
Chapter 2
Neural Network-Based State Estimation
Schemes

2.1 Introduction

In this chapter, two neural network-based adaptive observers for a general model of
MIMO nonlinear systems are proposed. The first proposed neural network is linear-
in-parameter and the second one is nonlinear in its parameters which makes it
applicable to many systems with arbitrary degrees of nonlinearity and complexity.
The online weight-updating mechanism is a modified version of the backpropaga-
tion algorithm with a simple structure together with an e-modification term added
to guarantee the robustness of the observer. The stability of the recurrent neural
network observers are shown by Lyapunov’s direct method. Moreover, the strictly
positive real (SPR) assumption imposed on the output error equation is relaxed.

The reminder of this chapter is organized as follows: in Section 2.2, the observer
problem is stated and the general structure of the neuro-observer is given. The pro-
posed linear-in-parameter neuro-observer is introduced in Section 2.3. In Section
2.4, the results are extended to the case of nonlinear-in-parameter neuro-observer.
Section 2.5 gives a model of flexible-joint manipulators. The observer performance
is evaluated and demonstrated in Section 2.6 by simulation carried out on single-
and two-link flexible-joint manipulators. Section 2.7 provides brief conclusions of
this chapter.

2.2 Problem Formulation

Consider the general model of a nonlinear MIMO system

ẋ(t) = f (x,u)
y(t) = Cx(t), (2.1)
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where u ∈ Rm is the input, y ∈ Rm is the output, x ∈ Rn is the state vector of the
system, and f (., .) is a vector-valued unknown nonlinear function.

The objective is to estimate the state x in the presence of unknown function
f (x,u) in the system dynamics (2.1). The following assumptions will help us in
deriving proper update rules as well as in stability analysis:

Assumption 2.1 The nonlinear system (2.1) is observable.

Assumption 2.2 Another reasonable assumption made here is that the open-loop
system is stable. In other words, the states of the system, x(t) are bounded in L∞
which is a common assumption in identification schemes.

Now, selecting a Hurwitz matrix, A such that the pair (C,A) is observable and adding
Ax to and subtracting it from (2.1) yields

ẋ(t) = Ax+g(x,u)
y(t) = Cx(t), (2.2)

where g(x,u) = f (x,u)−Ax.
The key to designing a neuro-observer is to employ a neural network to identify

the nonlinearity and a conventional observer to estimate the states. By invoking a
Luenberger observer [21], the observer model of the system (2.2) can be defined as
follows

˙̂x(t) = Ax̂+ ĝ(x̂,u)+G(y−Cx̂)
ŷ(t) = Cx̂(t), (2.3)

where x̂ denotes the state of the observer, and the observer gain G ∈ Rn×m is selected
such that A−GC becomes a Hurwitz matrix. It should be noted that the gain G is
guaranteed to exist, since A can be selected such that (C,A) is observable.

The structure of a neuro-observer is shown in Fig. (2.1). In this figure, x̂ de-
notes the state of the recurrent model (2.3). Corresponding to the Hurwitz matrix
A, M(s) := (sI −A)−1 is also shown which is an n× n matrix whose elements are
stable transfer functions. To approximate the nonlinear function g(x,u) a multilayer
NN is considered. According to Theorem 1.1, a multilayer NN with sufficiently
large number of hidden layer neurons can estimate the unknown function g(x,u) as
follows:

g(x,u) = W T σ(V T x̄T )+ ε(x),

where W and V are the weight matrices of the output and hidden layers, respectively,
x̄ = [x u], ε(x) is the bounded neural network approximation error, and σ(.) is
the transfer function of the hidden neurons that is usually considered as a tangent
hyperbolic function presenting below:

σi(Vix̄) =
2

1+ exp−2Vix̄
−1, (2.4)
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Fig. 2.1 The structure of the proposed neural network observer.

where Vi is the ith row of V, and σi(Vix̄) is the ith element of σ(V x̄).
It is assumed that the upper bound on fixed ideal weights W and V exist such that

‖W‖F ≤ WM (2.5)

‖V‖F ≤ VM. (2.6)

It is also known that the tangent hyperbolic function is bounded by σm, i.e.,

‖σ(V x̄)‖ ≤ σm. (2.7)

In the following two sections, a LPNN and a NLPNN observer are introduced and
the stability of the observers are studied by Lyapunov’s direct method.

2.3 Linear-in-Parameter Neural Network-Based Observer

In this section a stable LPNN neuro-observer is proposed for nonlinear systems
whose dynamics are governed by (2.2). Recalling from Section 1.2.1 that, the linear-
in-parameter neural network (LPNN) is obtained by fixing the weights of the first
layer as V = I. Then, the model can be expressed as

g(x,u) = W T σ(x̄)+ ε. (2.8)

Thus, the function g can be approximated by an LPNN as

ĝ(x̂,u) = Ŵ T σ( ˆ̄x). (2.9)
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The proposed observer is then given by

˙̂x(t) = Ax̂+Ŵ T σ( ˆ̄x)+G(y−Cx̂)
ŷ(t) = Cx̂(t). (2.10)

