
2

Neoteric Differential Evolution

In this chapter you will make the acquaintance of the newest state-
ment of differential evolution. But first, I propose that you dip into the
background of population-based methods, so-called evolutionary algo-
rithms. Also, I shall show the basic evolutionary algorithm scheme and
apply it to differential evolution. After a rigorous mathematical defin-
ition of the optimization problem, I shall show you the fresh wording
of the differential evolution algorithm, then together we shall compare
it with the classical one, described in Chapter 1, and emphasize its
advantages. In conclusion I shall point out the efficient techniques to
handle mixed variables as well as constraints.

2.1 Evolutionary Algorithms

Let us talk a little more about Evolutionary Algorithms (EA). As you have
already heard, these are population-based metaheuristics that can be applied
with success in cases where traditional methods do not give satisfactory re-
sults. Originally inspired by the theory of evolution proposed by Darwin,
these methods gave birth to the whole discipline, Evolutionary computa-
tion [SDB+93], that involves the simulation of natural evolution processes
on a computer.

Evolutionary algorithms emerged in the sixties. Initially, EA were pre-
sented by three general trends. These are the genetic algorithms, evolution
strategy, and evolutionary programming. Later, in the early nineties, the
fourth trend, genetic programming, has come to light.

Genetic Algorithms. This is one of the most popular ideas in evolutionary
computation. The concept of genetic algorithms was introduced and devel-
oped by J. Holland [Hol75]. In order to achieve a better understanding of the
biological adaptation mechanisms he tried to simulate these processes numer-
ically. That, in turn, resulted in the first genetic algorithm. Soon afterwards,



26 2 Neoteric Differential Evolution

K. DeJong [DeJ75] formalized genetic algorithms for the binary search space.
And some years later, thanks to D. Goldberg [Gol89], genetic algorithms be-
came widely available.

Evolution Strategies were proposed by I. Rechenberg [Rec73] and H. Schwe-
fel [Sch81]. Solving aviation engineering problems, for which classical opti-
mization suffers a defeat, they revealed the most important key positions in
evolutionary algorithms, namely, the ideas of adaptation and self-adaptation
for control parameters of an algorithm.

Evolutionary Programming was elaborated by L.J. Fogel [FOW66]. Work-
ing on the evolution of finite state machines to predict time series, he gave
birth to a new evolutionary branch. Being the result of, or to be more exact,
the desire to procreate machine intelligence, evolutionary programming finally
became an efficient optimizer. Later, this trend was appreciably enlarged by
D.B. Fogel [Fog92].

Genetic Programming, successfully introduced by J. Koza [Koz92], arose
from the evolution of more complex structures such as a set of expressions of a
programming language and neural networks. J. Koza presented the structure
(individual) in the form of trees, orientable graphs without cycles, in which
each of the nodes is associated with a unit operation related to the problem
domain.

For a deeper examination of this topic I definitely suggest a quite recent
reference book of A.E. Eiben and J.E. Smith [ES03]. And now we shall consider
the basic scheme that generalizes all evolutionary algorithms (see Fig. 2.1).

Evolutionary Algorithms. The vocabulary of evolutionary algorithms is, to
a great extent, borrowed from both the biology and the theory of evolution.
A set of problem parameters, genes, is described by an individual. An ensem-
ble of individuals composes a population. Before optimizing, EA is initialized,
often randomly because usually we do not have ideas about optimum local-
ization, by a population of individuals. We name this initialization. Next, the
optimization criterion, in the EA case so-called fitness, is calculated for each
individual of the population. This is evaluation. Sometimes evaluation of fit-
ness can be a computationally intensive operation. Thus, the initial population
of Parents is ready and the algorithm begins its evolutionary cycle. Iterations,
in EA terms, generations, last until a stopping condition is attained. In each
evolutionary cycle the population passes through the following three steps.

1. Selection of the individuals that are more apt to reproduce themselves,
from the population.

2. Variations of the selected individuals in a random manner. Mainly two
operations are distinguished here: crossover and mutation. The variations
of Parents germinate Children.

