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Transport Phenomena for Nonshock
Initiation Processes

W. Lee Perry

2.1 An Overview of Transport Theory
in Explosives Problems

A useful explosive material is, of course, stable under reasonable environmental
conditions. It will neither release energy nor produce gas without some kind of
thermal stimulus. The possible stimuli include impact, spark, friction, bound-
ary heat, or shock. These processes raise the temperature of the explosive
material, either in a localized volume, or throughout its entire volume, to a
point where the exothermic, gas-producing reaction becomes self-sustaining
(ignition). We refer to the events leading to self-sustaining reaction as the pre-
ignition regime, and the behavior after self-sustaining reaction commences as
the post-ignition regime. We further generally characterize the post ignition
regime by either laminar nonviolent deflagration; violent, convectively driven
explosion; or the process may undergo a transition to detonation (DDT).

Transport phenomena are inherent to the nonshock initiation process and
post-ignition behavior. Specifically, transport phenomena are the movement
of heat (energy), molecular species, and momentum under the influence of
temperature, species concentration, pressure, and velocity gradients. The the-
ory of these phenomena, together with the production of gas and heat from
chemical reactions (kinetics and thermodynamics), in principle fully describe
the processes that occur prior to ignition (preignition) and what happens after
(post-ignition). In practice, the theory has only been applied to very simple
situations due to the complexity of the integrated problem.

The stimuli listed above all serve to raise the temperature of the explo-
sive either within a volume small with respect to the charge (impact, spark,
friction, shock) or globally (boundary heat). Each of these stimuli will be dis-
cussed in detail in other chapters of this text. As these are the initial drivers
for the ignition process, we briefly introduce them here. Impact leads to local-
ized heating when deformation becomes concentrated, where the material fails
by cracking, or when the yield strength is exceeded and causes shear localiza-
tion and concentration of energy along shear bands (Chap. 10). Spark energy
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16 W.L. Perry

is localized along the spark channel (Chap. 11). Friction (Chap. 9) localizes
heat between moving surfaces or at specific locations, where, for example, for-
eign matter (grit) becomes trapped between the surfaces (the latter has been
implicated in accidents.) A shock wave compresses material along its lead-
ing edge and causes heat generation directly by adiabatic compression of the
material itself, by collapsing void space, or by grain boundary interactions.
Boundary heat, as the phrase implies, is heat applied to the outer surfaces of
an explosive charge, or its container, and the most common source is fire, and
ignition by this method is commonly called “cookoff” (Chap. 7).

Chapter 3 discusses reaction kinetics and thermodynamics. We mention
them here in the context of heat transport because, of course, exothermic
chemical reaction becomes the driving force for the ignition and combustion
process once one (or more) of the ignition stimuli meet a critical criterion. To
a first order, the general Arrhenius expression provides an illustration of the
rate of gas production as a function of temperature and some reactive state,
f(X), of the explosive (e.g., reaction extent, density, concentration of reactive
species, available surface area, etc.):

Ṅ = A · exp
(
− E

RT

)
· f(X). (2.1)

The product of enthalpy change (per mole converted) and the rate of gas
production reveal the rate of heat production:

Q̇ = Ṅ · Δh. (2.2)

These expressions illustrate the sensitivity of the process to temperature in the
exponential term and the dependence of some reactive state of the explosive.
When one (or more) of the listed stimuli is applied with sufficient intensity
to raise the temperature to a value where significant heat production occurs,
ignition may occur. The specific ignition threshold is crossed when the rate
of heat production in a volume exceeds the rate of heat removal from that
volume by a heat transport process (conduction, convection, or radiation).
For combustion to spread, energy must be fed back from the combustion zone
to regions of unreacted material at a sufficient rate to maintain combustion.
These are central concepts of ignition and propagation theory and will be
discussed throughout the book. As described, ignition and reaction spread
arise from the specific interplay of heat transport behavior, reaction kinetics,
and the thermodynamics of the involved reactions.

Heat transport theory has played a central role in determining the fac-
tors that lead to ignition. The critical conditions for ignition are determined
by applying the principle of energy conservation on the stimulated volume,
balancing heat production by chemical reaction and heat loss by conduction
or convection. In conjunction with carefully constructed experiments, the ap-
plication of heat transport theory has also provided a tool to help deduce
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or verify the specific chemical steps that occur in the preignition regime [1].
Heat transport theory is also well-developed in the post-ignition regime for
low-order (nonviolent) laminar combustion of simple regressing solid or liq-
uid surfaces where heat feeds back from the combustion zone to the surface
liberating the reactive species [2, 3]. However, for cases of more critical inter-
est where violent explosive reaction occurs, heat transport occurs in a very
dynamic, multidimensional, multiphase environment. Although the basic pro-
cesses and theory are fairly well understood, the complexity challenges our
best computational tools and this remains a very active area of research.

Species transport is the movement of specific chemical constituents
throughout a system. Explosives considered in this text generally consist of
a single molecular constituent. In the preignition regime, the aforementioned
stimuli can cause direct decomposition to combustion products, decomposition
to intermediate species, or sublimation/evaporation of the original substance.
In each of these cases, species transport phenomena govern the physical
movement of the products or sublimated species from a solid or liquid sur-
face into the gas phase. The rates of these processes and any associated
exothermicity are again controlled by kinetics, which of course is strongly
temperature dependent, but also dependent on species distributions and/or
morphology (f(X)). If the explosive is heterogeneous (e.g., HMX powder),
species transport governs how the gas phase species will distribute themselves
throughout pre-existing void space, or throughout the void space created
by decomposition, sublimation, phase changes, etc. (mechanical or thermal
damage). Recent research has concluded that the void space (pore structure)
and its potential development and spatial distribution prior to ignition has a
very significant effect on the post-ignition behavior (Chap. 6) [4].

The distribution of species, whether in homo- or heterogeneous system,
determines, in part, f(X) in (2.1) above and therefore affects the preignition
heat transport behavior. Recent work has shown this distribution of reactive
species affects the temperature distribution [5]. This in turn affects the post-
ignition spread of combustion from the ignition locus as it propagates into
a larger volume at a higher temperature and in a more reactive state [6].
Further, combustion spreads more readily into regions previously saturated
with combustible species. As with heat transport, the situation during violent
explosive reaction becomes exceedingly complex, and to date, no significant
computational work has been done, which includes rigorous species transport
in the post-ignition regime. In the post-ignition regime, species transport the-
ory has also been applied to the study of laminar flames where convection and
diffusion processes carry reactive species into the combustion zone [7, 8].

Heat production, decomposition, combustion, and sublimation/evaporation
all potentially lead to pressure gradients, which are the driving force for mo-
mentum transport. Momentum transport is responsible for the convective
(advective) movement of both heat and species. In the pre-ignition regime,
localized heating from impact, spark, or friction leads to local gas formation
by decomposition or sublimation, causing a local region of elevated pressure
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relative to the bulk of the explosive. In the case of boundary heating, the
evolving temperature profiles will cause a distribution of gas products and
a resulting pressure distribution. In both these cases, the pressure gradients
cause the transport of momentum, which carry heat and species, affecting pre-
and post-ignition behavior as already described.