On the other hand, by defining the state estimation error as x̃ = x− x̂ and using (2.2),
(2.9) and (2.10), the error dynamics can be expressed as

˙̃x(t) = Ax+Wσ(x̄)−Ax̂−Ŵσ( ˆ̄x)−G(Cx−Cx̂)+ ε(x)
ỹ(t) = Cx̃(t). (2.11)

Now, adding Wσ( ˆ̄x) to and subtracting from (2.11) leads to

˙̃x(t) = Acx̃+W̃σ( ˆ̄x)+w(t)
ỹ(t) = Cx̃(t), (2.12)

where W̃ = W −Ŵ , Ac = A−GC, and w(t) = W [σ(x̄)−σ( ˆ̄x)]+ ε(x) is a bounded
disturbance term i.e., ‖w(t)‖ ≤ w̄ for some positive constant w̄, due to the tangent
hyperbolic function and the boundedness of the ideal neural network weights, W .

Once the structure of the neural network is known, a proper learning rule should
be defined to train the network. This weight-updating mechanism is usually de-
fined in such a way that the stability of the observer is guaranteed. Furthermore, the
adaptive law should not be complicated or limited by some strong constraints. Back-
propagation (BP) is one of the most popular algorithms that has been widely used
for classification, recognition, identification, observation, and control problems. BP
owes its popularity to the simplicity in structure which makes it a viable choice for
practical problems. However, the main drawback of the previous work (e.g. [55] and
[56]) is the lack of a mathematical proof of stability. The following theorem provides
a stable neuro-observer by proposing an weight-updating mechanism based on the
modified backpropagation algorithm plus an e-modification term to guarantee its
robustness.

Theorem 2.1. Consider the plant model (2.1) and the observer model (2.10). Given
Assumptions 2.1 and 2.2, if the weights of the LPNN are updated according to

˙̂W = −η(ỹTCA−1
c )T (σ( ˆ̄x))T −ρ‖ỹ‖Ŵ , (2.13)

where η > 0 is the learning rate, J = 1
2 (ỹT ỹ) is the objective function and ρ is a

small positive number, then x̃,W̃ , ỹ ∈ L∞

Proof: To prove this theorem, it is firstly shown that the first term in (2.13) is the
backpropagation term and the second term is the e-modification terms for incorpo-
rating damping in the equations, i.e.,

˙̂W = −η(
∂J

∂Ŵ
)−ρ‖ỹ‖Ŵ . (2.14)
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By employing the chain rule ∂J
∂Ŵ

can be computed as follows

∂J

∂Ŵ
=

∂J
∂ ỹ

∂ ỹ
∂ x̂

∂ x̂

∂Ŵ
= −ỹTC

∂ x̂

∂Ŵ
. (2.15)

The above equation represent a set of nonlinear dynamical system and the so-called
backpropagation in time (dynamic backpropagation) should be utilized for solving
the gradient ∂ x̂

∂Ŵ
. However, this adds to the complexity of the observer and makes the

real-time implementation of the approach very difficult. To cope with this problem,
it is suggested to use the static approximation of the gradient, i.e., by setting ˙̂x = 0
in (2.10), one achieves

∂ x̂

∂Ŵ
≈−A−1

c
∂g

∂Ŵ
. (2.16)

Now by using (2.9), (2.15) and (2.16), the learning rule (2.14) can be written as

˙̂W = −η(x̃TCTCA−1
c )T (σ( ˆ̄x))T −ρ‖Cx̃‖Ŵ . (2.17)

Therefore, the dynamics of the weight error W̃ = W −Ŵ can be expressed as

˙̃W = η(x̃TCTCA−1
c )T (σ( ˆ̄x))T ρ‖Cx̃‖Ŵ . (2.18)

To study the stability of the proposed observer let us consider the Lyapunov func-
tion candidate as below

L =
1
2

x̃T Px̃+
1
2

tr(W̃ T ρ−1W̃ ), (2.19)

where P = PT is a positive-definite matrix satisfying

AT
c P+PAc = −Q, (2.20)

for the Hurwitz matrix Ac and some positive-definite matrix Q. Then, taking time
derivative of (2.19) along the trajectories (2.12) yields

L̇ =
1
2

˙̃xT Px̃+
1
2

x̃T P ˙̃x+ tr(W̃ T ρ−1 ˙̃W ). (2.21)

Now, by substituting (2.12),(2.20), and (2.18) into (2.21), one can get

L̇ = −1
2

˙̃xT Qx̃+ x̃T P(W̃σ( ˆ̄x)+w)

+ tr(−W̃ T lx̃σT +W̃ T‖Cx̃‖(W −W̃ )), (2.22)

where l = ηρ−1A−T
c CTC. On the other hand, we have
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tr(W̃ T (W −W̃ ) ≤ WM‖W̃‖−‖W̃‖2 (2.23)

tr(W̃ T lx̃σT ) ≤ σm‖W̃ T‖ ‖l‖ ‖x̃‖, (2.24)

where WM and σm are given by (2.5) and (2.7). Note that the last inequality in (2.23)
is obtained by using the fact that for two column vectors A and B, the following
equality holds:

tr(ABT ) = BT A. (2.25)

Now, by using (2.23) and (2.24), one can get

L̇ ≤ −1
2

λmin(Q)‖x̃‖2 +‖x̃‖‖P‖(‖W̃‖σm + w̄)

+ σm‖W̃‖‖l‖‖x̃‖+(WM‖W̃‖−‖W̃‖2)‖C‖‖x̃‖.

