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2. Physical Foundations

Physics of space storms is founded on physics of hot tenuous space plasmas. While the
reader is assumed to be familiar with the basic concepts of plasma physics and master the
classical electrodynamics, the motivation for this chapter is to review some of the main
concepts, to introduce definitions and the notation to be used elsewhere in the book, and
to highlight some aspects that are specific to space plasma physics.

2.1 What is Plasma?

There is no rigorous way to define the plasma state. A good practical description for our
purposes is:

Plasma is quasi-neutral gas with so many free charges that collective electromagnetic
phenomena are important to its physical behavior.

In this treatise we discuss quasi-neutral plasmas only. This means that in a given plasma
element there is an equal amount of positive and negative charges. There is no clear thresh-
old for the required degree of ionization. Roughly 0.1% ionization already makes the gas
look like plasma, and 1% is sufficient for almost perfect conductivity.

Plasma is sometimes called the fourth state of matter because it arises as the next nat-
ural step in the sequence from solid to liquid to gas, when the temperature is increased.
There are two natural ways to produce plasma in space. The most common is to heat the
gas to a high enough temperature. Usually 105–106 K (10–100 eV) is sufficient (1 eV ↔
11 600 K). Also ionizing radiation is important because it creates and sustains the pho-
tospheric and ionospheric plasmas at lower temperatures where the electrons and ions
recombine if the radiation stops. The transition from gas to plasma is gradual and thus
different from, e.g., the phase transition from liquid to gas. The collective electromagnetic
behavior gives plasma liquid-like properties. We speak of fluid description of plasmas
when dealing with macroscopic plasma properties.
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60 2. Physical Foundations

Three key concepts Debye shielding, plasma oscillations, and gyro motion of charged
particles in the magnetic field, lie at the heart of plasma physics. Let us review them briefly.

2.1.1 Debye shielding

The electrostatic Coulomb potential of charge q is ϕ = q/(4πε0r). In a fully ionized
plasma individual particles either attract or repel each other by the force due to the gradient
of this potential.

Quasi-neutrality implies that in equilibrium there is no net charge in a “large enough”
volume. If we introduce an extra test charge qT into the equilibrium plasma, the charges
must be redistributed to maintain the quasi-neutrality within certain volume around qT .
Let us denote the different plasma populations (e.g., ions and electrons) by α and assume
that each population is in a Boltzmann equilibrium

nα(r) = n0α exp
(
− qα ϕ

kBTα

)
, (2.1)

where kB is the Boltzmann constant (kB = 1.38× 10−23 JK−1) and Tα is the temperature
of population α . The potential of qT becomes the shielded potential

ϕ =
qT

4πε0r
exp

(
− r

λD

)
, (2.2)

where

λ−2
D =

1
ε0

∑
α

n0α q2
α

kBTα
(2.3)

defines the Debye length λD. The rearrangement of the charges is called Debye shielding
and it is the most fundamental manifestation of the collective behavior of the plasma.
Intuitively λD is the limit beyond which the thermal speed of the plasma particles is high
enough to escape from the Coulomb potential of qT . Often the electron and ion Debye
lengths are given separately. Numerically the electron Debye length is

λD(m) ≈ 7.4

√
T (eV)

n(cm−3)
. (2.4)

Using the Debye length we can redefine the plasma state in a slightly more quantitative
way. That the collective properties really dominate the plasma behavior there must be a
large number of particles in the Debye sphere of radius λD, i.e., (4π/3)n0λ 3

D � 1. The
factor 4π/3 is often neglected and we call Λ = n0λ 3

D the plasma parameter. Because
plasma must also be quasi-neutral, its size L = V 1/3 must be larger than λD. Thus for a
plasma

1
3
√

n0
� λD � L . (2.5)
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Note that many sources [e.g., Boyd and Sanderson, 2003] call g = 1/n0λ 3
D plasma param-

eter.

Train your brain

Derive (2.2) for the shielded potential of a test charge qT in a plasma with Boltzmann’s
density distribution.

Hints:
(i) Use e−x � 1− x when substituting the densities into Coloumb’s law and make use of
quasi-neutrality.
(ii) Make also use of spherical symmetry to write

∇2ϕ =
1
r2

d
dr

(
r2 dϕ

dr

)
.

(iii) After solving the differential equation require that the solution approaches the
Coulomb potential of qT when r → 0 and remains finite at all distances.

2.1.2 Plasma oscillations

If plasma equilibrium is disturbed by a small perturbation, plasma starts to oscillate. Much
of space plasma physics concerns the great variety of plasma responses to perturbations.
The most fundamental example is the plasma oscillation.

Considering freely moving cold (Te = 0) electrons and fixed background ions it is an
easy exercise to show that a small perturbation in the electron density causes the plasma
oscillation at the plasma frequency

ω2
pe =

n0e2

ε0me
. (2.6)

Note that both the angular frequency ωpe and the corresponding oscillation frequency
fpe = ωpe/2π are usually called plasma frequency. So, be careful!

Plasma frequency is inversely proportional to the square root of the mass of the moving
particles, here electrons. Thus the ion plasma frequency is a much smaller quantity than
the electron plasma frequency. When we speak of plasma frequency, we usually mean the
electron plasma frequency. A useful rule of thumb is

fpe(Hz) ≈ 9.0
√

n(m−3) .

The plasma oscillation determines a natural length scale in the plasma known as the
electron inertial length c/ωpe, where c is the speed of light. Physically it gives the atten-
uation length scale of an electromagnetic wave with the frequency ωpe when it penetrates
to plasma (wave propagation in plasmas will be discussed in detail in Chaps. 4 and 5). It
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is analogous to the skin depth in classical electromagnetism defined in (4.26) and is thus
often called electron skin depth.

Similarly, the ion plasma frequency is defined by

ω2
pi =

n0e2

ε0mi
. (2.7)

The corresponding ion inertial length is c/ωpi. It is associated with damping of fluctua-
tions near the ion plasma frequency.

2.1.3 Gyro motion

Space plasmas are practically always embedded in a magnetic field. The magnetic field
may be due to external or internal current systems. The known magnetic flux densities in
space vary by more than 20 orders of magnitude. The interstellar magnetic field is typically
less than 1 nT, the magnetic field of the solar wind at the distance of the Earth (1 AU) is a
few nT, the field on the surface of the Earth varies 3–6×10−5 T (0.3–0.6 gauss) and in large
fusion devices the fields are several teslas. The largest known fields, exceeding 108 T, are
found at the rapidly rotating neutron stars (pulsars). Observations of slowly decelerating
pulsars emitting X- and soft gamma rays indicate even stronger magnetic fields, exceeding
1011 T.

A charged particle in a magnetic field performs a circular motion perpendicular to the
field. The angular frequency of this gyro motion for particle species α is

ωcα =
|qα |B
mα

. (2.8)

This is called the gyro frequency (or cyclotron frequency, Larmor frequency). The corre-
sponding oscillation frequencies fcα = ωcα/(2π) of electrons and protons are given by

fce(Hz) ≈ 28B(nT)
fcp(Hz) ≈ 1.5×10−2 B(nT) .

Again the same term is used for both ωc and fc.
As discussed later in this chapter the gyro motion determines another important length

scale, the electron or ion gyro radius, also known as cyclotron, or Larmor radius

rLα =
v⊥α
|qα | , (2.9)

where v⊥α is the speed of the particle perpendicular to the magnetic field.
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2.1.4 Collisions

Most of the volume where space storms take place is filled by fully ionized plasmas that
behave in a “collisionless” manner. However, there are two important exceptions: in the
solar photosphere and in the ionosphere collisions between charged particles and neu-
trals have a strong influence on the plasma properties, determining, e.g., the ionospheric
Ohm’s law. Furthermore, the charge exchange collisions between charged particles and the
Earth’s ring current are important to the dynamics of storms in the inner magnetosphere
(Chap. 14).

