statistic whenever it exceeds zero. The one-sided tabular CuSum
for detecting an increase is defined as

CuSumt = max{0, (y∗
t − k) + CuSumt−1}, (3)

where y∗
t = (yt−μ)/σ are the standardized observations, and k is proportional

to the size of the abnormality that we want to detect. This is the most efficient
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statistic for detecting a step change in the monitored parameter. However, it is
less useful for detecting a spike since it would be masked by the long memory.
In general, time series methods that place heavier weight on recent values are
more suitable for short-term forecasts [Arm01].

The EWMA statistic is similar to the CuSum, except that it weights the
observations as a function of their recency, with recent observations taking
the highest weight:

EWMAt = αyt +(1−α)EWMAt−1 = α

t−1∑
j=0

(1−α)jf(yt−j)+(1−α)EWMA0,

(4)
where 0 < α ≤ 1 is the smoothing constant [Mon01]. This statistic is best
at detecting an exponential increase in the monitored parameter. It is also
directly related to exponential smoothing methods (see below). For further
details on these methods, see Montgomery [Mon01]. In biosurveillance, the
EWMA chart was used for monitoring weekly sales of OTC electrolytes to
detect pediatric respiratory and diarrheal outbreaks [HTI03] and is used in
ESSENCE II to monitor ER admissions in small geographic regions [Bur03a].

Since the statistic in these last three cases is a weighted average/sum
over time, the normality assumption of yt is less crucial for adequate perfor-
mance due to the central limit theorem, especially in the case of the EWMA
[RS04b, ACV04]. The main disadvantage of all these monitoring tools is that
they assume statistical independence of the observations. Their original and
most popular use is in industrial process control where samples are taken
from the production line at regular intervals, and a statistic based on these
assumably independent samples is computed and drawn on the control chart.
The iid assumption is made in most industrial applications, whether correct
or not. Sometimes the time between samples is increased to minimize corre-
lation between close samples. In comparison, the types of data collected for
biosurveillance are usually time series that are collected on a frequent basis to
achieve timeliness of detection, and therefore autocorrelation is inherent. For
such dependent data streams the use of distribution-based or distribution-free
control charts can be misleading in the direction of increased false-alarm rates
[Mon01, p. 375].

A common approach to dealing with autocorrelated measurements is to
approximate them using a time series model and monitor the residual error
using a control chart [GDV04]. The assumption is that the model accounts
for the dependence and therefore the residuals should be nearly independent.
Such residuals will almost never be completely independent, however, and
the use of control charts to monitor them should be done cautiously. This
is where time series analysis emerges in anomaly detection applications in
general, and in biosurveillance in particular. Moreover, because the forecast
at every time point is used to “test” for anomalies, we need to deal with the
multiple testing problem for dependent tests and possibly use variations on
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the new literature on false discovery rates (FDR) to control familywise type
I errors [BH95, EST01].

Time Series Methods

The most well-known class of time series models used by statisticians is au-
toregressive moving average (ARMA) models. Conceptually they are similar
to regressing the current observations on a window of previous observations
while assuming a particular autocovariance structure. An ARMA(p,q) model
is defined as

yt = μ+
p∑

i=1

αiyt−i + εt −
q∑

j=1

θjεt−j , (5)

where αi and θj are parameters and εt−q . . . εt are white noise (having mean 0
and standard deviation σε). To fit an ARMA model, the modeler must deter-
mine the order of the autoregression p and the order of the MA component,
q. This task is not straightforward and requires experience and expertise (for
example, not every selection of p and q yields a causal model). After p and q
are determined, there are p + q + 1 parameters to estimate, usually through
nonlinear least squares (LS) and conditional maximum likelihood. The pro-
cess of selecting p and q and estimating the parameters is cyclical [BJR94]
and typically takes several cycles until a satisfactory model is found. Some
software packages do exist that have automated procedures for determining p
and q and estimating those parameters.

ARMA models can combine external information by adding predictors in
the model. This allows to control for particular time points that are known to
have a different mean by adding indicators with those time points. Such mod-
ifications are especially useful in the biosurveillance context, since effects such
as weekend/weekday and holidays are normally present in medical and non-
traditional data. ESSENCE II, for instance, uses an autoregressive model that
controls for weekends, holidays, and postholidays through predictors [Bur03a].

ARMA models assume that the series is stationary over time (i.e., the
mean, variance, and autocovariance of the series remain constant throughout
the period of interest). In practice, fitting of an ARMA model to data usually
requires an initial preprocessing step where the data are transformed in one
or more ways until a stationary or approximately stationary series emerges.
The most popular generalization of ARMA models for handling seasonality
and trends is to add a differencing transformation, thereby yielding an au-
toregressive integrated moving average (ARIMA) model of the form

(1−α1B−α2B
2−. . .−αpB

p)[(1−B)d(1−Bs)Dyt−μ] = (1−θ1B−. . .−θqB
q)εt,
(6)

where B is the back-shift operator (Byt = yt−1), d > 0 is the degree of
nonseasonal differencing, D > 0 is the degree of seasonal differencing, and
s is the length of a seasonal cycle. Determining the level of differencing is
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not trivial, and over- and underdifferencing can lead to problems in modeling
and forecasting [CR96]. Although this model allows flexibility, in practice
the model identification step is complicated and highly data specific, and
requires expertise of the modeler. Another disadvantage of ARIMA models is
their computational complexity. With thousands of observations, the method
requires considerable computer time and memory [SAS04b].

To summarize, the common statistical approach towards monitoring has
been mostly distribution based. Recent advances in data availability and
collection in the process industry have led authors such as Willemain and
Runger [WR96] to emphasize the importance of model-free methods. It ap-
pears, though, that such methods have already evolved and have been used in
other fields! Next, we describe a few such methods that are distribution-free.