Furthermore, by completing the squares of ‖W̃‖ the following condition is obtained
to ensure negative definiteness of L̇:

‖x̃‖ ≥ (2‖P‖w̄+(σm‖p‖+WM‖C‖+σm‖l‖)2/2)/λmin(Q).

In fact, L̇ is negative definite outside the ball with radius b described as χ = {x̃ |
‖x̃‖ > b}, and x̃ is uniformly ultimately bounded. The region inside the ball is at-
tractive, since the increase of L̇ for smaller values of ‖x̃‖ will increase L and x̃,
which brings the x̃ outside the ball χ where L̇ is negative semi-definite and results in
reducing L and x̃. The above analysis shows the ultimate boundedness of x̃. Further
details concerning the notion of ultimate boundedness is given in Appendix A.

To show the boundedness of the weight error W̃ , consider (2.18) which can be
rewritten as

˙̃W = f1(x̃)+ρ‖Cx̃‖Ŵ = f1(x̃)+α1W −α1W̃ , (2.26)

where

f1(x̃) = η(x̃TCTCA−1
c )T (σ( ˆ̄x))T

α1 = ρ‖Cx̃‖.

It can be seen that f1(.) is bounded since x̃ and σ(V̂ ˆ̄x) are both bounded, C is
bounded, and Ac is a Hurwitz matrix . Given the fact the the ideal weight W is
fixed, (2.26) can be regarded as a linear system with bounded input ( f1(x̃)+α1W ).
It is clear that this system is stable since α1 is positive and the system input remains
bounded. Hence, the boundedness of W̃ is also ensured. This completes the proof of
the theorem. 	


A stable LPNN neuro-observer was introduced in this section. The next section
provides a neuro-observer for larger class of nonlinear dynamics, called nonlinear-
in-parameter (NLPNN) neuro-observer.
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2.4 Nonlinear-in-Parameter Neural Network-Based Observer

In more general neuro-observer structure, where the weight matrix of the first layer
is not restricted to be constant, the nonlinear function g can be approximated by a
multilayer NN according to the following model:

ĝ(x̂,u) = Ŵσ(V̂ ˆ̄x). (2.27)

Therefore, the observer dynamics can be given as

˙̂x(t) = Ax̂+Ŵσ(V̂ ˆ̄x)+G(y−Cx̂)
ŷ(t) = Cx̂(t), (2.28)

and also the error dynamics can be expressed as

˙̃x(t) = Acx̃+W̃σ(V̂ ˆ̄x)+w(t)
ỹ(t) = Cx̃(t), (2.29)

where W̃ = W −Ŵ , Ac = A−GC, w(t) = W [σ(V x̄)−σ(V̂ ˆ̄x)]+ ε(x) is a bounded
disturbance term i.e., ‖w(t)‖ ≤ w̄ for some positive constant w̄, due to the tangent
hyperbolic function and the boundedness of the ideal neural network weights V and
W .

In Theorem 2.2, a learning rule is introduced for neuro-observer (2.28) which
guarantees the stability of the observer and the boundedness of the error estimation.

Theorem 2.2. Consider the plant model (2.1) and the observer model (2.28). Given
Assumptions 2.1 and 2.2, if the weights of the NLPNN are updated according to

˙̂W = −η1(ỹTCA−1
c )T (σ(V̂ ˆ̄x))T −ρ1‖ỹ‖Ŵ (2.30)

˙̂V = −η2(ỹTCA−1
c Ŵ (I −Λ(V̂ ˆ̄x)))T sgn( ˆ̄x)T −ρ2‖ỹ‖V̂ , (2.31)

where Λ(V̂ ˆ̄x) = diag{σ2
i (V̂i ˆ̄x)}, i = 1,2, ...,m and sgn( ˆ̄x) is the sign function:

sgn( ˆ̄x) =

⎧⎨
⎩

1 for ˆ̄x > 0
0 for ˆ̄x = 0
−1 for ˆ̄x < 0

,

then x̃,W̃ ,Ṽ , ỹ ∈ L∞, i.e., the estimation error, weights error, and the output error
are all bounded. In these equations, η1,η2 > 0 are the learning rates, J = 1

2 (ỹT ỹ) is
the objective function and ρ1,ρ2 are positive numbers.