The rigorous incorporation of momentum transport requires the Navier–
Stokes (NS) equations, which for any practical problem require the art of
Computational Fluid Dynamics (CFD). The tensorial nature of the NS equa-
tions and the presence of multiple phases add a large degree of complexity
to an already exceedingly complex problem and have not been applied in the
preignition regime. However, the porosity and permeability of some explo-
sives have been determined [9, 10], and it was suggested that Darcy’s law for
permeation in porous materials would provide a tractable means to incorpo-
rate momentum transport for analysis of the preignition problem [5, 11]. This
approximation has provided good insight to the preignition problem and al-
lows models to correctly predict temperature profiles for a boundary-heated
system [5]. The Darcy’s law approximation requires low Reynold’s number
flow, which of course is not the case for the violent post-ignition regime. In
that regime, high flow rates in stationary media occurs in the initial phases;
as momentum is transferred to the solid phase and the pressure builds, the
solid phase disassembles and is set in motion by drag forces. In this complex
multiphase flow regime the full NS system is required. These have not been
incorporated into contemporary computational solutions; however, progress
has been made in formally formulating the problem and examining tractable
limiting cases [9]. For the most violent possible post-ignition outcome, DDT,
multiphase momentum transport also governs the formation of compaction
waves that build to a shock wave and initiate the shock-to-detonation tran-
sition (SDT) [12]. Although our understanding of the mechanism of DDT is
fairly mature (Chap. 8) [13], only a limited amount of work has been done to
apply formal momentum transport theory to the problem.

Hopefully, this brief introduction has given the reader a flavor of the inter-
connection of the three transport modes through heat and mass production
by chemical reaction and the importance of all three modes to the ignition and
explosion behavior. In the rest of this chapter, we will provide an overview of
the history of the application of heat transport theory to explosive systems.
We will then introduce the fundamental equations of heat transport theory
as an introduction to other chapters that provide a more complete develop-
ment. Properties such as heat capacity, thermal conductivity, viscosity, etc.
are crucial to accurate transport theory predictions, and so a section will be
devoted to that topic. Finally, we will conclude the chapter with an overview of
three recent problems that employ formal transport theory in a way that has
enhanced our physical understanding of the ignition and combustion process.
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2.2 The Origins of Transport Theory in the Field
on Nonshock Initiation

In our modern world of advanced computing tools, we may lose sight of the
fundamental transport processes involved in the nonshock initiation and com-
bustion of explosives. The early work in this field, prior to the existence of
modern computing tools, required very insightful analysis and therefore de-
serves a brief review. Explosion is merely an extreme form of flame propa-
gation, such that early flame research provides a logical origin of transport
theory development for ignition and combustion of explosives. Scientists have
known for over 150 years that combustion and flame propagation involved
the transport of momentum, chemical species, and heat. This is evident in
the lively and engaging compilation of lectures by Michael Faraday entitled
The Chemical History of a Candle, published in 1861 [14]. Early theory of
flame propagation velocity was published by Ernest-Francios Mallard in 1875
[15], and further developed by both Mallard and the famous physical chemist
Henry Le Chatelier [16]. The Nobel Prize winning Dutch physical chemist
Jacobus van’t Hoff provided early insight in the late nineteenth century to
the nonequilibrium nature of combustion by suggesting that an exothermi-
cally reacting system cannot be in equilibrium with its surroundings [17]. The
early development of transport theory for combustion and ignition of ener-
getic materials mostly belongs to the Russians. In the 1920s and 1930s, Yakov
Zeldovich [18, 19] and Belyaev [20] pioneered the early application of transport
theory to the combustion of gasses and solid energetic materials.

In the same time period, Todes and Seminov provided the earliest recog-
nized formal heat transport theory of the critical conditions for the initiation of
thermal explosion for a boundary-heated system [21, 22]. Seminov’s unsteady
treatment is widely cited and discussed today and is distinguished by its sim-
plicity, qualitative nature, and illumination of physical features important to
criticality. His analysis showed the conditions for which heat production ex-
ceeded heat removal, the condition for ignition, using simplified mathematics.
To find an analytical solution, Seminov included an exponential temperature-
dependent reaction term, but neglected heat transport within the explosive
material, that is, the spatial derivatives, such that all resistance to heat trans-
fer occurred at the material’s surface. However, it was known experimentally
at the time that ignition generally occurred at a specific location within the
explosive material, implying that an accurate analysis could not neglect in-
ternal heat transport. David Frank-Kamenetskii, a student of Seminov, took
a different approach from his mentor and developed a steady-state solution
that included internal heat conduction (spatial derivatives) and also included
the nonlinear reaction term [23]. An essential feature of Frank-Kamenetskii’s
analysis was the use of Seminov’s steady-state solution to develop a dimen-
sionless temperature having a value near 1 at the explosion temperature and
zero initially. The interplay between the works of these two researchers contin-
ued, as it was later recognized that Frank-Kamenetskii’s steady solution could



20 W.L. Perry

provide key parameter information for Seminov’s unsteady solution such that
a fairly clear picture of (transient) thermal explosion behavior emerged. When
exactly this latter insight came about is unclear, but it is discussed in a text
published by Frank-Kamenetskii in 1947 [24]. Their methods of solution and
the results are especially clever and insightful considering the lack of com-
putational resources. The work of these early researchers, embodied in the
theories of Seminov and Frank-Kamenetskii, are essential for the understand-
ing of energetic material ignition, primarily due to the clear presentation and
illumination of salient features. As such, Chaps. 4 and 7 go into much greater
detail of the development and predictive qualities of these theories.

This early development of ignition theory was concerned with the bound-
ary heating problem; investigation of hot-spot heating followed soon after. It
was recognized in the 1940s that the size of a hot spot played a role in the
critical conditions for ignition. This idea may have originated from intuition
stemming from knowledge of heat transport theory, cognizance of the size
effect in the Frank-Kamenetskii/Seminov boundary analyses, or more likely,
both. Bowden et al. confirmed this when they observed a size effect in fric-
tion experiments, the results of which were reported in 1947 [25]. This size
effect was shown theoretically in 1948 by the hot-spot analysis of Rideal and
Robertson that examined impact ignition [26]. In that study, the researchers
formulated the one-dimensional spherical transient and spatially dependent
heat transport problem and presented an analytical solution. The analytical
solution was possible because they neglected the nonlinear exothermic reac-
tion term and imposed a temperature, rather than a heat source term. They
determined critical hot-spot volume and temperature by equating the rate of
heat conduction at a given temperature and spot size to heat evolved from
chemical reaction over the same volume. As with the early work on boundary-
heated ignition, computational tools did not yet exist to provide numerical
solutions to the nonlinear equations that govern the hot-spot problem. In
fact, these authors admit: “A more elegant and satisfactory treatment, how-
ever, would be to solve the general equation. . .,” referring to the unsteady 1D
spherical heat equation with an Arrhenius heat generation term. Apparently,
very little work was done on the hot-spot problem until the advent of numeri-
cal tools. In 1963, Merzhanov and his coworkers published the results of their
numerical study that followed the dimensionless parameterization scheme of
Frank-Kamenetskii [27]. They concluded that those parameters were also good
indicators of criticality for the hot-spot ignition problem, although with a dif-
ferent functional dependency on temperature.