3.2 Monitoring Approaches in Other Fields

Monitoring methods have been developed and used in other fields such as ma-
chine learning, computer science, geophysics, and chemical engineering. Also,
forecasting, which is related to monitoring, has had advances in fields such as
finance and economics. In these fields there exist a wealth of very frequent au-
tocorrelated data; the goal is the rapid detection of abnormalities (“anomaly
detection”) or forecasting, and the developed algorithms are flexible and com-
putationally efficient. We describe a few of the methods used in these fields
and evaluate their usefulness for biosurveillance.

Anomaly detection in machine learning emphasizes automated and usually
model-free algorithms that are designed to detect local abnormalities. Even
within the class of model-free algorithms, there is a continuum between those
that are intended to be completely “user-independent” and those that require
expert knowledge integration by the user. An example for the former is the
symbolic aggregate approximation (SAX), which is a symbolic representation
for time series that allows for dimensionality reduction and indexing [LKL03].
According to its creators, “anomaly detection algorithms should have as few
parameters as possible, ideally none. A parameter free algorithm would pre-
vent us from imposing our prejudices, expectations, and presumptions on the
problem at hand, and would let the data itself speak to us” [KLR04]. In bio-
surveillance there exists expert knowledge about the progress of a disease,
its manifestation in medical and public health data, etc. An optimal method
would then be distribution-free and parsimonious, but would allow the inte-
gration of expert knowledge in a simple way.

Exponential Smoothing

Exponential smoothing (ES) is a class of methods that is very widely used
in practice (e.g., for production planning, inventory control, and marketing
[PA89]) but not so in the biosurveillance field. ES has gained popularity mostly
because of its usefulness as a short-term forecasting tool. Empirical research by
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Makridakis et al. [MAC82] has shown simple exponential smoothing (SES)
to be the best choice for one-step-ahead forecasting, from among 24 other
time series methods and using a variety of accuracy measures. Although the
goal in biosurveillance is not forecasting, ES methods are relevant because
they can be formulated as models [CKO01]. Nontraditional biosurveillance
data include economic series such as sales of medications, health-care prod-
ucts, and grocery items. Since trends, cycles, and seasonality are normally
present in sales data, more advanced ES models have been developed to ac-
commodate nonstationary time series with additive multiplicative seasonal-
ity/linear/exponential/dampened trend components. A general formulation
of an ES model assumes that the series is comprised of a level, trend (the
change in level from last period), seasonality (with M seasons), and error.
To illustrate the model formulation, estimation, and forecasting processes,
consider an additive model of the form

yt = local mean + seasonal factor + error, (7)

where the local mean is assumed to have an additive trend term and the error
is assumed to have zero mean and constant variance. At each time t, the
smoothing model estimates these time-varying components with level, trend,
and seasonal smoothing states denoted by Lt, Tt, and St−i(i = 0, . . . ,M − 1),
respectively.4 The smoothing process starts with an initial estimate of the
smoothing state, which is subsequently updated for each observation using
the updating equations:

Lt+1 = α(yt+1 − St+1−M ) + (1− α)(Lt + Tt),
Tt+1 = β(Lt+1 − Lt) + (1− β)Tt, (8)
St+1 = γ(yt+1 − Lt+1) + (1− γ)St+1−M ,

where α, β, and γ are the smoothing constants. The m-step-ahead forecast at
time t is

ŷt+m = Lt +mTt + St+m−M . (9)

A multiplicative model of the form Yt = (Lt−1 +tTt−1)St−i εt can be obtained
by applying the updating equations in (8) to log(yt). The initial values L0,
T0, and the M seasonal components at time 0 can be estimated from the
data using a centered MA (see Pfeffermann and Allon [PA89] and the NIST
Handbook [NIS04] for details). The three smoothing constants are either de-
termined by expert knowledge, or estimated from the data by maximizing
a well-defined loss function (e.g., mean of squared one-step-ahead forecast
errors).

From a modeling point of view, many ES methods have ARIMA, seasonal
ARIMA (SARIMA), and structural models equivalents, and they even in-
clude a class of dynamic nonlinear state space models that allow for changing
4 The smoothing state is normalized so that the seasonal factors St−i for i =

0, 1, . . . , M sum to zero for models that assume additive seasonality, and average
to one for models that assume multiplicative seasonality [CY88].
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variance [CKO01]. Table 1 summarizes some of these equivalences. It is note-
worthy that some of the SARIMA equivalents are so complicated that they
are most unlikely to be identified in practice [CKO01]. Furthermore, Chatfield
et al. [CKO01] show that there are multiple generating processes for which a
particular ES method is optimal in the sense of forecast accuracy, which ex-
plains their robust nature. The advantage of these models is their simplicity of
implementation and interpretation, their flexibility for handling many types
of series, and their suitability for automation [CY88] because of the small
number of parameters involved and the low computational complexity. They
are widely used and have proved empirically useful, and automated versions of
them are available in major software packages such as the high-performance
forecasting module by SAS R©[SAS04a].

Table 1. The equivalence between some exponential smoothing and (seasonal)-
ARIMA models. The notation ARIMA(p, d, q)(P, D, Q)s corresponds to an
ARIMA(p,d,q) with seasonal cycle of length s, P -order autoregressive seasonality,
seasonal differencing of order D, and seasonal MA of order Q

Exponential Smoothing Method ARIMA/SARIMA Equivalent
Simple exponential smoothing ARIMA(0,1,1)
Holt’s (double) linear trend method ARIMA(0,2,2)
Damped-trend linear method ARIMA(1,1,2)
Additive Holt-Winters (triple) method SARIMA(0,1,p+1)(0,1,0)p

Multiplicative Holt-Winters (triple) [KSO01]’s dynamic nonlinear
method state-space models

Singular Spectral Analysis

The methods of singular spectral analysis (SSA) were developed in the geo-
sciences as an alternative for Fourier/spectral analysis and have been used
mostly for modeling climatic time series such as global surface temperature
records [GV91], and the Southern Oscillation Index that is related to the
recurring El Niño/Southern Oscillations conditions in the Tropical Pacific
[PGV95, YSG00] . It is suitable for decomposing a short, noisy time series
into a (variable) trend, periodic oscillations, other aperiodic components, and
noise [PGV95].