Proof: Similar to the proof of Theorem 2.1, at first it is shown that the first
terms in (2.30) and (2.31) are the backpropagation terms and the second terms are
the e-modification which incorporates proper damping in the equations. Then, the
stability of the proposed observer is studied by Lyapunov’s direct method. In other
words, the weights are updated based on the following dynamics
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˙̂W = −η1(
∂J

∂Ŵ
)−ρ1‖ỹ‖Ŵ (2.32)

˙̂V = −η2(
∂J

∂V̂
)−ρ2‖ỹ‖V̂ . (2.33)

Let us define

netv̂ = V̂ ˆ̄x (2.34)

netŵ = Ŵσ(V̂ ˆ̄x). (2.35)

Therefore, ∂J
∂Ŵ

and ∂J
∂V̂

can be computed as [42]

∂J

∂Ŵ
=

∂J
∂netŵ

.
∂netŵ
∂Ŵ

∂J

∂V̂
=

∂J
∂netv̂

.
∂netv̂
∂V̂

.

On the other hand, we have

∂J
∂netŵ

=
∂J
∂ ỹ

.
∂ ỹ
∂ x̂

.
∂ x̂

∂netŵ
= −ỹTC.

∂ x̂
∂netŵ

= −x̃TCTC.
∂ x̂

∂netŵ
∂J

∂netv̂
=

∂J
∂ ỹ

.
∂ ỹ
∂ x̂

.
∂ x̂

∂netv̂
= −ỹTC.

∂ x̂
∂netv̂

= −x̃TCTC.
∂ x̂

∂netv̂
, (2.36)

and

∂netŵ
∂Ŵ

= σ(V̂ ˆ̄x)

∂netv̂
∂V̂

= ˆ̄x. (2.37)

Now, by employing (2.28) and the definitions of netv̂ and netŵ as defined in (2.34)
and (2.35), respectively one can obtain

∂ ˙̂x(t)
∂netŵ

= Ac
∂ x̂

∂netŵ
+ I

∂ ˙̂x(t)
∂netv̂

= Ac
∂ x̂

∂netv̂
+Ŵ (I −Λ(V̂ ˆ̄x)). (2.38)

Similar to the approach adopted in the proof of Theorem 2.1, using the static ap-
proximation, yields in

∂ x̂
∂netŵ

≈ −A−1
c

∂ x̂
∂netv̂

≈ −A−1
c Ŵ (I −Λ(V̂ ˆ̄x)). (2.39)
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Then, substituting (2.36), (2.37), and (2.39), in the the learning rules (2.32) and
(2.33) leads to

˙̂W = −η1(x̃TCTCA−1
c )T (σ(V̂ ˆ̄x))T −ρ1‖Cx̃‖Ŵ (2.40)

˙̂V = −η2(x̃TCTCA−1
c Ŵ (I −Λ(V̂ ˆ̄x)))T ˆ̄xT −ρ2‖Cx̃‖V̂ . (2.41)

Therefore, the learning rules (2.40) and (2.41) in terms of the weight errors W̃ =
W −Ŵ and Ṽ = V −V̂ , can be written as

˙̃W = η1(x̃TCTCA−1
c )T (σ(V̂ ˆ̄x))T +ρ1‖Cx̃‖Ŵ (2.42)

˙̃V = η2(x̃TCTCA−1
c Ŵ (I −Λ(V̂ ˆ̄x)))T ˆ̄xT +ρ2‖Cx̃‖V̂ . (2.43)

In order to simplify the stability analysis, we replace ˆ̄x by sgn( ˆ̄x) in the above
equation:

˙̃V = η2(x̃TCTCA−1
c Ŵ (I −Λ(V̂ ˆ̄x)))T sgn( ˆ̄x)T +ρ2‖Cx̃‖V̂ . (2.44)

As will be clear later, this modification is necessary to derive Equation (2.50),
since sgn( ˆ̄x) is bounded but this is not necessarily true for ˆ̄x. Note that by using
the sign of ˆ̄x, the weight update is guaranteed to move in the right direction. It can
be seen that the learning rule (2.42) and (2.44) are equivalent to (2.30) and (2.31)
expressed in terms of W̃ and Ṽ .

Now, to show ultimate boundedness of the estimation errors, let us consider the
following positive definite Lyapunov function candidate

L =
1
2

x̃T Px̃+
1
2

tr(W̃ TW̃ )+
1
2

tr(Ṽ TṼ ), (2.45)

where P = PT is a positive-definite matrix satisfying

AT
c P+PAc = −Q, (2.46)

for the Hurwitz matrix Ac and some positive-definite matrix Q. The time derivative
of (2.45) is given by

L̇ =
1
2

˙̃xT Px̃+
1
2

x̃T P ˙̃x+ tr(W̃ T ˙̃W )+ tr(Ṽ T ˙̃V ). (2.47)

Then, substituting (2.29), (2.42), (2.44) and (2.46) into (2.47) yields

L̇ = −1
2

x̃T Qx̃+ x̃T P(W̃σ(V̂ ˆ̄x)+w)+ tr(W̃ T l1x̃σ(V̂ ˆ̄x)T +W̃ T ρ1‖Cx̃‖(W −W̃ ))