For the collisionless behavior of fully ionized plasmas the Coulomb interaction (Coulomb
collisions) between charged particles is essential. In a plasma the finite Debye length lim-
its the Coulomb interaction within the Debye sphere, but yet each particle sees Λ other
charges. If we can calculate the collisional cross-section σ , we can determine the mean
free path

lm f p = 1/(nσ) (2.10)

of the particles and their collision frequency

νc = nσ〈v〉 , (2.11)

where 〈v〉 is the average speed of the particles.
For Coulomb collisions it is sufficient to consider small-angle collisions, in which the

particles are just slightly deflected. The reason for this is that each particle interacts with
a large number of particles at long distance, whereas the probability for nearby collisions
with large deflection angles is much smaller. The rigorous calculation of collisional cross-
sections is rather challenging. For electron–ion collisions σ ∝ v−4

0 and

νc = νei =
2n0(Ze2)2 lnΛ

ε2
0 m2

ev3
0

, (2.12)

where v0 is the particle speed far from the collision and lnΛ is called the Coulomb loga-
rithm. Typical values of the Coulomb logarithm are in the range 10–20.

When the temperature of the plasma increases or the density decreases, g = Λ−1 de-
creases. At the limit g → 0 plasma becomes collisionless. Physically this means that the
time between individual collisions, or the mean free path, becomes longer than the tempo-
ral or spatial scales of the problems under study. This does not mean that the electromag-
netic interaction between plasma particles would become negligible. At the collisionless
limit it is, however, sufficient to consider the effect of average electromagnetic fields on
the particles instead of individual collisions.

Train your brain

Show that in a fully ionized plasma the frequency of small-angle Coulomb collisions is
much larger than the frequency of large-angle collisions. To what plasma parameter the
ratio of these frequencies is related?
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Feed your brain

Derive Equation (2.12). The derivation can be found in many textbooks, including some
listed in the References section of this book.

2.2 Basic Electrodynamics

In this section we review some of the basic concepts of classical electrodynamics that are
most important in plasma physics.

2.2.1 Maxwell’s equations

In plasma physics we usually write Maxwell’s equations in the vacuum form

∇ ·E = ρ/ε0 (2.13)
∇ ·B = 0 (2.14)

∇×E = −∂B

∂ t
(2.15)

∇×B = μ0J+
1
c2

∂E

∂ t
, (2.16)

where the source terms charge density ρ and current density J are determined by the
particle distribution functions (Sect. 2.3.3). We call E the electric field ([E] = V m−1) and
B magnetic field ([B] = V s m−2 ≡ T). It would be more orthodox to call B magnetic
induction, or more descriptively magnetic flux density, as the magnetic flux through a
surface S is

Φ =
∫

S
B ·dS . (2.17)

The SI units of the source terms in Maxwell’s equations are [ρ] = A s m−3 = C m−3 and
[J] = A m−2. The natural constants in SI units are

ε0 ≈ 8.854×10−12 AsV−1 m−1 , vacuum permittivity

μ0 = 4π ×10−7 VsA−1 m−1 , vacuum permeability

c = 1/
√ε0μ0 = 299792458 ms−1 definition of the speed of light.

In studies of electromagnetic media the electric displacement D and the magnetic field
intensity H (the “magnetic field” of engineering physics) are useful and Maxwell’s equa-
tions are written as

∇ ·D = ρ f (2.18)
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∇ ·B = 0 (2.19)

∇×E = −∂B

∂ t
(2.20)

∇×H = J f +
∂D

∂ t
, (2.21)

where ρ f and J f are the source terms due to “free” charges. If the properties of the medium
can be described in terms of electric polarization P and magnetization M, fields D and H

are given by the constitutive equations

D = ε0E+P (2.22)
H = B/μ0 −M . (2.23)

In plasma physics the use of D and H is sometimes convenient notation, but the consti-
tutive relations may pose a problem. There is no unique way to define the polarization field
in a medium of free charges, although sometimes a useful P can be introduced formally
(e.g., Eq. 9.73). However, the change of polarization is a real plasma phenomenon and the
corresponding polarization current

JP =
∂P

∂ t
(2.24)

is well-defined (see., e.g., Sect. 3.5.1). Also the magnetization current

JM = ∇×M (2.25)

is a useful concept in plasma physics.
The Maxwell equations form a set of 8 partial differential equations. If we know the

source terms, we have more than enough equations to calculate the six unknown field
components. If we, however, want to treat all 10 variables (E, B, J, ρ) self-consistently,
we need more equations. In a conductive medium it is customary to use Ohm’s law

J = σ ·E , (2.26)

where the conductivity σ ([σ ] = A (V m)−1 = (Ω m)−1) is, in general, a tensor and may
also depend on E and B.

Recall that Ohm’s law is not a fundamental law in the same sense as Maxwell’s equa-
tions but merely an empirical relationship to describe the conductivity of the medium sim-
ilarly to the constitutive relations D = ε ·E and B = μ ·H where ε and μ are, in general,
tensors. The medium is called linear if ε , μ , and σ are scalars and constant in space and
time. Note that also in the linear media they usually are functions of the wave number and
frequency of electromagnetic fields penetrating into the medium. Much of plasma physics
deals with the properties of ε(ω,k).
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2.2.2 Lorentz force

Experimental determination of E and B is based on the Lorentz force

F =
dp

dt
= q(E+v×B) (2.27)

on a particle with charge q and velocity v. Close to a body with strong gravity (e.g., the
Sun) also the gravitational force (mg) must be taken into account. In principle, a complete
description of plasma would mean solving the equation of motion (with gravitation if
needed) for all plasma particles. In practice, this is impossible.

Often it is useful, and in many problems sufficient, to trace the motion of individual
charges in a given electromagnetic field. Examples of this are the motion of cosmic rays,
or high-energy particles in the Earth’s radiation belts. These problems are often relativistic

F =
d
dt

(γmv) = q(E+v×B) , (2.28)

where γ = (1−β 2)−1/2 is the Lorentz factor with β = v/c. The time component of the
underlying four-force gives the power

dW
dt

=
d
dt

(γmc2) = qE ·v . (2.29)

Because the magnetic part of the Lorentz force is perpendicular to v, only the electric
field performs work (W ). Thus any “magnetic” acceleration of charged particles requires
the change in the magnetic field, which induces an electric field in the frame of reference
where the acceleration is observed.