SSA is based on an eigenvalue-eigenvector decomposition of the estimated
M -lag autocorrelation matrix of a time series, using a Karhunen-Loeve de-
composition. The eigenvectors, denoted by �1, . . . , �M , are called empirical
orthogonal functions (EOFs) and form an optimal basis that is orthonormal
at lag zero. Usually a single EOF is sufficient to capture a nonlinear oscil-
lation. Using statistical terminology, principal components analysis (PCA) is
applied to the estimated autocorrelation matrix, so that projecting the EOFs
on the time series gives the principal components (Λ1, . . . , ΛM ):
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Λk(t) =
M∑
i=1

y(t+ i)�k(i), (10)

and the eigenvalues reflect the variability associated with the principal com-
ponents [GY96]. The next step in SSA is to reconstruct the time series using
only a subset K of the EOFs:

yK(t) =
1
Mt

∑
k∈K

M∑
i=1

Λk(t− i)�k(i), (11)

where Mt is a normalizing constant (for details, see [GV91]). Choosing K is
done heuristically or by Monte Carlo simulations.

SSA is used mostly for revealing the underlying components of a time
series and separating signal from noise. However, it can be used for forecasting
by using low-order autoregressive models for the separate reconstructed series
[PGV95]. This means that SSA can be used for biosurveillance and monitoring
in general by computing one-step-ahead forecasts and comparing them to the
actual data. If the distance between a forecast and an actual observation is
too large, a signal is triggered.

Although SSA assumes stationarity (by decomposing the estimated auto-
correlation matrix), according to Yiou et al. [YSG00], it appears less sensitive
to nonstationarity than spectral analysis. However, Yiou et al. [YSG00] sug-
gested a combination of SSA with wavelets to form multiscale SSA (MS-SSA).
The idea is to use the EOFs in a data-adaptive fashion with a varying window
width, which is set as a multiple of the order M of the autocorrelation ma-
trix. After applying the method to synthetic and real data, they conclude that
MS-SSA behaves similarly to wavelet analysis, but in some cases it provides
clearer insights into the data structure. From a computational point of view,
MS-SSA is very computationally intensive, and in practice a subset of window
widths is selected rather than exhaustively computing over all window widths
[YSG00].

Wavelet-Based Methods

An alternative to ARIMA models that has gained momentum in the last
several years is wavelet decomposition. The idea is to decompose the time
series y(t) using wavelet functions:

y(t) =
N∑

k=1

akφ(t− k) +
N∑

k=1

m∑
j=1

dj,kψ(2jt− k), (12)

where ak is the scaled signal at time k at the coarsest scale m, dj,k is the
detail coefficient at time k at scale j, ψ is a scaling function (known as the
“father wavelet”), and φ is the mother wavelet function.
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This method is very useful in practice, since data from most processes
are multiscale in nature due to “events occurring at different locations and
with different localization in time and frequency, stochastic processes whose
energy or power spectrum changes with time and/or frequency, and variables
measured at different sampling rates” [Bak98]. In traditional process control,
the solution is to use not a single control chart but to combine different con-
trol charts (such as Shewhart-CuSum [Luc82] and Shewhart-EWMA charts
[LS90]) to detect shifts at different scales. This, of course, leads to increased
alarm rates (false and true). The wavelet decomposition method offers a more
elegant and suitable solution. Aradhye et al. [ABS03] used the term multi-
scale statistical process control (MSSPC) to describe these methods. Wavelet
methods are also more suitable for autocorrelated data, since the wavelet
decomposition can approximately decorrelate the measurements. A survey
of wavelet-based process monitoring methods and their history is given in
Ganesan et al. [GDV04]. Here we focus on their features that are relevant to
biosurveillance.

The main application of wavelets has been for denoising, compressing,
and analyzing image, audio, and video signals. Although wavelets have been
used by statisticians for smoothing/denoising data (e.g., [DJ95], for den-
sity estimation [DJK96], nonparametric regression [OP96], and other goals
[PW00]), they have only very recently been applied to statistical process mon-
itoring. The most recent developments in wavelet-based monitoring meth-
ods have been published mainly within the area of chemical engineering
[SCR97, HLM98, ABS03]. The main difference between chemical engineer-
ing processes and biosurveillance data (traditional and nontraditional) is that
in the former the definitions of normal and abnormal are usually well-defined,
whereas in the latter it is much harder to establish such clear definitions. In
that sense wavelets are even more valuable in biosurveillance because of their
nonspecific nature. Aradhye et al. [ABS03] have shown that using wavelets
for process monitoring yields better average performance than single-scale
methods if the shape and magnitude of the abnormality are unknown.

The typical wavelet monitoring scheme works in four main steps:

1. Decompose the series into coefficients at multiple scales using the discrete
wavelet transform (DWT). The DWT algorithm is as follows:
• Convolve the series with a low-pass filter to obtain the approximation

coefficient vector a1 and with a high-pass filter to obtain the detail
coefficient vector d1. If we denote the low-pass decomposition filter by
h = [h0, h1, . . . , hn], then the ith component of the high-pass decom-
position filter, g, is given by gi = (−1)ihn−i.

• Downsample the coefficients. Half of the coefficients can be eliminated
according to the Nyquist rule, since the series now has a highest fre-
quency of π/2 radians instead of π radians. Discarding every other
coefficient downsamples the series by two, and the series will then
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have half the number of points. The scale of the series is now doubled
[Pol].

