
Chapter 2
Preliminaries of Nonlinear Dynamics and Chaos

Abstract This chapter provides a brief review of some concepts and tools related to
the subject of the monograph – chaos suppression, chaos synchronization, and chao-
tification. After a quick review of the history of ‘dynamical systems,’ we provide a
summary of important definitions and theorems, including equilibrium points, pe-
riodic orbits, quasiperiodic orbits, stable and unstable manifolds, attractors, chaotic
attractors, Lyapunov stability, orbital stability, and symbolic dynamics, which are
all from the theory of ordinary differential equations and ordinary difference equa-
tions. The results are summarized both for continuous time and for discrete time.
Then, we present three examples for chaotic attractors including the logistic map,
the Lorenz attractor, and the Smale horseshoe. At the end of the chapter, we pro-
vide some necessary definitions and theorems of functional differential equations
(PDEs).

2.1 Introduction

Roughly speaking, a dynamical system consists of two ingredients: a rule or ‘dy-
namics,’ which is described by a set of equations (difference, differential, integral,
functional, or abstract operator equations, or a combination of some of them) and
specifies how a system evolves, and an initial condition or ‘state’ from which the
system starts. A nonlinear dynamical system is a dynamical system described by a
set of nonlinear equations; that is, the dynamical variables describing the properties
of the system (for example, position, velocity, acceleration, pressure, etc.) appear in
the equations in a nonlinear form. The most successful class of rules for describ-
ing natural phenomena are differential equations. All the major theories of physics
are stated in terms of differential equations. This observation led the mathematician
V. I. Arnol’d to comment, ‘consequently, differential equations lie at the basis of
scientific mathematical philosophy’ [2]. This scientific philosophy began with the
discovery of calculus by Newton and Leibniz and continues to the present day. The
theory of dynamical systems grew out of the qualitative study of differential equa-
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tions, which in turn began as an attempt to understand and predict the motions that
surround us such as the orbits of the planets, the vibrations of a string, the ripples on
the surface of a pond, and the forever evolving patterns of the weather. The first two
hundred years of this scientific philosophy, from Newton and Euler to Hamilton and
Maxwell, produced many stunning successes in formulating the ‘rules of the world,’
but only limited results in finding their solutions.

By the end of the 19th century, researchers had realized that many nonlinear dif-
ferential equations did not have explicit solutions. Even the case of three masses
moving under the laws of Newtonian attraction could exhibit very complicated be-
havior and its explicit solution was not possible to obtain (e.g., the motion of the
sun, the earth, and the moon cannot be given explicitly in terms of known func-
tions). Short-term solutions could be given by power series, but these were not use-
ful in determining long-term behavior. The modern theory of nonlinear dynamical
systems began with Poincaré at the end of the 19th century with fundamental ques-
tions concerning the stability and evolution of the solar system. Poincaré shifted
the focus from finding explicit solutions to discovering geometric properties of so-
lutions. He introduced many ideas in specific examples. In particular, he realized
that a deterministic system in which the outside forces are not varying and are not
random can exhibit behavior that is apparently random (i.e., chaotic). Poincaré’s
point of view was enthusiastically adopted and developed by G. D. Birkhoff. He
found many different types of long-term limiting behavior. His work resulted in the
book [4] from which the term ‘dynamical systems’ came. Other people, such as Lya-
punov, Pontryagin, Andronov, Morser, Smale, Peixoto, Kolmogorov, Arnol’d, Sinai,
Lorenz, May, Yorke, Feigenbaum, Ruelle, and Takens, all made important contribu-
tions to the theory of dynamical systems. The field of nonlinear dynamical systems
and especially the study of chaotic systems has been hailed as one of the important
breakthroughs in science in the 20th century. Today, nonlinear dynamical systems
are used to describe a vast variety of scientific and engineering phenomena and have
been applied to a broad spectrum of problems in physics, chemistry, mathematics,
biology, medicine, economics, and various engineering disciplines.

This chapter is a brief review of some concepts and tools related to the subject
of the monograph – chaos suppression, chaos synchronization, and chaotification.
The goal of the chapter is to provide readers with some necessary background on
nonlinear dynamical systems and chaos so as to ease the difficulty when they read
subsequent chapters of this book. Readers interested in the complete theory of dy-
namical systems are recommended to refer to [1, 7, 11, 13, 17].

2.2 Background

Two types of models are extensively studied in the field of dynamical systems: the
continuous-time model and the discrete-time model. Most continuous-time nonlin-
ear dynamical systems are described by a differential equation of the form
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ẋ = f (x,t;μ), (2.1)

with x ∈ U ⊂ R
n, t ∈ R, and μ ∈ V ⊂ R

p, where U and V are open sets in R
n and

R
p. Meanwhile, most discrete-time nonlinear dynamical systems are described by

an equation of the form

x(k + 1) = f (x(k),k;μ), k = 0,1,2, . . . . (2.2)

We refer to (2.1) as a vector field or ordinary differential equation and to (2.2) as
a map or difference equation. By a solution of (2.1) we mean a map, x, from some
interval I ⊂ R into R

n, which is denoted by

x : I → R
n,

t �→ x(t),

such that x(t) satisfies (2.1), i.e.,

ẋ(t) = f (x(t),t;μ).

The map x has the geometrical interpretation of a curve in R
n, and (2.1) gives the

tangent vector at each point of the curve, hence the reason for referring to (2.1) as
a vector field. We will refer to the space of independent variables of (2.1) (i.e., R

n)
as the phase space or state space. One goal of the study of dynamical systems is to
understand the geometry of solution curves in the phase space. It is useful to distin-
guish a solution curve which passes through a particular point in the phase space at
a specific time, i.e., for a solution x(t) with x(t0) = x0. We refer to this as specifying
an initial condition or initial value. This is often included in the expression for a
solution by x(t,t0,x0). In some situations explicitly displaying the initial condition
may be unimportant, in which case we will denote the solution merely as x(t). In
other situations the initial time may be always understood to be a specific value,
say t0 = 0; in this case we would denote the solution as x(t,x0). Similarly, it may
be useful to explicitly display the parametric dependence of solutions. In this case
we would write x(t,t0,x0;μ) or, if we were not interested in the initial condition,
x(t;μ).

Ordinary differential equations that depend explicitly on time (i.e., ẋ = f (x,t;μ))
are referred to as nonautonomous or time-dependent ordinary differential equations
or vector fields, and ordinary differential equations that do not depend explicitly
on time (i.e., ẋ = f (x;μ)) are referred to as autonomous or time-independent ordi-
nary differential equations or vector fields. The same terminology may be used in
the same way for discrete-time systems. It should be noted that a nonautonomous
vector field or map can always be made autonomous by redefining time as a new in-
dependent variable. This is done as follows. For a vector field ẋ = f (x,t), by writing
it as

dx
dt

=
f (x,t)

1
(2.3)
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and using the chain rule, we can introduce a new independent variable s so that (2.3)
becomes ⎧⎪⎪⎨

⎪⎪⎩

dx
ds

≡ ẋ = f (x,t),

dt
ds

≡ ṫ = 1.

(2.4)

If we define y = (x,t)T and f̃ (y) = ( f (x,t),1)T, we see that (2.4) becomes

dy
ds

= f̃ (y), y ∈ R
n+1.

For the map x(k + 1) = f (x(k),k), if we define y(k) = (x(k),k)T and f̃ (y) =
( f (x(k),k),k + 1)T, we get the autonomous system under the new phase space

y(k + 1) = f̃ (y(k)), y ∈ R
n+1.

So, it is generally sufficient to consider autonomous systems

ẋ = f (x), x ∈ R
n, (2.5)

and
x(k + 1) = g(x(k)), x ∈ R

n. (2.6)

2.3 Existence, Uniqueness, Flow, and Dynamical Systems

2.3.1 Existence and Uniqueness

Consider the autonomous vector field (2.5). Geometrically, x(t) is a curve in R
n

whose tangent vector ẋ(t) exists for all t in its dominant field J and equals f (x(t)).
For simplicity, we usually take initial time t0 = 0. The main problem in differential
equations is to find the solution for any initial value problem; that is, to determine the
solution of the system that satisfies the initial condition x(t0) = x0 for each x0 ∈ R

n.
Unfortunately, nonlinear differential equations may have no solutions satisfying

certain initial conditions.

Example 2.1 ([9]). Consider the following simple first-order differential equation:

ẋ =
{

1, if x < 0,
−1, if x ≥ 0.

This vector field on R points to the left when x ≥ 0 and to the right if x < 0. Conse-
quently, there is no solution that satisfies the initial condition x(0) = 0. Indeed, such
a solution must initially decrease since ẋ(0) = −1, but, for all negative values of x,
solutions must increase. This cannot happen. Note further that solutions are never
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defined for all time. For example, if x0 > 0, then the solution through x0 is given by
x(t) = x0 − t, but this solution is only valid for −∞ < t < x0 for the same reason as
above.

The problem in this example is that the vector field is not continuous at 0; when-
ever a vector field is discontinuous we face the possibility that nearby vectors may
point in ‘opposing’ directions, thereby causing solutions to halt at these points. �

Example 2.2. Consider the following differential equation:

ẋ = 3x2/3.