2.2.3 Potentials

Equation ∇ ·B = 0 implies that there is a vector potential A, for which B = ∇×A. Inserting
A into Faraday’s law we find

∇× (E+∂A/∂ t) = 0 (2.30)

⇒
E = −∂A/∂ t −∇ϕ , (2.31)

where ϕ is the scalar potential.
Thus we have expressed six variables (E, B) using four functions (A, ϕ). For this we

needed four components of Maxwell’s equations. The remaining four equations are now

∇2ϕ +
∂ (∇ ·A)

∂ t
= −ρ/ε0 (2.32)

∇2A− 1
c2

∂ 2A

∂ t2 −∇(∇ ·A+
1
c2

∂ϕ
∂ t

) = −μ0J . (2.33)
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At first these look more complicated than the original equations, but they are much easier
to solve analytically. The point is that E and B are derivatives of the scalar and vector
potentials and there is quite a lot of freedom to transform the potentials keeping their
derivatives unchanged. Such transformations are called gauge transformations. There are
several gauge functions Ψ to define the transformations

A → A′ = A+∇Ψ (2.34)
ϕ → ϕ ′ = ϕ −∂Ψ/∂ t . (2.35)

The Lorenz1 gauge is defined by

∇ ·A′ +
1
c2

∂ϕ ′

∂ t
= 0 . (2.36)

This gauge always exists but is not unique. It transforms the Maxwell equations to inho-
mogeneous wave equations

(∇2 − 1
c2

∂ 2

∂ t2 )ϕ = −ρ/ε0 (2.37)

(∇2 − 1
c2

∂ 2

∂ t2 )A = −μ0J . (2.38)

The solutions of which are the retarded potentials

ϕ(r, t) =
1

4πε0

∫ ρ(r′, t −R/c)
R

d3r′ (2.39)

A(r, t) =
μ0

4π

∫
J(r′, t −R/c)

R
d3r′ , (2.40)

where R = |r− r′| and integrations are over the volume where the source terms are not
zero. Thus we have solved Maxwell’s equations for given ρ and J.

In terms of special relativity the wave equations are actually the time and space com-
ponents of the wave equation for the four-vector Aα(ϕ/c,A)

∂ 2Aα ≡
(

∇2 − 1
c2

∂ 2

∂ t2

)
Aα = −μ0 jα , (2.41)

where jα = (cρ, J) is the four-current.

Feed your brain by deriving the expressions for the retarded potentials

1 This is not a spelling error. The first person to apply this method was Ludvig V. Lorenz (1829–1891) in
1867, not the much more famous Hendrik A. Lorentz (1853–1928).
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Example: The radiation terms of the electromagnetic fields

Denote the retarded quantities by brackets [ f ] = f (r′, t−R/c) and calculate the fields from
the potentials. This results in

E =
1

4πε0

{∫ [ρ]R
R3 d3r′ +

1
c

∫ (
2[J] ·RR

R4 − [J]
R2

)
d3r′

+
1
c2

∫ (
([J̇]×R)×R

R3

)
d3r′

}
(2.42)

B =
μ0

4π

{∫ [J]×R

R3 d3r′ +
1
c

∫ [J̇]×R

R2 d3r′
}

, (2.43)

where the dot above J denotes the time derivative. Far from the sources (R → ∞) the
radiation terms dominate

Erad =
1

4πε0c2

∫ ([J̇]×R)×R

R3 d3r′ (2.44)

Brad =
1

4πε0c3

∫ [J̇]×R

R2 d3r′ . (2.45)

Erad and Brad vanish as 1/R. The fields due to static currents and charges vanish as 1/R2

or faster. Radiation requires temporal variation of J and a charge moving with a constant
velocity does not radiate. We will discuss the electromagnetic radiation in more detail in
Chap. 9.

Another important gauge is the Coulomb gauge

∇ ·A′ = 0 . (2.46)

The vector potential is found by transformation

∇2Ψ = −∇ ·A , (2.47)

which defines Ψ uniquely (to an additive constant) when A and ϕ → 0 for r → ∞.
Now the scalar potential

ϕ =
1

4πε0

∫ ρ(r′, t)
R

d3r′ (2.48)

is not retarded but determined by the instantaneous value of ρ everywhere. Thus the
Coulomb gauge is not Lorentz2 covariant and one must be careful when transforming
between moving coordinate systems.

2 Now the credit goes to the right Lorentz
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The vector potential is obtained from the wave equation

∇2A− 1
c2

∂ 2A

∂ t2 =
1
c2 ∇

∂ϕ
∂ t

−μ0J . (2.49)

The first term on the RHS is curl-free. Applying the Helmholtz theorem of vector calculus
we can divide the current to curl-free and source-free components

J = Jl +Jt ; ∇×Jl = 0 ; ∇ ·Jt = 0 ,

where l stands for longitudinal (curl-free) and t for transversal (source-free). The conti-
nuity equation ∂ρ/∂ t +∇ ·J = 0 reduces (2.49) to

∇2A− 1
c2

∂ 2A

∂ t2 = −μ0Jt . (2.50)

Consequently, the Coulomb gauge is called transversal gauge. It is also called radiation
gauge because the vector potential calculated from the transversal current

A(r, t) =
μ0

4π

∫
Jt(r′, t −R/c)

R
d3r′ (2.51)

is sufficient for the calculation of the radiation fields. The Coulomb gauge separates the
electric field to its static (s) and inductive (i) parts

Es = −∇ϕ ; Ei = −∂A/∂ t , (2.52)

but this separation is not Lorentz covariant.
The Coulomb gauge is technically easier to use than the Lorenz gauge. It is particularly

useful when no sources are present. Then ϕ = 0 and

E = −∂A/∂ t ; B = ∇×A . (2.53)

This is sometimes called the temporal gauge. It is useful, e.g., in studies of Alfvén waves
and wave–wave interactions.

For specific purposes there are several other useful potential presentations. Plasmas are
often embedded in a background magnetic field created by external currents (∇×B = 0,
e.g., the intrinsic magnetic field of a planet). Then the magnetic field can be expressed in
terms of the magnetic scalar potential as

B = −∇ψ . (2.54)

Because ∇ ·B = 0, ψ can be solved from the Laplace equation

∇2ψ = 0 (2.55)

using familiar potential theory methods.
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Another representation of the magnetic field is in terms of Euler potentials (α,β ,χ) as

A = α∇β +∇χ (2.56)

⇒
B = ∇×A = ∇× (α∇β +∇χ) = ∇α ×∇β . (2.57)

Note that B is perpendicular to both ∇α and ∇β , and α and β are constants along the
magnetic field. Thus the magnetic field line can be visualized as the intersection line of
α = const. and β = const. This presentation is particularly useful in problems where tracing
of magnetic field lines is required.

2.2.4 Energy conservation

The energy conservation of electromagnetic fields is expressed by the Poynting theorem.
In a linear medium the energy densities of electric and magnetic fields are given by

wE =
1
2

E ·D (2.58)

wM =
1
2

H ·B =
1
2

J ·A . (2.59)

Define the Poynting vector as S = E×H. From Maxwell’s equations we find

∇ ·S = −E ·J−E · ∂D

∂ t
−H · ∂B

∂ t
. (2.60)

The Poynting theorem is the integral of this expression over volume

−
∫

J ·Ed3r =
∫

∇ ·Sd3r +
∫ ∂

∂ t
(wE +wM)d3r . (2.61)

The LHS is the work performed by the electromagnetic field per unit time (i.e., power) in
volume . The first term on the RHS is

∮
∂ S ·da, i.e., the energy flux per unit time through

the surface ∂ . Thus the Poynting vector gives the flux of electromagnetic energy density.
The last term on the RHS expresses the rate of change of the electromagnetic energy in
volume .

In the following we often assume that the fields have harmonic time or space depen-
dence (∝ exp(−iωt), exp(ik · r)), or both in the case of plane waves. For complex fields
one must be careful with products. We interpret the real part of the complex vector as the
physical field. For example, consider an electric field with harmonic time dependence

E(r, t) = Re{E(r)exp(−iωt)} =
1
2

[E(r)exp(−iωt)+E∗(r)exp(iωt)] .