3. Replacement refreshes the population of the next generation usually by
the best individuals chosen among Parents and Children.



2.1 Evolutionary Algorithms 27

Fig. 2.1. A basic scheme of evolutionary algorithms.

Evolutionary Algorithm typically can be outlined by the following way
(see Alg. 2).

Algorithm 2 Typical Evolutionary Algorithm
generation g ← 0
population IPg ← Initialize
fitness f(IPg) ← Evaluate
while (not stopping condition) do

// proceed to the next evolutionary cycle //
g ← g + 1
Parents ← Select from IPg

Children ← Vary Parents (Crossover, Mutation, . . . )
fitness ← Evaluate Children

Replacement IPg ← Survive Parents and Children
end while



28 2 Neoteric Differential Evolution

2.2 Problem Definition

The overall goal of an optimization problem f : M ⊆ IRD → IR,M �= ∅, where
f is called the objective function (also fitness or cost function), is to find a
vector X∗ ∈ M such that:

∀X ∈ M : f(X) ≥ f(X∗) = f∗ , (2.1)

where f∗ is called a global minimum; X∗ is the minimum location (point or
set).

M = {X ∈ IRD | gk(X) ≤ 0,∀k ∈ {1, . . . , m}} (2.2)

is the set of feasible points for a problem with inequality constraints gk :
IRD → IR.

A particular case of inequality constraints is boundary constraints

L ≤ X ≤ H : L, H ∈ IRD . (2.3)

For an unconstrained problem M = IRD.
Because max{f(X)} = −min{−f(X)}, the restriction to minimization is

without loss of generality. In general the optimization task is complicated by
the existence of nonlinear objective functions with multiple local optima. A
local minimum f̂ = f(X̂) is defined by the condition (2.4).

∃ε : ∀X ∈ M | ‖X − X̂‖ < ε ⇒ f̂ ≤ f(X) . (2.4)

2.3 Neoteric Differential Evolution

As with all evolutionary algorithms, differential evolution deals with a popula-
tion of solutions. The population IP of a generation g has NP vectors, so-called
individuals of population. Each such individual represents a potential optimal
solution.1

IPg = {Xg
i }, i = 1, . . . , NP . (2.5)

In turn, the individual contains D variables, so-called genes.

Xg
i = {xg

i,j}, j = 1, . . . , D . (2.6)

Usually, the population is initialized by randomly generating individuals
within the boundary constraints (2.3),

IP0 = {x0
i,j} = {randi,j · (hj − lj) + lj} , (2.7)

where the rand function uniformly generates values in the interval [0, 1].

1 In order to show the flexibility of implementation, here I represent a population
and an individual as a set of elements instead of a vector presentation.



2.3 Neoteric Differential Evolution 29

Then, for each generation all the individuals of the population are updated
by means of a reproduction scheme. Thereto for each individual ind a set π
of other individuals is randomly extracted from the population. To produce a
new one the operations of differentiation and crossover are applied one after
another. Next, selection is used to choose the best. Let us consider these
operations in detail.

First, a set of randomly extracted individuals π = {ξ1, ξ2, . . . , ξn} is nec-
essary for differentiation. The strategies (i.e., a difference vector δ and a base
vector β) are designed on the basis of these individuals. Thus, the result of
differentiation, the so-called trial individual, is

ω = β + F · δ , (2.8)

where F is the constant of differentiation. I shall show an example of a typical
strategy [SP95]. Three different individuals are randomly extracted from the
population. The trial individual is equal to ω = ξ3 + F · (ξ2 − ξ1) with the
difference vector δ = ξ2 − ξ1 and the base vector β = ξ3.

Afterwards, the trial individual ω is recombined with the target one ind.
Crossover represents a typical case of a gene’s exchange. A new trial individual
inherits genes of the target one with some probability. Thus,

ωj =

{
ωj if randj ≥ Cr

indj otherwise
(2.9)

where j = 1, . . . , D, randj ∈ [0, 1) and Cr ∈ [0, 1] is the constant of crossover.
This was a combinatorial crossover. Also, other types of crossover can be used:
binary approach [SP95], mean-centric (UNDX, SPX, BLX), and parent-centric
(SBX, PCX) approaches [DJA01].

