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Abstract

We provide a framework for reducing and interpreting results of mul-
tiple microarray experiments. The basic tools are a flexible gene-
filtering procedure, a dynamic and extensible annotation system,
and methods for visualization. The gene-filtering procedure efficiently
evaluates families of deterministic or statistical predicates on collec-
tions of expression measurements. The expression-filtering predicates
may involve reference to arbitrarily complex predicates on phenotype
or genotype data. The annotation system collects mappings between
manufacturer-specified probe set identifiers and public use nomencla-
ture, ontology, and bibliographic systems. Visualization tools allow
the exploration of the experimental data with respect to genomic
quantities such as chromosomal location or functional groupings.

2.1 Introduction

The Bioconductor project (www.bioconductor.org) was initiated at Dana
Farber Cancer Institute to gather statisticians, software developers, and bi-
ologists interested in advancing computational biology through the design,
deployment, and dissemination of open-source software. The R statisti-
cal computing environment (www.r-project.org) is the central computing
and interaction platform for tools created in Bioconductor. Bioconductor’s
software offerings consist of R packages and data images to support many
aspects of computing and inference in bioinformatics. Key packages that
will be reviewed in this chapter include:

• Biobase: the basic data structures and algorithms required for storage
and exploration of genomic, phenotypic, and gene expression data ob-
tained in microarray experiments;
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• genefilter: routines for efficient identification of genes satisfying arbi-
trarily complex, statistically defined conditions;

• edd (expression density diagnostics): algorithms for evaluating the diver-
sity of gene expression distributions in phenotypically defined cohorts;

• annotate: programs and data structures for connecting genomic and
phenotypic data to biological and clinical annotation and literature to
facilitate interpretation and hypothesis-driven modeling;

• geneplotter: programs to assist in the visualization of experimental
results.

Other Bioconductor/R packages are described in Dudoit and Yang (Chap-
ter 3, this volume) and Irizarry et al. (Chapter 4, this volume).

After describing and formalizing the motivations and choices of data
structures and algorithms for this project, we will illustrate the use of these
software tools with two large gene expression databases. The first is the set
of 47 U68 Affymetrix arrays discussed in Golub et al. (1999). The data are
available in their original form at http://www-genome.wi.mit.edu. The
samples were collected on individuals with acute myelogenous or acute
lymphocytic leukemia. The second dataset is a collection of 89 U95 ar-
rays from Zhang, Derdeyn, Gentleman, Leykin, Monti, Ramaswamy, Wong,
Golub, Iglehart and Richardson (2002) with additional data on HER2 sta-
tus provided by Dr. A. Richardson. These data are samples collected on
metastatic and nonmetastatic breast cancer tumors. Both datasets and
transcripts of data analysis sessions related to this chapter are available at
www.bioconductor.org/Docs/Papers/2002/Springer.

2.2 Motivations for Component-Based Software

Microarray experiments are based on collections of tissue samples (usually
fewer than 100) on which expression of messenger RNA (mRNA) has been
measured.

For concreteness, we focus on the analysis of oligonucleotide arrays. Let
i = 1, . . . , I index independent microarrays. The ith array supplies xji,
j = 1, . . . , J expression measures. There is usually substantial processing
of the raw experimental data needed to obtain these expression values. The
steps involved in this processing are discussed in Irizarry et al. (Chapter 4,
this volume) and Li and Wong (Chapter 5, this volume). We assume that
the expression values are comparable across arrays although not necessarily
across genes.

The large number of genes J (usually J > 1000 and often J > 10, 000)
places special requirements on computational and inferential tools for the
analysis of microarray experiments. New methods of computation and in-
ference are also required for the complex task of connecting numerically
detected patterns of gene expression and resources, typically textual in na-
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ture, that allow biologic interpretation of these patterns. We now discuss
details of some of the basic motivations for establishing flexible component-
based approaches to filtering, annotation, and visualization of gene expres-
sion data.

Diversity and dynamic nature of microarray formats and outputs. A mi-
croarray generally consists of a spot (or a set of spots) on which specific
portions of mRNA should cohybridize. The number of spots, the length of
the sequence against which cohybridization is performed, and the nature
of the sequence depend on the manufacturer of the chip. The two most
popular techniques are cDNA arrays as described by Shalon et al. (1996)
and Affymetrix short oligomer arrays. It is important to realize that there
are limitations to the inferences that can be derived from these arrays. In
both cases, we can measure the amount of mRNA that hybridizes to the
spot(s) on the array. Biologic or clinical inference relies on the imperfect
and evolving mapping from the EST to the gene. This mapping should be
carried out on data that are as recent as possible, so software implemen-
tations must avoid “hard-coding” any but the most permanent features of
this mapping. Ideally, the software will make real-time use of Web-based
repositories that satisfy given requirements for currency and accountability.

Fallibility of EST construction. Most arrays use probes that are based on
expressed sequence tags (ESTs). We will refer to the probes and their tar-
gets incorrectly but interchangeably as ESTs and genes. An EST is a short
(typically 100–300 bp) partial cDNA sequence. cDNA is DNA synthesized
by the enzyme reverse transcriptase using mRNA as a template. In prac-
tice, cellular mRNA is used together with reverse transcriptase to build
cDNA. The resulting cDNA sequences are then used to build ESTs. This
process is not infallible, and some proportion of the ESTs will be incorrect
(or incorrectly labeled).