Denote the complex conjugate by cc. The product of E and J is
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J ·E =
1
4

[J(r)exp(−iωt)+ cc] · [E(r)exp(−iωt)+ cc]

=
1
2

Re{J∗(r) ·E(r)+J(r) ·E∗(r)exp(−2iωt)} . (2.62)

The time average of this is

〈J ·E〉 =
1
2

Re{J∗ ·E} . (2.63)

The Poynting theorem now reads as

1
2

∫
J∗ ·Ed3r +

∮
∂

S ·da+2iω
∫

(wE +wM)d3r = 0 . (2.64)

Note that S = 1
2 E×H∗ ; wE = 1

4 E ·D∗ ; wM = 1
4 H ·B∗ .

Using the Poynting vector we can express the momentum density of the electromagnetic
field as

p̂ = D×B = μ0ε0S (2.65)

when the momentum of the field is

p f ield =
∫

D×Bd3r . (2.66)

The elements of the Maxwell stress tensor are

Ti j = EiD j +BiHj − 1
2

(E ·D+B ·H)δi j . (2.67)

With this we can express the conservation of momentum as

d
dt

(pmech +p f ield)i = ∑
j

∫ ∂
∂x j

Ti j d3r =
∮

∂
∑

j
Ti jn j da ; (2.68)

where the mechanical force is the Lorentz force

dpmech

dt
=

∫
(ρE+J×B)d3r . (2.69)

2.2.5 Charged particles in electromagnetic fields

In a homogeneous static magnetic field in absence of an electric field the equation of
motion of a charged particle

m
dv

dt
= q(v×B) (2.70)

has a solution with constant speed along the magnetic field and circular motion around the
magnetic field line with the angular frequency

ωc =
qB
m

. (2.71)
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The radius of the circular motion (Larmor radius, cyclotron radius, gyro radius) is

rL =
v⊥
|ωc| =

mv⊥
|q|B , (2.72)

where v⊥ =
√

v2
x + v2

y is the velocity perpendicular to the magnetic field. The gyro period
is

τL =
2π
|ωc| . (2.73)

Looking along the magnetic field, the particle rotating clockwise has a negative charge. In
plasma physics this is the convention of right-handedness.

This way we have decomposed the velocity to a constant speed v‖ along the field and
circular velocity v⊥ perpendicular to the field. The sum of these components is a helical
motion with the pitch angle α defined as

tanα = v⊥/v‖ . (2.74)

Hannes Alfvén realized that this decomposition is convenient even in temporally and
spatially varying fields if the variations are slow compared to the gyro motion. The method
is called guiding center approximation. The center of the gyro motion is the guiding center
(GC) and the frame of reference where v‖ = 0 is the guiding center system (GCS).

In the GCS the charge gives rise to a current I = q/τL with the associated magnetic
moment

μ = Iπr2
L =

1
2

q2r2
LB

m
=

1
2

mv2
⊥

B
=

W⊥
B

. (2.75)

The magnetic moment is actually a vector

μμμμμ =
1
2

qrL ×v⊥ , (2.76)

which is always opposite to the ambient magnetic field. Charged particles tend to weaken
the magnetic field and thus plasma can be considered as a diamagnetic medium.

If there is also a constant electric field, the GC drifts perpendicular to both the electric
and magnetic fields with the velocity

vE =
E×B

B2 . (2.77)

This is called electric drift or E×B drift. The drift velocity is independent of the charge
and mass of the particle.

The E×B drift corresponds to the Lorentz transformation to the frame co-moving with
the GC

E′ = E+v×B . (2.78)

In this frame E’ = 0 ⇒ E = −v×B, from which we find the solution (2.77) for v. This
coordinate transformation is possible for all sufficiently weak forces F⊥ resulting in a
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general expression for the drift velocity

vD =
F⊥×B

qB2 . (2.79)

This requires F/qB � c. If F � qcB, the GC approximation cannot be used.
From (2.79) we readily find the gravitational drift velocity

vg =
mg×B

qB2 ∝
m
q

. (2.80)

Gravity separates particles according to their m/q , not in the direction of the gravitational
force but perpendicular to it and to B.

The same formalism applies to a slowly time varying electric field if we assume the
magnetic field to be constant. This results in the polarization drift

vP =
1

ωcB
dE⊥
dt

. (2.81)

We will discuss inhomogeneous magnetic fields and rapidly time varying electric fields
in Chap. 3.

2.3 Tools of Statistical Physics

Plasma physics is sometimes considered as applied electrodynamics. Equally well it could
be characterized as statistical physics of charged particles. The computation of the motion
of all plasma particles from Maxwell’s equations and the Lorentz force is an impossible
task. Fortunately, we do not always need to know the details of individual particles, but we
are interested in the macroscopic properties of the gas or fluid (density, flux, flow velocity,
temperature, pressure, heat flux, etc.) and their evolution in space and time. To handle this
we need tools of statistical physics.

2.3.1 Plasma in thermal equilibrium

There are different ways to find the fundamental plasma equations. Here we start from
equilibrium statistical mechanics. Let there be N particles in the plasma (N/2 electrons,
N/2 singly-charged ions). Assume that the plasma is in thermal equilibrium at the tem-
perature T . The probability of finding the particles in locations (r1, ...,rN) is given by the
Gibbs distribution

D(r1, ...,rN) =
1
Z

exp
(
−∑k ∑i>k Wik

kBT

)
, (2.82)

where
Wik =

qiqk

4πε0|ri − rk| +ϕext
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and

Z =
∫

exp
(
−∑k ∑i>k Wik

kBT

)
d3r1...d3rN .

Z is the partition function and ϕext describes the potential energy of all external fields.
The probability of finding particle 1 at r1 is

F1(r1) =
∫

D d3r2...d3rN . (2.83)

If there are no external forces, F1 = 1/ ( is the volume). Correspondingly, the proba-
bility of finding particle 1 at r1 and particle 2 at r2 is

F2(r1,r2) =
∫

D d3r3...d3rN (2.84)

and so on
Fs(r1, ...,rs) =

∫
D d3rs+1...d3rN . (2.85)

Functions F1, ...,Fs are called reduced distributions. At the limit of non-interacting parti-
cles (Wik → 0)

Fs → F1(r1)F1(r2) · · ·F1(rs) = 1/ s . (2.86)

The reduced distributions can be written using the Mayer cluster expansion (we use the
notation: r1 → 1 when there is no risk of confusion):

F2(1,2) = [1+P12(1,2)]F1(1)F1(2)
F3(1,2,3) = [1+P12(1,2)+P12(2,3)+P12(1,3)+T123(1,2,3)]×

F1(1)F1(2)F1(3) (2.87)

and so on. P12 is the two-particle (or pair) correlation function and T123 is the three-
particle correlation function. At the plasma limit (Λ � 1) the Coulomb interaction is
weak and T123 � P12 � 1. Thus it is usually sufficient to consider pair correlations only.
Note that P is symmetric: P12(1,2) = P12(|r1 − r2|).