The usefulness of the Frank-Kamenetskii parameters for finding the prop-
erties of a critical hot spot arises due to the universal physical basis for crit-
icality. While boundary heating may be generic in nature, specific localized
mechanisms cause hot-spot heating. In those cases, an additional criterion is
required: localized power dissipation from the heating mechanism must also
exceed the rate of local cooling such that the hot spot will reach a criti-
cal temperature. A current good review was provided by John Field et al.
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in 1992 [28]. They point out the important early contributions to impact
and friction studies of Bowden et al. [25], Eirich and Tabor [29], Rideal and
Robertson [26], Bowden and Yoffe [30], Afanas’ev and Bobolev [31], and Field
and his coworkers [28]. Many of these studies are mechanistic in nature and
some report a temperature rise under the stimulated conditions. From a trans-
port theory perspective, it is most useful to have a rate of energy dissipation
(power). Spark initiation studies provide a simpler platform to quantify energy
and power from the electrical properties of the spark generator. Langevin and
Bicquard published early studies of the spark initiation of primary explosives
in 1934 [32]. Wyatt and his colleagues published their studies of spark initia-
tion of primary materials in 1958 [33], and Tucker reported their research on
secondary explosives in 1968 [34]. Somewhat surprisingly, these early papers,
with some exceptions in spark initiation research, represent the state of the
art of hot-spot ignition source research. Although mechanisms are fairly well
understood, heat production in the context of transport theory has not been
fully investigated and this remains an active area of research.

So far, we have reviewed the foundations of ignition theory and laminar
(nonviolent) combustion. It was known in the late 1950s that sufficient pres-
sure would cause an explosive deflagrating from its outer surface to transition
to a violent thermal explosion as flame penetrated into the bulk via an ex-
isting pore network or cracking induced by pressure. It was also known in
this period that this phenomenon, usually called “convective burning,” was a
critical step for DDT. In terms of transport phenomenon, this physical tran-
sition is reflected by the mathematical transition to theory where momentum
transport analysis becomes essential for understanding the movement of heat
and chemical species. The Englishmen Griffith and Groocock published their
early work in 1960 [35], as did the contemporary Russian researchers Andreev
and the already-mentioned pioneer Belyaev [36]. In 1962, Taylor published
his work on the convective burning mechanism in HMX [37]. The evolution of
this research was in part motivated by the potential for solid rocket motors,
some of which were propelled by HMX and/or RDX, to explode or detonate
under abnormal pressure conditions. As such, the propellant literature from
the 1960s and 1970s provide the most complete theoretical transport basis
for the convective burning problem and the review text of Kenneth Kuo and
Martin Summerfield provides an excellent fundamental overview [38]. The
process of DDT begins when the drag forces of moving gases become suffi-
cient to set the solid phase into motion, thus amplifying the complexity of the
problem. Bernecker and Price credited the aforementioned work of Griffiths
and Groocock [35] in an early review in 1979 as providing the first complete
description of DDT in a bed of granular explosive [39].

Perhaps it is not surprising that the theory of explosion originates co-
incidentally with the understanding of chemical equilibrium. The early con-
tributions of the Russian researchers cannot be overstated, as followed by
the English at Cambridge and, most recently, the researchers funded by the
American Department of Defense. Over the last 20 years, researchers funded
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by the US Department of Energy have pursued this area of research in order
to understand and minimize the consequences of a nonshock initiation event
in a nuclear weapon system. While the early research has provided a reason-
ably clear picture of mechanisms and the appropriate theory, the evolution of
computational tools and their ever-increasing ability to incorporate nonlinear,
multiphysics, multiphase phenomena at ever-increasing spatial and temporal
resolution now drives the advancement of the field. However, one cannot build
good models without the basic theory and insight. That is the intent of this
book. To follow the evolution of these research topics beyond their origins,
the reader may perform a citation search from this section, and the texts of
Frank-Kamenetskii and Zeldovich provide a complete theoretical foundation
of transport theory in explosive systems. The other chapters of this book will
provide the details of the most recent research.

2.3 Physical Properties Used in Transport
Theory Analysis

Solving the transport equations requires the physical properties including
heat capacity, density, thermal conductivity, thermal diffusivity, viscosity, and
species diffusion coefficient. These properties depend directly on the thermo-
dynamic state of the system: pressure, temperature, etc. Common high per-
formance explosives and explosive composites have well-characterized heat
capacity, density, and thermal conductivity and data are available up to tem-
peratures where decomposition reactions become significant. The reference
text of Gibbs and Popalato [40] or the LLNL Explosives Handbook [41] pro-
vides these data for a wide range of explosives. For gases or liquids involved in
the explosion process, viscosity and the diffusion coefficient also become fac-
tors. For tabulated data for all the properties for gases and liquids, except the
diffusion coefficient, we refer the reader to general sources such as the CRC
handbook [42] and the NIST Chemistry Web Book [43]. The diffusion coef-
ficient depends on factors specific to the specific environment and tabulated
data are sparse, but some data are provided in textbooks covering diffusion;
See, for example, [44] and the references therein. Here we review the physical
basis for each property, general value ranges, and general trends with pressure
and temperature.

Specific Heat. In conjunction with density and molecular weight, specific
heat (on a mole basis) provides a measure of the thermal inertia of a sys-
tem. That is, it is a measure of the resistance of a system to a change in
energy content (temperature.) As such, specific heat affects transient heat
conduction, but has no effect on steady-state heat conduction. Specific heat
is mathematically defined as

c =
(
δq

dT

)
path

. (2.3)
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In order to make tractable relationships, the path is taken to be one of constant
pressure or constant volume. For a constant volume process, specific heat is
related to the internal energy:

cV =
(

du
dT

)
V

. (2.4)

For a constant pressure process, the specific heat is related to enthalpy:

cp =
(

dh
dT

)
P

. (2.5)

For ideal gases, it can be shown that

cp − cv = R.

And the ratio of the specific heats commonly appears in gas-phase problems:

γ =
cp
cv
. (2.6)

Due to the relative incompressibility of the solid and liquid states, u = h such
that

cp ≈ cv.

A simple relationship exists for the internal energy stored by a single degree
of freedom regardless of the size or shape of the molecule:

u =
1
2
RT. (2.7)

And

cv =
(

du
dT

)
v

=
n

2
R (2.8)

for n degrees of freedom. For example, monatomic gas molecules trans-
late through three dimensions and therefore have three degrees of freedom,
such that

cv =
3
2
R. (2.9)

The presence of rotational, vibrational, torsional, etc. modes increases the
heat capacity accordingly. The free electrons in conducting solids contribute
to the heat capacity at room temperature on the order of 0.03R/2. Not all
modes are active at all temperatures and there are other temperature effects
for more complex structures. The reader should consult a physical chemistry
text or a statistical thermodynamics text for details of specific molecules and
temperatures.