The identically zero function u : R → R given by u(t) ≡ 0 is clearly a solution with
initial condition u(0) = 0. But u0(t) = t3 is also a solution satisfying this initial
condition. Moreover, for any τ > 0, the function given by

uτ(t) =

{
0, if t ≤ τ,

(t − τ)3, if t > τ

is also a solution satisfying the initial condition uτ(0) = 0. While the differential
equation in this example is continuous at x0 = 0, the problems arise because 3x2/3

is not differentiable at this point. �

From these two examples it is clear that, to ensure the existence and uniqueness
of solutions, certain conditions must be imposed on the function f . In the first ex-
ample, f is not continuous at the point 0, while, in the second example, f fails to be
differentiable at 0. It turns out that the assumption that f is continuously differen-
tiable is sufficient to guarantee both existence and uniqueness of the solution. In fact,
we can furthermore guarantee the existence and uniqueness under a weaker condi-
tion, called the Lipschitz condition, on f . We now state several qualitative theorems
about the solutions of system (2.5) [7].

Theorem 2.1 (Local Existence and Uniqueness). Let U ⊂ R
n be an open subset

of real Euclidean space (or of a differentiable manifold M1), let x0 ∈ U , and let
f : U → R

n be a (locally) Lipschitzian map, i.e.,

‖ f (y)− f (x)‖ ≤ K‖x− y‖

for some K < ∞. Then, there are some constant c > 0 and a unique solution
x(·,x0) : (−c,c) → U satisfying the differential equation described by (2.5) with
initial condition x(0) = x0. �

1 Roughly speaking, a manifold is a set which locally has the structure of Euclidean space. In ap-
plications, manifolds are most often met as m-dimensional surfaces embedded in R

n. If the surface
has no singular points, i.e., the derivative of the function representing the surface has maximal
rank, then by the implicit function theorem it can locally be represented as a graph. The surface is
a Cr manifold if the (local) coordinate charts representing it are Cr .
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The local existence theorem becomes global in all cases when we work on com-
pact manifolds2 M instead of open spaces like R

n.

Theorem 2.2 (Global Existence). The differential equation ẋ = f (x), x ∈ M, with
M compact, and f ∈C1, has solution curves defined for all t ∈ R. �

The local theorem can be extended to show that solutions depend in a ‘nice’
manner on initial conditions.

Theorem 2.3 (Dependence on Initial Value). Let U ∈R
n be open and suppose that

f : U → R
n has a Lipschitz constant K. Let y(t),z(t) be solutions of ẋ = f (x) on the

closed interval [t0,t1]. Then, for all t ∈ [t0,t1],

‖y(t)− z(t)‖ ≤ ‖y(t0)− z(t0)‖eK(t−t0). �

2.3.2 Flow and Dynamical Systems

If x(t) is a solution of (2.5), then x(t + τ) is also a solution for any τ ∈ R. So, it
suffices to choose a fixed initial time, say, t0 = 0, which is understood and therefore
often omitted from the notation. If we denote by φt(x) = φ(t,x) the state in R

m

reached by the system at time t starting from x, then the totality of solutions of (2.5)
can be represented by a one-parameter family of maps φ t : U → R

m satisfying

d
dt

[φ(t,x)]
∣∣∣∣
t=τ

= f [φ(τ,x)]

for all x ∈ U and for all τ ∈ I for which the solution is defined. The family of
maps φt(x) = φ(t,x) is called the flow (or the flow map) generated by the vector
field f . The set of points {φ(t,x0) : t ∈ I} defines an orbit of (2.5), starting from
a given point x0. It is a solution curve in the state space, parameterized by time.
The set {[t,φ(t,x0)] : t ∈ I} is a trajectory of (2.5) and it evolves in the space of
motions. However, in applications, the terms ‘orbit’ and ‘trajectory’ are often used
as synonyms. A simple example of a trajectory in the space of motions R×R

2

and the corresponding orbit in the state space R
2 are given in Fig. 2.1. Clearly,

the orbit is obtained by projecting the trajectory on to the state space. The flows
generated by vector fields form a very important subset of a more general class of
maps, characterized by the following definition.

Definition 2.1. A flow is a map φ : I ⊂ R×X → X where X is a metric space, that
is, a space endowed with a distance function, and φ has the following properties:

2 A compact manifold is a manifold that is compact as a topological space, such as the circle
(the only one-dimensional compact manifold) and the n-dimensional sphere and torus. For many
problems in topology and geometry, it is convenient to study compact manifolds because of their
‘nice’ behavior. Among the properties making compact manifolds ‘nice’ are the facts that they
can be covered finitely by many coordinate charts and that any continuous real-valued function is
bounded on a compact manifold.
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(i) φ(0,x) = x for every x ∈ X (identity axiom);
(ii) φ(t + s,x) = φ(s,φ(t,x)) = φ(t,φ(s,x)) = φ(s + t,x), that is, time-translated

solutions remain solutions;
(iii) for fixed t, φ t := φ(t, ·) is a homeomorphism3 of the phase space on X . �

Remark 2.1. A distance on a space X (or, a metric on X ) is a function d(·, ·) : X ×
X → R

+ satisfying the following properties for all x,y ∈ X :

(i) d(x,y) ≥ 0 and d(x,y) = 0 if and only if x = y;
(ii) d(x,y) = d(y,x) (symmetry);

(iii) d(x,y) ≤ d(x,z)+ d(z,y) (triangle inequality).

Notice that there also exist notions of distance which are perfectly meaningful but
do not satisfy the definition above and therefore do not define a metric, for example
the distance between a point and a set A

d(x,A) = inf
y∈A

d(x,y)

and the distance between two sets A and B

d(A,B) = inf
x∈A

inf
y∈B

d(x,y). �

In the following, we give a formal definition of a ‘dynamical system.’

Definition 2.2. A dynamical system is a triplet {T,X ,φ t} where T is a time set, X
is a state space, and φ t : X → X is a flow parameterized by t ∈ T . �

y

x

time

(a)

y

x(b)

Fig. 2.1 A damped oscillator in R
2: (a) space of motions; (b) state space

3 h : U ⊂ R
n →V ⊂ R

m is said to be a Cr diffeomorphism if both h and h−1 are Cr . h is called a
homeomorphism if r = 0.
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2.4 Equilibrium, Periodic Orbit, Quasiperiodic Orbit, and
Poincaré Map

2.4.1 Equilibrium of Continuous-Time Systems

Definition 2.3 (Equilibrium of Autonomous Systems). An equilibrium solution of
(2.5) is a point x̄ ∈ R

n such that
f (x̄) = 0,

i.e., a solution which does not change in time. Other terms often substituted for the
term ‘equilibrium solution’ are ‘fixed point,’ ‘stationary point,’ ‘rest point,’ ‘singu-
larity,’ ‘critical point,’ or ‘steady state.’ �

Remark 2.2. What about the notion of equilibria of nonautonomous vector fields?
We should note that ideas developed for autonomous systems can lead to incor-
rect results for nonautonomous systems. For example, consider the following one-
dimensional nonautonomous field:

ẋ = −x + t. (2.7)

The solution through the point x0 at t = 0 is given by

x(t) = t −1 + e−t(x0 + 1),

from which it is clear that all solutions asymptotically approach the solution t −1 as
t → ∞. The frozen time or ‘instantaneous’ fixed points for (2.7) are given by

x = t.

At a fixed t, this is the unique point where the vector field is zero. However, x = t is
not a solution of (2.7). This is different from the case of an autonomous vector field
where a fixed point is a solution of the vector field. �

Definition 2.4. Consider the following nonautonomous system:

ẋ = f (t,x), (2.8)

where f : [0,∞)×D → R
n is piecewise continuous in t and locally Lipschitz in x on

[0,∞)×D, and D ⊂ R
n is a domain that contains the origin x = 0. The origin is an

equilibrium point of (2.8) at t = 0 if

f (t,0) = 0, ∀t ≥ 0. �

For the discrete-time system (2.6), an equilibrium solution is the point x̄ ∈ R
n

such that
x̄ = g(x̄).

An equilibrium solution of a discrete-time system is usually called a fixed point.
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2.4.2 Periodic and Quasiperiodic Orbits

Consider again the basic system of differential equation

ẋ = f (x) (2.9)

and the derived flow φ . A solution φ(t,x∗) of system (2.9) through a point x∗ is said
to be periodic with period T > 0 if φ(T,x∗) = x∗. The set L0 = {φ(t,x∗) : t ∈ [0,T )}
is a closed curve in the state space and is called a periodic orbit or cycle. T is called
the period of the cycle and measures its time length. It should be emphasized that
isolated periodic solutions are possible only for nonlinear differential equations.
Moreover, a limit cycle4 can be structurally stable in the sense that, if it exists for
a given system of differential equations, it will persist under a slight perturbation
of the system in the parameter space. On the contrary, linear systems of differential
equations in R

m (m ≥ 2) may have a continuum of periodic solutions characterized
by a pair of purely imaginary eigenvalues (the case of a center, which will be in-
troduced later). But, these periodic solutions can be destroyed by arbitrarily small
perturbations of the coefficients. In other words, these periodic solutions are not
structurally stable.