Need to distinguish transcript abundance from gene activity and protein
abundance. The expression of the genetic information contained in DNA
occurs in two stages. The first is transcription, where DNA is transcribed
into RNA. The second stage is translation, where the RNA is translated
into a protein. The central dogma of molecular biology is that DNA makes
RNA makes protein. Microarray technologies measure levels of mRNA in
different samples. Thus, they measure transcript abundance, which may
or may not relate to the presence of a gene (since the gene need not be
transcribed). Transcript abundance may or may not relate to the presence
of a protein (since the mRNA need not be translated). Interpretation of
microarray outputs may also be affected by translocations or increases in
copy number that may be present in only a fraction of samples with a given
phenotype. Either increased copy number with the usual expression control
or increased/enhanced expression with the copy number left the same can
result in increased mRNA expression.
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Need to separate potentially functional ESTs from housekeeping sequences.
For any given tissue in the human body, it is estimated that about 40% of
the genome is expressed. Another portion of the genes measured will have a
relatively constant transcript abundance across samples. These genes may
be performing housekeeping activities or other activities that are unrelated
to the processes being studied. Therefore, in most cases there are a rela-
tively large number of ESTs that are inherently uninteresting, and some
means of removing them from the remainder of the analysis will be helpful.
Many of the tools that we employ are computationally expensive, and any
reduction of the data will be rewarded by decreased analysis times. One
approach is to filter out the uninteresting genes so that attention can be
focused on those genes that have some potential to be interesting.

Necessity and limitations of gene-specific processing. With Affymetrix ar-
rays, comparisons between expression levels estimated from different probe
sets should be made with caution. For these arrays, the intensity may be
affected by the probe sequences used, and two different probe sets may have
greatly different estimated expression values when in fact the abundances
of the mRNAs are quite similar. With cDNA arrays, provided all arrays
have been hybridized with a common baseline, a comparison between genes
is probably valid. Gene-at-a-time processing is a severely limited analytic
framework and is incapable of great fidelity to the biology involved. The
systems that we are studying are complex, and there are always interac-
tions between different gene products. There are many systems that are
more complex. For example, the ratio of BAX (BCL2-associated X pro-
tein) to BCL2 determines the cell’s fate. If the level of BCL2 is larger than
that of BAX, then apoptosis (programmed cell death) is suppressed. When
the level of BAX is larger than that of BAD, apoptosis is promoted (Helm-
reich, 2001; p. 241). Hence, we are not interested in changes in one of these
two genes but rather in changes in their ratio.

The considerations just enumerated have played a significant role in shap-
ing our design of Bioconductor software components. We put a high pre-
mium on designs that allow adaptation to new approaches and resources—
at both the biotechnologic and inferential levels—that help overcome the
limitations and ambiguities inherent in the current state of the art of mi-
croarray experimentation and interpretation. Formalization of the key re-
sources of our approach is provided in the next section.

2.3 Formalism

Recall that i = 1, . . . , I indexes the samples or chips, and j = 1, . . . , J in-
dexes genes that are assumed to be common across all chips. For sample i,
a q-vector yi contains phenotypic and/or demographic data on the patients
from which samples were derived, such as age, sex, disease status, duration
of symptoms, and so on. These data are conceptually and often adminis-
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tratively distinct from the expression data (which may be managed in a
completely different database). Labels si = s(yi) are available to classify
samples; for example, si ∈ {normal , diseased}. Note that we will commonly
use the term phenotypic data very loosely to refer to any nongenomic data
related to tissue samples or their donors.

An experiment metadata structure is a description of conditions and ma-
terials used in a biological experiment. Standard specifications of meta-
data structures have been proposed (e.g., MIAME http://www.mged.org/
Workgroups/MIAME/miame.html; Brazma et al., 2001). Our framework is
sufficiently broad to accommodate such annotation.

An annotation structure is a mapping between EST identifiers and stan-
dardized nomenclatures for associated genes. The mapping may be for-
malized as a set of ordered sequences with specified positions for conven-
tional (e.g., manufacturer-defined) EST identifiers and associated standard
nomenclature tokens for the genes related to that EST.

A microarray experiment database is the ordered quadruple S = 〈X, Y ,
A, M〉, where X is a J × N matrix with columns representing J-vectors of
gene expression measurements on each of N tissue samples, Y is an N × p
matrix with rows representing p-vectors of phenotypic information on the
N tissue samples or their donors, A is an annotation structure, and M is an
experiment metadata structure. The floating-point number xji is the (j, i)
entry of matrix X, representing the measured expression level for gene j
on tissue sample i. The datum yiq is the value of phenotypic variable q on
tissue sample i or its donor. xj is the N -vector of expression values for gene
j over all donors.

A gene filter element is a Boolean-valued function f(x, Y ) of an N -vector
of expression values x and an N × p phenotype matrix Y . An example is a
function that uses the phenotype data to divide x into two samples (e.g.,
diseased and nondiseased) and returns TRUE if and only if a two-sample
test of location shift rejects the null hypothesis of a common location for
the two samples.

A gene filter is a collection of gene filter elements that can be applied to a
microarray experiment database. Let F denote such a collection. Then, the
action of a gene filter on a microarray experiment database S is to define
the index set IS,F = {j = 1, . . . , J |f(xj , YS) = 1, all f ∈ F, xj ∈ XS},
where XS and YS are the expression and phenotype components of S.

2.4 Bioconductor Software for Filtering, Exploring,
and Interpreting Microarray Experiments

2.4.1 Formal Data Structures and Methods
for Multiple Microarrays

The choice and design of data structure to represent multiple microarray
experiments is one of the most critical processes of software development
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in this domain. Regimentation of the structure is important to establish
trustworthiness of related computations and to facilitate reuse of software
components that effectively navigate and process elements of the structure.
Flexibility of the structure is also of great importance so that changes in
biotechnology and research directions do not necessitate complete redesign.
Our approach to data structure design for this problem preserves the con-
ceptual independence of genomic and phenotypic information types and
exploits the formal methods and classes in the R package methods which
was developed by Chambers (1998).