• Reconstruct the approximation vector A1 and detail vector D1 by up-
sampling and applying “reconstruction” filters (Inverse-DWT). The set
of low-pass and high-pass reconstruction filters are given as hn∗ = h−n

and gn∗ = g−n.
If an orthogonal wavelet is used, then the original signal can be com-
pletely reconstructed by simple addition: Y = A1 +D1. The second level
of decomposition is obtained by applying this sequence of operations to
the first level approximation A1. The next levels of decomposition are
similarly obtained from the previous level approximations.

2. Perform some operation on the detail coefficients dk (k = 1, . . . ,m). Var-
ious operations were suggested for monitoring purposes. Among them:
• Thresholding the coefficients at each scale for the purpose of smoothing

or data reduction [LLW02].
• Forecasting each of the details and the mth approximation at time

t+ 1. This is done by fitting a model such as an autoregressive model
[GSC02] or neural networks [AM97] to each scale and using it to obtain
one-step-ahead forecasts.

• Monitoring Am and D1, D2, . . . , Dm by creating control limits at each
scale [ABS03].

3. Reconstruct the series from the manipulated coefficients. After m levels
of decomposition, an orthogonal wavelet will allow us to reconstruct the
original series by simple addition of the approximation and detail vec-
tors: Y = Am + D1 + D2 + . . . + Dm. If thresholding was applied, the
reconstructed series will differ from the original series, usually resulting
in a smoother series. In the case of single-scale monitoring [ABS03] use
the control limits as thresholds and reconstruct the series only from the
coefficients that exceeded the thresholds. In the forecasting scheme, the
reconstruction is done to obtain a forecast of the series at time t + 1 by
combining the forecasts at the different scales.

4. Perform some operation on the reconstructed series. Aradhye et al.
[ABS03] monitor the reconstructed series using a control chart. In the
forecasting scheme the reconstructed forecast is used to create an upper
control limit for the incoming observation [GSC02].

Although DWT appears to be suitable for biosurveillance, it has several
limitations that must be addressed. The first is that the downsampling causes
a delay in detection and thus compromises timeliness. This occurs because
the downsampling causes a lag in the computation of the wavelet coefficients,
which increases geometrically as the scale increases. An alternative is to avoid
the downsampling stage. This is called stationary- or redundant-DWT. Al-
though it solves the delay problem, it introduces a different challenge; it does
not allow the use of orthonormal wavelets, which approximately decorrelate
the series. This means that we cannot treat the resulting coefficients at each
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scale as normally distributed, uncorrelated, and with equal variance. Arad-
hye et al. [ABS03] conclude that for detecting large shifts it is preferable
to use stationary-DWT if the series is uncorrelated or moderately correlated,
whereas for highly nonstationary or autocorrelated series the use of downsam-
pling is preferable. Both models perform similarly in detecting small changes.
For further discussion of this issue and empirical results see Aradhye et al.
[ABS03].

The second issue is related to the boundaries of the series, and especially
the last observation. Since DWT involves convolving the series with filters, the
beginning and end of the series need to be extrapolated (except when using the
Haar). One approach is to use boundary-corrected wavelets. These have been
shown to be computationally impractical [GDV04]. Another approach is to use
an extrapolation method such as zero padding, periodic extension, and smooth
padding. In surveillance applications the end of the series and the type of
boundary correction are extremely important. Extrapolation methods such as
zero padding and periodic extension (where the beginning and end of the series
are concatenated) are clearly not suitable, since it is most likely that the next
values will not be zeros or those from the beginning of the series. More suitable
methods are the class of smooth padding, which consist of extrapolating the
series by either replicating the last observation or linearly extrapolating from
the last two values. An alternative would be to use exponential smoothing,
which is known to have good forecasting performance in practice.

Finally, although wavelet-based methods require very little user input for
the analysis, there are two selections that need to be made manually, namely,
the depth of decomposition and the wavelet function. Ganesan et al. [GDV04]
offer the following guidelines based on empirical evidence: the depth of de-
composition should be half the maximal possible length. Regarding choice of
wavelets, the main considerations are good time-frequency localizations, num-
ber of continuous derivatives (determine degrees of smoothness), and a large
number of vanishing moments. We add to that computational complexity and
interpretability. The Haar, which is the simplest and earliest wavelet func-
tion, is best suited for detecting step changes or piecewise constant signals.
For detecting smoother changes, a Daubechies filter of higher order is more
suitable.

4 Monitoring Multiple Data Streams

Modern biosurveillance systems such as the ones described earlier routinely
collect data from multiple sources. Even within a single source there are usu-
ally multiple data streams. For instance, pharmacy sales might include sales
of flu, allergy, and pain-relief medications, whereas ER visits record the daily
number of several chief complaints. The idea behind syndromic surveillance
is to monitor a collection of symptoms to learn about possible disease out-
breaks. Therefore we expect multivariate monitoring methods to be superior
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to univariate methods in actual detection, since the hypothesized signal can be
formulated in a multivariate fashion. Optimally, multivariate models should
detect changes not only in single data streams but also in the functional rela-
tionships between them.