+ tr(Ṽ T (I −Λ(V̂ ˆ̄x))TŴ T l2x̃sgn( ˆ̄x)T +Ṽ T ρ2‖Cx̃‖(V −Ṽ )), (2.48)

where l1 = η1A−T
c CTC, l2 = η2A−T

c CTC. On the other hand, the following inequal-
ities are always true
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tr(W̃ T (W −W̃ )) ≤ WM‖W̃‖−‖W̃‖2

tr(Ṽ T (V −Ṽ )) ≤ VM‖Ṽ‖−‖Ṽ‖2 (2.49)

tr(W̃ T l1x̃σ(V̂ ˆ̄x)T ) ≤ σm‖W̃ T‖ ‖l1‖ ‖x̃‖,

where WM , VM and σm are given by (2.5)-(2.7). Now, using the facts that ‖Ŵ‖ =
‖W −W̃‖ ≤WM +‖W̃‖, 1−σ2

m ≤ 1, and (2.25) leads to the following inequality

tr(Ṽ T (I −Λ(V̂ ˆ̄x))TŴ T l2x̃sgn( ˆ̄x)T ) ≤ ‖Ṽ‖(WM +‖W̃‖)‖l2‖‖x̃‖. (2.50)

Then, by employing (2.49) and (2.50), one can get

L̇ ≤ −1
2

λmin(Q)‖x̃‖2 +‖x̃‖‖P‖(‖W̃‖σm + w̄)+σm‖W̃‖‖l1‖‖x̃‖
+ (WM‖W̃‖−‖W̃‖2)ρ1‖C‖‖x̃‖+‖Ṽ‖‖l2‖(WM +‖W̃‖)‖x̃‖
+ ρ2‖C‖‖x̃‖(VM‖Ṽ‖−‖Ṽ‖2) = F. (2.51)

By completing the squares for the terms involving ‖W̃‖ and ‖Ṽ‖, we look for con-
ditions on ‖x̃‖ which are independent of the neural network weights error and also
make the time derivative of the Lyapunov function candidate, (2.45) negative. To-
ward this end, by defining K1 = ‖l2‖

2 and adding K2
1‖W̃‖2‖x̃‖ and ‖Ṽ‖2‖x̃‖ to and

subtracting them from the right hand side of (2.51), one can obtain

F = −1
2

λmin(Q)‖x̃‖2 +(‖P‖w̄− (ρ1‖C‖−K2
1 )‖W̃‖2 − (K1‖W̃‖−‖Ṽ‖)2

+ (‖P‖σm +σm ‖l1‖+ρ1‖C‖WM)‖W̃‖+(ρ2‖C‖VM +‖l2‖WM)‖Ṽ‖
− (ρ2‖C‖−1)‖Ṽ‖2)‖x̃‖. (2.52)

Next, let us introduce K2 and K3 as follows:

K2 =
ρ1WM‖C‖+σm‖l1‖+‖P‖σm

2(ρ1‖C‖−K2
1 )

K3 =
ρ2‖C‖VM +‖l2‖WM

2(ρ2‖C‖−1)
.

Then, K2
2‖x̃‖ and K2

3‖x̃‖ are added to and subtracted from (2.52):

F = −1
2

λmin(Q)‖x̃‖2 +(‖P‖w̄+(ρ1‖C‖−K2
1 )K2

2 +(ρ2‖C‖−1)K2
3

− (ρ1‖C‖−K2
1 )(K2 −‖W̃‖)2 − (ρ2‖C‖−1)(K3 −‖Ṽ‖)2

− (K1‖W̃‖−‖Ṽ‖)2)‖x̃‖.

Now, assuming the ρ1 ≥ K2
1

‖C‖ , ρ2 ≥ 1
‖C‖ and using the fact that the last three terms

of (2.53) are negative yields
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F ≤ −1
2

λmin(Q)‖x̃‖2 +‖x̃‖(‖P‖w̄+(ρ1‖C‖−K2
1 )K2

2

+ (ρ2‖C‖−1)K2
3 ). (2.53)

Therefore, the following condition on ‖x̃‖ guarantees the negative semi-definiteness
of L̇:

‖x̃‖ >
2(‖P‖w̄+(ρ1‖C‖−K2

1 )K2
2 +(ρ2‖C‖−1)K2

3 )
λmin(Q)

= b. (2.54)

In fact, L̇ is negative definite outside the ball with radius b described as χ = {x̃ |
‖x̃‖ > b}, and x̃ is uniformly ultimately bounded.

To study the boundedness of the weight errors W̃ and Ṽ , let us rewrite (2.42) and
(2.44) as

˙̃W = f1(x̃,V̂ )+ρ1‖Cx̃‖Ŵ = f1(x̃,V̂ )+α1W −α1W̃ (2.55)
˙̃V = f2(x̃,Ŵ ,V̂ )+ρ2‖Cx̃‖V̂ = f2(x̃,Ŵ ,V̂ )+α2V −α2Ṽ , (2.56)

where

f1(x̃,V̂ ) = η1(x̃TCTCA−1
c )T (σ(V̂ ˆ̄x))T

f2(x̃,Ŵ ,V̂ ) = η2(x̃TCTCA−1
c Ŵ (I −Λ(V̂ ˆ̄x)))T sgn( ˆ̄x)T

α1 = ρ1‖Cx̃‖
α2 = ρ2‖Cx̃‖.