The methods package provides a substantial basis for object-oriented
programming in R. Object-oriented programming is a well-established ap-
proach to dealing with complex data structures and algorithms. When we
can conceive of our data as an object with a well-defined set of properties
and components of various types, then an object-oriented programming
system may be used to represent our data as an instance of a class of simi-
larly structured objects. Analysis algorithms defined in the object-oriented
system are freed from responsibility for checking the structure and con-
tents of the components of objects instantiating the class. Furthermore,
when proper design and deployment discipline is maintained, it is often
possible to extend the structure of an object without affecting the behav-
ior of software developed for previous versions of the object. Thus, the
object-oriented approach gives access to the regimentation and flexibility
required for the creation and support of durable software for bioinformatic
inference.

Classes exprSet and phenoData

To coordinate access in R to the genomic and phenotypic data generated
in a typical microarray experiment, we defined two classes of objects. One
is called the exprSet class and the other the phenoData class.

The phenoData class was designed to hold the phenotypic (or sample
level) data. Objects of this class have the following properties or slots:

pData A data.frame with samples as the rows and the phenotypic vari-
ables as the columns.

varLabels A list with one element per phenotypic variable. Names of list
elements are the variable names; list-element values are character
strings with brief textual descriptions of the associated variables.

An instance of class exprSet has the following slots:

exprs An array that contains the estimated expression values, with
columns representing samples and rows representing genes.

se.exprs An array of the same size as exprs containing estimated standard
errors. This may be NULL.
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phenoData An instance of the phenoData class that contains the sam-
ple level variables for this experiment. This class is described above.

description A character string describing the experiment. This will prob-
ably change to some form of documentation object when and if we
adopt a more standard mechanism for documentation.

annotation The name of the annotation data that can be used for this
exprSet.

notes A character string for notes regarding the analysis or for any other
purpose.

Once a class has been defined, instances of it can be created. A particular
dataset stored in this format would be called an instance of the class.
Although we should technically always say something like x is an instance
of the exprSet class, we will often simply say that x is an exprSet.

Formal Methods for exprSets

A number of methods for the exprSet and phenoData classes have been
implemented. The reader is directed to the documentation in our pack-
ages for definitive descriptions. Here, we illustrate the various methods
with examples based on a celebrated collection of array experiments. The
golubEsets package includes exprSets embodying the leukemia data
of Golub et al. (1999). Upon attaching the golubTrain element of the
package, we may invoke the following exprSet methods:

Show the data. The generic show function (invoked upon mention of an
exprSet instance) gives a concise report.

> golubTrain
Expression Set (exprSet) with
7129 genes
38 samples
phenoData object with 11 variables and 38 cases
varLabels
Samples: Sample index
ALL.AML: Factor, indicating ALL or AML
BM.PB: Factor, sample from marrow or peripheral blood
T.B.cell: Factor, T-cell or B-cell leuk.
FAB: Factor, FAB classification
Date: Date sample obtained
Sex: Factor, sex of patient
pctBlasts: pct of cells that are blasts
Treatment: response to treatment
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PS: Prediction strength
Source: Source of sample

Subset of genes. Subscripting on the first index returns a matrix of ex-
pression values of the corresponding genes. Notice that the row names
are Affymetrix identifiers for the ESTs used. The annotate package
will use these identifiers to map to different quantities such as the
LocusLink identifiers or chromosomal location. Affymetrix uses the
convention that identifiers that begin with AFFX are used for quality-
control purposes and are generally uninteresting for any analysis. One
may want to remove these before analyzing the data.

> golubTrain[1:4,]
[,1] [,2] [,3] ...

AFFX-BioB-5_at -214 -139 -76
AFFX-BioB-M_at -153 -73 -49
AFFX-BioB-3_at -58 -1 -307
AFFX-BioC-5_at 88 283 309

Extract phenotype vector. This method exploits a specialization of the
$ operator to deal with instances of the exprSet class.

> table(golubTrain$ALL.AML)

ALL AML
27 11

Subset of patients. Subscripting on the second index returns a matrix
of expression values of the corresponding tissue donors. In this ex-
ample, we obtain the dimensions after restriction to patients whose
phenoData indicates that they have acute lymphocytic leukemia.

> print(dim(golubTrain[
,golubTrain$ALL.AML=="ALL"]))

[1] 7129 27

Accessor functions. A number of functions are provided to allow ac-
cess to more primitive representations of expression data. The exprs
function applied to an exprSet returns the J × N matrix of expres-
sion results. The pData function returns the N × p data.frame of
phenotypic data.

Before concluding this topic, we make some remarks on the problem of
concisely specifying exprSet subsets. Familiar syntax has been established
to allow reference to subsets of collections of arrays. A key obligation is
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to keep the genomic and phenotypic data correctly aligned, so, if eS is an
instance of an exprSet, we may ask for eS[,1:5]. The second index in this
subscripting expression refers to tissue samples. The value of this expression
is an exprSet whose contents are restricted to the first five tissue samples
in eS. The new exprSet’s exprs element contains the first five columns of
eS’s expr array. The new exprSet’s se.exprs array is similarly restricted.
But the phenoData must also have a subset made and for it we want the
first five rows of eS’s phenoData dataframe since it is in the more standard
format where columns are variables and rows are cases.

Other tools for working with exprSets are provided, including meth-
ods for iterating over genes with function application and sampling from
patients in an exprSet (with or without replacement).

2.4.2 Tools for Filtering Gene Expression Data:
The Closure Concept

We have seen that the golubTrain exprSet includes results for 7129 genes.
The genefilter package of Bioconductor provides a collection of functions
allowing computationally efficient reduction of the set of genes of interest.
The user interface is the genefilter function, which accepts a J × N ma-
trix of expression data and an instance of class filterfun. The filterfun
class supports the combination of functions to define a sequence of filter-
ing criteria. In the current formulation, the genefilter package supports
marginal filtering: criteria are constructed and evaluated to retain or ex-
clude a gene based solely on features of the distribution of expression values
of that gene (in relation, of course, to the phenotypic features of the sam-
ples on which gene expression was measured). This is to be distinguished
from joint filtering, in which the retention or exclusion of a gene may de-
pend on distributions of other genes. An example of joint filtering is given
in subsection 2.6.1.