4.1 Merging Data Sources: Why Use Aggregated Data?

One of the main reasons for treating biosurveillance data at the aggregated
level is the issue of privacy associated with individuals whose data are being
used. Medical and public health data systems of relevance for surveillance sys-
tems are typically subject to formal rules and/or legal restrictions regarding
their use in identifiable form (e.g., as provided for by the Health Insurance
Portability and Accountability Act of 1996, Public Law 104-191 (HIPAA)
under its recently issued and implemented privacy and confidentiality rules),
although there are typically research and other permitted uses of the data pro-
vided that they are de-identified. The HIPAA Safe Harbor de-identification,
for instance, requires the de-identification of 18 identifiers including name,
social security number, zip code, medical record number, age, etc. The re-
moval of such information clearly restricts the possibility of record linkage
across data sources, although it also limits the value of the data for statistical
analysis and prediction, especially in connection with the use of spatial algo-
rithms [Won04]. Similar legal restrictions apply to prescription information
from pharmacies. Other public and semipublic data systems, such as school
records, are typically subject to a different form of privacy restriction but
with similar intent. Finally, grocery and OTC medication sales information
is typically the property of the commercial interests that are wary of shar-
ing data in individually identifiable form even if there are no legal strictures
against such access. Solutions do exist that would potentially allow record
linkage to at least some degree (e.g., by using a trusted broker and related
data sharing agreements) (see the discussion in Gesteland et al. [GGT03]).
While the practical solution of independently and simultaneously monitor-
ing the separate sources, especially at the aggregate level, avoids the issue of
record linkage and privacy concerns, it also leads to loss of power to detect the
onset of a bioterrorist attack! Thus ultimately, if the syndromic surveillance
methodology is to prove successful in early detection of a bioterrorist attack,
the HIPAA and other privacy rules will need to be adjusted either to allow
special exceptions for this type of data use, or to recognize explicitly that
privacy rights may need to be compromised somewhat to better protect the
public as a whole through the increased utility of the use of linked multiple
data sources.

A separate reason for using aggregated data is the difficulty of record
linkage from multiple sources: “identifiers” that are attached to records in
different sources will usually differ at least somewhat. Linking data from two
or more sources either requires unique identifiers that are used across systems
or variables that can be used for record linkage. In the absence of unique
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identifiers, matching names and fields, especially in the presence of substantial
recording error, poses substantial statistical challenges. For further discussion
of these issues see Fienberg and Shmueli [FS05] and especially Bilenko et al.
[BMC03].

4.2 Current Common Approaches

Monitoring multiple time series is central in the fields of quality/process con-
trol, intrusion detection [Ye02], and anomaly detection in general. When the
goal is to detect abnormalities in independent series, then multiple univariate
tools can be used, and then merged to form a single alarm mechanism. How-
ever, the underlying assumption behind the data collected for biosurveillance
is that the different sources are related and are measuring the same phe-
nomenon. In this case, multivariate methods are more suitable. The idea is to
detect not only abnormalities in single series, but also abnormal relationships
between the series (also termed “counterrelationships”). In the following we
describe multivariate methods that have been used in different applications
for the purpose of detecting anomalies.

Statistical Process Control

The quality control literature includes several multivariate monitoring meth-
ods. Some are extensions of univariate methods, such as the χ2 and Hotelling
T 2 control charts, the multivariate CuSum chart, and the multivariate EWMA
chart [ASJ97]. The multivariate versions are aimed at detecting shifts in single
series as well as counterrelationships between the series. As in the univariate
case, they are all based on the assumptions of independent and normally dis-
tributed observations. Also, like their univariate counterparts they suffer from
problems of underdetection. In practice they are sometimes combined with a
Shewhart chart, but this solution comes at the cost of slowing down the de-
tection of small shifts [ASJ97]. When the multiple series are independent of
each other, they do not require a multivariate model to monitor counterre-
lationships. An example is monitoring multiple levels of activity in an infor-
mation system to detect intrusions, where Ye [Ye02] found that the different
activity measures were not related to each other, and therefore a simple χ2

chart outperformed a Hotelling T 2 chart. A multivariate model is still needed
here, however, instead of a set of univariate control charts. One reason is the
inflated false-alarm rate that results from multiple testing. If each of p uni-
variate charts has a false-alarm probability α, then the combined false-alarm
probability is given by

1− (1− α)p. (13)

One solution is to use a small enough α in each univariate chart; however, this
approach becomes extremely conservative and is impractical for the moderate
to high number of series collected by biosurveillance systems. This issue is also
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related to the problem of interpreting an alarm by the multivariate control
chart. Although it may seem intuitive to determine which of the univariate
measures is causing the alarm by examining the univariate charts, this is not a
good approach not only because of the α-inflation but also because the alarm
might be a result of changes in the covariance or correlation between the vari-
ables. Solutions for the α inflation based on Bonferroni-type adjustments have
been shown to be conservative. A better approach is to decompose the moni-
toring statistic into components that reflect the contribution of each variable
[Mon01]. For example, if the monitoring statistic is the Hotelling T 2, then for
each variable i (i = 1, . . . , n) we compute

di = T 2 − T 2
(i), (14)

where T 2
(i) is the value of the statistic for all the p− 1 variables except the ith

variable. This is another place where the use of FDR methodology may be
appropriate and of help. One also needs to consider monitoring the covariance
in parallel.

Other methods within this approach have tried to resolve the shortcomings
of these control charts. One example is using Shewhart and CuSum charts to
monitor “regression-adjusted variables,” which is the vector of scaled residuals
from regressing each variable on the remaining variables [Haw91]. Another
example is a Bayesian approach for monitoring a multivariate mean (with
known covariance matrix), where a normal prior is imposed on the process
mean. A quadratic form that multiplies the posterior mean vector and the
posterior covariance matrix is then used as the monitoring statistic [Jai93].

The second statistical approach towards multivariate monitoring is based
on reducing the dimension of the data and then using univariate charts to
monitor the reduced series and the residuals. PCA and partial least squares
(PLS) are the most popular dimension reduction techniques. In PCA, principal
components are linear combinations of the standardized p variables. We denote
them by PC1, . . . , PCp. They have two advantages. First, unlike the original
variables the principal components are approximately uncorrelated. Second,
in many cases a small number of components captures the variability in the
entire set of data [NIS04]. Kaiser’s rule of thumb for determining the number of
components that is needed to capture most of the variability is to retain only
components associated with an eigenvalue larger than 1 [Kai60]. There are
alternatives, such as the number of components that explain a sufficient level
of variability. In quality control usually the first two components, PC1, PC2,
are plotted using a Hotelling-T 2 chart, but the number of components (k) can
be larger. A second plot monitors the “residuals” using

Q =
p∑

i=k+1

PC2
i

λi
, (15)

where λi is the eigenvalue corresponding to the ith principal component
(which is also equal to its variance). Bakshi [Bak98] points out that these
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charts suffer from the same problems of T 2 charts, as described above, in the
sense of being insensitive to small changes in the process. Solutions are to mon-
itor these statistics using a CuSum or EWMA scheme. The main shortcoming
of these charts is their reliance on the assumption that the observations fol-
low a multivariate normal distribution. In practice, multivariate normality is
usually difficult to justify [CLL00]. This is especially true in biosurveillance
where the different data sources come from very diverse environments.