For the discrete-time system of xk+1 = G(xk), an n-periodic orbit is defined as
the set of points L0 = {x0,x1, . . . ,xn−1} with xi �= x j (i �= j) such that

x1 = G(x0), x2 = G(x1), . . . ,xn−1 = G(xn−2), x0 = G(xn−1).

It should be noted that each point in an n-periodic orbit is an n-periodic point since,
for k = 0, . . . ,n−1,

xk = Gn(xk) and G j(xk) �= xk for 0 < j < n.

Periodic orbits of continuous-time systems and discrete-time systems are illus-
trated in Fig. 2.2.

To illustrate what quasiperiodic orbits are we will consider two examples, one
for discrete time and one for continuous time.

Example 2.3. Consider the following unit-circle map:

Mc : S1 → S1, zn+1 = Mc(zn) = czn, (2.10)

where zn = ei2πθn , θn ∈ R, α is a positive constant, and c = ei2πα . The map (2.10)
describes an anticlockwise jump of a particle on the unit circle S1. The length of
the circular arc between two adjacent jump points is α . If α is rational, that is,
α = p/q with p and q integers, then any (initial) point on S1 is a q-periodic point
of the map Mc. If α is irrational, at each iteration a new point is added on the unit

4 A limit cycle is an isolated periodic solution of an autonomous system. The points on the limit
cycle constitute the limit set, which is the set of points in the state space that a trajectory repeatedly
visits. A limit set is only defined for discrete-time or continuous-time autonomous systems.
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0

x0(     )G2

x0(     )

x0(   )G

L0 L0
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x0

Gn - 1

(a)

Fig. 2.2 Periodic orbits in: (a) a continuous-time system; (b) a discrete-time system

circle. For any jump point there exist other jump points arbitrarily close to it, but no
point is revisited in finite time. This means that the map is topologically transitive
(see Definition 2.12). However, points that are close to each other will remain close
under the iteration. �

Example 2.4. The simplest example of quasiperiodic motion in continuous time is a
system defined by a pair of oscillators of the form

ẍ +ω2
1 x = 0, ÿ+ω2

2 y = 0,

where x,y ∈ R and ω1 and ω2 are real constants. The above system can be rewritten
in the form of first-order linear differential equations in R

4:
⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = −ω1x2,
ẋ2 = ω1x1,
ẏ1 = −ω2y2,
ẏ2 = ω2y1,

(2.11)

where x2 = x and y2 = y. Transforming the variables x1,x2 and y1,y2 into polar
coordinates, system (2.11) can be written as

⎧⎪⎪⎨
⎪⎪⎩

θ̇1 = ω1,
ṙ1 = 0,
θ̇2 = ω2,
ṙ2 = 0,

(2.12)

where θi and ri (i = 1,2) denote the angle and the radius, respectively. We can see
that the above equations describe a particle rotating on a two-dimensional torus for
a given pair (r1,r2), ri > 0 (i = 1,2) (see Fig. 2.3). There are two basic possibilities
for the motion:

(i) ω1/ω2 is a rational number, in which case there exists a continuum of periodic
orbits of period q;
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(ii) ω1/ω2 is an irrational number, in which case the orbit starting from any initial
point on the torus wanders on it, getting arbitrarily near any other point, with-
out ever returning to that exact initial point. The flow generated by (2.12) is
topologically transitive on the torus (see Fig. 2.4).

In both cases, points that are close to each other remain close under the action of the
flow. �

A general definition of quasiperiodicity of an orbit as a function of time can be
given as follows:

Definition 2.5 ([11], p. 128). A function h : R→R
m is called quasiperiodic if it can

be written in the form of h(t) = H(ω1t,ω2t, . . . ,ωmt), where H is periodic of period
2π in each of its arguments, and two or more of the m (positive) frequencies are
incommensurable. �

1
θ

2
θ

Fig. 2.3 The motion on two-dimensional torus

(a) (b)

Fig. 2.4 The quasiperiodic motions with different evolution times



28 2 Preliminaries of Nonlinear Dynamics and Chaos

2.4.3 Poincaré Map

A Poincaré map is a classical technique for analyzing dynamical systems. It re-
places the flow of an nth-order continuous-time system with an (n − 1)st-order
discrete-time system. The definition of the Poincaré map ensures that the limit sets
of the discrete-time system correspond to the limit sets of the underlying flow. The
Poincaré map’s usefulness lies in the reduction of order and the fact that it bridges
the gap between continuous-time and discrete-time systems.

The definitions of a Poincaré map are different for autonomous systems and
nonautonomous systems. We present the two cases separately.

Case 1: In this case we consider an nth-order time-periodic nonautonomous sys-
tem ẋ = f (t,x), with period T . We can convert it into an (n + 1)st-order au-
tonomous system by appending an extra state θ := 2πt/T . Then, the autonomous
system is given by {

ẋ = f (x,θT/2π), x(t0) = x0,
θ̇ = 2π/T, θ (t0) = 2πt0/T.

(2.13)

Since f is time periodic with period T , system (2.13) is periodic in θ with period
2π . Hence, the planes θ = 0 and θ = 2π may be identified and the state space
transformed from the Euclidean space R

n+1 to the cylindrical space R
n × S1,

where S1 is the unit circle. The solution of (2.13) in the cylindrical state space is
(

x(t)
θ (t)

)
=
(

φt(x0,t0)
2πt/T mod 2π

)
, (2.14)

where the modulo function restricts to 0 ≤ θ < 2π . Consider the n-dimensional
hyperplane Σ ∈ R

n ×S1 defined by

Σ := {(x,θ ) ∈ R
n ×S1 : θ = θ0}.

Every T seconds, the trajectory of (2.14) intersects Σ (see Fig. 2.5). The resulting
map PN : Σ → Σ (Rn → R

n) is defined by

PN(x) := φt0+T (x,t0).

PN is called the Poincaré map of the nonautonomous system.
Case 2: Consider an nth-order autonomous system with a limit cycle Γ shown in

Fig. 2.6. Let x0 be a point on the limit cycle and let Σ be an (n−1)-dimensional
hyperplane transversal to Γ at x0. The trajectory emanating from x0 will hit Σ
at x0 in T seconds, where T is the minimum period of the limit cycle. Due to
the continuity of φt with respect to the initial condition, the trajectory starting on
Σ in a sufficiently small neighborhood of x0 will, in approximately T seconds,
intersect Σ in the vicinity of x0. Hence, φt and Σ define a mapping PA of some
neighborhood U ⊂ Σ of x0 on to another neighborhood V ⊂ Σ of x0. PA is a
Poincaré map of the autonomous system.
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0
θ

x

Σ

NP (x)

Fig. 2.5 The Poincaré map of a first-order nonautonomous system

x0
x( )P

x

Γ

Σ A

Fig. 2.6 The Poincaré map of a third-order autonomous system

Remark 2.3.

(i) PA is defined locally, i.e., in a neighborhood of x0. Unlike the nonautonomous
case, it is not guaranteed that the trajectory emanating from any point on Σ will
intersect Σ .

(ii) For a Euclidean state space, the point PA(x) is not the first point where φt(x)
intersects Σ ; φt(x) must pass through Σ at least once before returning to V . This
is in contrast with the cylindrical state space in Fig. 2.5.

(iii) PA is a diffeomorphism and is, therefore, invertible and differentiable [12]. �

2.5 Invariant and Attracting Sets

Definition 2.6 (Invariant Set). Let S ⊂ R
n be a set. Then,

(i) (Continuous time) S is said to be invariant under the vector field ẋ = f (x) if for
any x0 ∈ S we have x(t,0,x0) ∈ S for all t ∈ R, where x(0,0,x0) = x0.
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(ii) (Discrete time) S is said to be invariant under the map xk+1 = g(xk) if for any
x0 ∈ S we have gn(x0) ∈ S for all n ∈ Z.

If we restrict ourselves to positive time (i.e., t ≥ 0, and n ≥ 0), then we refer to S as
a positively invariant set, while, for negative time, as a negatively invariant set. �

The definition means that trajectories starting in the invariant set remain in the
invariant set, for all of their future and all of their past.

Definition 2.7. An invariant set S ⊂ R
n is said to be a Cr (r ≥ 1) invariant manifold

if S has the structure of a Cr differentiable manifold. Similarly, a positively (nega-
tively) invariant set S ⊂ R

n is said to be a Cr(r ≥ 1) positively (negatively) invariant
manifold if S has the structure of a Cr differentiable manifold. �
Definition 2.8. Let φ(t,x) be a flow on a metric space M. Then, a point y ∈ M is
called an ω-limit point of x ∈ M for φ(t,x) if there exists an infinitely increasing
sequence {ti} such that

lim
i→∞

d(φ(ti,x),y) = 0.

The set of all ω-limit points of x for φ(t,x) is called the ω-limit set and is denoted
by ω(x). �

The definitions of α-limit point and α-limit set of a point x ∈ M are obtained just
by taking sequences ti decreasing in i to −∞. The α-limit set of x is denoted as α(x).

Definition 2.9. A point x0 is called nonwandering if the following condition holds.
Flows: for any neighborhood U of x0 and T > 0, there exists some |t|> T such that

φ(t,U)∩U �= /0;

Maps: for any neighborhood U of x0, there exists some n �= 0 such that

gn(U)∩U �= /0.