Since x̃ and σ(V̂ ˆ̄x) are both bounded, C is bounded, and Ac is a Hurwitz matrix,
it can be concluded that f1(.) is bounded. Given that the ideal weight W is fixed
and α1 is positive, (2.55) can be regarded as a linear system with bounded input
( f1(x̃,V̂ ) + α1W ) and therefore, it can be assured that W̃ is bounded. Given that
W̃ ∈ L∞, it can be observed that f2(.) is also bounded since all its arguments are
bounded including Λ(.) as defined below equation (2.31). Consequently, similar
analysis shows that (2.56) also represents a stable bounded input linear system and
hence Ṽ ∈ L∞. The key to the above analysis is that Ṽ only appears in f1(.) and f2(.)
as bounded functions (σ(.) and Λ(.)). This completes the proof. 	


It is worth mentioning that the size of the estimation error bound b can be kept
small by proper selection of the damping factors, Ac and the learning rates (through
K2 and K3) such that a higher accuracy can be achieved. It should be noted that
since ρ1 and ρ2 are design parameters, the conditions on them do not restrict the
applicability of the proposed approach.

Remark 2.1 In many cases, not all system states directly appear in the output of
the system. Hence, some elements of C would be zero and this will slow down the
learning process because of the structure of the backpropagation algorithm (see
equations (2.42) and (2.44)). It is suggested that for the purpose of training only,
the output matrix C is modified to C1 such that all the states appear in the output
of the system and directly contribute to the observation error, i.e., (2.30) and (2.31)
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can be redefined as

˙̂W = −η1(ỹTC1A−1
c )T (σ(V̂ ˆ̄x))T −ρ1‖ỹ‖Ŵ (2.57)

˙̂V = −η2(ỹTC1A−1
c Ŵ (I −Λ(V̂ ˆ̄x)))T sgn( ˆ̄x)T

− ρ2‖ỹ‖V̂ . (2.58)

However, the rest of the proof and conditions remain unchanged.

Remark 2.2 There are different parameters that can be adjusted to control the con-
vergence of the neural network e.g. the learning rates η1 and η2, the damping fac-
tors ρ1 and ρ2, and the Hurwitz matrix A. It is well known that larger learning rates
can lead to faster convergence but extra care should be taken to avoid overshoot.
Moreover, although increasing the damping factor can improve the stability of the
system, too much damping can lead to premature convergence of the weights which
might be far from the ideal weights. The Hurwitz matrix A which is primarily used
for stable integration has considerable effect on convergence as well as accuracy
of the state estimation. One has to be concerned with different issues when select-
ing this matrix. First, it should be selected such that the pair (C,A) is observable.
Since, the states of the estimator are obtained through M(s) whose poles are the
eigenvalues of A, a more stable matrix (matrix with eigenvalues farther to the left in
the complex plane) helps the states of the estimator track those of the actual system
with better accuracy (in terms of delays). However, a more stable A and hence Ac

might slow down the convergence of the weights since A−1
c is used in updating the

weights (see equations (2.42) and (2.44)). One solution is to use a more stable A for
better accuracy and use higher learning rates for better convergence.

2.5 A Case Study: Application to State Estimation of
Flexible-Joint Manipulators

The state estimation of flexible-joint manipulators is considered as a case study to
evaluate the performance of the proposed observer. Robot manipulators with joint
or link flexibility are proper examples of systems with high nonlinearity, unmodeled

dynamics, and parameter variations.
A dominant source of compliance in robotic systems is the result of flexibility

in the motor transmissions. . For instance, the unconventional gear-tooth meshing
action of the harmonic drive makes it possible to acquire higher gear ratio and high
torque capability in a compact geometry. On the other hand, a harmonic drive trans-
mission is much more flexible than a conventional gear transmission. In Appendix
B, the harmonic drives are explained in more details. The flexibility of the joint
causes difficulty in modeling manipulator dynamics and becomes a potential source
of uncertainty that can degrade the performance of a manipulator and in some cases
can even destabilize the system [38]. Consequently, addressing this issue is impor-
tant for calibration as well as modeling and control of robot manipulators. Joint



2.5 A Case Study: Application to State Estimation of Flexible-Joint Manipulators 27

Fig. 2.2 The schematic of flexible-joint manipulator modeled by torsional spring [3]

elasticity can be modeled as a torsional spring between the input shaft (motor) and
the output shaft (link) of the manipulator, as shown in Fig. 2.2. Due to the presence
of joint flexibility, there are twice as many degrees of freedom compared to the rigid
joint case.

To compensate for joint flexibility, many sophisticated control algorithms have
been proposed both in constrained [57, 58] and unconstrained motions [59, 60, 61,
62, 63, 64, 65]. In [65], an adaptive control scheme is addressed for flexible-joint
robots. Most of these schemes however, assume the availability of both the link
and the motor positions, a condition that may not always be satisfied. Luenberger
observers, reduced-order high-gain observers, and Kalman filter based observers
have been used to relax the requirement of measurement from both sides of the
transmission device [66, 67, 68, 28, 69, 70]. However, a fundamental assumption
underlying all of these methods is that the system nonlinearities are completely
known a priori. In this section, our proposed neural network observer is applied to
a flexible-joint robot when the motor positions and velocities are available and the
link positions and velocities need to be estimated. This choice of measured variables

is the most practical.
Although, no a priori knowledge about the system dynamics is required for our

state estimation approach, the analytical model of the manipulator is still needed for
simulation purposes. In the following section, a dynamic model of a flexible-joint
manipulator is introduced.