The complete Gibbs distribution depends also on velocity:

D∗(r1, ...,rN ,v1, ...,vN) =
1

Z∗ exp
(
−∑k ∑i>k Wik

kBT

)
exp

(
−∑i

1
2 miv2

i

kBT

)
. (2.88)

In this book we will consider non-relativistic plasmas only and can neglect the velocity
correlations. The relativistic particles encountered in radiation belts or in solar energetic
particle events can be treated as test particles and are not assumed to have significant
effects on the macroscopic quantities. Of course, there are relativistic plasmas in the uni-
verse. For example, in the magnetospheres of pulsars not only relativistic but also quantum
effects become important. Quantum fluctuations produce electron–positron pairs, which
annihilate and radiate 511-keV gamma rays.
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Differentiating Fs, setting s = 2, and assuming T123 � P12 we can derive the equation
for P12

∂P12

∂r1
+

1
4πε0kBT

∂
∂r1

(
q1q2

|r1 − r2|
)

+ (2.89)

1
4πε0kBT ∑

α

Nα

V

∫
[P12(2,α)+P12(1,α)]

∂
∂r1

(
q1qα

|r1 − rα |
)

d3rα = 0 ,

where α indexes the particle species. This equation can be solved by Fourier transforma-
tion. The result is

P12(|r1 − r2|) = − q1q2

4πε0kBT
exp(−|r1 − r2|/λD)

|r1 − r2| , (2.90)

where we again encounter the Debye shielding. The assumption P12 � 1 is valid if
|r1 − r2| > λD . The Mayer expansion is valid also inside the Debye sphere, where
P12 ∝ 1/|r1 − r2| as long as the distance |r1 − r2| remains larger than the average distance
between particles in temperature T .

From this description it is possible to derive equilibrium thermodynamic properties of
the plasma. For example, in the plasma approximation (Λ � 1) the equation of state is
practically that of the ideal gas

P = nkBT +O
(

1
Λ

)
. (2.91)

Unfortunately, due to the small collision rates space plasmas seldom are in thermal
equilibrium and we must look for a more general approach.

2.3.2 Derivation of Vlasov and Boltzmann equations

There are two main roads to the Boltzmann equation for a plasma. Consider first the
Klimontovich approach. It starts from the exact density of particles in the six-dimensional
phase space (r,v). Consider a single particle whose orbit in this space is (R1(t),V1(t)).
The “density” of this particle is

N(r,v, t) = δ [r−R1(t)]δ [v−V1(t)] , (2.92)

where δ is Dirac’s delta function.3

Summing over all particles of a given species α we get the density function Nα for
the species. Writing the equation of motion under the Lorentz force for each particle and
summing over particles of a given species leads to the Klimontovich equation for Nα

∂Nα

∂ t
+v · ∂Nα

∂r
+

qα

mα
(E+v×B) · ∂Nα

∂v
= 0 . (2.93)

3 Dirac’s delta is not really a function, being infinite at one point and zero elsewhere, but we prefer to use
in this context the sloppy language of physicists.
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This is still a very detailed equation containing exact information of the orbits of all par-
ticles. Nα is composed of sums of δ -functions, which makes practical calculations cum-
bersome. Because we are not interested in the orbits of individual particles, we can take
ensemble averages of Nα and of equation (2.93). Denoting the average of Nα(r,v, t) by
fα(r,v, t) and neglecting the particle collisions, the ensemble averaging of (2.93) leads to
the Vlasov equation for fα

∂ fα

∂ t
+v · ∂ fα

∂r
+

qα

mα
(E+v×B) · ∂ fα

∂v
= 0 . (2.94)

Another route is the Liouville approach. It starts from distribution functions and
avoids δ -functions and ensemble averaging. Consider a general distribution of N parti-
cles F(r1, ...,rN ;v1, ...,vN ; t) , which is normalized as

∫
F d3r1 · · ·d3rN d3v1 · · ·d3vN = 1.

For a plasma of N/2 ions and N/2 electrons in thermodynamic equilibrium F = D, where
D is the Gibbs distribution of the previous section.

The penalty of avoiding δ -functions is to deal with a 6N-dimensional phase space. F
contains information of all particles and is again much too detailed for practical use. A set
of reduced distribution functions can be defined as follows. The one-particle distribution
function f (1)

α for species α is

f (1)
α (r1,v1, t) =

∫
F d3r2 · · ·d3rNd3v2 · · ·d3vN . (2.95)

is the finite spatial volume where F is nonzero for all r1,r2, ...,rN . The two-particle
distribution function is

f (2)
αβ (r1,r2,v1,v2, t) = 2

∫
F d3r3 · · ·d3rNd3v3 · · ·d3vN (2.96)

and so on. Statistical physics tells us that F fulfills the Liouville equation

∂F
∂ t

+
N

∑
i=1

(
∂F
∂ri

·vi +
∂F
∂vi

·aT
i

)
= 0 , (2.97)

where aT
i is the acceleration by all interactions, including collisions.

The equation of motion for f (1)
α is found by integrating (2.97) over all coordinates

except (r1,v1)

∂ f (1)
α

∂ t
+v1 · ∂ f (1)

α
∂r1

+
∫

aT
i · ∂F

∂v1
d3r2 · · ·d3rN d3v2 · · ·d3vN = 0 . (2.98)

Here the total number of particles was assumed to be conserved.
If there are external forces (aE

1 ) only, we again get the Liouville equation

∂ f (1)
α

∂ t
+v1 · ∂ f (1)

α
∂r1

+aE
1 · ∂ f (1)

α
∂v1

= 0 . (2.99)
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Denote the interactions between particles by ai j. Now the third term of (2.98) reduces to

aE
1 · ∂ f (1)

α
∂v1

+∑
β

∫
a1β · ∂

∂v1
f (2)
αβ (r1,rβ ,v1,vβ , t)d3rβ d3vβ .

Note that (2.98) is not a closed equation for f (1), as it depends on f (2). We could write a
similar equation for f (2), which then depends on f (3), and so on. This is called the BBGKY
hierarchy (after Bogoliubov, Born, Green, Kirkwood, and Yvon). In higher orders this
hierarchy becomes intractable and the series must be truncated with physical arguments.
We do it by approximating f (2).

If the interactions between particles were strong and of short-range (as in ordinary
gases) we would end up with the Boltzmann equation

d f (1)
α

dt
≡ ∂ f (1)

α
∂ t

+v1 · ∂ f (1)
α

∂r1
+aE

1 · ∂ f (1)
α

∂v1
=

(
∂ f (1)

α
∂ t

)
c

. (2.100)

However, in a plasma the dominating interaction is the long-range Coulomb force, which
is, in this context, weak. Fortunately, in a plasma the combined effect of remote charges
is, on the average, stronger than the acceleration due to the nearest neighbor. The average
acceleration 〈aint〉 is from the viewpoint of a single particle the same as the acceleration by
the external Coulomb force aE . Thus we can replace a1 = aE

1 + 〈aint〉. The effect of binary
collisions is (

∂ f (1)
α

∂ t

)
c

= −∑
β

∫ (
a1β −〈aint

1β 〉
)
· ∂

∂v1
f (2)
αβ d3rβ d3vβ . (2.101)

Assuming that the only external force is the Lorentz force we have the Boltzmann equation
for plasma

∂ f (1)
α

∂ t
+v1 · ∂ f (1)

α
∂r1

+
qα

mα
〈E+v1 ×B〉 · ∂ f (1)

α
∂v1

=

(
∂ f (1)

α
∂ t

)
c

, (2.102)

where the average fields 〈E〉 and 〈B〉 fulfill the average Maxwell equations

∇ · 〈E〉 =
ρ
ε0

; ∇×〈B〉 = μ0J+
1
c2

∂ 〈E〉
∂ t

. (2.103)

Note that the normalization of f (1)
α is different from the normalization of the distribution

function fα in the Vlasov equation (2.94). We retain the same plasma kinetic equation
by substitution fα = (Nα/ ) f (1)

α .
A thorough treatment of the collision term is a substantial task. The interested reader is

encouraged to consult advanced text-books on Balescu–Lenard and Fokker–Planck equa-
tions. We will discuss some elements of the Fokker–Planck theory in Chap. 10. Note that
the interparticle collisions may be of very variable nature. They may be elastic, but the
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kinetic energy of a colliding plasma particle may also be transferred to internal energy of
neutral particles or molecular ions of the plasma. Furthermore, there are collisions leading
to recombination, ionization, and charge exchange, which are important processes associ-
ated with space storms.