The set of all nonwandering points of a flow or map is called the nonwandering set
of that particular flow or map. �
Definition 2.10. A closed invariant set A ⊂ R

n is called an attracting set if there is
some neighborhood U of A such that
Flows: for any t ≥ 0, φ(t,U) ⊂U and

⋂
t>0 φ(t,U) = A;

Maps: for any n ≥ 0, gn(U) ⊂U and
⋂

n>0 gn(U) = A. �
Definition 2.11. The basin of attraction of an attracting set A is given by
Flows:

⋃
t≤0 φ(t,U);

Maps:
⋃

n≤0 gn(U);
where U is any open set satisfying Definition 2.10. �
Definition 2.12. A closed invariant set A is said to be topologically transitive if, for
any two open sets U,V ⊂ A,
Flows: there exists a t ∈ R such that φ(t,U)∩V �= /0;
Maps: there exists an n ∈ Z such that gn(U)∩V �= /0. �
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Definition 2.13. An attractor is a topologically transitive attracting set. �

2.6 Continuous-Time Systems in the Plane

In this section and the next two sections we will discuss the types of equilibrium
points of planar systems of continuous time and discrete time, respectively. In ap-
plications, we very often encounter linear systems described by two first-order dif-
ferential equations (or a differential equation of second order), either because the
underlying model is linear or because it is linearized around an equilibrium point.
Systems in two-dimensional space are particularly easy to discuss in full detail and
give rise to a number of interesting basic dynamic configurations. Moreover, in prac-
tice, it is very difficult or impossible to determine the exact values of the eigenvalues
and eigenvectors for matrices of order greater than two. Thus, one can draw inspi-
ration from the discussion about planar systems when studying high-dimensional
systems.

The general form of a continuous-time planar system can be written as
(

ẋ
ẏ

)
= A

(
x
y

)
=
(

a11 a12

a21 a22

)(
x
y

)
, (2.15)

where x,y ∈ R and ai j are real constants. If det(A) �= 0, the unique equilibrium, for
which ẋ = ẏ = 0, is x = y = 0. The characteristic equation is

λ 2 − tr(A)λ + det(A) = 0,

and the eigenvalues are

λ1,2 =
1
2

(
tr(A)±

√
Δ
)
,

where Δ ≡ (tr(A))2 −4det(A) is called the discriminant. For system (2.15) the dis-
criminant is

Δ = (a11 −a22)2 + 4a12a21.

The different types of dynamical behavior of (2.15) can be described in terms of
the two eigenvalues of the matrix A, which in planar systems can be completely
characterized by the trace and determinant of A. In the following we consider non-
degenerate equilibria for which λ1 and λ2 are both nonzero, when there is no explicit
claim. We distinguish behaviors according to the sign of the discriminant.

Case 1: Δ > 0. Eigenvalues and eigenvectors are real. Solutions have the form
{

x(t) = c1eλ1t u(1)
1 + c2eλ2t u(1)

2 ,

y(t) = c1eλ1tu(2)
1 + c2eλ2t u(2)

2 ,
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Fig. 2.7 Equilibrium types in the plane

where u1 =
(

u(1)
1 ,u(2)

1

)T
and u2 =

(
u(1)

2 ,u(2)
2

)T
are eigenvectors corresponding

to the eigenvalues λ1 and λ2, respectively. We have three basic subcases corre-
sponding to Fig. 2.7 (a), (b), and (e), respectively (eigenvalues are plotted in the
complex plane).

(i) tr(A) < 0, det(A) > 0. In this case, eigenvalues and eigenvectors are real
and both eigenvalues are negative (say, 0 > λ1 > λ2). The two-dimensional
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Fig. 2.8 Equilibrium types in the plane with repeated eigenvalue: (a) bicritical node; (b) Jordan
node

state space coincides with the stable eigenspace.5 The equilibrium is called
a stable node, and the term ‘node’ refers to the characteristic shape of the
ensemble of orbits around the equilibrium.

(ii) tr(A)> 0, det(A) > 0. In this case, eigenvalues and eigenvectors are real, both
eigenvalues are positive (say, λ1 > λ2 > 0), and the state space coincides with
the unstable eigenspace. The equilibrium is called an unstable node.

(iii) det(A) = 0. In this case, Δ > 0 independent of the sign of the trace of A. One
eigenvalue is positive, and the other is negative (say, λ1 > 0 > λ2). There are,
then, a one-dimensional stable eigenspace and a one-dimensional unstable
eigenspace and the equilibrium is known as a saddle point.

Case 2: Δ < 0. The eigenvalues and eigenvectors are complex conjugate pairs and
we have

(λ1,λ2) = (λ , λ̄ ) = α± iβ

with

α =
1
2

tr(A), β =
1
2

√
−Δ .

The solutions have the form
{

x(t) = Ceαt cos(β t +φ),
y(t) = Ceαt sin(β t +φ),

and the motion is oscillatory. If α �= 0 there is no strict periodicity in the sense
that there exists no τ such that x(t) = x(t +τ). However, a conditional period can
be defined as the length of time between two successive maxima of a variable,
which is equal to 2π/β . The frequency is simply the number of oscillations per

5 An eigenspace is spanned by eigenvectors. A stable eigenspace is spanned by the eigenvectors
corresponding to negative eigenvalues, and an unstable eigenspace is spanned by the eigenvectors
corresponding to positive eigenvalues.



34 2 Preliminaries of Nonlinear Dynamics and Chaos

time unit, that is, β/2π . The amplitude or size of the oscillations depends on
the initial condition and eαt (more on this point below). There are three subcases
depending on the sign of tr(A) and therefore of Re(λ ) =α; see the corresponding
illustrations in Figs. 2.7 (c), (d), and (f), respectively.

(i) tr(A) < 0, Re(λ ) = α < 0. The oscillations are dampened and the system
converges to the equilibrium. The equilibrium point is known as a focus or,
sometimes, a vortex, due to the characteristic shape of the orbits around
the equilibrium. In this case the focus or vortex is stable and the stable
eigenspace coincides with the state space.

(ii) tr(A) > 0, Re(λ ) = α > 0. The amplitude of the oscillations gets larger with
time and the system diverges from the equilibrium. The unstable eigenspace
coincides with the state space and the equilibrium point is called an unstable
focus or vortex.

(iii) tr(A) = 0, Re(λ ) =α = 0. In this special case we have a pair of purely imag-
inary eigenvalues. Orbits neither converge to, nor diverge from, the equilib-
rium point, but they oscillate regularly around it with a constant amplitude
that depends only on initial conditions and the equilibrium point is called a
center.

Case 3: Δ = 0. The eigenvalues are real and equal to each other, λ1 = λ2 = λ .
In this case, if A �= λ I, only one eigenvector can be determined, say u =(

u(1),u(2)
)T

, defining a single straight line through the origin. We can write the

general solution as

{
x(t) = (c1u(1) + c2v(1))eλ t + tc2u(1)eλ t ,

y(t) = (c1u(2) + c2v(2))eλ t + tc2u(2)eλ t ,

with {
x(0) = c1u(1) + c2v(1),

y(0) = c1u(2) + c2v(2).

The equilibrium type is again a node, sometimes called a Jordan node. An ex-
ample of this type is provided in Fig. 2.8 (b), where it is obvious that there is
a single eigenvector. If A = λ I the equilibrium is still a node, sometimes called
a bicritical node. However, all half-lines from the origin are solutions, giving a
star-shaped form (see Fig. 2.8 (a)).

Fig. 2.9 provides a very useful geometric representation in the (tr(A),det(A))
plane of the various cases discussed above. Quadrants III and IV of the plane cor-
respond to saddle points, quadrant II to stable nodes and foci, and quadrant I to
unstable nodes and foci. The parabola divides quadrants I and II into nodes and
foci (the former below the parabola and the latter above it). The positive part of the
det(A) axis corresponds to centers.

The analysis of systems with n > 2 variables can be developed along the same
lines although geometric insight will fail when the dimension of the state space is
larger than three. In order to give the reader a broad idea of common situations we
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det (A)

tr (A)

Fig. 2.9 Continuous-time dynamics in R
2

depict sample orbits of three-dimensional systems in Fig. 2.10, which indicates the
corresponding eigenvalues in the complex plane. The system in Fig. 2.10 (a) has two
positive real eigenvalues and one negative real eigenvalue. The equilibrium point is
an unstable saddle. In this case the plane associates with the positive real eigen-
values. All orbits eventually converge to the unstable eigenspace and are captured
by the expanding dynamics. The only exceptions are those orbits initiating on the
stable eigenspace (defined by the eigenvector associated with the negative eigen-
value) which converge to the plane at the equilibrium point. When A is an m×m
matrix, we divide the eigenvectors (or, in the complex case, the vectors equal to the
real and imaginary parts of them) into three groups, according to whether the cor-
responding eigenvalues have negative, positive, or zero real parts. Then, the subsets
of the state space spanned (or generated) by each group of vectors are known as the
stable, unstable, and center eigenspaces, respectively, and denoted by Es,Eu, and
Ec. Notice that the term saddle in R

m refers to all cases in which there exist some
eigenvalues with positive and some with negative real parts. We use the term saddle
node when eigenvalues are all real, saddle focus when some of the eigenvalues are
complex. An example of the latter is presented in Fig. 2.10 (b). The two real vectors
associated with the complex conjugate pair of eigenvalues, with negative real parts,
span the stable eigenspace. Orbits approach asymptotically the unstable eigenspace
defined by the eigenvector associated with the positive eigenvalue, along which the
dynamics is explosive.
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Fig. 2.10 Continuous-time dynamics in R
3: (a) saddle node; (b) saddle focus
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2.7 General Solutions of Discrete-Time Linear Systems