Monatomic gasses have a specific heat exactly 3R/2 and diatomic gasses
such as nitrogen, oxygen, carbon monoxide, etc., at room temperature are also
near 3R/2. Liquid water at room temperature is 75.9 J mol−1K−1. Solid cop-
per has a specific heat of 24.4 J mol−1K−1 and the common organic crystalline
explosive HMX has a specific heat of 325 J mol−1K−1 at room temperature.
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Density plays a role in all three transport processes. It affects the transient
solution of the heat transport equations and both the transient and steady
state solution of the momentum equations. For reasonable temperatures and
pressures found in the preignition regime, gas phase density may be com-
puted from the ideal gas law equation of state. In the more nonideal post ig-
nition regime, a more descriptive equation of state, such as the van der Waals
equation of state, may be required. In extreme post-ignition conditions, with
pressures and temperatures approaching detonation conditions, an equation
of state such as the Abel or Becker–Kistiatowsky–Wilson equation of state
may be necessary.

Solid and liquid phase densities for preignition conditions are almost al-
ways measured quantities. Most liquids fall into the range of 800–1,200 kgm−3.
Most inorganic solids have crystal densities in the range of 1,500–3,000 kgm−3.
Most metals are in the range of 2,500–12,000 kgm−3, with exceptions that
exceed 13,000 kgm−3 such as mercury, uranium, plutonium, etc. Common or-
ganic crystalline explosives and their binders have densities in the range of
1,500–2,000 kgm−3.

Thermal conductivity is the proportional factor of Fourier’s Law of Heat
Conduction, relating heat flux to a temperature gradient. As with density and
heat capacity, thermal conductivity affects transient heat conduction. How-
ever, it also appears in the steady state solution. Gas thermal conductivity is
related to the heat capacity of the particular molecule, the characteristic ve-
locity, and the mean-free path. The kinetic theory of gases reasonably predicts
the thermal conductivity of simple gases to 10 atm (or so) [45]:

k =
1
d2

√
κ3T

π3m
, (2.10)

where d is the molecular diameter, k is the Boltzmann’s constant, and m is
the mass of the molecule. This general expression shows that pressure has a
weak overall effect on thermal conductivity. Thermal conductivity of gases is
on the order of 0.01–0.05 Wm−1K−1, but can increase by a factor of 10 at
combustion temperatures.

In liquids, thermal conductivity is roughly an order of magnitude greater
than gases because of the shorter mean free path. The kinetic theory of gases
provides a starting point that leads to

k ≈ π 2/3d2vs = π 2/3d2

√
Cp

Cv

(
∂P

∂ρ

)
T

, (2.11)

where vs is the sound velocity. In most cases for liquids, the ratio of heat ca-
pacities is unity and the pressure–density relationship must be found from an
appropriate equation of state. As such, liquid thermal conductivity also has a
weak dependency on pressure, but no general temperature behavior. It may in-
crease or decrease depending on the equation of state for the particular liquid.
The thermal conductivity of liquids is on the order of 0.1–0.5 Wm−1K−1.
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In solids, phonons and free electrons exchange momentum to cause heat
conduction. For metallic solids, the dominant mechanism is the latter, and
(2.10) above will provide an estimate and trends when evaluated for the
electron gas. For non-metallic solids, phonon interaction (frequency) dom-
inates and thermal conductivity generally increases with temperature. For
non-metallic solids, conductivity ranges over 0.5–5, and metallic solids typi-
cally are on the order of hundreds of W m−1K−1. Common organic explosives
and their binders are in the range of 0.1–0.6 Wm−1K−1.

Thermal diffusivity is the ratio of the thermal conductivity to the product
of density and heat capacity:

α =
k

ρc
. (2.12)

It is a measure of the efficacy of conduction of thermal energy relative to the
storage of thermal energy. This may be thought of as thermal inertia or the
rate of diffusion of heat. Thermal diffusivity always appears in the exponential
terms of the transient solution of heat transport analyses; large values reflect
short transients. The dimensionless Fourier number provides an estimate of
the thermal time constant of a system when its value is near unity:

Foc =
ατ

L2
≈ 1, (2.13)

where L is a characteristic length. Simple gases at STP have a thermal dif-
fusivity near 2 × 10−6 m2 s−1, but can increase to near 1 × 10−3 m2 s−1 at
combustion temperatures. Most liquids are on the order of 1 × 10−7 m2 s−1

and solids are on the order of 1–2,000 × 10−7 m2 s−1, with metallic solids
around 2–5 × 10−5 m2 s−1. Organic solids, including common explosives and
their binders, generally fall into the range of 1–2 × 10−7.

Viscosity is the proportionality factor of Newton’s law of viscosity, relat-
ing momentum flux (shear stress) to the velocity gradient. It appears in both
the transient and steady state solution of the momentum equations, and also
appears in Darcy’s Law along with the permeability to relate flow to a pres-
sure gradient. The simple kinetic theory can again be used to qualitatively
understand the effect of the state variables on viscosity for gases:

μ =
2
√
mκT

3π 3/2d2
. (2.14)

As with thermal conductivity, there is no pressure dependence at normal con-
ditions. Gas viscosities are on the order of 10−5 under normal conditions and
can increase by a factor of 10 at combustion temperatures.

In the denser liquid phase, in order to translate, molecules must overcome
an energy barrier presented by its neighbors. A kinetic theory approach there-
fore reveals an exponential dependence on temperature relative to the boiling
temperature (Tb):

μ =
ρNah

M
exp

⌊
3.8
Tb

T

⌋
, (2.15)
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where h is Planck’s Constant. Examples of liquid viscosity are water:
1.75 × 10−3; and engine oil: 3.85 N s m−2.

Kinematic viscosity is the ratio of the viscosity to density:

ν =
μ

ρ
. (2.16)

Analogous to thermal diffusivity, this parameter may be thought of as the
rate of diffusion of momentum. It always appears in the exponential terms
of the transient solution of momentum problems; large values reflect short
transients. An estimate of a system’s time constant is given by

τ ≈ L2

ν
. (2.17)

Simple gases at STP have a kinematic viscosity near 1–25× 10−5 m2 s−1 and
the value does not change significantly near combustion temperatures. Liquids
have a wide range of values; water at STP is 1.75 × 10−6.

Mass diffusivity is the proportionality constant of Fick’s law of diffusion
and relates the flux of a molecular species to the concentration gradient. It
appears in the solution to both the steady and unsteady solution of the species
mass transport equations. Analogous to kinematic viscosity and thermal dif-
fusivity, the dimensionless mass transfer Fourier number provides an estimate
of the time constant of a system when its value is near unity:

Fom,c =
Dτ

L2
≈ 1. (2.18)

Kinetic theory tells us that translational velocity increases with temperature,
leading to a more rapid redistribution of species, and collision rates increase
with increasing pressure, leading to a slower redistribution. The expression for
a gas mixture consisting of nearly identical molecules (e.g., isotopes) shows
the dependence on pressure and temperature:

DAA′ =
2
3

(
κ3

π3m

)
T 3/2

Pd2
. (2.19)

Diffusion gas phase coefficients for simple binary systems generally range from
about 1 to 5 × 10−5 m2 s−1.