A simple and often sufficient first approximation for the collision term is the relaxation
time approximation, also called the Krook model where the average collision frequency is
approximated by a constant νc and(

∂ fα

∂ t

)
c
= −νc( f − f0) . (2.104)

where f0 is the equilibrium distribution and | f − f0| � f0 . Note that the equilibrium here
is a wider concept than a Maxwellian distribution. It is enough that f0 is a stable solution
of the Vlasov equation.

2.3.3 Macroscopic variables

The Vlasov and Boltzmann equations are equations of motion for the single particle dis-
tribution function f (r,v, t). The function expresses the number density of particles in a
volume element dxdydzdvx dvy dvz of a six-dimensional phase space (r,v) at the time t
(thus the SI units of f are m−6 s3). In the following we use the normalization∫ ∫

v
f (r,v, t)d3rd3v = N , (2.105)

where N is the number of all particles in the phase space volume considered.
The average density in volume is 〈n〉 = N/ . However, the particle density is usu-

ally a function of space and time. It is defined as the zero order velocity moment of the
distribution function

n(r, t) =
∫

f (r,v, t)d3v . (2.106)

We define the macroscopic quantities as velocity moments of the distribution function∫
f d3v ;

∫
v f d3v ;

∫
vv f d3v .

In a plasma different particle populations (labeled by α) may have different distribu-
tions and thus have different velocity moments (nα(r, t), etc.). If the particles of a species
are charged with charge qα , the charge density of the species

ρα = qα nα . (2.107)

The first-order moment yields the particle flux

Γα(r, t) =
∫

v fα(r,v, t)d3v . (2.108)

Dividing this by particle density we get the average velocity
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Vα(r, t) =
∫

v fα(r,v, t)d3v∫
fα(r,v, t)d3v

, (2.109)

from which we can further determine the current density

Jα(r, t) = qαΓα = qα nα Vα . (2.110)

In the second order we find the pressure tensor

α(r, t) = mα

∫
(v−Vα)(v−Vα) fα(r,v, t)d3v , (2.111)

which in a spherically symmetric case reduces to the scalar pressure

Pα =
mα

3

∫
(v−Vα)2 fα(r,v, t)d3v = nα kBTα . (2.112)

Here we introduce the concept of temperature Tα . In the frame moving with the velocity
V the temperature is given by

3
2

kBTα(r, t) =
mα

2

∫
v2 fα(r,v, t)d3v∫

fα(r,v, t)d3v
, (2.113)

which for a Maxwellian distribution is the temperature of classical thermodynamics. In
collisionless plasmas equilibrium distributions may be far from Maxwellian. Thus temper-
ature is a non-trivial concept in plasma physics.

Train your brain

Show that a spherically symmetric (in the velocity space) distribution function fα(r,v, t)
yields an isotropic pressure Pα i j = pα δi j. What kind of distribution function yields the
diagonal gyrotropic form

Pα i j = p⊥δi j +(p‖ − p⊥)δ3iδ3 j ?

What is the value of scalar pressure p in this case? Here the “parallel” direction (e.g.,
the direction of background magnetic field) is assumed to be in the direction of the axis
number 3.

The relation between the particle pressure and magnetic pressure (magnetic energy den-
sity) is the plasma beta

β =
2μ0 ∑α nα kBTα

B2 . (2.114)

If β > 1, plasma governs the evolution of the magnetic field. If β � 1, the magnetic field
determines the plasma dynamics. Values of beta are very different and highly variable in
various landscapes of space storms. In the solar photosphere beta varies from 1 to 100.
In the lower corona it is of the order of 10−4–10−2 and higher up it starts rising again to
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be around 1 in the solar wind, but also there with large variations. In the Earth’s magne-
tosphere the lowest beta values (β ∼ 10−6) are found in the auroral region magnetic field
lines at altitudes of a few Earth radii. In the tail plasma sheet β ∼ 1, but in the tail lobes it
is some 4 orders of magnitude smaller.

The chain of moments continues to higher orders. The third order introduces the heat
flux , i.e., temperature multiplied by velocity. It can usually be neglected in the magneto-
sphere but is very important at the solar end of space storms.

2.3.4 Derivation of macroscopic equations

Next we derive macroscopic equations by taking velocity moments of the Boltzmann equa-
tion. For the needs of many space applications we could start from the Vlasov equation,
but retaining the collision term gives us a more complete macroscopic theory. When not
needed, the collision effects can be dropped at the macroscopic level.

We start from the Boltzmann equation for species α

∂ fα

∂ t
+v · ∂ fα

∂r
+

qα

mα
(E+v×B) · ∂ fα

∂v
=

(
∂ fα

∂ t

)
c

. (2.115)

Zeroth moment

We first integrate (2.115) over the velocity space. For physical distributions fα → 0, when
|v| → ∞, and the force term vanishes in the integration. If there are no ionizing nor recom-
bining collisions, or charge-exchange collisions between ions and neutrals, the zero-order
moment of the collision term is also zero. The integral of the first term of (2.115) yields
the time derivative of density. The second term is of the first order in velocity∫

v · ∂ fα

∂r
d3v = ∇ ·

∫
v fα d3v = ∇ · (nα Vα) (2.116)

and we have found the equation of continuity

∂nα

∂ t
+∇ · (nα Vα) = 0 . (2.117)

Continuity equations for charge or mass densities are obtained by multiplying (2.117)
by qα or mα , respectively. The equation of continuity is an example of the general form of
a conservation law

∂F
∂ t

+∇ ·G = 0 , (2.118)

where F is the density of a physical quantity and G the associated flux.

First moment

Multiply (2.115) by mα v and integrate over v. This yields the momentum transport equa-
tion, which actually is the macroscopic equation of motion
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nα mα
∂Vα

∂ t
+ nα mα Vα ·∇Vα − nα qα〈E+Vα ×B〉 + ∇ · α

= mα

∫
v

(
∂ fα

∂ t

)
c

d3v . (2.119)

Train your brain

Make a careful derivation of Eq. (2.119). You need to apply the continuity equation.

The average electric and magnetic fields in (2.119) are determined by both internal and
external sources and fulfill the average Maxwell equations

∇ · 〈E〉 = ∑
α

nα qα

ε0
+ρext/ε0 (2.120)

∇×〈B〉 =
1
c2

∂ 〈E〉
∂ t

+ μ0 ∑
α

nα qα Vα + μ0Jext . (2.121)

Because collisions transport momentum between different plasma populations, the col-
lision integral does not vanish, except for collisions between the same type of particles.
The collision term is a complicated function of velocity. A useful approximation related to
the Krook model (2.104) is

mα

∫
v

(
∂ fα

∂ t

)
c

d3v = −∑
β

mα nα(Vα −Vβ )
〈
ναβ

〉
, (2.122)

where 〈ναβ 〉 is the average collision between particles of type α and β .
The second-order contributions Vα ·∇Vα and α arise from terms containing products

vv or v ·v. The divergence of α contains information of inhomogeneity and viscosity of
the plasma. Note that α is not independent of the collisions. For example, if the collisions
are frequent enough, the pressure tensor becomes diagonal, or even isotropic in which case
∇ · → ∇P.