Selection is realized by simply comparing the objective function values
of target and trial individuals. If the trial individual better minimizes the
objective function, then it replaces the target one. This is the case of elitist
or so-called “greedy” selection.

ind =

{
ω if f(ω) ≤ f(ind)
ind otherwise .

(2.10)

Notice that there are only three control parameters in this algorithm.
These are:

• NP – population size
• F – constant of differentiation
• Cr – constant of crossover

As for stopping conditions, one can either fix the number of generations gmax

or a desirable precision of the solution V TR (value-to-reach).
The pattern of the DE algorithm is presented hereafter (see Alg. 3).



30 2 Neoteric Differential Evolution

Algorithm 3 Neoteric Differential Evolution
Require: F, Cr, NP – control parameters

initialize IP0 ← {ind1, . . . , indNP }
evaluate f(IP0) ← {f(ind1), . . . , f(indNP )}
while (not stopping condition) do

for all ind ∈ IPg do
IPg → π = {ξ1, ξ2, . . . , ξn}

ω ← Differentiation(π, F, Strategy)
ω ← Crossover(ω, Cr)

ind ← Selection(ω, ind)
end for
g ← g + 1

end while

2.4 Distinctions and Advantages

Above all, I would like to compare differential evolution to the basic EA
scheme. As you have already observed, initialization and evaluation are kept
without changes. A general EA provides for Darwin’s mechanism of parent
selection, however, where more apt it stands a better chance to reproduce
itself; differential evolution applies variations (differentiation and crossover)
sequentially to each individual. For that, an ensemble of individuals is ran-
domly chosen from the population each time. The result of variations is child,
called a trial individual. Moreover, in DE the trial immediately replaces its
ancestor in the population if its fitness is better than or equal to its ancestor’s.
Also, a stopping condition is verified right here after replacement. Finally, for
more clarification I propose that you familiarize yourself with the individual’s
cycle in differential evolution, which I presented in Fig.2.2.

Furthermore, let us touch nicety and compare neoteric differential evolu-
tion with the classical one, described in Chapter 1.

The first point that is significant is the dissociation of differentiation and
crossover in the new DE statement. Of course, we can always associate back
these two operations as soon as we need them. However, such a dissociation
offers us self-evident advantages. This is, at the minimum, the independent
study and use of the operations that enables us to exclude one operation from
another and thoroughly analyze their behavior and influence on the search
process. Next, differential mutation of classic DE is generalized to differentia-
tion of a neoteric one. From a theoretical point of view, it gives the unlimited
spectrum of strategies that obey the unique and universal principle of opti-
mization ω = β + F · δ. In practice, we can now manipulate with great ease
the search strategies according to the needs of an optimization task.

The second significant point is the crossover operation in itself. Now the
basic element of crossover is a trial individual created in the issue of differen-
tiation, rather than a current one. This improvement changes the philosophy



2.4 Distinctions and Advantages 31

Fig. 2.2. The evolutionary cycle of an individual in differential evolution.

of the solution search. If before the variation operations are considered as the
mutation of a current individual resembling evolutionary strategies, then now
the main attention is completely focused on the creation of a new, more per-
fect individual. Such an individual is produced primarily on the basis of the
actual state of the population and certainly may inherit some properties of a
current individual.

Also, I moved away the mutation parameter Rnd ∈ [1, . . . , D] (see (1.2)).
I do not consider it very important for optimization. Besides, we can almost
always imitate it by the appropriate choice of the crossover value Cr. For ex-
ample, following (2.9), Cr = 0 (absence of crossover) ⇒ the new-created indi-
vidual is completely inherited; Cr = 1 ⇒ the current individual is completely
inherited; and Cr ≈ 1 − 1/D permits us to inherit the minimal number of
the new-created individual’s genes. Although it does not guarantee absolutely
that at least one new gene passes into the next generation (the case of classical
DE), it certainly guarantees that there is a great chance it does happen.