Similar to viscous momentum transport, diffusion in liquids is an “ac-
tivated” process where molecules must overcome the barrier presented by
nearby neighbors:

D ≈ κT
(
M

ρNah

)2/3

exp
[
−3.8

Tb

T

]
. (2.20)

In practice, many factors influence the process. In most cases, empirical mea-
surements are required and (2.20) can be used cautiously to extrapolate
from known data. Typically, liquid diffusion coefficients are 105 times smaller
than gases.
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2.4 Transport Theory Equations

The equations governing transport processes have been developed ad nau-
seum, and there are many good texts covering each transport phenomenon.
In particular, we suggest the text of Bird, Stewart, and Lightfoot as a com-
prehensive and detailed general text [46], and the aforementioned texts of
Frank-Kamenetskii and Zeldovich for developments more specific to combus-
tion and explosions. It is the intent of this text to provide a complete overview
of nonshock initiation, and so we include a brief review of the formal devel-
opment of transport theory.

The development of all three transport fields begins with the fundamental
concept of the conservation laws: energy, mass, and momentum are conserved
within a control volume. Within this very simple framework, and through the
straightforward application of differential calculus, we can develop all of the
transport equations.

It is always useful to begin with a very general form of the transport
equations. Simplification is usually straightforward and a very general starting
point allows us to see what assumptions must be made to arrive at the most
tractable form for a particular situation. A balance on a differential volume
equates energy stored and produced in the volume to the energy flux gradient:

−∇φ =
∂h

∂t
, (2.21)

where we have written storage and production in terms of enthalpy. For an
Eulerian coordinate system (fixed reference frame) and in terms of temper-
ature and heat capacity, we account for all fluxes (Fourier conduction and
convection), storage and generation:

ρcp

(
∂T

∂t
+ (v · ∇T )

)
= ∇ (k∇T ) + Δhrxnr (T,X) + q̇, (2.22)

where Δhrxnr (T,X) is the product of the enthalpy change associated with
chemical reaction and the rate of that reaction. The rate, of course, generally
depends exponentially on temperature and on some quantity related to the
availability of reactants (X); for example, concentration of gas phase reactants
or solid phase surface area (see Chap. 3.) q̇ is the heat generated by any other
source. In a Lagrangian reference frame (moving with the flow), we invoke the
substantial derivative and we can simplify the equation to

ρcp
DT

Dt
= ∇ (k∇T ) + Δhrxnr (T,X) + q̇. (2.23)

The Lagrangian frame might be useful in the post-ignition regime when things
begin to move or for the analysis of a propagating flame.

Specific enthalpy was used in this derivation. If we were to start the deriva-
tion with specific internal energy, the result would depend on the constant
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volume heat capacity and reaction internal energy, rather than the constant
pressure heat capacity and reaction enthalpy. The distinction is important as
the former generally relates to incompressible media such as solids, liquids,
and constant density gas phase processes. The latter generally applies to com-
pressible gas phase processes. In this latter case, one must use caution with
respect to reaction energy, as enthalpy is typically reported and the relation-
ship between enthalpy and internal energy must be accounted for. Specifically,

∂u

∂t
=
∂

∂t
(h− Pv) =

∂h

∂t
− v ∂P

∂t
− P ∂v

∂t
. (2.24)

In general, all the material and thermodynamic properties can be space-,
time-, and temperature-dependent.

There are three types of boundary conditions in heat transport analy-
ses. These are the Dirlecht boundary conditions where we impose a surface
temperature, Ts; the Neumann boundary conditions where we specify the
heat flux, q̇s, at the surface; and the Robin boundary conditions, which is
a weighted hybrid of flux and temperature conditions. Mathematically, the
Nuemann condition is

n · (−k∇T |s) = q̇s. (2.25)

The Robin boundary condition can take a general form that may account for
convection normal (through) the boundary, convection parallel to the bound-
ary, or conduction normal to the boundary:

n · (−k∇T|s + ρCpuTs) = n · [ρCpu ( T∞ − Ts] + h (T∞ − Ts) . (2.26)

In these expressions, the subscript s indicates the boundary coordinate, ∞
indicates the condition far away from the system, and h is the heat transfer
coefficient. The parameter h depends on the physical properties and movement
(flow) of the medium surrounding the system. The method for computing h
comes from boundary layer theory, and that discussion is beyond the scope of
this text. However, simple methods to estimate h are readily available in the
references provided [44, 46].

We arrive at the species transport equations by a similar route. Balancing
the gradient of the mass flux (ṅi) with the mass density storage and production
(r) of specie i in a differential volume leads to

−∇ṅi =
∂ρi
∂t

+ ri, (2.27)

and we must account for each species present. Including convection transport,
diffusion according to Fick’s law and rewriting the equation in terms of the
species mole fractions:

− v · ∇ρi + ∇ · (ρiDij∇xi) =
∂ρi
∂t

+ ri (T,X) , (2.28)

where xi is the mole fraction of species i. This is a very general (and difficult
to apply) form of the species mass transport equation with no restriction on
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constant density or diffusion coefficient. However, this form is only valid for
binary systems, and in general the derivation of equations for more than two
components with nonconstant density is difficult. If we make the assumption of
constant density and diffusion coefficient, the more familiar diffusion equation
results (Eulerian coordinates):

∂Ci
∂t

+ v · ∇Ci = Di,n∇2Ci + ri (T,X), (2.29)

and in Lagrangian coordinates,

DCi
Dt

= Di,n∇2Ci + ri (T,X). (2.30)

These forms are most valid for dilute solutions at constant temperature and
pressure. Of course, those conditions do not describe most of the interesting
explosives problems, but there is insight to be gained by the application of
simplified theory. Most notably, researchers have applied (2.29) with its heat
transport analog (2.22) to describe flame structure [19]. The codependency
of these equations of course arises through the heat and species generation
term, which depend on temperature and the quantity X that relates to con-
centration. Two notable assumptions exist to decouple the equations. If the
Lewis number,

Le =
ρCD
k
, (2.31)

is close to unity, the concentration and temperature fields are similar. And the
assumption of zero-order chemical reaction allows decoupled solution of the
heat and species transport equations. The boundary conditions for the species
transport equations are analogous to those for heat transport. We can specify
a Dirlecht condition at the boundary (concentration), a Nuemann condition
(species flux), or the Robin hybrid condition.

The velocity fields of (2.22) and (2.29), if they exist, are computed using
the principle of conservation of momentum. As with heat and species trans-
port, momentum transport occurs by convection and by molecular collisions
(i.e., conduction or diffusion.) While these two mechanisms cause transport
in parallel for heat and species transport, convective momentum transport by
fluid motion is orthogonal to transport by molecular collisions. Consequently,
the derivation leads to second order tensor expressions. The full derivation of
the governing equation falls into the fluid mechanics field of study. Formal ap-
plication of the full equation is rare in our field of study, but for completeness
we provide what is commonly referred to as the Navier–Stokes equation:

μ∇2v −∇P = ρ
(
∂v
∂t

+ v · ∇v
)
, (2.32)

where this form requires a constant density and viscosity (μ). Note that
the product of the gradient operator vector and the velocity vector and the



30 W.L. Perry

Laplacian operator vector and the velocity vector are both dyadic products
and the result is a tensor.