Time Series Models

The multivariate form of ARMA models is called vector-ARMA models. The
basic model is equivalent to (5), except that yt (t = 1, 2, . . .) are now vectors.
This structure allows for autocorrelation as well as cross-correlation between
different series at different lags. In addition to the complications mentioned
in relation to ordinary ARMA models, in vector-ARMA the number of α and
θ parameters is larger ((p + q + 1) multiplied by the number of series). The
parameter covariance matrix to be estimated is therefore much larger. Since
estimating the MA part adds a layer of complication, vector-AR models are
more popular. In the context of biosurveillance, vector-AR models have advan-
tages and disadvantages. Their strength lies in their ability to model lagged
and counterrelationships between different series. This is especially useful for
learning the pattern of delay between, for instance, medication sales and ER
visits. However, vector-AR models have several weaknesses that are especially
relevant in our context. First, their underlying assumption regarding the sta-
tionarity of the data is almost never true in data streams such as sales and
hospital visits. This nonstationarity becomes even more acute as the frequency
of the data increases. Second, although in some cases a set of transforma-
tions can be used to obtain stationarity, this preprocessing stage is highly
series-specific and requires experience and special attention from the modeler.
Furthermore, the application of different transformations can cause the series
that were originally aligned to lose this feature. For example, by differentiat-
ing one series once and another series three times, the resulting series are of
different length. Finally, any series that cannot be transformed properly into
a stationary series must be dropped from the analysis. The third weakness of
vector-AR models is that they are hard to automate. The model identifica-
tion, estimation, and validation process is computationally heavy and relies on
user expertise. Automated procedures do exist in software such as SAS (the
VARMAX procedure [SAS00]). For determining the order of the model they
use numerical measures such as Akaike information criterion (AIC), criterion
final prediction error (FPE), and Bayesian information criterion (BIC). How-
ever, it is not guaranteed that the chosen model is indeed useful in a practical
sense, and experienced statisticians would insist on examining other graphical
measures such as auto- and cross-correlation plots to decide on the order of
the model.
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Estimation of the vector-AR parameters can be done using maximum like-
lihood. More often, for computational reasons, it is framed as an ordinary
regression model and estimated using LS. Casting an AR model in the form
of a regression model is an approximation in that in a regression model the
predictors are assumed to be constant, whereas in an AR process they are a
realization of a stochastic process. The parameter estimates are still consis-
tent and asymptotically unbiased estimates for the AR model [NS01]. Thus,
this estimation method is suitable for sufficiently long series, as is the case
in typical biosurveillance data. However, collinearity and overparametrization
are typical problems. One solution is to use a Bayesian approach and to im-
pose priors on the AR coefficients [Ham94]. An alternative used by Bay et al.
[BSU04] is to use ridge regression. The basic idea is to zero estimates that are
below a certain threshold. Ridge regression yields biased estimates, but their
variance is much smaller than their LS counterparts [MS75]. The estimated
parameters are those that solve the equation

β = (X ′X + λI)−1X ′y, (16)

where λ ≥ 0 is the ridge parameter and I is the identity matrix. In the context
of a vector-AR model we set y = yt (the multiple measurements at time t)
and X is the matrix of lagged measurements at lags 1, . . . , p.

As with univariate ARIMA models, the stationarity assumption, the need
in expert knowledge in model identification and estimation, the computa-
tional complexity, and overparametrization limit the usefulness of multivariate
ARIMA models for integration into automated biosurveillance systems.

4.3 Alternative Approaches

Multichannel Singular Spectral Analysis

A generalization of SSA to multivariate time series, called multichannel-SSA
(M-SSA), was described by Ghil and Yiou [GY96] and applied to several
climate series. The idea is similar to the univariate SSA, except that now the
lag-covariance matrix is a block-Toeplitz matrix T , where Tij is an M ×M
lag-covariance matrix between series i and series j.

From a practical point of view, as the space increases in the number of
series (L) and/or window width (M), the diagonalization of T , which is a
(T×M)×(T×M) matrix, becomes cumbersome. Solutions include projecting
the data onto a reduced subspace using PCA, undersampling the data to
reduce M , and using expert knowledge to reduce the frequencies of interest.
To give a feeling of the dimensions that can be handled, Plaut and Vautard
[PV94] applied M-SSA to L = 13 series of 5-day observations, with M = 40
(equivalent to a maximum lag of 200 days).

There are several reasons why M-SSA should be investigated for biosurveil-
lance. First, climatic data and syndromic data share components such as
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weekly, seasonal, and annual patterns. Second, its relative insensitivity to the
stationarity assumption makes it attractive for biosurveillance data. Finally,
the ability to generalize it to the analysis of multiple time series (although
computationally challenging) is useful not only for monitoring purposes but
also for shedding light on the cross-relationship between different biosurveil-
lance series, both within a data source and across data sources. The SSA-MTM
toolkit is a software package for applying M-SSA (and other techniques), and
is freely available at http://www.atmos.ucla.edu/tcd/ssa/.