Now consider the following linear, discrete-time system described by

x(n + 1) = Bx(n), x ∈ R
m. (2.16)

It is easy to see that x = 0 is the only equilibrium solution. If κi is a real, distinct
eigenvalue of the m×m matrix B and vi is the corresponding real eigenvector so that
Bvi = κivi, it can be verified that

x(n) = κn
i vi (2.17)

is a solution of (2.16). Suppose that we have a pair of eigenvalues of B

(κ j,κ j+1) = (κ j, κ̄ j) = σ j ± iθ j

with a corresponding pair of eigenvectors

(v j,v j+1) = (v j, v̄ j) = p j ± iq j,

where p j and q j are m-dimensional vectors. Then, the pair of functions

⎧⎪⎨
⎪⎩

x j(n) =
1
2

(
κn

j v j + κ̄n
j v̄ j
)

= rn
j [p j cos(ω jn)−q j sin(ω jn)],

x j+1(n) = − i
2

(
κn

j v j − κ̄n
j v̄ j
)

= rn
j [p j sin(ω jn)+ q j cos(ω jn)]

(2.18)

are the jth and ( j + 1)st solutions of (2.16), respectively. Here, we have used the
polar coordinate transformations

{
σ j = r j cosω j,
θ j = r j sinω j,

(2.19)

and a well-known result

(cosω± i sinω)n = cos(ωn)± isin(ωn).

From (2.19) we have r j =
√
σ2

j +θ 2
j . Then, r j is simply the modulus of the complex

eigenvalues. If p(l)
j and q(l)

j denote the lth elements of p j and q j, respectively, then
in polar coordinates we have

{
p(l)

j = C(l)
j cos(φ (l)

j ),

q(l)
j = C(l)

j sin(φ (l)
j ),

where l = 1,2, . . . ,m. (2.18) can be rewritten as m-dimensional vectors whose lth
elements have the form
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{
x(l)

j (n) = C(l)
j rn

j cos(ω jn +φ (l)
j ),

x(l)
j+1(n) = C(l)

j rn
j sin(ω jn +φ (l)

j ).

Assuming that we have m linearly independent solutions defined by (2.17) and
(2.18), by the superposition principle the general solution of (2.16) can be written
as a linear combination of the individual solutions, namely

x(n) = c1x1(n)+ c2x2(n)+ · · ·+ cmxm(n),

where ci are constants depending on the initial conditions.
When eigenvalues are repeated, the general solution becomes

x(n) =
h

∑
j=1

n j−1

∑
l=0

k jln
lκn

j ,

where n j ≥ 1 is the multiplicity of the jth eigenvalue, h≤m is the number of distinct
eigenvalues, and k jl are independent vectors whose values depend on the m arbitrary
initial conditions.

Inspection of (2.17) and (2.18) indicates that if the modulus of any of the eigen-
values is greater than 1, solutions tend to +∞ or −∞ as time goes to +∞. On the
contrary, if all eigenvalues have modulus smaller than 1, solutions converge asymp-
totically to the equilibrium point. Analogous to the situation of continuous time, we
call the space spanned by the eigenvectors whose corresponding eigenvalues have
modulus less than 1 (greater than 1) a stable eigenspace (unstable eigenspace) and
call the space spanned by the eigenvectors whose corresponding eigenvalues have
modulus equal to 1 a center eigenspace. We also use the same symbols, Es,Eu, and
Ec, to denote them.

2.8 Discrete-Time Systems in the Plane

The discrete-time autonomous system that is analogous to the continuous-time sys-
tem (2.15) is described by

(
xn+1

yn+1

)
= B

(
xn

yn

)
=
(

b11 b12

b21 b22

)(
xn

yn

)
. (2.20)

We assume that the matrix I−B is nonsingular. Thus, the origin is the unique equi-
librium point of (2.20). The characteristic equation is analogous to the continuous
case as well,

κ2 − tr(B)κ + det(B) = 0,

and the eigenvalues are given by
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κ1,2 =
1
2

(
tr(B)±

√
tr(B)2 −4det(B)

)
.

We also assume that the equilibria of (2.20) are nondegenerate, i.e., |κ1|, |κ2| �= 1.
We will discuss the dynamics of the discrete-time system (2.20) for the following
three cases.

Case 1: Δ > 0. The eigenvalues are real and solutions take the form
⎧⎨
⎩

x(n) = c1κn
1 v(1)

1 + c2κn
2 v(1)

2 ,

y(n) = c1κn
1 v(2)

1 + c2κn
2 v(2)

2 .

(i) If |κ1| < 1 and |κ2| < 1 the fixed point is a stable node. This means that
solutions are sequences of points approaching the equilibrium as n → +∞.
If κ1,κ2 > 0 the approach is monotonic; otherwise, there are improper os-
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Fig. 2.11 Phase diagrams for real eigenvalues: (a) and (c) stable nodes; (b) and (d) saddle points
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cillations6 (see Figs. 2.11 (a) and (c), respectively). In this case, the stable
eigenspace coincides with the state space.

(ii) If |κ1| > 1 and |κ2| > 1 the fixed point is an unstable node. In this case,
solutions are sequences of points approaching equilibrium as n → −∞. If
κ1,κ2 > 0 the approach is monotonic; otherwise, there are improper oscil-
lations (as in Figs. 2.11 (a) and (c), respectively, but arrows point in the
opposite direction and the time order of points is reversed). In this case, the
unstable eigenspace coincides with the state space.

(iii) If |κ1| > 1 and |κ2| < 1 the fixed point is a saddle point. No sequences of
points approach the equilibrium for n → ±∞ except for those originating
from points on the eigenvectors associated with κ2. Again, if κ1, κ2 > 0
orbits move monotonically (see Fig. 2.11 (b)); otherwise they oscillate im-
properly (see Fig. 2.11 (d)). The stable and unstable eigenspaces are one
dimensional.

Case 2: Δ < 0. In this case, det(B) > 0. Eigenvalues are a complex conjugate pair
given by

(κ1,κ2) = (κ , κ̄) = σ ± iθ

and solutions are sequences of points situated on a spiral whose amplitude in-
creases or decreases in time according to the factor rn, where

r = |σ ± iθ | =
√
σ2 +θ 2 = det(B)

is the modulus of the complex eigenvalue pair. Solutions are of the form
{

x(n) = Crn cos(ωn +φ),
y(n) = Crn sin(ωn +φ).

(i) If r < 1 solutions converge to equilibrium and the equilibrium point is a
stable focus (see Fig. 2.12 (a)).

(ii) If r > 1 solutions diverge and the equilibrium point is an unstable focus (as
in Fig. 2.12 (a), but arrows point in the opposite direction and the time order
of points is reversed).

(iii) If r = 1 the eigenvalues lie exactly on the unit circle, an exceptional case.
There are two subcases which depend on the frequency of the oscillation
ω/2π ,ω = arccos[tr(B)/2]:
a. ω/2π is rational and the orbit in the state space is a periodic sequence

of points situated on a circle, the radius of which depends on initial con-
ditions (see Fig. 2.12 (b));

b. ω/2π is irrational and the sequence is nonperiodic or quasiperiodic, that
is, starting from any point on the circle, orbits stay on the circle but no

6 First-order, discrete-time equations (where the order is determined as the difference between the
extreme time indices) can also have fluctuating behavior, called improper oscillations, owing to the
fact that if their eigenvalue β < 0, β n will be positive or negative according to whether n is even or
odd. The term improper refers to the fact that in this case oscillations of variables have a ‘kinky’
form that does not properly describe the smoother ups and downs of real variables.
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Fig. 2.12 Phase diagrams for complex eigenvalues: (a) a stable focus; (b) periodic cycles; (c) a
quasiperiodic solution

sequence returns to the initial point in finite time. Therefore, solutions
wander on the circle filling it up, without ever becoming periodic (see
Fig. 2.12 (c)).

Case 3: Δ = 0. There is a repeated real eigenvalueκ1 = tr(B)/2. The general form
of solutions with a repeated eigenvalue κ is as follows:

{
x(n) = (c1v(1) + c2u(1))κn + nc2v(1)κn,

y(n) = (c1v(2) + c2u(2))κn + nc2v(2)κn.

If |κ | < 1, limn→∞ nκn = 0. If the repeated eigenvalue is equal to 1 in absolute
value, the equilibrium is unstable (with improper oscillations for κ1 =−1). How-
ever, the divergence is linear not exponential.

The dynamics of the discrete case can be conveniently summarized by the di-
agram in Fig. 2.13. (For the sake of simplicity, we represent orbits as continuous
rather than dotted curves.) If we replace the greater-than sign with the equal sign
in conditions (i)–(iii) of Case 2, we obtain three lines intersecting each other in the
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(tr(B), det(B)) plane, defining a triangle. Points inside the triangle correspond to
stable combinations of the trace and determinant of B.7 The parabola defined by

tr(B)2 = 4det(B)

divides the plane into two regions corresponding to real eigenvalues (below the
parabola) and complex eigenvalues (above the parabola). Combinations of trace and
determinant above the parabola but in the triangle lead to stable foci, combinations
below the parabola but in the triangle are stable nodes. All other combinations lead
to unstable equilibria.