We have designed the genefilter package to support very flexible spec-
ifications and combinations of filtering criteria. Suppose that we wish to
restrict attention to genes in golubTrain that have expression values ex-
ceeding 100 for at least five donors and for which the coefficient of variation
is at least 2. The following commands carry this out.

myAbsLB <- kOverA( k=5, A=100 ) # absolute lower bound
myCVspec <- cv( a=2 ) # lower bound on CV
myFilterSeq <- filterfun( myCVspec, myAbsLB )
myInds <- genefilter( exprs(golubTrain), myFilterSeq )

Now

Train2 <- golubTrain[myInds,]

has 1534 genes. To introduce more stringent filtration, arguments to the
filter components can be altered and the process of building and applying
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the filter collection myFilterSeq can be repeated, or, new filters could be
constructed and applied to exprs(Train2).

The command

myAbsLB <- kOverA( k=5, A=100 )

defines a closure. This is an R function accompanied by an environment
defining local data. The limit, A, and number of exceedents required, k,
are bound to 5 and 100 in myAbsLB, which is applied to all N -vectors of
expression values for all genes in exprs(golubTrain). The use of closures
allows us to provide a simple but very flexible interface. Arbitrarily many
filters can define a filtration. Each of the filters may make use of user-
specified parameters or phenotypic data structures. For more background
on closures in R, see Gentleman and Ihaka (2000).

This approach can be contrasted with one where long lists of optional
parameters are supplied. Our experience suggests that the latter is error-
prone. Separation of the task of identifying and creating specific filters from
the task of applying those filters provides a substantial simplification.

2.4.3 Expression Density Diagnostics: High-Throughput
Exploratory Data Analysis for Microarrays

A basic problem in gene discovery exercises is the formulation of test pro-
cedures that powerfully discriminate distinct patterns of gene expression
in phenotypically distinct tissues. In standard statistical applications, ex-
ploratory data analyses using graphics and goodness-of-fit appraisals are
used to match the test procedure to the characteristics of the data. For
example, data from long-tailed distributions will often be log-transformed
or scrutinized for outliers. The magnitude and relative complexity of gene
expression array datasets has been a hindrance to exploratory analysis and
investigation of test selection procedures based on characteristics of gene
expression distributions across samples. If gene expression distributions
are highly diverse in shape, discovery procedures will need to adapt to the
shapes present in order to possess reasonable power.

As a first step toward more adaptive gene discovery methods, the edd
package performs a species of high-throughput exploratory data analysis.
To overcome the difficulty of evaluating thousands of histograms or density
smooths to assess skewness, multimodality, outlier-proneness, or other de-
partures from Gaussianity, we compare gene- and stratum-specific empirical
distribution functions for expression data to a catalog of specified reference
distributions, labeling each gene with the closest matching reference dis-
tribution or “doubt.” This allows the grouping of genes into broad classes
to facilitate more focused diagnostic analysis or discriminative testing. We
now provide some formal definitions of components of the procedure. We
suppose that the underlying distributions are of continuous type for all



56 2. Visualization and Annotation of Genomic Experiments

genes. Expression distribution classification involves three steps.

Location and scale reduction. Define mF = F−1(1/2) to be the median of
the cumulative distribution function (cdf) F and aF = c · medianx∼F |x −
mF | to be the scaled median absolute deviation (MAD) of F . Scaling factor
c = 1.483 is used to obtain consistency of MAD for σ at N(µ, σ2). The
centered and scaled cumulative distribution function (cdf) corresponding
to an arbitrary cdf F is defined as

F ∗(y) = Pr(a−1
F [Y − mF ] < y).

We will use the asterisk superscript to denote cdfs or deviates from dis-
tributions that have been subjected to this transformation. For example,
X∗ ∼ Beta∗(r, t) implies that X∗ = s−1[X − m], where X ∼ Beta(r, t)
and m(resp. s) are the median (resp. MAD) of the Beta distribution with
parameters r and t. The function centerScale in edd can be applied to
any real vector X to obtain X∗.

Formation of reference catalog. We develop the tools to simulate from and
evaluate quantiles of a collection of location- and scale-reduced parametric
distributions: Beta∗(2,8), Beta∗(8,2), χ2∗

1 , LN∗(0,1) (log normal with mean
zero and standard deviation unity after log transformation), MIX∗

p, where
MIXp denotes the two-component mixture pN(0, 1)+(1−p)N(4, 1), t∗3, and
U∗(0, 1). Other catalog elements can be added as needed. These candidates
were chosen to represent a diversity of shapes and to allow some assessment
of the possibility of confusion (χ2∗

1 and LN∗(0,1) are very similar shapes). In
general, there will be R location- and scale-reduced reference distributions
in the catalog, which we will denote H = {H1, . . . ,HR}. The functions
makeCandmat.raw and makeCandmat.theor create reference catalogs based
on simulation and quantile calculation after location and scale reduction,
respectively.

Classification. The empirical distribution function (EDF) of location- and
scale-reduced expression observations on each gene is treated as an I-
dimensional multivariate datum. For gene g (in a stratum s), this EDF is
denoted F̂sg; the stratum index will be suppressed unless required. Three
approaches to classification of gene-specific EDFs are investigated:

• Nearest-neighbor classification. A prespecified number c of I-dimensional
reference candidates are simulated from each element of H. This leads
to c · R I-vectors that serve as a training set, each with known shape.
k-NN classification is conducted for each F̂g with parameters k (number
of neighbors to be polled) and l (minimum number of concordant votes of
type s required to classify the candidate into category s). The expression
distribution of gene j is declared to be of shape r ∈ {1, . . . , R} if l of the
k closest catalog members are simulated from Hr and is declared to be
of unknown shape otherwise.
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• Test-based classification. For each j and each s ∈ {1, . . . , R}, compute the
p-value ps of the Kolmogorov–Smirnov statistic testing the hypothesis
that xj ∼ Hs. The expression distribution of gene j is declared to be of
shape r if pr exceeds a specified lower bound and is uniquely the largest
of the ps and is declared to be of unknown shape otherwise.