Multivariate Wavelet Method

DWT has proven to be a powerful tool for monitoring nonstationary uni-
variate time series for abnormalities of an unknown nature. Several authors
created generalizations of the univariate method to a multivariate monitoring
setting mostly by combining it with PCA. The most recent method, by Bakshi
[Bak98], uses a combination of DWT and PCA to create a multiscale principal
components analysis (MSPCA) for online monitoring of multivariate observa-
tions. The idea is to combine the ability of PCA to extract the cross-correlation
between the different series with the wavelets’ ability to decorrelate the auto-
correlation within each series. As with control chart methodology, there are
two phases: In phase I it is assumed that there are no abnormalities, and the
control limits for the charts are computed. In phase II new data are monitored
using these limits. The process used in MSPCA consists of

1. Decomposing each univariate series using DWT (the same orthonormal
wavelet is used for all series).

2. Applying PCA to the vectors of coefficients in the same scale, indepen-
dently of other scales.

3. Using T 2- and Q-charts to monitor the principal components at each scale.
During phase I the control limits for these charts are computed.

4. Combining the scales that have coefficients exceeding the control limits
to form a “reconstructed multivariate signal” and monitoring it using T 2-
and Q-charts. During phase I the control limits for these two charts are
computed. In phase II the reconstructed series is obtained by combining
the scales that indicate an abnormality at the most recent time point.

The idea is that a change in one or more of the series will create a large
coefficient first at the finest scale, and as it persists, it will appear at coarser
scales (similar to the delay in detecting spike changes with CuSum and EWMA
charts). This might cause a delay in detection, and therefore the reconstructed
data are monitored in parallel. The overall control chart is used for raising
an alarm, while the scale-specific charts can assist in extracting the features
representing abnormal operation.

As in the univariate case, the downsampling operation causes delays in
detection. Bakshi [Bak98] therefore suggests using a stationary-wavelet trans-
form, which requires the adjustment of the control limits to account for the
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coefficient autocorrelation that is now present and its effect on the global false-
alarm rate. An enhancement to the Bonferroni-type adjustment suggested by
Bakshi [Bak98] would be to use the more powerful FDR approach, which
controls the expected proportion of false positives.

Multivariate Exponential Smoothing

Although research and application of univariate exponential smoothing is
widespread there is a surprising scant number of papers on multivariate expo-
nential smoothing, as a generalization of the univariate exponential smoothing
methods. Two papers that have addressed this topic are Pfeffermann and Al-
lon [PA89] and Harvey [Har86]. Since then, it appears, there has been little
new on the topic.

The generalized exponential smoothing model suggested by Harvey [Har86]
includes linear and polynomial trends and seasonal factors and can be esti-
mated using algorithms designed for the univariate case. Pfeffermann and Al-
lon [PA89] suggest a generalization of the Holt-Winters additive exponential
smoothing, simply by expressing the decomposition and updating equations
in matrix form. The only additional assumption is that the error term εt is
assumed to have E(εt) = 0, Var(εt) = Σ, and E(εtε

′
t−i) = 0 for i > 0. The

set of updating equations are given by

Lt+1 = A(Yt+1 − St+1−M ) + (I −A)(Lt + Tt),
Tt+1 = B(Lt+1 − Lt) + (I −B)Tt, (17)
St+1 = C(Yt+1 − Lt+1) + (I − C)St+1−M ,

where A, B, and C are three convergent matrices of smoothing constants. The
m-step-ahead forecast at time t is

Ŷt+m = Lt +mTt + St+m−M . (18)

These are similar to the univariate smoothing updating and prediction equa-
tions. In fact, the updating equations can be written as weighted averages of
estimates derived by the univariate components and correction factors based
on information from the other series (the off-diagonal elements of the ma-
trices A,B, and C). Pfeffermann and Allon [PA89] show that the forecasts
from this model are optimal under particular state space models. They also
illustrate and evaluate the method by applying it to two bivariate time se-
ries: one related to tourism in Israel, and the other on retail sales and pri-
vate consumption in Israel. They conclude that the multivariate exponential
smoothing (MES) forecasts and seasonal estimates are superior to univari-
ate exponential smoothing and comparable to ARIMA models for short-term
forecasts. Although the model formulation is distribution free, to forecast all
series the specification of the smoothing matrices and initial values for the
different components requires a distributional assumption or prior subjective
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judgments (which are much harder in a multivariate setting). This is the most
challenging part of the method. However, once specified, this process need not
be repeated. Also, once specified, the estimated smoothing matrices can shed
light on the cross-relationships between the different time series in terms of
seasonal, trend, and level components.

Data Depth

The pattern recognition literature discusses nonparametric multivariate mod-
els such as those associated with data depth methodology. This approach
was developed through techniques at the interface between computational
geometry and statistics and is suitable for nonelliptically structured multi-
variate data [Liu03]. A data depth is a measure of how deep or how central
a given point is with respect to a multivariate distribution. The data depth
concept leads to new nonparametric, distribution-free multivariate statistical
analyses [RS04a], and in particular, it has been used to create multivariate
monitoring charts [Liu03, LS02]. These charts allow the detection of both a
location change and a scale increase in the process simultaneously. In prac-
tice, they have been shown to be more sensitive to abnormalities relative to a
Hotelling-T 2 chart in monitoring aviation safety, where the data are not mul-
tivariate normal [CLL00]. There are several control charts that are based on
data depth measures, the simplest being the r chart. In this time-preserving
chart the monitoring statistic is the rank of the data depth measure, denoted
by r. Liu and Singh [LS93] proved that r converges in distribution to a U(0,1)
distribution. Therefore, the lower control limit on the r-chart equals the α of
choice, and if the statistic exceeds this limit, it means that the multivariate
observation is very far from the distribution center, and a flag is raised. The
computation of the data depth measures becomes prohibitively intensive as
the dimension of the space increases. Solutions have been to use probabilistic
algorithms [CC03].