The application of the Navier–Stokes equation to nonshock initiation prob-
lems requires a level of computing power not generally available. In lieu of
those equations, researchers have applied Darcy’s law of permeation in porous
media as an approximation for creeping flow conditions (low Reynold’s num-
ber, Re < 10):

vs =
−κ
μ

∇P, (2.33)

where κ is the permeability and vs is the superficial velocity vector. In the
preignition regime, the movement of chemical species under the influence of
a pressure gradient has only recently been incorporated into analysis [5], and
we will review that work in a later section. Of course, conditions in the post-
ignition regime do not meet the creeping flow requirement and we must apply
the Navier–Stokes equations along with the science of Multi-phase Computa-
tional Fluid Dynamics to provide meaningful solutions.

We see the further interplay of transport processes that occurs through
the pressure gradient term in both the Darcy approximation and the Navier–
Stokes equation. The pressure gradient must be found from the production
of chemical species via coupling with the heat and species transport equa-
tions. Strictly speaking, we must simultaneously consider all three transport
phenomena and the interplay originates both from chemical reaction heat
and species generation and the thermodynamic linkage of pressure, temper-
ature and density. Consideration of fully coupled transport theory remains a
significant challenge, mainly due to limitations of computing (and funding)
resources.

2.5 Selected Examples of Transport Theory
Applied to Explosive Problems

We will review three recent cases where transport theory has been applied
to problems involving explosives. First, to more fully understand the fun-
damentals of hot spot initiation, we have chosen a model system for study
that uses the internal and localized dissipation of microwave energy to gen-
erate hot spots [47]. Next we will review a boundary-heated problem that in-
cludes species and momentum transport. Zerkle has invoked Darcy’s Law for
a boundary-heated problem and he showed that permeation of decomposition
products through the bulk of the explosive was required to more accurately
predict temperature profiles and the violence of reaction [5]. Finally, we dis-
cuss a post-ignition problem having coupled heat and species transport. The
work of Ward et al. used a low activation energy kinetic expression to char-
acterize the combustion of HMX and made assumptions about the similarity
between the thermal and species diffusion coefficients [7].
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Theory of microwave-induced hot spots. Organic explosives generally
interact weakly with electromagnetic energy in the microwave frequency
range. Therefore, the addition of electromagnetically absorbing inclusions
provides a tractable system for the study of localized heating and ignition
phenomena. The work considered the connections amongst the theories of
dielectric mixing, microwave absorption, heat transfer, and thermal ignition
theory in order to understand a model system of idealized hot spots; namely,
small high thermal conductivity spherical inclusions (<100 μm) dispersed
within a homogeneous low thermal conductivity explosive. The advantage
to this mode of heating compared to “normal” hot spot mechanisms is that
electromagnetic excitation isolates purely thermal effects while the others
rely upon mechanical stimulation of material. Here, we review the work of
Perry and Glover [47], and use dimensionless numbers to illuminate dominant
mechanisms and to simplify the problem [44, 46].

The most generic solution to this problem is found by writing (2.22) for
both the region inside the inclusion (0 < r < R) and the region outside the in-
clusion (R < r <∞). For the region inside the inclusion, we use the microwave
heat generation term

q̇ = ωε′′i
E2

2
, (2.34)

where ω is the microwave angular frequency, ε′′i is the dielectric loss (absorp-
tivity) of the inclusion, and E is the electric field strength near the inclusion.
For the region outside the inclusion, we use a zero-order form of the Arrhenius
reaction term. The problem is solved by using a flux-matching boundary con-
dition at the interface (r = R), a symmetry boundary condition at r = 0, and
the initial temperature far away from the inclusion (r = ∞). Finding the time
and spatially dependent temperature behavior requires a numerical solution
of the coupled set of equations for r < R and r > R.

However, in the case of microwave hot spot generation, the heat transport
properties of a typical high thermal conductivity microwave absorbing inclu-
sion (e.g., silicon carbide) suggest that the low thermal conductivity explosive
surrounding the hot spot will limit the rate of heat transport. This is shown
formally by evaluating the dimensionless Biot number:

Bi =
2hR
ki
, (2.35)

where h is the heat transfer coefficient and the subscript i refers to the in-
clusion. The heat transfer coefficient is found using the dimensionless Nusselt
number:

Nu =
2hR
ke
, (2.36)

where the subscript e refers to the explosive. For a sphere in a stationary
medium, the Nusselt number is exactly 2 and

h =
ke
R
. (2.37)
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For ke � ki and small R, Bi� 1 and the transport equation for R < r <∞
will adequately describe the behavior. Equation (2.22) in spherical coordinates
for the region outside the inclusion is

[ρcp]e
∂T

∂t
= ke

1
r2
∂

∂r

(
r2
∂T

∂r

)
+
ρeΔhrxn

M
r(T,X). (2.38)

Let
θ =

T − T∞
Tig − T∞ ; ξ =

r

R
, (2.39)

and we use a Fourier number to define a dimensionless time

τ =
αet

R2
. (2.40)

The dimensionless form of the equations is then

∂θe
∂τ

=
1

ξ2
∂

∂ξ

(
ξ2
∂θe
∂ξ

)
+

{
ρΔhrxnR

2

Mke (Tig − T∞)
A exp

[
− Ea

R (θe (Tig − T∞) + T∞)

]}
,

(2.41)
where the expression in brackets is the dimensionless Damköhler number,
relating the rate of heat conduction to the rate of heat production by chemical
reaction. The boundary condition is

q̇R2

3ke(Tig − T∞)
=

ωε′′i E
2R2

6ke (Tig − T∞)
= −dθ

dξ

∣∣∣∣
ξ=1

= Θ̇. (2.42)

Because of microwave skin depth effects, R must be less than ∼100 μm. Even
with this abbreviated statement of the problem, a numerical solution is re-
quired to find the evolution of the temperature profiles around the hot spot
and the time to ignition. However, we can learn salient features about the be-
havior of the system without the full solution. From our general understanding
of hot spot ignition, we know the following physical criteria must be met for
ignition to occur:

1. Microwave energy dissipation must exceed heat removal at the ignition
temperature.

2. The rate of heat production via exothermic chemistry must exceed the rate
of heat transport away from the inclusion at the ignition temperature.

Equation (2.42) provides the relationship for condition 1. The dimension-
less gradient at the inclusion surface must exceed unity for the hot spot to
reach the ignition temperature. To find the ignition temperature, we use the
Damköhler number in (2.41) to find when condition 2 is true and use that
information to determine the ignition temperature. By definition, θ = 1 when
reaction heat exceeds heat removal by conduction:

ρΔhrxnR
2

Mke(Tig − T∞)
A exp

⌊
− Ea

RTig

⌋
= 1. (2.43)
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Fig. 2.1. The relationship between ignition temperature and hot spot inclusion size
for HMX

This transcendental equation must be solved iteratively to find Tig. Figure 2.1
shows the relationship of Tig and hot spot size for values representative of the
kinetic, thermochemical, and thermophysical parameters of HMX.