• Model-based classification. The c ·R I-dimensional training set described
under the nearest-neighbor approach is used to construct a neural net-
work that predicts class membership or “doubt” for each F̂g.

The function edd.unsupervised includes options for the type of classifi-
cation algorithm to be used and can be applied to exprSets. It returns a
set of J classification labels indicating for each gene in the exprSet the
best-fitting element of the reference catalog.

2.4.4 Annotation
Relating the ESTs comprising a class of arrays to various biological data
resources (e.g., genomic maps, protein function characterizations, general
literature of clinical genetics) is an essential part of the analysis. If an
analysis is primarily data-driven, one needs to relate the numerical patterns
discovered among ESTs and phenotypic conditions to information about
gene structure and function. If an analysis is hypothesis-driven, one needs
to use information on gene structure and function to restrict or otherwise
structure the sets of ESTs and phenotypes considered in the analysis to
conform to the hypotheses of interest. These activities are problematic
because biological and clinical data resources are continually changing, as
is our understanding of their contents and how they are to be harvested
and used. Based on these observations, we have chosen a mechanism for
capturing and supplying annotation data that is flexible and easily updated.

We have divided the process into two components. One component con-
sists of building and collating annotation data from public databases. The
second component is the extraction and formatting of the collated data into
a format suitable for end users. Data analysts can simply obtain a set of
annotation tables for the set of ESTs that they are using. We will consider
only this use of the data in this discussion. This is a rapidly changing field,
so readers should consult the Bioconductor Web site for current details on
the system’s resources and methods.

Our aim is to provide data structures facilitating selection of genes ac-
cording to certain features or a priori conventional classifications such
as membership in functional groups, involvement in biological processes,
or chromosomal location. Currently, annotation structures are available
from the Bioconductor project in a variety of formats. Datasets have been
marked up as XML files with explicit DTDs and have also been formatted
as R objects suitable for loading into R using the load function. Inter-
nally (to R), they are managed using hash tables, and hence we require
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a unique key for each entry. Mapping from the EST (or manufacturer’s
identification) is then fairly straightforward.

Affymetrix Inc. produces several chips for the human genome. The most
popular in current use are the U95v2 chips (with version A being used most
often). The probes that are arrayed here have Affymetrix identifiers. We
provide functions that map the Affymetrix identifiers to a number of other
identifiers such as those provided by LocusLink and GenBank.

In addition, we have assembled relations between the different identifiers
and their Gene Ontology (GO) values. See http://www.geneontology.org.
GO is an attempt to provide standardized descriptions of the biological
relevance of genes into the three categories biological process, cellular com-
ponent, and molecular function. Within a category, the set of terms forms a
directed acyclic graph. Genes typically get a specific value for each of these
three categories. We trace each gene to the top (root node) and report
the last three nodes in its path to the root of the tree. These top three
nodes provide general groupings that may be used to examine the data for
related patterns of expression. Using the GO annotation allows users to
consider subsets of genes for analysis using groupings under any of these
headings. syntenic region, and sets of orthologs.

Often, researchers are interested in finding out more about their genes.
For example, they would like to look at the different resources at NCBI.
HTML pages with active links to the different online resources can easily be
produced. The function ll.htmlpage is one example of a function designed
to provide links to the LocusLink Web page for a list of genes.

It is also possible using connections and the XML package to open http
connections and read the data from the Web sites directly. The resulting
text could then be processed using other R tools. For example, if abstracts
or full-text searchable articles were available, these could be downloaded
and searched for relevant terms. Examples will be provided in Section 2.6
below.

2.5 Visualization

Visualization of data is an important and potentially very powerful method
for exploring and understanding data. Like all other techniques for the
analysis of genomic data, visualization is in its infancy. We consider just a
few plots that might be useful. We demonstrate how these plots help data
analysts understand their data.

Perhaps the most used visualization aid for microarray data are the heat
maps, or displays of genome-wide expression patterns, proposed by Eisen
et al. (1998). These plots generally cluster together both genes and samples
that have similar expression levels. The argument for doing this is that
genes with similar levels of expression often have a similar function. Finding
genes that have a similar function is often one of the things in which we
are interested.
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A typical rendering is as a rectangular region with rows given by ESTs
and columns by samples. Each small rectangle is colored to indicate the
expression level of the specific EST for the specific sample. Expression level
is usually indicated by both intensity and color (often red for high and green
for low, which is rather unfortunate for the color-blind). Usually, some form
of hierarchical clustering is performed to arrange the rows and the columns
so that there are relatively large homogeneous regions of red and green.
Rather than examine these rather well-known plots—easily constructed in
R using the image function and a suitable set of colors—we will provide a
few suggestions for other types of graphics that might be interesting.

2.5.1 Chromosomes
One might be interested in locating where a gene or set of genes is located in
the genome. The chromosomal locations can be obtained from the annotate
package and can then be used to construct visual tools. In this section, we
demonstrate some of the tools available in the geneplotter package.

Different genomes have different numbers of chromosomes, each of differ-
ent length. Additionally, chromosomes are generally double stranded, and
a gene can be encoded on either strand (one strand is called the plus strand
and the other the minus strand). We generally give an indication of which
strand a gene is on in all visualizations.

Plots of expression and its association with chromosomal location might
be helpful. The function alongChrom in the geneplotter package provides
plots of expression level along the chromosomes. There are several options
available. One that seems initially promising is to plot cumulative expres-
sion along a chromosome or region of a chromosome. Large jumps in this
plot indicate high levels of expression, whereas flat spots indicate a lack of
expression.

An alternative to plotting the cumulative expression level along a chro-
mosome is to plot individual levels at the appropriate position. There
are a variety of transformations that might be useful, such as the z-
transformation (x − x̄)/sd(x) or transforming to ranks.