Second moment

The second velocity moment yields the energy or heat transport equation (conservation
law of energy). We can write the equation in the form

3
2

nα kB

(
∂Tα

∂ t
+Vα ·∇Tα

)
+Pα ∇ ·Vα =

−∇ ·Hα − ( ′
α ·∇) ·V+

∂
∂ t

(
nα mαV 2

α
2

)
c

, (2.123)
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where the isotropic part of the pressure Pα is written on the LHS and the non-isotropic
part ′

α on the RHS. The relation between the scalar pressure Pα and temperature Tα is
assumed to be that of an ideal gas Pα = nα kBTα .

The third-order term Hα describes the heat flux. An equation for it is found by taking the
third moment. This contains fourth-order contributions, and so on. The chain of equations
must again be truncated at some point, just as was done in the case of kinetic equations.
In many practical problems this is made in the second order, either by neglecting the heat
flux, or by substituting the energy equation by an equation of state. Here physical insight
is essential. Krall and Trivelpiece [1973] state this: “The fluid theory, though of great
practical use, relies heavily on the cunning of its user”. In collisional and Maxwellian
plasmas the truncation may be easy to motivate, but in collisionless space plasmas it is a
more subtle issue.

2.3.5 Equations of magnetohydrodynamics

Now we have macroscopic equations for each plasma species. In a real plasma several
species co-exist; in addition to electrons and protons, there may be a variety of heavier
ions, as well as neutral particles, which may contribute to plasma dynamics through colli-
sions, including charge-exchange processes (e.g., Sect. 14.1.4). Sometimes it is also nec-
essary to consider different species of the same type of particles; e.g., in the same spatial
volume there may be two electron populations of widely different temperatures or average
velocities. Such situations often give rise to plasma instabilities to be discussed in Chap. 7.

As the first step toward a single-fluid theory it is useful to consider all electrons as one
fluid and all ions as another. This is called a two-fluid model. The separate fluid components
interact through collisions and electromagnetic interaction. In the following derivation of
the single-fluid theory, it may be practical to think only two components although we have
written the expressions for an arbitrary number of species.

Magnetohydrodynamics (MHD) is probably the most widely known plasma theory. In
MHD the plasma is considered as a single fluid in the center-of-mass (CM) frame. This is
a well-motivated approach in collision-dominated plasmas, where the collisions constrain
the plasma particles to follow each other closely and thermalize the distribution toward a
Maxwellian, which makes the interpretation of velocity moments straightforward. MHD
works also remarkably well in collisionless tenuous space plasmas. However, great care
should be exercised both with interpretation and approximations.

The single-fluid variables are defined as:

mass density
ρm(r, t) = ∑

α
nα mα , (2.124)

charge density
ρq(r, t) = ∑

α
nα qα (2.125)

(= e(ni −ne) for singly charged ions and electrons) ,



2.3 Tools of Statistical Physics 83

macroscopic velocity

V(r, t) = ∑α nα mα Vα

∑α nα mα
, (2.126)

current density
J(r, t) = ∑

α
nα qα Vα , (2.127)

and pressure tensor in the CM frame

CM
α (r, t) = mα

∫
(v−V)(v−V) fα d3v , (2.128)

from which we get the total pressure

(r, t) = ∑
α

CM
α (r, t) . (2.129)

Summing the individual continuity and momentum transport equations over particle
species yields the continuity equations

∂ρm

∂ t
+∇ · (ρmV) = 0 (2.130)

∂ρq

∂ t
+∇ ·J = 0 (2.131)

and the momentum transport equation

ρm

(
∂V

∂ t
+V ·∇V

)
= ρqE+J×B−∇ · . (2.132)

The momentum equation corresponds to the Navier–Stokes equation of hydrodynamics
(6.2) where the viscosity terms are written explicitly (here they are hidden in ∇ · ).
At macroscopic level the deviations from charge neutrality are small and ρqE is usually
negligible. The magnetic part of the Lorentz force J × B (sometimes called Ampère’s
force) is, however, essential in the theory of magnetic fluids.

Ohm’s law in fluid description is a more complicated issue. In the particle picture the
plasma current is the sum of all charged particle motions. In a single-fluid theory the
current transport equation is derived by multiplying the momentum transport equations
of each particle population by qα/mα and summing over all populations. In the two-fluid
case (e, i) we get

∂J

∂ t
+∇ · (VJ+JV−VVρq) = ∑

α

nα q2
α

mα
E

+
(

e2

me
+

e2

mi

)
ρmV×B

me +mi
−

(
emi

me
− eme

mi

)
J×B

me +mi
(2.133)

− e
me

∇ ·
(

CM
i

me

mi
− CM

e

)
+∑

α

∫
qα v

(
∂ fα

∂ t

)
c
d3v ,
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where the products VJ, etc., are cartesian tensors (dyads) with elements ViJk, and the
divergence of a dyad is a vector, e.g., with components ∑i ∂iViJk. This equation expresses
the relationship between the electric current and the electric field. Thus it can be called
generalized Ohm’s law.

The first step to simplify (2.133) is to approximate the collision integral introducing a
constant collision frequency ν

∑
α

∫
qα v

(
∂ fα

∂ t

)
c
d3v = −νJ . (2.134)

Defining the conductivity by σ = ne2/νme and neglecting all derivatives and the magnetic
field in (2.133) we get the familiar form of Ohm’s law J = σE.

Not all terms in the generalized Ohm’s law are equally important. There are some that
clearly are smaller than the others (e.g. ∝ me/mi). Furthermore, the derivatives of the
second-order terms VJ, JV and VV can usually be neglected. At this level we have the
generalized Ohm’s law in the form that contains the most important terms for space plas-
mas:

E+V×B =
J

σ
+

1
ne

J×B− 1
ne

∇ · e +
me

ne2
∂J

∂ t
. (2.135)

Assume further so slow temporal changes and large spatial gradient scales that |J×B|,
|∂J/∂ t|, and |∇ · | are all smaller than |V×B|. This leaves us with the standard form of
Ohm’s law in MHD

J = σ(E+V×B) , (2.136)

which already familiar from elementary electrodynamics in cases when moving frames are
taken into account. Here the moving frame is attached to the fluid flow with the velocity
V. If the conductivity is very large, we find Ohm’s law of the ideal MHD

E+V×B = 0 . (2.137)

The road from the Liouville or Klimontovich equations to this simple equation is long
and there are several potholes on the road. For example, while the ideal MHD is a reason-
able starting point, it is not at all clear that the next term to take into account should be
J/σ . In many space applications the Hall term J×B/ne and the pressure term ∇ · /ne
are more important.