4.4 Spatial Approaches to Biosurveillance

A different approach to monitoring multiple data sources has been to focus on
the spatial information and look for geographical areas with abnormal counts.
Two major approaches have been used for monitoring biosurveillance data us-
ing a spatial approach. Both operate on discrete, multidimensional temporal
datasets. The first method uses the algorithm What’s Strange About Recent
Events (WSARE), which is applied in RODS and uses a rule-based technique
that compares recent emergency department admission data against data from
a baseline distribution and finds subgroups of patients whose proportions have
changed the most in the recent data [WMC03]. In particular, recent data are
defined as all patient records from the past 24 hours. The definition of the base-
line was originally the events occurring exactly five, six, seven, and eight weeks
prior to the day under consideration (WSARE version 2.0) [WMC02]. Such
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a comparison eliminates short-term effects such as day-of-week, and longer-
term seasonal effects (by ignoring weeks that are farther in the past). The
baseline was then modified to include all historic days with similar attributes
(WSARE version 2.5), and in the current version (WSARE 3.0) a Bayesian
Network represents the joint distribution of the baseline [WMC03]. One limi-
tation of WSARE is that it is practically limited to treating a maximum of two
rules (i.e., variables), due to computational complexity [WMC02, WMC03].
Another computational limitation is the randomization tests used to account
for the multiple testing, which are also computationally intensive. Finally,
WSARE can use only discrete data as input, so that continuous information
such as age must be categorized into groups. This, of course, requires expert
knowledge and might be specific to the type of data monitored and/or the
outbreak of interest.

A different method, implemented in ESSENCE II and in the NYC-
DOHMH system, is the spatial-temporal scan statistic [Kul01], which com-
pares the counts of occurrences at time t in a certain geographical location
with its neighboring locations and past times, and flags when the actual counts
differ consistently from the expected number under a nonhomogeneous Pois-
son model. The purely spatial approach is based on representing a geographical
map by a uniform two-dimensional grid and aggregating the records within
families of circles of varying radii centered at different grid points. The un-
derlying assumption is that the number of records in a circle come from a
nonhomogeneous Poisson process with mean qpij where q is the underlying
disease rate and pij is the baseline rate for that circle. The purely spatial scan
statistic is the maximum likelihood ratio over all possible circles, thereby
identifying the circle that constitutes the most likely cluster. This requires
the estimation of the expected number of cases within each circle and outside
of it given that there is no outbreak. The p-value for the statistic is obtained
through Monte Carlo hypothesis testing [Kul01]. The spatial-temporal scan
statistic adds time as another dimension, thereby forming cylinders instead
of circles. The varying heights of the cylinders represent different windows in
time. The multiple testing is then accounted for both in space and in time do-
mains. Lawson [Law01] mentions two main challenges of the spatial-temporal
scan statistic, which are relevant to biosurveillance. First, the use of circular
forms limits the types of clusters that can be detected efficiently. Second, the
timeliness of detection and false-alarm rates need further improvement. In
an application of the scan statistic to multiple data sources in ESSENCE II,
Burkom [Bur03b] describes a modified scan-statistic methodology where the
counts from various series are aggregated and used as the monitored data,
and these are assumed to follow an ordinary Poisson model. A few modifi-
cations were needed to address features of biosurveillance data. The uniform
spatial incidence is usually inappropriate and requires the estimation of ex-
pected counts for each of the data sources (which is challenging in and of
itself); the aggregation of counts from disparate sources with different scales
was adjusted by using a “stratified” version of the scan statistic. It appears
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that such data-specific and time-varying tailoring is necessary and therefore
challenges the automation of this method for biosurveillance.

Both methods are flexible in the sense that they can be applied to differ-
ent levels of geographical and temporal aggregation and for different types of
diseases. With respect to automation and user input the two methods slightly
differ. In the scan-statistic methods the user is required to specify the max-
imal spatial cluster size (represented by the circle radius) and the maximal
temporal cluster length (represented by the cylinder height). In addition, since
neither the Poisson nor the Bernoulli model is likely to be a good approxima-
tion of the baseline counts in each area, a nonhomogeneous Poisson will most
likely be needed. This requires the specification of the relevant variables and
the estimation of the corresponding expected counts inside and outside each
cylinder. For WSARE the user need only specify the time window that is used
for updating the Bayesian network. Finally, the major challenge in these two
spatial methods as well as other methods (e.g., the modified Poisson CuSum
method by Rogerson [Rog01]) is their limitation to monitoring only count
data and the use of just categorical covariates.

5 Concluding Remarks

The collection of data streams that are now routinely collected by biosurveil-
lance systems is diverse in its sources and structure. Since some data sources
comprise multiple data streams (e.g., different medication sales or different
chief complaints at ER admission), there are two types of multivariate rela-
tionships to consider: “within sets” and “across sets.” Data streams within a
single source tend to be qualitatively more similar to each other as they are
measured, collected, and stored by the same system and share common influ-
encing factors such as seasonal effects. Data streams across different sources
are obviously less similar, even if the technical issues such as frequency of
measurement and missing observations are ignored. The additional challenge
is that the signature of a disease or bioterrorism-related outbreak is usually
not specified and can only be hypothesized for some of the data sources (e.g.,
how does a large-scale anthrax attack manifest itself in grocery sales?). Stoto
et al. [SFJ06] discuss the utility of univariate methods in biosurveillance by
comparing univariate and multivariate Shewhart and CuSum chart perfor-
mance. Their discussion and analyses are provocative, but there is need for a
serious testbed of data to examine the utility of the different approaches.

The task of monitoring multivariate time series is complicated even if we
consider a single data source. Traditional statistical approaches are based on
a range of assumptions that are typically violated in syndromic data. These
range from multivariate normal distribution, independence over time, to sta-
tionarity. Highly advanced methods that relax these assumptions tend to be
very complicated, computationally intensive, and require expert knowledge to
apply them to real data. On the other hand, advances in other fields where au-