In breast cancer, one of the important prognostic factors is the presence
of the ERBB2 gene. This particular genomic region is subject to amplifica-
tion through duplication. Increased expression of ERBB2 is often associated
with an increased copy number, that is, a region of the chromosome con-
taining ERBB2 is replicated. There can be many replicates of the region
contained in the genome, and there can be many genes on each replicate.
A region of this type is often referred to as an amplicon. The amplicon can
be of a different size in different patients.

Using annotate the probes for ERBB2 on the HgU95A chip were iden-
tified as 1802_s_at, 1901_s_at, and 33218_at. A pairs plot for the log
of the expression data for these three probes is given in Figure 2.1.
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Figure 2.1. A pairs plot of the expression data for probes for the gene ERBB2.

We next locate ERBB2 using the data available in the annotate package.
It is located (approximately) at position 41940228 on the plus strand of
Chromosome 17. Thus, we next examine Chromosome 17 more closely.
The first plot, Figure 2.2, is simply the cumulative expression of genes
on Chromosome 17 by strand. In this case, the plot was not particularly
informative, and a more detailed look at the region of the amplicon seems
justified.

An examination of the relevant literature by Dr. A. Richardson impli-
cated 32064_at, PPARBP; 37355_at, MLN64; and 1680_at, GRB7 as
genes that might also be included in the amplified region, or amplicon. To
better see their effects, we now only plot expression levels for that region
of Chromosome 17. Once again, we use the alongChrom function. The plot
region is restricted to the portion of Chromosome 17 between 41800000 and
42000000 bases. The cumulative expression (ERBB2-positive patients are
colored red) is provided in Figure 2.3. Now we can easily see the high levels
of expression of the genes (for ERBB2-positive patients) on both strands
of the chromosome.

In these plots, we have chosen to plot the genes equally spaced. There
are a great number of options available for alongChrom, and the reader is
encouraged to explore them.

Another question that one might like to ask about these genes is whether
the expression levels of different genes are correlated (across subjects). To
explore this, one could look at pairs plots as we did above. However, when
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Figure 2.2. A plot of cumulative expression on Chromosome 17.

there are a large number of genes, this can become unwieldy. We have used
the plotcorr function in the ellipse package of Murdoch (2002).

In Figures 2.4 and 2.5 we have provided these plots, one computed for
each of the ERBB2-positive subset and the ERBB2-negative subset. These
plots demonstrate a number of interesting features. (Note that here genes
are included regardless of whether they are expressed. It might be useful
to provide the expression level by coloring the ellipses.) These plots use
pictographs to represent the correlation between the variables. They are
symmetric.

We can see some interesting features. In both sets, we can see the clusters
of highly correlated ERBB2 probe sets and TOP2A probe sets. We also see
that for the ERBB2-positive patients, KIAA0130 also seems to be expressed
(or at least correlated). Additionally, in this group there seems to be a high
correlation between the TOP2A expression and that of SMARCE1. Further
in the neighborhood of ERBB2, we can see positive correlation of ERBB2



62 2. Visualization and Annotation of Genomic Experiments

0
60

00
14

00
0

Genes

C
um

ul
at

iv
e 

ex
pr

es
si

on
 le

ve
ls

37
35

5_
at

39
00

2_
at

32
35

2_
at

18
02

_s
_a

t

19
01

_s
_a

t

33
21

8_
at

0
60

00
14

00
0

Genes

C
um

ul
at

iv
e 

ex
pr

es
si

on
 le

ve
ls

35
90

4_
at

38
20

5_
at

16
80

_a
t

Figure 2.3. A plot of cumulative expression on Chromosome 17 in the region of
ERBB2.

expression with GRB7 and MLN64. These relationships seem less strong
in the ERBB2-negative patients.

What it means for one gene to be near or close to another gene is not
yet well-understood. However, it does seem that we will want to consider
concepts such as involvement in a particular pathway or process as a mea-
sure of distance as well as sharing common regulatory control as another
means of finding genes that are close to one another. It is not entirely in-
conceivable that a change in regulation of one gene in these sets might be
important.

Whole Genome Plots

Once chromosomal location is available for the dataset, it can be used to
examine the locations of groups of genes of interest. One might be interested
in whether genes group on a particular chromosome or whether they are
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Figure 2.4. A plot of the correlation of expression between samples for the
ERBB2-positive patients.

clustered near the ends of the chromosome or in other regions where there
is some genomic instability.

We provide some tools to begin these explorations in cPlot and cColor.
The first plots the location of all genes in a reference set for the genome
of interest. The helper function cColor is then used to color locations
differently.

Some form of interaction, such as brushing, would be extremely useful.
We will be exploring ways of incorporating these plots into other software,
such as GGobi (www.ggobi.org), to take advantage of the interactive fa-
cilities provided there.

Some examples of the potential use of this type of plot are:

• If gene X is of interest and we obtain data on the, say 100, ESTs with
similar expression levels, then these could be colored to show where they
are located.

• It is common practice to cluster genes according to expression levels
subsequent to gene selection via filtering. The results of this process are
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Figure 2.5. A plot of the correlation of expression between samples for the
ERBB2-negative patients.

used to produce the usual heat map of genes by samples. An additional
graphic showing the location of genes in different clusters may be useful.

2.6 Applications

2.6.1 A Case Study of Gene Filtering
The golubEsets package includes exprSets embodying the leukemia data
reported in Golub et al. (1999). The data consist of two parts, a training set
and a test set. We will show how one can perform various analyses on these
data using some of the Bioconductor packages. We first load the necessary
libraries and load the gene expression data objects (code not shown). For
the following analyses, we will concentrate on filtering, annotation, and
plotting.