2.5.1 Manipulator Model

Using the Lagrangian approach, the flexible-joint manipulator can be modeled by
the following equations [3].
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Dl(q1)q̈1 + C1(q1, q̇1)+g(q1)+B1q̇1 = τs

Jq̈2 + τs +B2q̇2 = τ, (2.59)

where q1 ∈ ℜn is the vector of link positions, q2 ∈ ℜn is the vector of motor shaft
positions, g(q1) ∈ ℜn is the gravity loading force, C1(q1, q̇1) ∈ ℜn is the term cor-
responding to the centrifugal and Coriolis forces, B1 ∈ ℜn×n and B2 ∈ ℜn×n are the
viscous damping matrices at the output and input shafts respectively, Dl(q1)∈ ℜn×n

and J ∈ℜn×n are the robot and the actuator inertia matrices respectively, and τ is the
input torque. The reaction torque τs from the rotational spring is often considered as

τs = K(q2 −q1)+β (q1, q̇1,q2, q̇2),

where K ∈ ℜn×n is the positive-definite stiffness matrix of the rotational spring that
represents the flexibility present between the input and the output shafts. In gen-
eral, there is an unknown nonlinear force β (q1, q̇1,q2, q̇2) which can be regarded
as a combination of a nonlinear spring and friction at the output shafts of the ma-
nipulator. The reaction torque τs cannot be modeled accurately and is assumed to
be unknown for observer design and is included for simulation purposes only. For
more details regarding flexible-joint manipulator dynamics refer to Appendix B.

It should be noted that the flexible-joint manipulator system is marginally stable,
i.e., its states are bounded for all bounded inputs except the step input. All results
except those obtained for generalization are obtained for sinusoidal inputs. However,
it is well known that the flexible-joint system can be stabilized using PD control
of joint position feedback with arbitrary positive gains [3, 71]. Hence, a joint PD
controller can be used to make the system stable without any a priori knowledge
about the system dynamics. The joint position measurements are readily available.
Hence, for a practical application this remedy can be used as in [72]. This technique
is utilized for simulations concerning the generalization issue.

2.6 Simulation Results

In this section, the performance of the proposed observer is investigated on single-
link and two-link flexible-joint manipulators.

2.6.1 A Single-link Flexible-Joint Manipulator

Consider a single-link flexible-joint manipulator, (2.59) whose its state vector is
defined as x = [q1 q̇1 q2 q̇2] and numerical value of its parameters are given below:

J = 1.16kg.m2, m = 1Kg, l = 1m, K = 100N/m

η = 10, ρ = 1.5,
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C =
[

1 0 0 0
0 1 0 0

]
, and A is an 4× 4 block diagonal matrix whose blocks Aii are se-

lected as

[−20 1
0 −20

]
, i = 1...2, where J is the motor inertia, m is the link mass, l

is the link length, and K is the stiffness of the joint.
To estimate the states of this system a three-layer neural network is applied which

has 5 neurons in the input layer, 5 neurons in the hidden layer, and 4 neurons in the
output layer. u, q̂1, ˙̂q1, q̂2 and ˙̂q2 are considered as input of the neural network. The
input layer neurons have tangent hyperbolic transfer functions and the output neu-
rons use linear activation functions. The initial weights of the network are selected
as small random numbers.

Fig. 2.3 depicts the state estimation obtained by our proposed neural network.
Fig. 2.3–a illustrate the responses of q2 and q̂2 and Fig. 2.3–b shows those of q1

and q̂1. Fig. 2.3–c and 2.3–d depict the responses of the motor and link velocities,
respectively. It is clear that the states of the observer follow the states of the actual
system.

2.6.1.1 Off-line Training:

In the next step, to evaluate the performance of the neural network when it is work-
ing as an off-line training scheme the training is stopped and the weights obtained
from the last simulation results are considered as initial weights. Therefore, the net-
work is used in recall mode. Fig. 2.4 illustrates the estimated stats when the neural
network is trained off-line, i.e., the weights are not updated. These results demon-
strate that the neural network has learned the system dynamics very accurately and
can estimate the stats after training, properly.

2.6.1.2 Generalization

To investigate the generalization issue, another simulation is performed on the sys-
tem. Toward this end, the training trajectory are defined as 0.1sint + 0.2sin2t +
0.05sin4t. The results are given in Fig. 2.5–a to 2.5–e. Fig. 2.5–a depicts the state
response of q2 and q̂2 for the closed-loop system and Fig. 2.5–b illustrates those for
q1 and q̂1. Figs. 2.5–c to 2.5–e depict the state responses of the system in a short
interval after the learning.