Here I emphasized three principal advantages of the new algorithm’s
statement. Perhaps, in future, continuously working with differential evolution
you will find many more advantages then I did. So, these are as follows.

1. Efficiency. A special stress is laid on the efficient creation of a new member
of a population, instead of the mutation of current individuals.



32 2 Neoteric Differential Evolution

2. Flexibility. The new algorithm is more flexible to use and adapts to mod-
ification; it is preferred for research purposes. In particular, the isolation
in the reproduction cycle of differentiation, crossover, and selection from
one another in action allows natural and easy driving by the evolution
process.

3. Fundamentality. The well-known algorithm stated in Chapter 1 is just
a particular case of neoteric differential evolution. In fixing the differen-
tiation strategy and appropriate crossover, variation operations can be
convoluted to a single equation similar to (1.2). Moreover, differentiation
synthesizes in itself the fundamental ideas in optimization.2 The opera-
tion of Differentiation intrinsically generalizes the universal concepts of
the solution search, as in the case of traditional versus modern methods
of optimization.

2.5 Mixed Variables

Differential evolution in its initial form is a method for continuous variable
optimization [SP95]. However, in [LZ99b, LZ99c] the DE modification for
integer and discrete variables is proposed. We first show integer variable
handling.

Despite the fact that DE works with continuous values on the bottom level,
for the evaluation of the objective function integer values are used. Thus,

f = f(Y ) : Y = {yi}

where yi =

{
xi for continuous variables
�xi� for integer variables

and X = {xi}, i = 1, . . . , D .

, (2.11)

The �x� function gives the nearest integer less than or equal to x. Such an
approach provides a great variety of individuals and ensures algorithm robust-
ness. In other words, there is no influence from discrete variables on algorithm
functioning. In the integer case, the population initialization occurs as follows.

IP0 = {x0
i,j} = {randi,j · (hj − lj + 1) + lj}, randi,j ∈ [0, 1) . (2.12)

Next, discrete variables can be designed in the same easy way. It is
supposed that a discrete variable Z(d) takes its values from the discrete set
{z(d)

i } containing l ordered elements.

Z(d) = {z(d)
i }, i = 1, . . . , l

so that z
(d)
i < z

(d)
i+1 .

(2.13)

2 I mean here an iterative procedure of choosing a new base point, direction, and
optimization step. I shall illustrate it in detail in the next chapter (Chapter 3).



2.6 Constraints 33

Instead of the discrete values z
(d)
i their indexes i are used. Now, the discrete

variable Z(d) can be handled as an integer one with boundary constraints
(1 ≤ i ≤ l). For the evaluation of the objective function the discrete value itself
is used in place of its index. Thus, discrete variable optimization is reduced
to the integer variable one and discrete values are used only for objective
function evaluation.

This approach showed the best results among evolutionary algorithms for
mixed variable problems in mechanical engineering design [Lam99].

2.6 Constraints

Let the optimization problem be presented in the generally used form (2.14).

find X∗ : f(X∗) = min
X

f(X)

subject to
boundary constraints L ≤ X ≤ H

constraint functions gk(X) ≤ 0, k = 1, . . . , m

(2.14)

2.6.1 Boundary Constraints

Boundary constraints represent low and high limits put on each individual:

L ≤ ω ≤ H . (2.15)

It is necessary that new values of variables satisfy the constraints after dif-
ferentiation (or reproduction). For that, the values that have broken range
conditions are randomly put back inside their limits.

ωj =

{
randj · (hj − lj) + lj if ωj /∈ [lj , hj ]
ωj otherwise

j = 1, . . . , D .

(2.16)

For integer variables one uses the next modification of this equation:

ωj =

{
randj · (hj − lj + 1) + lj if �ωj� /∈ [lj , hj ]
ωj otherwise

. (2.17)

In addition to the reinitialization (2.16) there are also other ways of bound-
ary constraint handling. For example:

• Repeating of differentiation (2.8) until the trial individual satisfies the
boundary constraints,



34 2 Neoteric Differential Evolution

• Or, use of the periodic mode or the shifting mechanism proposed in [ZX03,
MCTM04, PSL05],

• Or else, taking into consideration that boundary constraints are inequality
constraints (L−X ≤ 0 and X −H ≤ 0), constraint handling methods and
their modifications developed for constraint functions are also suitable for
handling boundary constraints.