We have learned two very important features of this system without
solving the governing equations: the ignition temperature and the minimum
microwave power dissipation required to reach the ignition temperature. How-
ever, we cannot deduce the heating rate or the time required to reach the
ignition temperature from this approach. If we do not care about the exact
nature of the spatial temperature profiles, we can further simplify the prob-
lem by ignoring the spatial dependence and performing an energy balance on
the inclusion. The balance leads to a dimensionless equation describing the
temperature of the inclusion (recall Nu = 2 for a stagnant medium):

dθ
dτ ′

= 3(Θ̇ − θ) (2.44)

where
τ ′ =

ke
ρiCi

t

R2
(2.45)

and the solution is
θ = Θ̇ [1 − exp (−3τ ′)] . (2.46)

The dimensionless time to ignition is

τ ′ig = −1
3

ln
(

1 − 1
Θ̇

)
. (2.47)
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This straightforward development illuminates the temporal qualities of the
system. Mathematically, ignition will never occur for Θ̇ < 1, a condition iden-
tical to the statement derived from the dimensionless boundary condition of
(2.42). Here, we have used R for the characteristic dimension. This most ac-
curately (but still qualitatively) shows the transient behavior prior to ignition
for larger values of Θ̇; that is, Θ̇ > 5. For values of Θ̇ closer to unity, a
characteristic length between R and 2R is more accurate.

The dielectric loss (ε′′i of (2.34)) of the inclusion depends on its electrical
conductivity and the permittivity of the explosive medium. Generally, inclu-
sions embedded in a low permittivity medium that are less than 100 μm in
size and that have a conductivity in the semiconductor range (10 ohm) have
a high dielectric loss

(∼70 × 10−12 F m−1
)
, leading to a high rate of energy

dissipation [47]. High frequency also favors a high dissipation rate (2.34).
Figure 2.2 shows the transient inclusion temperature and Fig. 2.3 shows the
dimensionless ignition time over a range of dimensionless microwave power
dissipation values (Θ̇). While this analysis was qualitative, it illuminates the
factors important to microwave hot spot ignition. More importantly, we may
apply the analysis for any heating stimulus as long as we can satisfy the stated
assumptions and find an appropriate expression for Θ̇.

Boundary heating problem including species and momentum transport. In
the early 2000s, researchers at Los Alamos conducted a series of large-scale
(10 kg) PBX 9501 cookoff experiments (the Large Scale Annular Cookoff ex-
periment: LSAC.) The annular charges (8.9 cm i.d., 15.9 cm o.d.) were held
at a temperature sufficient to drive sublimation and decomposition reac-
tions (∼180◦C) and the β − δ phase transition such that substantial thermal
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Fig. 2.2. The dimensionless transient inclusion temperature for three values of the
dimensionless microwave heating term: 0.5, 1, and 5
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Fig. 2.3. Dimensionless ignition time as a function of dimensionless microwave
power dissipation. There is a threshold below which ignition will not occur

damage occurred; that is, significant porosity developed. These experiments
were highly instrumented for the primary purpose of calibrating cookoff mod-
els that attempt to predict the explosion violence after ignition. The boundary
conditions that lead to ignition have already been well established and docu-
mented in modern texts [48]. However, ignition theory does not tell us any-
thing about the post-ignition explosive behavior. It was suspected, a priori,
that the high degree of porosity generated during the heating phase would
facilitate movement of reactive decomposition products through the charge
and potentially affect both the pre- and post-ignition behavior. Indeed, it was
found that the models could not accurately predict temperature profiles with-
out including the movement of reactive species by momentum transport. Both
the temperature field and distribution of reactive species affect the post igni-
tion behavior, making the incorporation of species and momentum transport
an important step towards understanding explosion violence. As modeling of
the LSAC is an excellent example of the application of heat transport theory
coupled with species and momentum transport, we will review the work of
David Zerkle towards this end [5].

The model development began by writing the species transport equation
(e.g., (2.28)) for a multiphase system:

∂ (φiρi)
∂t

+ ∇ · (φiρivg) = r (T,X) , (2.48)

where φi is the species volume fraction. Compressible gas phase processes
were important to this analysis, and the heat transport equation was de-
rived in terms of internal energy. The convective transport term of (2.22) was
written as
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∇ ·
[
φgρgvg

(
ug +

Pg

ρg

)]
, (2.49)

where the subscript g refers to the gas phase. The specific internal energy is
related to temperature through (2.4); pressure and temperature are related
by the ideal gas equation of state. These relations lead to the following form
of the heat transport equation:

ρCv
∂T

∂t
+ ∇ · (φgρgvgCpgT ) = ∇ (−k∇T ) + Δurxnr (T,X) . (2.50)

In lieu of incorporating the multiphase momentum transport equations, the
velocity field was found using Darcy’s law (2.33) where vs = φgvg. The per-
meability for a range of thermal damage conditions was determined from the
small-scale experiments of Parker et al. [49]. The overall effective density, heat
capacity, and thermal conductivity were computed from (respectively):

ρ =
∑

i
φiρi;Cv =

∑
i φiρiCv
ρ

; and k =
∑

i
φiki. (2.51)

The reaction term (r) was modeled using the Los Alamos four-step decom-
position mechanism that includes the endothermic solid phase transition, the
endothermic sublimation of HMX, and the exothermic gas phase reactions
[50]. The coupling of momentum, species, and heat transport in this system
comes about through the thermodynamic state of the system, where, in this
case, the ideal gas law equation of state ties pressure, temperature, and density
together and the system is driven by the reactive production (or consumption)
of heat and species.

The partial differential equation solver, Flex PDE [51], provided the
temperature, species concentration, and velocity fields. Figure 2.4 shows the
computed temperature profiles, which agree well with the experimentally mea-
sured values. Figure 2.5 shows the comparison of temperature profiles with and
without including flow, just prior to ignition. The inclusion of flow indicated
a much larger volume at a higher temperature and that reactive species were
also spread through a large portion of the charge. These two factors mean that
the material was primed for faster reaction spreading, hence more violent ex-
plosion. Finally, the reader might notice the asymmetry in the results. This
comes about from variations in contact resistance imposed on the interface
between the explosive and its container. This experiment is discussed more
fully in Chap. 7.

A laminar flame model. We have examined two preignition scenarios, and
now we examine the post-ignition transport phenomena associated with lam-
inar burning of HMX. While we are most interested in violent explosion, the
physical processes that occur for laminar burning also occur during violent
explosion. Most explosive combustion processes are surface phenomena: com-
bustible gases evolve from a solid surface and burn in the gas phase at a well
defined “stand-off” from that surface. Pressure controls the stand-off distance.
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Fig. 2.4. Calculated temperature profiles just prior to ignition for the annular
cookoff shot. The calculation included Darcy flow and agreed well with experimental
measurements. The boundaries were held at 180◦C and the highest temperature
contour was 220◦C. The contour intervals are approximately 2.86◦C. The inner
diameter was 8.9 cm and the outer diameter was 15.9 cm

Fig. 2.5. Comparison between temperatures computed with (upper) and without
(lower) species and momentum (Darcy) transport just prior to ignition. The highest
temperature contours are 220◦C. The lowest temperature contour with Darcy flow
was 198◦C and the lowest temperature contour without flow was 191◦C

The essential difference between laminar burning and violent explosion is that
laminar burning occurs over a surface area much larger than any defects, pores,
cracks, grains, etc. in that surface and the stand-off is also much larger than
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those surface features. Violent explosive burning occurs when the pressure
squeezes the flame stand-off to a dimension on the order of the aforementioned
feature sizes, forcing hot combustion products into the cracks and pores, such
that combustion occurs on a high surface area within the bulk of the material.
Convective (momentum transport driven) processes of course play the domi-
nant role in this regime, but the fundamental process of surface gas evolution
and burning near the surface that occur during laminar combustion still occur
in the violent explosion regime. Because of the relevance of the laminar anal-
ysis to the whole range of ignition response, we will review the work of Ward
and Son [7]. Those authors develop the heat and species transport equations
for the laminar flame and provide a straightforward and illuminating analyt-
ical solution that correctly describes experimentally observed flame structure
of burning HMX, which is shown in Fig. 2.6.