The first task described in Golub et al. (1999) was the selection of the top
50 genes for predicting whether the sample was AML or ALL. We attempt
a similar selection; however, rather than repeat their analysis, we will select
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the 50 genes with the smallest p-value according to a t-test. Note that this
is a joint filtering exercise—retention of a gene depends on the p-value of
other genes, so the genefilter package is not directly applicable. First,
we construct a t-test builder or constructor function. It will carry out the
t-test and return the p-value.

ttemp <- function (m, na.rm = TRUE)
{

function(x) {
if (na.rm) {

drop <- is.na(x) | is.na(m)
x <- x[!drop]
m <- m[!drop]

}
t.test(x ~ m)$p.value

}
}
tf2 <- ttemp(golubTrain$ALL.AML)

At this point tf2 is a function that will carry out a t-test. The variable
m is bound to the value golubTrain$ALL.AML.

pvals <- esApply(golubTrain, 1, tf2)
ord <- order(pvals)
gTr50 <- golubTrain[ord[1:50],]

We have the top 50 genes for discriminating between these two groups
using a t-test. We can find out more about these genes using the annotate
package.

hg68sym<- read.annotation("hgu68sym")
hg68ll <- read.annotation("hgu68ll")
syms50 <- multiget(geneNames(gTr50), hg68sym)
ll50 <- multiget(geneNames(gTr50), hg68ll)
ll.htmlpage(ll50, "GolubTop50",

"Top 50 ESTs discriminating ALL and AML ",
list(syms50, round(pvals[ord[1:50]], 5)))

hg68chrom <- read.annotation("hgu68chrom")
chrom50 <- multiget(geneNames(gTr50), hg68chrom)
table(unlist(chrom50))

#output
# 1 10 11 12 13 14 15 16 17 18 19 20 3 4 5 6 7 8 9 NA
# 8 2 1 3 2 3 1 2 4 1 6 1 2 2 2 4 3 1 1 1

The resulting Web page can be viewed (we have it permanently on the
Bioconductor Web site at www.bioconductor.org/Docs/Papers/2002/
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Springer/GolubTop50). Note that LocusLink values and symbols that
could not be resolved are reported as NA.

We can now use these 50 genes to see how well we can classify patients
in the test sample.

gTest50 <- golubTest[geneNames(gTr50),]
gTest50 library(class)
knn1 <- knn.cv(t(exprs(gTest50)), gTest50$ALL.AML, k=3)
table(knn1, gTest50$ALL.AML)

#knn1 ALL AML
# ALL 17 0
# AML 3 14

gTest.cent <- scale(t(exprs(gTest50)), center=FALSE)
knn2 <- knn.cv(gTest.cent, gTest50$ALL.AML, k=3) #$
table(knn2, gTest50$ALL.AML)

#knn2 ALL AML # ALL 20 0 # AML 0 14

Notice that centering and scaling the genes improved the prediction on
the test cases. There is some reason to believe that scaling (centering makes
no difference) all genes to have variance one is generally desirable. Carrying
out this part of the analysis was particularly simple due to the richness of
the available software for R.

Concentrating on a Single EST

We now consider a single gene in more detail and show how the use of
some additional tools together with some visualization techniques provides
some insight. In our analysis, reported above, one of the genes that was
important in discriminating between the two classes of leukemia was the
gene HOXA9, homeo box A9. Golub et al. (1999) also reported that this
gene was related to clinical outcome and found that it was overexpressed in
AML patients with treatment failure. The Affymetrix identifier associated
with this gene is U82759_at. We can examine its pattern of expression or
select other genes that have patterns of expression that are highly correlated
with the pattern of expression of HOXA9.

gTrHox <- golubTrain["U82759_at",]
gTeHox <- golubTest["U82759_at",]

These data are plotted in Figure 2.6, where we can see that there is some
indication that HOXA9 has a higher level of expression in the samples from
AML patients than in the ALL patients for both the test and the training
samples.

The function genefinder can be used to find ESTs that have patterns
of expression that are similar to that of HOXA9.
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Figure 2.6. A pairs plot of the expression data for probes for the gene ERBB2.

gStr <- genefinder(golubTrain, "U82759_at", num=100)
gSte <- genefinder(golubTest, "U82759_at", num=100)

sum(gSte[[1]]$indices %in% gStr[[1]]$indices)
# 20

##could just look at AML
gTrAML <- golubTrain[,golubTrain$ALL.AML=="AML"] #$
gTeAML <- golubTest[,golubTest$ALL.AML=="AML"] #$
gStrAML <- genefinder(exprs(gTrAML), "U82759_at", num=100)
gSteAML <- genefinder(exprs(gTeAML), "U82759_at", num=100)

##now how many in common?
sum(gStrAML[[1]]$indices %in% gSteAML[[1]]$indices)
#9
##what if we compare to gSte
sum(gSteAML[[1]]$indices %in% gSte[[1]]$indices)
#33

2.6.2 Application of Expression Density Diagnostics
In this example, we are concerned with understanding the diversity of ex-
pression distributions presented in two strata of 89 women with breast
cancer. The women were clinically classified into 47 cases of metastasis
(lymph node positive) and 42 controls (lymph node negative). Although
our ultimate aim is to identify features of gene expression that are predic-
tive of avoidance of metastasis, in this example we are concerned with the
diversity of gene-specific distributions within strata.

The 89 U95v2 array results are stored in the exprSet BCes. This was
filtered to eliminate those genes for which at least 23 of the samples had a
measurement above 100. There were 7297 genes remaining:
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load("BCes.rda")

kF <- kOverA(23, 100)
ff <- filterfun(kF)
wh <- genefilter(exprs(BCes), ff)

nGenes <- sum(wh)
BCok <- BCes[wh,]

We can view a summary of the BCok dataset.

Expression Set (exprSet) with
7297 genes
89 samples

phenoData object with 3 variables and 89 cases
varLabels

Chip: chip number
lymph.nodes: indicates whether metastasis was detected

in the lymph nodes
HER2: her2 status, p-positive, lp-low positive,

n-negative

Two exprSets were then extracted corresponding to cases and controls.