2.6.2 Constraint Functions

Penalty Function Method

I shall represent here a penalty function method for constraint handling used
by Lampinen and Zelinka [LZ99b, LZ99c]. Compared with hard constraint
handling methods, where infeasible solutions are rejected, the penalty function
method uses penalties for moving into the feasible area M (2.2). Such penalties
are directly added into the objective function. We give it in a logarithmic form:

log f̃(ω) = log (f(ω) + a) +
m∑

k=1

bk · log ck(ω)

ck(ω) =

{
1.0 + sk · gk(ω) if gk(ω) > 0
1.0 otherwise

sk ≥ 1.0
bk ≥ 1.0
min f(ω) + a > 0 .

(2.18)

It is necessary that the objective function take only nonnegative values. For
this reason the constant a is added. Even if the constant a takes too high values
it does not affect the search process. The constant s scales constraint function
values. The constant b modifies the shape of the optimizing surface. When the
function value for a variable that lies outside a feasible area is insignificant,
it is necessary to increase the values s and b. Usually, satisfactory results are
achieved with s = 1 and b = 1.

It is clear that this method demands the introduction of extra control
parameters, and therefore, in order to choose their effective values additional
efforts are necessary. Generally, it is realized by trial and error, when the algo-
rithm is started repeatedly for many times under various parameter values (s,
b). It is obvious that this is not effective enough, so researchers are continuing
investigations in this domain.

Modification of the Selection Operation

An original approach for constraint problem solution has been proposed in
[Lam01, MCTM04]. The selection rule modification (2.10), where there is no
need of using the penalty functions, has been shown there.



2.6 Constraints 35

The basic idea is applying multiobjective optimization for handling con-
straints. This idea, it seems, was first communicated by David Goldberg
as early as 1992 [Deb01] (pp.131–132). Later, three of its instances se-
quentially were reported to wider audience: (1) Coello Coello [Coe99b], (2)
Deb [Deb00], and (3) Lampinen [Lam01]. Below, I shall describe Lampinen’s
instance [Lam01], which is based on pure pareto-dominance defined in con-
straint function space.3

The choice of individual results from the next three rules.

• If both solutions ω and ind are feasible, preference is given to the lower
objective function solution.

• The feasible solution is better than the infeasible.
• If the both solutions are infeasible, preference is given to the less infeasible

solution.

Mathematically these rules are written as:

ind =

{
ω if Φ ∨ Ψ

ind otherwise
,

where

Φ = [∀k ∈ {1, . . . , m} : gk(ω) ≤ 0 ∧ gk(ind) ≤ 0] ∧
∧ [f(ω) ≤ f(ind)]

Ψ = [∃k ∈ {1, . . . , m} : gk(ω) > 0] ∧
∧ [∀k ∈ {1, . . . , m} : max (gk(ω), 0) ≤ max (gk(ind), 0)] .

(2.19)

Thus, the trial vector ω will be chosen if:

• It satisfies all the constraints and provides lower objective function value
or

• It provides lower than or equal to ind value for all constraint functions.

Notice that in the case of an infeasible solution, the objective function is
not evaluated.

To prevent stagnation [LZ00], when the objective function values of both
trial and target vectors are identical, preference is given to the trial one. In
Appendix B you can find (proposed by me) the C source code of the above-
described selection rules.

Other Constraint-Handling Methods

Finally I shall present a general classification of the constraint-handling meth-
ods for evolutionary algorithms. More detailed information can be found in
[MS96, Coe99a, Coe02].