Fig. 2.14 is an example of a system in R
3. There are a complex conjugate pair

with modulus less than one, and one dominant real eigenvalue greater than one. The
equilibrium point is a saddle focus.

det (  ) B

tr (B) 21–1–2

Fig. 2.13 Discrete-time dynamics in R
2

7 In Case 2, if 1 + tr(B) + det(B) = 0 while (ii) and (iii) hold, one eigenvalue is equal to −1; if
1− tr(B)+ det(B) = 0 while (i) and (iii) hold, one eigenvalue is equal to +1; and if det(B) = 1
while (i) and (ii) hold, the two eigenvalues are a complex conjugate pair with modulus equal to 1.
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Fig. 2.14 A discrete-time dynamics in R
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2.9 Stabilities of Trajectories I: The Lyapunov First Method

Stability theory plays a central role in systems theory and engineering. The so-called
Lyapunov first method or Lyapunov indirect method is used to study the stability of
a system’s trajectories through calculating the eigenvalues of a linearized system at
the objective trajectories. This means that the Lyapunov first method is essentially a
local method which can only be used in a neighborhood of the objective trajectory.

2.9.1 The Definition of Lyapunov Stability

Let x̄(t) be any solution of (2.5). Roughly speaking, x̄(t) is stable if solutions starting
‘close’ to x̄(t) at a given time remain close to x̄(t) for all later times. It is asymp-
totically stable if nearby solutions not only stay close, but also converge to x̄(t) as
t → ∞.



44 2 Preliminaries of Nonlinear Dynamics and Chaos

Definition 2.14 (Lyapunov Stability). x̄(t) is said to be stable (or Lyapunov stable)
if, for any given ε > 0, there exists a δ = δ (ε) > 0 such that, for any other solution,
y(t), of (2.5) satisfying ‖x̄(t0)− y(t0)‖ < δ , we have ‖x̄(t)− y(t)‖ < ε for t > t0,
t0 ∈ R. �

A solution which is not stable is said to be unstable.

Definition 2.15 (Asymptotic Stability). x̄(t) is said to be asymptotically stable if it
is Lyapunov stable and, for any other solution, y(t), of (2.5), there exists a constant
b > 0 such that, if ‖x̄(t0)− y(t0)‖ < b, then limt→∞ ‖x̄(t)− y(t)‖= 0. �

A new stability definition which is different from Lyapunov’s definitions is given
as follows.

Definition 2.16. An orbit generated by system ẋ = f (x) (x ∈R
n), with initial condi-

tion x0 on a compact, φ -invariant subset A of the state space (i.e., φ(A) ⊂ A), is said
to be orbitally stable (asymptotically orbitally stable) if the invariant set

Γ = {φ(t,x0) : x0 ∈ A, t ≥ 0}

(the forward orbit of x0) is stable (asymptotically stable) according to Definition
2.14 (Definition 2.15). �

The analogous definitions of stability for autonomous dynamical systems in dis-
crete time with the general form

x(n + 1) = G(x(n)), x ∈ R
m (2.21)

are as follows.

Definition 2.17. The equilibrium point x̄ is Lyapunov stable (or, simply, stable) if,
for every ε > 0, there exists δ (ε) such that

‖x0 − x̄‖ < δ (ε) ⇒ ‖Gn(x0)− x̄‖ < ε, ∀n > 0. �

Definition 2.18. The equilibrium point x̄ is asymptotically stable if

(i) it is stable and
(ii) ∃b > 0 such that

‖x0 − x̄‖ < b ⇒ lim
n→∞

‖Gn(x0)− x̄‖ = 0. �

Property (ii) can be replaced by the following equivalent property:

(ii’) there exists b > 0 and, for each ε > 0, there exists an integer T = T (b,ε) > 0
such that

‖x0 − x̄‖ < b ⇒‖Gn(x0)− x̄‖ < ε, ∀n ≥ T.

Figs. 2.15 and 2.16 are the visualization of Definitions 2.14 and 2.15. Notice
that these two definitions imply that we have information on the infinite-time exis-
tence of solutions. This is obvious for equilibrium solutions but is not necessary for
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Fig. 2.15 (a) Lyapunov stability; (b) asymptotic stability
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Fig. 2.16 (a) Lyapunov stability; (b) asymptotic stability

nearby solutions. Also, these definitions are for autonomous systems, since in the
nonautonomous case it may be that δ and b depend explicitly on t0.

In order to determine the stability of x̄(t) we must understand the nature of solu-
tions near x̄(t). Let

x(t) = x̄(t)+ y. (2.22)

Substituting (2.22) into (2.5) and performing Taylor expansion about x̄(t) gives

ẋ = ˙̄x(t)+ ẏ = f (x̄(t))+ D f (x̄(t))y + o(‖y‖2), (2.23)

where D f is the derivative of f called the Jacobian matrix of f , ‖ ·‖ denotes a norm
on R

n, and o(‖y‖2) denotes the higher-order infinitesimal term of ‖y‖2. Using the
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fact that ˙̄x(t) = f (x̄(t)), (2.23) becomes

ẏ = D f (x̄(t))y + o(‖y‖2). (2.24)

Equation (2.24) describes the evolution of orbits near x̄(t). For stability questions
we are concerned with the behavior of solutions arbitrarily close to x̄(t), so it seems
reasonable that this question could be answered by studying the associated linear
system

ẏ = D f (x̄(t))y. (2.25)

Usually it is difficult to determine the stability of x(t) by (2.25) since there are no
general analytical methods for finding the solution of linear ordinary differential
equations with time-dependent coefficients. However, if x̄ is an equilibrium solu-
tion, i.e., x̄(t) = x̄, then D f (x̄(t)) = D f (x̄) is a matrix with constant entries, and the
solution of (2.25) through the point y0 ∈ R

n at t = 0 can immediately be written as

y(t) = eD f (x̄)t y0.

Thus, y(t) is asymptotically stable if all eigenvalues of D f (x̄) have negative real
parts.

Theorem 2.4. Suppose that all of the eigenvalues of D f (x̄) have negative real parts.
Then, the equilibrium solution x = x̄ of the nonlinear vector field (2.5) is asymptot-
ically stable. �

Definition 2.19. Let x = x̄ be a fixed point of ẋ = f (x), x ∈ R
n. Then, x̄ is called a

hyperbolic fixed point if none of the eigenvalues of D f (x̄) has zero real part. �

The eigenvalues of the Jacobian matrix D f (x̄) are also referred to as the eigen-
values of the fixed point x̄.

Theorem 2.5 (Hartman–Grobman). If x̄ is a hyperbolic fixed point of (2.5), then
there is a homeomorphism h defined on some neighborhood N of x̄ in R

n, locally
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N

h

h(N)
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E s

Fig. 2.17 The Hartman–Grobman theorem
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Fig. 2.18 Stable and unstable eigenspaces and manifolds in R
2

mapping orbits of the nonlinear system (2.5) to those of the linear system (2.25).
The map h preserves the sense of orbits and can also be chosen so as to preserve
parameterization by time. �

If h is a homeomorphism, then from Theorem 2.5 we can deduce that asymp-
totic stability (or the lack of it) for the linear system (2.25) implies local asymptotic
stability of the nonlinear system (2.5) (or the lack of it). However, homeomorphic
equivalence does not preserve all the interesting geometric features of a dynamical
system. For example, a linear system characterized by an asymptotically stable node
is topologically conjugate to another linear system characterized by an asymptoti-
cally stable focus.

If the equilibrium point is not hyperbolic, that is to say, if there exists at least one
eigenvalue with real part exactly equal to 0, the Hartman–Grobman theorem cannot
be applied. The reason is that the linearized system is not sufficiently informative.
In particular, the stability properties of the system depend on the higher-order terms
of the expansion which have been ignored in the approximation (2.25).

In the above discussion of linear systems we emphasized the importance of cer-
tain invariant subspaces, i.e., the eigenspaces, defined by the eigenvectors of the
Jacobian matrix. If the nonlinear system (2.5) has an isolated,8 hyperbolic equilib-
rium x̄, in the neighborhood of x̄ there exist certain invariant surfaces, called stable
and unstable manifolds, which are the nonlinear counterparts of the stable and un-
stable eigenspaces. Locally, these manifolds are continuous deformations, respec-
tively, of the stable and unstable eigenspaces of the linear system (2.25) (because x̄
is hyperbolic, there is no center eigenspace for (2.25)) and they are tangents to the
eigenspaces of the linear system (2.25) at x̄. We denote stable manifolds, unstable
manifolds, and center manifolds by W s, W u, and W c. Some simple examples of the
phase diagrams of nonlinear systems and the corresponding linearized systems in
R

2 and R
3 are provided in Figs. 2.17, 2.18, and 2.19.