CasES <- BCok[ ,BCok$lymph=="positive"]
ConES <- BCok[ ,BCok$lymph=="negative"]

The function edd.unsupervised was applied to each set, using the
"nnet" shape-matching method. An example call for the metastatic sam-
ples is

library(edd)
set.seed(12345)
# needed because nnet has random initialization
CasNN <- edd.unsupervised(CasES, "nnet")
ConNN <- edd.unsupervised(ConES, "nnet")

Running with both metastatic and nonmetastatic samples, we find

table(CasNN)
CasNN
b28 b82 csq1 ln mix1 mix2 n01 t3 u

2682 70 55 1059 396 38 1422 1421 154
table(ConNN)

ConNN
b28 b82 csq1 ln mix1 mix2 n01 t3 u

2633 140 142 1505 398 33 1109 1155 182
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Here, the reference catalog of distributional shapes consists of β(2, 8),
β(8, 2), χ2

1, standard lognormal, .75N(0, 1) + .25N(4, 1) (mix1), .25N(0, 1)
+ .75N(4, 1) (mix2), N(0, 1), t3, and U(0, 1). We see that the majority
of genes in both cases and controls are found to have a shape resem-
bling β(2, 8), which is a right-skewed distribution with compact support.
The prevalence of right-skewness (present in the β(2, 8) along with the χ2

1
and lognormal shapes) is consistent with the prevailing tendency to apply
log transformation. However, we note that there are nontrivial numbers of
genes with distributional shape matching N(0, 1), thus not requiring trans-
formation, and genes with distributions shaped like clearly multimodal mix-
tures. The joint classification of gene-specific distributional shapes can be
tabulated easily:

table(CasNN,ConNN)
ConNN

CasNN b28 b82 csq1 ln mix1 mix2 n01 t3 u
b28 1127 26 42 650 175 5 275 316 66
b82 15 7 0 2 3 0 25 13 5
csq1 6 0 22 23 2 0 0 2 0
ln 381 3 44 425 50 0 53 94 9
mix1 158 5 9 75 24 2 54 59 10
mix2 7 5 0 3 0 1 14 8 0
n01 462 53 10 103 74 14 342 315 49
t3 417 36 14 217 61 9 311 321 35
u 60 5 1 7 9 2 35 27 8

We note from this table that there are 53 genes for which the controls
present an expression distribution having the shape of a standard Gaus-
sian, while the cases present expression distribution with lognormal shape.
Additionally, from the summary above, there are 434 genes for which the
cases appear to have a mixture distribution.

Figure 2.7 gives substance to these distinctions by providing gene-specific
density estimates for all genes in these strata defined by distributional
shape pattern matching. All gene distributions were transformed on a gene-
specific, stratum-specific basis to median zero and unit MAD prior to den-
sity estimation. The top panel is the set of density estimates for those genes
classified as shape mix1 among cases. There is a clear tendency to present
a second mode at about x = 2 MADs from the median. Genes for which
the stratum-specific distribution appears to be multimodal may have par-
ticular interest in that they may help unearth new diagnostic categories or
may be the basis for screening procedures (Pepe et al., 2001).

The middle and bottom panels of Figure 2.7 contain density estimates
for the 34 genes on which controls were found to have approximately Gaus-
sian distributions; while cases were found to have approximately lognormal
shape. In general, simple t-tests to contrast case and control expression
distributions in this group of genes will be suboptimal.
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Figure 2.7. Superimposed default kernel density estimates for all genes possess-
ing common distributional shape according to the edd procedure. Top panel: 396
genes from metastatic patients classified as mix1. There were 53 genes for which
cases were found to have lognormal shape and controls were found to have Gaus-
sian shape. The middle (resp. bottom) panel provides density estimates for these
genes as measured on cases (resp. controls).

This application of expression density diagnostics is primarily concep-
tual. It exposes the existence and form of diversity of expression distribu-
tions within and across strata and genes. Work is in progress on using the
results of expression diversity studies to guide the choice of discriminatory
tests to increase the power of gene discovery exercises.

2.7 Conclusions

The Bioconductor project endeavors to enrich R, an interactive statistical
computing and graphics environment, so that it may serve as a resource
of very broad utility to bioinformatics. In this chapter, we have focused on
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three processes in the analysis of expression array data: filtering from very
large collections of genes to more manageable sets and then annotating and
visualizing the resultant data.

Filtering is supported by the adoption of a simple and extensible data
structure for the collection of multiple microarrays and associated pheno-
typic data and by the creation of a highly flexible interface that permits
concise programming of arbitrarily complex statistical predicates to define
filter behavior. A tool (expression density diagnostics) that helps guide the
appropriate choice of filter by characterizing gene-expression distributions
has also been reviewed.

Annotation is supported in two independent ways. First, images of bi-
ological annotation data have been introduced into R to permit use of
various vocabularies to identify and interpret genomic phenomena. These
images may be navigated interactively or programmatically and are conve-
niently updated as required. Second, functions that mine the World Wide
Web interactively for up-to-the-minute interpretation of detailed analytical
findings have been introduced to R. Several graphical tools that help add
pictorial guidance to experiment interpretation have been discussed. These
graphical modules interoperate with the annotation infrastructure so that
pictures are as biologically informative as possible.

Efficient progress in bioinformatics requires that barriers to entry be low-
ered for both statisticians and biologists. Statisticians must be able to move
conveniently, with clear documentation and a rich stock of examples, into
the vocabulary and experimental frameworks of high-throughput genomics.
Biologists must be able to understand and apply statistically sound pro-
tocols for experimental design and inference. Again, documentation and
examples are a central resource for supporting such cross-disciplinary con-
nections. Our objective in the Bioconductor project is to provide an open-
source, integrated platform that is useful to both statisticians and biolo-
gists. The efforts of both the Bioconductor and R core developer groups
are gratefully acknowledged as central to the pursuit of this objective.
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