3 Discussed in personal communication with J. Lampinen.



36 2 Neoteric Differential Evolution

1. Methods based on preserving feasibility of solutions
• Use of specialized operators (Michalewicz and Janikow, 1991)
• Searching the boundary of feasible region (Glover, 1977)

2. Methods based on penalty functions
• Method of static penalties (Homaifar, Lai and Qi, 1994)
• Method of dynamic penalties (Joines and Houck, 1994)
• Method of annealing penalties (Michalewicz and Attia, 1994)
• Method of adaptive penalties (Bean and Hadj-Alouane, 1992)
• Death penalty method (Bäck, 1991)
• Segregated genetic algorithm (Le Riche, 1995)

3. Methods based on a search for feasible solutions
• Behavioral memory method (Schoenauer and Xanthakis, 1993)
• Method of superiority of feasible points (Powell and Skolnick, 1993)
• Repairing infeasible individuals (Michalewicz and Nazhiyath, 1995)



Problems

2.1. What does evolutionary computation study?

2.2. What three general trends of development of evolutionary algorithms do
you know?

2.3. Review once again problem (1.4). Indicate the “genes” of the individual.

2.4. Usually, in differential evolution, the population is initialized by random
values within boundary constraints. Propose your technique of initialization
for the following cases: (a) there are no boundary constraints; (b) you have one
or two solutions, but you do not know if these solutions are optimal; (c) your
constraint handling method requires only feasible individuals and you need
to preserve the uniformity of initialization. Implement and test the proposed
techniques.

2.5. Evaluate the fitness of the function f(X) = ex1x2x3x4x5 − 1
2 (x3

1 +x3
2 +1)2

for the individual X0 = (−1.8, 1.7, 1.9,−0.8,−0.8).

2.6. Which of the Evolutionary Algorithm’s operations is/are, most probably,
time-consuming? (a) selection, (b) crossover, (c) mutation, (d) differentiation,
(e) variation, (f) evaluation, (g) replacement, (h) recombination, (i) initializa-
tion. Explain your answer.

2.7. What elements are common for all evolutionary algorithms?

2.8. What is the difference between iteration, generation and evolutionary
cycle?

2.9. What is the stopping condition? Propose three different ways to end the
optimization. Add it in your differential evolution and test.

2.10. You are given the following maximization problem.

max
ax4

1x
2
3

π2x3
2x4

− cos2(2πd
x5

x3
) + eb sin(2x1)/x3

2 − 3 ln(c
π

4
x2

2) + x1x5

x1 + x2 + x3 + x4 ≤ x5

x1, x2, x3, x4, x5 ≥ 0
a ≥ 0, b < 0, c > 0, d ≤ 0

Transform this problem into a minimization problem.

2.11. How many optima has the function |sin(x)| in the range from 0 to 10?

2.12. Give a definition of local optimum.

2.13. Does the function given in problem (2.11) have a global optimum?



38 2 Neoteric Differential Evolution

2.14. How does one calculate the trial individual? Show the concrete formula
and give an explanatory sketch.

2.15. Determine and explain what is a “parent” and what is a “child” in
differential evolution?

2.16. The crossover operation executes the inheritance of genes from the old
to the new individual. Develop and implement your own crossover instead of
the formula (2.9) proposed in Chapter 2.

2.17. What is the minimal size of the population you can use according to
the formula you demonstrated in problem (2.14)?

2.18. Does differential evolution obey the natural selection theory of Darwin?
What are the common and distinguishing features?

2.19. Is it possible, in differential evolution, that the “child” becomes “parent”
in one and the same generation?

2.20. Find four distinctions between the classical DE (famous algorithm) and
the neoteric one.

2.21. Recall and explain three principal advantages of neoteric DE.

2.22. Explain how DE handles integer variables? What is the advantage as
against gradient methods?

2.23. Solve by hand the Traveling Salesman Problem with Time Windows. A
truck driver must deliver to 9 customers on a given day, starting and finishing
in the depot. Each customer i = 1, . . . , 9 has a time window [bi, ei] and an
unloading time ui. The driver must start unloading at client i during the
specified time interval. If he is early, he has to wait till time bi before starting
to unload. Node 0 denotes the depot, and cij the time to travel between
nodes i and j for i, j ∈ {0, 1, . . . , 9}. The data are u = (0, 1, 5, 9, 2, 7, 5, 1, 5, 3),
b = (0, 2, 9, 4, 12, 0, 23, 9, 15, 10), e = (150, 45, 42, 40, 150, 48, 96, 100, 127, 66),
and