8 An equilibrium point is isolated if it has a surrounding neighborhood containing no other equi-
librium point.
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The method of linear approximation can be applied in a perfectly analogous man-
ner to nonlinear systems described by difference equations. Consider system (2.21),
with a fixed point x̄, and assume that G is differentiable. A local linear approxima-
tion of (2.21) near x̄ is

ξ (n + 1) = DG(x̄)ξ (n), (2.26)

where ξ = x− x̄ and DG(x̄) is the Jacobian matrix of partial derivatives of G, eval-
uated at x̄.

The discrete-time version of the Hartman–Grobman theorem for x(n + 1) =
G(x(n)) is perfectly analogous to that for flows except for the following important
differences:

(i) For discrete-time systems, fixed points are hyperbolic if none of the eigenvalues
of the Jacobian matrix, evaluated at the equilibrium, is equal to 1 in modulus.

(ii) The map h of the Hartman–Grobman theorem defining the local relationship
between the nonlinear system (2.21) and the linearized system (2.26) is a dif-
feomorphism if the eigenvalues of DG(x̄) satisfy a nonresonance condition. In
the case of maps this condition requires that no eigenvalue κk of DG(x̄) satisfies

κk =
m

∏
i=1

κci
i

for any choice of ci ≥ 0 with ∑i ci ≥ 2.

2.9.2 Floquet Theory

Local stability of a periodic solution of the system ẋ = f (x) (x ∈ R
n) can be dis-

cussed in terms of eigenvalues of certain matrices. Suppose that the system has a
periodic orbit Γ = {x∗(t) : t ∈ [0,T ), x∗(t) = x∗(t + T )}. Define ξ := x(t)− x∗(t).
Linearizing ξ̇ about ξ = 0, i.e., about the periodic orbit Γ , we obtain

ξ̇ = A(t)ξ , (2.27)

where the matrix A(t) := D f (x∗(t)) has periodic coefficients of period T , so that
A(t) = A(t + T ). Solutions of (2.27) take the general form of

B(t)eλ t ,

where the vector B(t) is periodic in time with period T , B(t) = B(t +T ). Denote the
fundamental matrix of (2.27) as Φ(t), that is, the m×m time-varying matrix whose
m columns are solutions of (2.27). Thus, Φ(t) can be written as

Φ(t) = Z(t)etR,
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where Z(t) is an m×m, T -periodic matrix and R is a constant m×m matrix. More-
over, we can always set Φ(0) = Z(0) = I, from which we get

Φ(T ) = eT R.

Therefore, the dynamics of orbits near the cycleΓ are determined by the eigenvalues
(λ1, . . . ,λm) of the matrix eT R which are uniquely determined by (2.27).9 The λ s are
called characteristic (Floquet) multipliers of (2.27), whereas the eigenvalues of R,
(κ1, . . . ,κm), are called characteristic (Floquet) exponents.

One of the roots (multipliers), say λ1, is always equal to 1, so that one of the
characteristic exponents, say κ1, is always equal to 0, which implies that one of
the solutions of (2.27) must have the form B(t) = B(t + T ). This can be verified
by putting B(t) = x∗(t) and differentiating it with respect to time. The presence of
a characteristic multiplier equal to 1 (a characteristic exponent equal to 0) can be
interpreted as that if, starting from a point on the periodic orbit Γ , the system is
perturbed by a small displacement in the direction of the flow, it will remain on Γ .
What happens for small, random displacements offΓ depends only on the remaining
m− 1 multipliers λ j ( j = 2, . . . ,m) (or the remaining κ j exponents, j = 2, . . . ,m),
provided none of the other moduli is equal to 1 (provided none of them is equal to
0). In particular, we have

(i) If all the characteristic multipliers λ j ( j = 2, . . . ,m) satisfy the conditions
|λ j| < 1, then the periodic orbit is asymptotically (in fact, exponentially) or-
bitally stable.

(ii) If for at least one of the multipliers, say λk, |λk| > 1, then the periodic orbit is
unstable.

2.10 Stabilities of Trajectories II: The Lyapunov Second Method

The so-called second or direct method of Lyapunov is one of the greatest landmarks
in the theory of dynamical systems and has proved to be an immensely fruitful tool
for analysis. The basic idea of the method is as follows. Suppose that there is a vector
field in the plane with a fixed point x̄, and we want to determine whether it is stable
or not. Roughly speaking, according to our previous definitions of stability it would
be sufficient to find a neighborhood U of x̄ for which orbits starting in U remain
in U for all positive time (for the moment we do not distinguish between stability
and asymptotic stability). This condition would be satisfied if we could show that
the vector field is either tangent to the boundary of U or pointing inward toward x̄
(see Fig. 2.20). This situation should remain true even as we shrink U down to x̄.
Now, Lyapunov’s method gives us a way of making this precise; we will show this
for vector fields in the plane and then generalize our results to R

n.

9 The matrix eT R itself is uniquely determined but for a similarity transformation, that is, we can
substitute eTR with P−1eT RP where P is a nonsingular m×m matrix. This transformation leaves
eigenvalues unchanged.
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Suppose that we have the vector field
{

ẋ = f (x,y),
ẏ = g(x,y), (x,y) ∈ R

2,
(2.28)

which has a fixed point at (x̄, ȳ) (assume that it is stable). We want to show that in
any neighborhood of (x̄, ȳ) the above situation holds. Let V (x,y) be a scalar-valued
function on R

2, i.e., V : R
2 → R (and at least C1), with V (x̄, ȳ) = 0, and such that

the loci of points satisfying V (x,y) = C = constant form closed curves for different
values of C encircling (x̄, ȳ) with V (x,y) > 0 in a neighborhood of (x̄, ȳ) (see Fig.
2.21).

Recall that the gradient of V , ∇V , is a vector perpendicular to the tangent vector
along each curve V = C which points in the direction of increasing V . So, if the
vector field were always to be either tangent or pointing inward for each of these
curves surrounding (x̄, ȳ), we would have

∇V (x,y) · (ẋ, ẏ) ≤ 0,

x

U

Fig. 2.20 The vector field on the boundary of U

V∇

constantV =

V∇V∇

V∇

V∇ V∇

( , )x y

Fig. 2.21 Level set of V and ∇V denotes gradient vector of V at various points on the boundary
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where the ‘·’ represents the usual vector scalar product. (This is simply the derivative
of V along orbits of (2.28), and is sometimes referred to as the orbital derivative.)
We now state the general theorem which makes these ideas precise.

Theorem 2.6. Consider the following vector field:

ẋ = f (x), x ∈ R
n. (2.29)

Let x̄ be a fixed point of (2.29) and let V : U → R be a C1 function defined on some
neighborhood U of x̄ such that

(i) V (x̄) = 0 and V (x) > 0 if x �= x̄.
(ii) V̇ ≤ 0 in U −{x̄}.

Then, x̄ is stable. Moreover, if

(iii) V̇ < 0 in U −{x̄},
then x̄ is asymptotically stable. �

We refer to V as a Lyapunov function. If U can be chosen to be all of R
n, then x̄

is said to be globally asymptotically stable, if (i) and (iii) hold.
Sometimes it is possible to prove asymptotic stability of a fixed point even when

the Lyapunov function V in the relevant neighborhood of the point implies that
V̇ ≤ 0, but not necessarily V̇ < 0. For that case we have the following theorem.

Theorem 2.7 (Invariance Principle of LaSalle). Let x̄ = 0 be a fixed point of ẋ =
f (x) and V a Lyapunov function such that V̇ ≤ 0 on some neighborhood N of x̄ = 0.
If x0 ∈ N has its forward orbit, γ+(x0) = {φ(t,x0) : t ≥ 0}, bounded with limit points
in N, and M is the largest invariant subset of E = {x ∈ N : V̇ (x) = 0}, then

φ(t,x0) → M as t → ∞. �

According to Theorem 2.7, if a Lyapunov function V (x) can be found such that
V̇ (x) ≤ 0 for x ∈ N, among the sets of points with forward orbits in N there exist
sets of points defined by

Vk = {x : V (x ≤ k)}
(k is a finite and positive scalar) which lie entirely in N. Since V̇ ≤ 0, the sets Vk are
invariant in the sense that no orbit starting in a Vk can ever move outside of it. If,
in addition, it could be shown that the fixed point x̄ = 0 is the largest (or, for that
matter, the only) invariant subset of E , Theorem 2.7 would guarantee its asymptotic
stability.

The direct method can also be extended to discrete-time systems. We only state
a result analogous to Theorem 2.6 in the following. A discrete-time version of the
invariance principle of LaSalle will be introduced in Chap. 5.

Theorem 2.8. Consider the system described by the difference equation given in
(2.21). Let x̄ = 0 again be an isolated equilibrium point at the origin. If there exists
a C1 function V (xn) : N → R, defined on some neighborhood N ⊂R

m of x̄ = 0, such
that
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(i) V (0) = 0,
(ii) V (x) > 0 in N −{0},

(iii) ΔV (xn) := V [G(xn)]−V(xn) ≤ 0 in N −{0},

then x̄ = 0 is stable (in the sense of Lyapunov). Moreover, if

(iv) ΔV (x) < 0 in N −{0},

then x̄ = 0 is asymptotically stable. �

2.11 Chaotic Sets and Chaotic Attractors

More complicated invariant, attracting sets and attractors in structure than that of
periodic or quasiperiodic sets are called chaotic. A dynamical system (discrete-time
or continuous-time) is called chaotic if its typical orbits are aperiodic, bounded, and
such that nearby orbits separate fast in time. Chaotic orbits never converge to a stable
fixed or periodic point, but exhibit sustained instability, while remaining forever in
a bounded region of the state space.