Later, we stop the training and applied a totally different trajectory namely
0.075sin3t to the manipulator. The simulation results obtained in this case are shown
in Figs. 2.6–a to 2.6–d. Fig. 2.6–a depicts the state response of q2 and q̂2 for the
closed-loop system and Fig. 2.6–b shows those for q1 and q̂1. Figs. 2.6–c and 2.6–
d illustrate the responses for the joint and link velocities and their estimations. As
can be observed, the proposed neural observer exhibits the desired generalization
property.
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Fig. 2.3 The state responses of the single-link flexible-joint manipulator to sin(t) reference trajec-
tory for NLPNN: (a) motor position, (b) link position, (c) motor velocity, (d) link velocity. The solid
lines correspond to the actual states and the dashed lines correspond to the states of the observer.
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Fig. 2.4 The state responses of the single-link flexible-joint manipulator to sin(t) reference trajec-
tory for NLPNN after the learning stops: (a) motor position, (b) link position, (c) motor velocity,
(d) link velocity. The solid lines correspond to the actual states and the dashed lines correspond to
the states of the observer.

2.6.2 A Two-link Flexible-Joint Manipulator

Simulation results for a two–link planar manipulator are presented in this section.
The dynamics of a two-link manipulator are far more complicated than those of a
single-link manipulator. The manipulator consists of two flexible-joints with state
vector x = [x1 x2] where xi = [q1i q̇1i q2i q̇2i] is the state vector of ith link for i = 1,2
and the following numerical data

J = diag{1.16,1.16}, m = diag{1,1}, l1 = l2 = 1m,

K = diag{100,100}, η1 = η2 = 100, and ρ1 = ρ2 = 1.5,
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Fig. 2.5 The state responses of the single-link flexible-joint manipulator to 0.1sint + 0.2sin2t +
0.05sin4t reference trajectory for NLPNN: (a) motor position during the learning, (b) link position
during the learning, (c) motor position at the end of learning phase, (d) link position at the end of
learning phase, (e) motor velocity, (f) link velocity. The solid lines correspond to the actual states
and the dashed lines correspond to the states of the observer.

and A is an 8×8 block diagonal matrix whose blocks Aii are selected as

[−20 1
0 −20

]
,

i = 1...4. The neural network has three layers including 10 neurons in input layer,10
neurons with tangent hyperbolic activation functions in hidden layer, and the 8 neu-
rons with linear transfer functions in output layer. The input of the network is ˆ̄x.
Fig. 2.7 depicts the result of the state estimation. As can be observed, despite the
increased complexity in the manipulator model, the neural network has learned the
manipulator dynamics, and all the states of the neural network track the correspond-
ing states of the system. In the last step, for the sake of comparison a simulation



2.6 Simulation Results 33

0 5 10 15 20
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

t(s)

q
2

(r
a

d
)

a

5 10 15 20

−0.05

0

0.05

t(s)

q
1

(r
a

d
)

b

0 5 10 15 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

t(s)

q
d

2
(r

a
d

/s
)

c

0 5 10 15 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

t(s)

q
d

1
(r

a
d

/s
)

d

Fig. 2.6 The state responses of the single-link flexible-joint manipulator to 0.075sin3t reference
trajectory for NLPNN during the recall (testing) phase: (a) motor position, (b) link position, (c)
motor velocity, (d) link velocity. The solid lines correspond to the actual states and the dashed
lines correspond to the states of the observer.
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is performed using LPNN and NLPNN in the same situation. Fig. 2.8–a illustrates
the state responses, q2 and q̂2 and Fig. 2.8–c shows the state responses, q1 and q̂1

for the LPNN observer. The simulation results of the NLPNN observer in the same
situation are shown in Figs. 2.8–b and 2.8–d for q2 and q1, respectively. As it is ex-
pected, the figures confirm that the obtained results by using the NLPNN observer
are much superior to those obtained using the LPNN observer.

Fig. 2.7 The state responses of the two-link flexible-joint manipulator (after the learning period)
to sin(t) reference trajectory for NLPNN: (a) The position of the first link, (b) the position of the
second link, (c) the velocity of the first link, (d) the velocity of the second link. The solid lines
correspond to the actual states and the dashed lines correspond to the states of the observer.

2.7 Conclusions

Two recurrent neuro-adaptive observers for a general model of MIMO nonlinear
systems have been introduced in this chapter. The structure of the proposed stable
observers are considered to be either linear or nonlinear in parameters. The neural
network weights have been updated based on the combination of a modified back-
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Fig. 2.8 The state responses of the flexible-joint manipulator (after the learning period) to sin(t)
reference trajectory : (a) motor position for LPNN, (b) motor position for NLPNN, (c) link position
for LPNN, (d) link position for NLPNN. The solid lines correspond to the actual states and the
dashed lines correspond to the states of the observer.

propagation algorithm and an e-modification that guarantees the boundedness of the
state estimation error. The stability of the overall system was shown by Lyapunov’s
direct method. It is worth noting that no SPR assumption or any other constraints
that restrict the applicability of the approach was imposed on the system. The pro-
posed observer can be applied both as an online and an off-line estimator. Simulation
results performed on a flexible-joint manipulator confirm the reliable performance
of the proposed observer.
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