(cij) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 5 4 4 4 6 3 2 1 8
7 − 2 5 3 5 4 4 4 9
3 4 − 1 1 12 4 3 11 6
2 2 3 − 2 23 2 9 11 4
6 4 7 2 − 9 8 3 2 1
1 4 6 7 3 − 8 5 7 4
12 32 5 12 18 5 − 7 9 6
9 11 4 12 32 5 12 − 5 22
6 4 7 3 5 8 6 9 − 5
4 6 4 7 3 5 8 6 9 −

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



2.6 Constraints 39

2.24. Find an efficient model of problem (2.23) for solving by differential
evolution. Focus attention on data representation, especially on realization of
the permutation of clients and the fitness function. Solve the problem by DE
and compare the results.

2.25. Solve problem (1.4) supposing that d and D take only integer values.

2.26. Write a code to handle discrete variables. Apply it to solving the prob-
lem (1.4) as is.

2.27. Formulate the problem of placing N queens on an N by N chessboard
such that no two queens share any row, column, or diagonal. Use binary
variables.

2.28. Could DE optimize binary variables? If yes, write the proper code and
solve the N-queens problem (2.27) for N = 4, 8, 16, . . .. Otherwise, use a per-
mutation to model the problem and solve it in integer variables. Think about
an efficient method of constraints handling. Compare the results and deter-
mine which of two methods is more clever. Explain why.

2.29. What are the boundary constraints? What methods to handle boundary
constraints do you know? Point out at least four methods and explain by giving
an example.

2.30. Elaborate your own method of boundary constraints handling. Estimate
its influence on the convergence of algorithms using the test functions from
Appendix C.

2.31. The solution to a system of nonlinear equations specified by a mapping
f : IRn → IRn is a vector X ∈ IRn such that f(X) = 0. Algorithms for
systems of nonlinear equations usually approach this problem by seeking a
local minimizer to the problem

min {‖f(X)‖ : L ≤ X ≤ H} ,

where ‖ · ‖ is some norm on IRn, most often the l2 norm. Solve any reasonable
system of nonlinear equations using your own method of handling boundary
constraints.

2.32. What is the penalty function? Create the penalty function for problem
(1.4).

2.33. Solve problem (2.32). Experiment on the parameters sk and bk of the
penalty function. Try to find their optimal values. Estimate its influence on
the algorithm performance.

2.34. What drawbacks do you see in using penalty methods?



40 2 Neoteric Differential Evolution

2.35. Try to implement independently a modification of the selection oper-
ation. Solve problem (1.4) with this method. Compare the results with ones
obtained in problem (2.33).

2.36. Given D electrons, find the equilibrium state distribution of the elec-
trons positioned on a conducting sphere. This problem, known as the Thomson
problem of finding the lowest energy configuration of D point charges on a
conducting sphere, originated with Thompson’s plum pudding model of the
atomic nucleus. The potential energy for D points (xi, yi, zi) is defined by

f(x, y, z) =
D−1∑
i=1

D∑
j=i+1

((xi − xj)2 + (yi − yj)2 + (zi − zj)2)−
1
2 ,

and the constraints on the D points are

x2
i + y2

i + z2
i = 1 , i = 1, . . . , D .

The number of local minima increases exponentially with D. Theoretical re-
sults show that

min{f(p1, . . . , pD) : ‖pi‖ = 1 , 1 ≤ i ≤ D} ≥ 1
2
D2(1−ε) , 0 ≤ ε ≤

(
1
D

)1/2

.

Solve this problem for D = 3, 10, 50. How do you handle the nonlinear equality
constraints? Are you far from the theoretical results?

2.37. Choose from the list of constraint-handling methods at the end of Sub-
section 2.6.2 any method you please and implement it.