There are effects that originate at the microscopic level, which are not due to actual
interparticle collisions, but which may lead to “effective” resistivity or viscosity at the
macroscopic level. Various wave–particle interactions and microscopic instabilities tend to
inhibit the current flow. Often the macroscopic effect of these processes looks analogous
to finite ν and is called anomalous resistivity.4

Another issue is that plasma does not need to exhibit a local Ohm’s law at all. In tenuous
space plasmas it may happen that there are not enough current carriers to satisfy ∇ ·J = 0
without extra acceleration of the charges. An example is the magnetic field-aligned po-

4 This is one more example of unfortunate terminology. There is nothing anomalous in the physics behind
the non-collisional resistivity.
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tential drop above the discrete auroras. The coupling between the ionosphere and magne-
tosphere requires more upward field-aligned current to be drawn through this region than
there are electrons readily available from the magnetosphere. The global plasma system re-
acts to this by setting up an upward-directed electric field to accelerate electrons to so high
velocities that the current continuity is maintained. This results in a global current–voltage
relationship, which Knight [1973] derived into the form

J‖ = −en

√
kBTe

2πme

BI

BE

[
1−

(
1− BE

BI

)
exp

(
− e	ϕ

kBTe(BI/BE −1)

)]
. (2.138)

Here BI is the magnetic field in the ionosphere, BE in the equatorial plane in the mag-
netosphere and 	ϕ the potential difference between them. At the limit e	ϕ/kBT �
(BI/BE −1) this reduces to

J‖ = K
(
	ϕ +

kBTe

e

)
, (2.139)

which is often approximated as the direct linear relationship between the current and volt-
age of the form

J‖ = K	ϕ . (2.140)

This last form is known as the Knight relation. The coefficient K is a function of plasma
parameters and thus not a universal constant.

Feed your brain

The current–voltage relationship is actually not quite as simple as given above. Read
carefully the paper by Janhunen and Olsson [1998] and fill in the gaps in their deriva-
tions.

The next equation in the velocity moment chain is the energy transport equation. After
some tedious but straightforward calculation the energy equation can be written in the
conservation form

∂
∂ t

[
ρm

(
V 2

2
+w

)
+

B2

2μ0

]
= −∇ ·H . (2.141)

Here w is the enthalpy that is related to the the internal free energy (per unit mass) of the
plasma u by w = u+P/ρm. The RHS is the divergence of the heat flux vector H, which is
a third-order moment. After some reasonable approximations it can be written as

H =
(

V 2

2
+u+

P+B2/μ0

ρm

)
ρmV− B

μ0

(
V+

J

ne

)
·B

− J×B

σ μ0
+

JB2

μ0ne
+

meB

μ0ne2 × ∂J

∂ t
. (2.142)

When integrated over a finite volume the LHS of (2.141) describes the temporal change
of the energy of the MHD plasma in that volume and the RHS the the energy flux through
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the boundary ∂ and energy losses due to resistivity. Thus we have found the MHD
equivalent of Poynting’s theorem of elementary electrodynamics.

Because the energy equation depends on third-order terms, we do not get a closed
set of MHD equations without some further approximations. Often the chain is cut by
selecting an equation of state. After this the energy equation can be written in a simpler
form. Another frequently adopted approach is to assume an isotropic pressure. We can
start from the ideal gas law P = nkBT and use some of the following equations of state
depending on what kind of processes we are considering:

• adiabatic process

T = T0

(
n
n0

)γ−1

; P = P0

(
n
n0

)γ
, (2.143)

where the polytropic index γ = cp/cv is 5/3 in a three-dimensional plasma and cp and cv
are the specific heat constants for constant pressure and constant volume, respectively.

• isothermal process
the above with γ = 1 ⇒ P = nkBT0

• isobaric process
the above with γ = 0, i.e., constant pressure

• isometric process
the above with γ = ∞, i.e., P ≈ 0, e.g. the case of β � 1 .

Using the equation of state we can write the equations of MHD in the form

∂ρm

∂ t
+∇ · (ρmV) = 0 (2.144)

ρm

(
∂
∂ t

+V ·∇
)

V+∇P−J×B = 0 (2.145)

E+V×B = J/σ (2.146)

P = P0

(
n
n0

)γ
(2.147)

∂B

∂ t
= −∇×E (2.148)

∇×B = μ0J . (2.149)

2.3.6 Double adiabatic theory

Due to the presence of the magnetic field the particle distributions in space plasmas are
not always isotropic and the pressure tensor does not even need to be diagonal. To fully
appreciate the anisotropic effects we need to refer to some concepts to be investigated in
Chap. 3, but their macroscopic consequences are useful to introduce here for completeness
of the present discussion.
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Consider the ideal MHD equations

∂ρm

∂ t
+∇ · (ρmV) = 0 (2.150)

ρm

(
∂
∂ t

+V ·∇
)

V+∇ · −J×B = 0 (2.151)

E+V×B = 0 (2.152)

and assume that the pressure tensor is diagonal and gyrotropic

=

⎛⎝ P⊥ 0
0 P⊥ 0
0 0 P‖

⎞⎠ . (2.153)

Assume further that both the parallel and perpendicular pressures behave adiabatically and
fulfill the ideal gas equation of state

P‖ = nkBT‖ (2.154)
P⊥ = nkBT⊥ . (2.155)

There are one parallel and two perpendicular dimensions. From thermodynamics we
know that the polytropic index depends on the number of dimensions d as γ = (d +2)/d.
Setting γ⊥ = 2 and γ‖ = 3 is, however, wrong because the magnetic field not only breaks the
symmetry of the pressure tensor but also couples the perpendicular motion to the parallel
motion in inhomogeneous plasma (e.g, the mirror force, see Chap. 3).

Assume that the motion of the individual particles is adiabatic, which means that the
magnetic moment μ = W⊥/B is constant. Then the average magnetic moment 〈μ〉 =
kBT⊥/B = P⊥/nB is also constant. This yields the perpendicular equation of state

d
dt

(
P⊥

ρmB

)
= 0 . (2.156)

The parallel direction is more difficult. Chew, Goldberger, and Low developed a theory
[Chew et al, 1956] assuming that the heat flux parallel to the magnetic field is negligible.
This leads to the equation of state

d
dt

(
P2
⊥P‖
ρ5

m

)
=

d
dt

(
P‖B2

ρ3
m

)
= 0 . (2.157)

This anisotropic version of MHD is called double adiabatic theory or CGL theory. Now
the pressure tensor is of the form = P⊥ +(P‖ −P⊥)bb, where b = B/B and is the
unit tensor. The momentum equation separates into two equations

ρm

(
dV

dt

)
⊥

+∇⊥
(

P⊥ +
B2

2μ0

)
− (B ·∇)B

μ0

(
P⊥−P‖
B2/μ0

+1
)

= 0 (2.158)
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ρm

(
dV

dt

)
‖
+∇‖P‖ +(P⊥−P‖)

(
∇B
B

)
‖

= 0 . (2.159)

In the CGL theory the parallel and perpendicular polytropic indices are not constant
numbers. Assuming that p‖ ∝ nγ‖ and p⊥ ∝ nγ⊥ the following relations are found

γ⊥ = 1+
ln(B/B0)
ln(n/n0)

(2.160)

γ‖ = 3−2
ln(B/B0)
ln(n/n0)

, (2.161)

from which
γ‖ +2γ⊥ = 5 . (2.162)

While being related to each other, γ⊥ and γ‖ are spatially varying functions in an inhomo-
geneous plasma.

In space physics the CGL equations (2.158, 2.159) are sometimes useful, e.g., in the
studies of firehose and mirror instabilities (Chap. 7) related to shock waves. However, one
has to be careful with the validity of the approach. For example, the CGL theory predicts
that the temperature depends on the magnetic field as

T⊥ ∝ B ; T‖ ∝ (n/B)2 . (2.163)

For example, direct observations in the magnetic dipole field geometry above the auro-
ral ionosphere show that the perpendicular temperature does not scale as T⊥ ∝ B. Here,
and in many other practical examples, the CGL heat flux argument is not valid. In the
auroral case the particles precipitate to the upper atmosphere carrying energy (heat) with
them. This is actually one of the major sinks of energy associated with space storms in the
magnetosphere, as will be discussed in Chap. 13.