Their analysis consisted of two parts: development of the steady-state
heat transport equation with a high activation energy decomposition reac-
tion for the solid phase and the steady-state coupled heat and mass transport
equations with very low activation energy exothermic combustion reactions
for the gas phase. One-dimensional cartesian coordinates were used with the
origin at the solid–gas interface for both regions.

For the solid phase, (2.22) was reduced to

m̃cp
∂T

∂x
= ke

∂2T

∂x2
+ Δhdr (T ), (2.52)

where the subscript d refers to the decomposition reaction

HMX → I, (2.53)

where I is a representative gas phase intermediate. The kinetic expression is
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Fig. 2.6. The quantitative laminar flame temperature structure predicted by
Ward et al.
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r (T ) = ρeAd exp
(
− Ed

RT

)
. (2.54)

The symbol m̃ is the mass flux and was the variable in the final solution that
represented the “feed” of gas phase reactants for the gas phase part of the
analysis. It is also the parameter that translates into a burning rate and is thus
a parameter of primary interest. A floating boundary Dirlecht boundary con-
dition, Ts, was specified at the solid–gas interface and ambient temperature
in the solid bulk (T = T0 @ x = −∞) provided the second boundary condi-
tion. Merzhanov and Dubovitskii [52] provided the original solution for the
mass flux:

m̃2 =
AdRT

2
s kepe · exp (−Ed/RTs)

Ed [cp (Ts − T0) − Δhd/2]
. (2.55)

To develop the problem in the gas phase, the authors began with the assump-
tion of equality between the molar heat capacity of the gas and solid phase,
and that the dimensionless Lewis number was unity:

Le ≡ αg

D
= 1, (2.56)

where the subscript g refers to the gas phase. These assumptions are rea-
sonably accurate and they substantially simplify the problem. Expressing the
governing equations in terms of dimensionless variables further facilitates the
solution; the following relationships were used:

θ =
T

T∞ − T−∞
; E∗ =

E

R (T∞ − T−∞)
; Δh∗i =

Δhi
Cp (T∞ − T−∞)

;

ξ =
xm̃rcp
kg

; and m̃∗ =
m̃

m̃r
, (2.57)

where m̃r is a reference mass flux. These definitions lead to the following
dimensionless and steady forms of (2.22) (heat) and (2.29) (species):

m̃∗ ∂θ
dξ

=
∂2θ

∂ξ2
−Dah and m̃∗ ∂X

dξ
=
∂2X

∂ξ2
+Das, (2.58)

where X is the mass fraction of I and Dah and Das are the heat (h) and
species (s) transport Damköhler numbers. The boundary conditions were

θ (0) = θs; θ (ξ → ∞) = θf ; X (0) = Xs; and X (ξ → ∞) = 0. (2.59)

The similarity of the two equations and the fact that Le = 1 leads to a
relationship between the mass fraction and the dimensionless temperature:

X =
θf − θ
Δh∗c

, (2.60)

where the subscript c refers to the gas-phase combustion reaction. The route
leading to this relationship is not entirely straightforward, and we refer the



40 W.L. Perry

reader to Zeldovich for the derivation [53]. The gas phase reaction was assumed
to be of the form

I +X → C +X, (2.61)

and the kinetic expression was

r (T,X) =
(
PM

R

)2

Ac exp
(
− Ec

RT

)
X. (2.62)

Using (2.60), the Damköhler numbers are

Dah = Da∗ (θf − θ) exp
(
−E

∗
c

θ

)
; Das = Da∗X exp

(
− E∗

c

θf −XΔh∗c

)
,

(2.63)
where

Da∗ =
kgAc

cp

(
P ·M
m̃rR

)2

. (2.64)

They still required a numerical solution for a nonzeroE∗; however, an essential
feature of this work was the authors’ recognition that a solution using high gas
phase activation energy did not qualitatively predict experimentally observed
temperatures and they investigated the solution behavior using a very small
gas phase activation energy. In the limit, E∗

c → 0 had the added benefit of
allowing an analytical solution. In dimensionless variables the temperature
and concentration profiles were

X

Xs
=
θ − θf
θs − θf exp

(
ξ

ξg

)
, (2.65)

where ξg the dimensionless flame stand-off distance is

ξg =
2√

m̃∗2 + 4Da∗ − m̃∗ . (2.66)

The dimensionless form of the mass flux expression (2.55) is

m̃∗2 =
Adθ

2
s exp (−Ed/θs)

Ed [θs − θ−∞ − Δh∗d/2]
, (2.67)

and the surface temperature was

θs = θ−∞ + Δh∗d +
Δh∗c

ξgm̃∗ + 1
. (2.68)

The ‘−∞’ subscript in these equations refers to the far upstream (initial)
condition. Unfortunately, after systematically following the route of non-
dimensionalization, the Lewis number assumption, determination of the sur-
face temperature and mass flux required iteration. What the authors found,
however, is that the low activation energy assumption indeed resulted in a
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Fig. 2.7. Mass flux from solid to gas and the flame stand-off distance as a function
of pressure according to Ward et al.

fairly accurate prediction of temperature profiles, mass flux, stand-off, and
surface temperature. Furthermore, the theory correctly predicts the effect of
pressure:

m̃ ∝ Pn, (2.69)

where n≈ 0.85, as shown in Fig. 2.7, was also in good agreement with
experimental observations. We have known for some time that the burning rate
of solid propellants follows this type of pressure relationship, often referred
to as Vielle’s law. This relationship, however, was empirically determined,
whereas the relationships leading to the theoretically determined behavior
depend on physical parameters and thereby provide insight to the factors
that affect the overall behavior. The theory also reveals how flame stand-off
depends on pressure and this is also shown in Fig. 2.7. This behavior is par-
ticularly important; as mentioned above, the flame stand-off distance relative
to characteristic surface defect dimensions determines the pressure at which
laminar deflagration transits to violent explosion.

2.6 Summary

In this chapter, we have discussed the general framework of transport phe-
nomena and their central role as the theory that describes ignition and com-
bustion behavior. The development of this theory has a rich and interesting
history. Undoubtedly, in all fields of study, creative and insightful individuals
advance the state of the art, and our field is no exception. We have mea-
sured or we can compute (or estimate, to a reasonable degree) the physical
properties of transport theory, we know the conservation-based equations of
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transport theory, and we can therefore compute solutions to many important
problems. However, in the modern era of advanced numerical solutions, we
must remain cognizant of the important physical processes that govern igni-
tion and combustion behavior. Progress requires computational advancement
while maintaining our intuitive understanding.
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