Definition 2.20. A flow φ (a continuous map G) on a metric space M is said to
possess sensitive dependence on initial conditions on M if there exists a real number
δ > 0 such that for all x∈ M and for all ε > 0, there exist y∈M (y �= x) and T > 0 (an
integer n > 0) such that d(x,y) < ε and d[φ(T,x),φ(T,y)] > δ (d[Gn(x),Gn(y)] >
δ ). �

Definition 2.21. A flow φ (a continuous map G) is said to be chaotic on a compact
invariant set10 A if:

(i) it is topologically transitive on A (Definition 2.12);
(ii) it has sensitive dependence on initial conditions on A. �

Remark 2.4. There is something that should be pointed out.

(i) Condition (i) of Definition 2.21 guarantees that the invariant set is single and
indecomposable.

(ii) Condition (ii) of Definition 2.21 can be made sharper (and more restrictive) in
two ways. First, the divergence of nearby points taking place at an exponential
rate is required. This property can be made more precise by means of Lyapunov
exponents which will be introduced later. Second, we may require that the di-
vergence (exponential or otherwise) occurs for each pair x,y ∈ A. In this case,
the flow φ or map G is called expansive on A.

(iii) The requirement that A is compact is necessary. Consider the following differ-
ential equation:

ẋ = ax, x ∈ R, a > 0,

10 Roughly speaking, a subset D of R
n is said to be compact if it can be covered by a finite

collection of open sets {Uj}l
j=1.
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which is linear and its solution is φ(t,x) = x0eat . Therefore, the flow map φ
is topologically transitive on the open, unbounded (and therefore noncompact)
invariant sets (−∞,0) and (0,∞). Also, for any two points x1,x2 ∈R and x1 �= x2

we have
|φ(t,x1)−φ(t,x2)| = eat |x1 − x2|

and φ has sensitive dependence on initial conditions on R. However, the orbits
generated by φ are not chaotic.

(iv) This definition refers to a ‘chaotic flow (or map) on a set A’ or, for short, a
‘chaotic set A.’ It does not imply that all orbits of a chaotic flow (or map) on A
are chaotic. In fact, there are many nonchaotic orbits on chaotic sets, in particu-
lar, many unstable periodic orbits. They are so important that some researchers
add a third condition for chaos, that periodic orbits are dense on A [5]. This is
an interesting property and it is automatically satisfied if the chaotic invariant
set is hyperbolic [17].

(v) Two quite general results can be used to confirm the close relationship between
chaos, as characterized in Definition 2.21, and dense periodic sets. The first re-
sult [3] states that for any continuous map on a metric space, transitivity and the
presence of a dense set of periodic orbits imply sensitive dependence on initial
conditions, that is, chaos. The second result [16] states that for any continuous
map on an interval of R, transitivity alone implies the presence of a dense set
of periodic orbits and, therefore, in view of the first result, it implies sensitive
dependence on initial conditions, and therefore chaos.

(vi) There are several other different definitions of chaos based on orbits rather than
sets. For example, in [1] (p. 196, Definition 5.2; p. 235, Definition 6.2; pp. 385–
386, Definition 9.6), a chaotic set is defined as the ω-limit set of a chaotic orbit
Gn(x0) which itself is contained in the ω-limit set. In this case, the presence
of sensitive dependence on initial conditions (or a positive Lyapunov charac-
teristic exponent) is not enough to characterize chaotic properties of orbits and
additional conditions must be added to exclude unstable periodic or quasiperi-
odic orbits. �

2.12 Symbolic Dynamics and the Shift Map

Symbolic dynamics is a powerful tool for understanding the orbit structure of a large
class of dynamical systems. In this section we only provide a brief introduction to
this tool.

To establish the tool, three steps are needed. First, we define an auxiliary system
characterized by a map, called a shift map, acting on a space of infinite sequences
called the symbol space. Next, we prove some properties of the shift map. Finally,
we establish a certain equivalence relation between a map we want to study and the
shift map, and show that the relationship preserves the properties in question.
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We begin by defining the symbol space and the shift map. Let S be a collection
of symbols. In a physical interpretation, the elements of S could be anything, for
example letters of an alphabet or discrete readings of some measuring device for the
observation of a given dynamical system. To make ideas more clear, we assume here
that S consists of only two symbols; let them be 0 and 1. Then, we have S = {0,1}.
Next, we want to construct the space of all possible bi-infinite sequences of 0 and 1,
defined as

Σ2 := · · ·S×S×S×·· · .
A point in Σ2, s, is therefore represented as a bi-infinity-tuple of elements of S, that
is, s ∈ Σ2 means

s = {. . .s−n . . . s−1s0s1 . . . sn . . .},

where ∀i, si ∈ S (i.e., si = 0 or 1). For example, s = {. . .00010100111 . . .}.
We can define a distance function d̄ in the space Σ2

d̄(s, s̄) =
+∞

∑
i=−∞

d(si, s̄i)
2|i|

, (2.30)

where d is the discrete distance in S = {0,1}, that is

d(si, s̄i) =
{

0 if si = s̄i;
1 if si �= s̄i.

This means that two points of Σ2 are close to each other if their central elements
are close, i.e., if the elements whose indexes have small absolute values are close.
Notice that, from the definition of d̄(si, s̄i), the infinite sum on the right-hand side of
(2.30) is less than 3, and, therefore, converges.

Next, we define the shift map on Σ2 as

T : Σ2 → Σ2, T (s) = s′ and s′i = si+1.

The map T maps each entry of a sequence from one place to the left. Similarly, the
one-sided shift map T+ can be defined on the space of one-sided infinite sequences,
Σ2+, that is, s ∈ Σ2+, where s = {s0s1 . . .sn . . .}. In this case, we have

T+ : Σ2+ → Σ2+, T+(s) = s′ and s′i = si+1,

so that
T+(s0s1s2 . . . ) = (s′0s′1s′2 . . . ) = (s1s2s3 . . .).

It is obvious that the T+ map shifts a one-sided sequence from one place to the left
and drops its first element. Although maps T and T+ have very similar properties, T
is invertible whereas T+ is not. The distance on Σ2+ is essentially the same as (2.30)
with the difference that the infinite sum will now run from zero to ∞. The map T+
can be used to prove chaotic properties of certain noninvertible, one-dimensional
maps frequently employed in applications.
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Theorem 2.9. The shift map T+ on Σ2+ is chaotic according to Definition 2.21. �

Remark 2.5. The shift map T+ on Σ2+ has a property that is stronger than topo-
logical transitivity called topological mixing. In general, we say that a map G is
topologically mixing on a set A if for any two open subsets U and V of A there
exists a positive integer N0 such that Gn(U)∩V �= /0 for all n ≥ N0. If a map G is
topologically mixing, then for any integer n the map Gn is topologically transitive.
�

The importance of the fact that the shift map is chaotic in a precise sense lies
in that the chaotic properties of invariant sets of certain one- and two-dimensional
maps and three-dimensional flows may sometimes be proved by showing that the
dynamics on these sets are topologically conjugate to that of a shift map on a sym-
bol space. This indirect argument is often the only available strategy for investi-
gating nonlinear maps (or flows). We have encountered the concept of topological
conjugacy in the Hartman–Grobman theorem (Theorem 2.5, which we called home-
omorphic equivalence) between a nonlinear map (or flow) and its linearization in a
neighborhood of a fixed point. We now provide some formal definitions.

Definition 2.22. Let X and Y be topological spaces, and let f : X → X and g : Y →
Y be continuous functions. We say that f is topologically semiconjugate to g if
there exists a continuous surjection11 h : Y → X such that f ◦ h = h ◦ g. If h is a
homeomorphism, then we say that f and g are topologically conjugate, and we call
h a topological conjugation between f and g.

Similarly, a flow φ on X is topologically semiconjugate to a flow ψ on Y if there
is a continuous surjection h : Y → X such that φ(h(y),t) = h(ψ(y,t)) for each y ∈Y ,
t ∈ R. If h is a homeomorphism, then φ and ψ are topologically conjugate. �

Remark 2.6. Topological conjugation defines an equivalence relation in the space
of all continuous surjections of a topological space to itself, by declaring f and g to
be related if they are topologically conjugate. This equivalence relationship is very
useful in the theory of dynamical systems, since each class contains all functions
which share the same dynamics from the topological viewpoint. In fact, orbits of
g are mapped to homeomorphic orbits of f through the conjugation. Writing g =
h−1 ◦ f ◦h makes this fact evident: gn = h−1 ◦ f n ◦h. Roughly speaking, topological
conjugation is a ‘change of coordinates’ in the topological sense. �

However, the analogous definition for flows is somewhat restrictive. In fact, we
require the maps φ(·,t) and ψ(·,t) to be topologically conjugate for each t, which
requires more than simply that orbits of φ be mapped to orbits of ψ homeomorphi-
cally. This motivates the definition of topological equivalence, which also partitions
the set of all flows in X into classes of flows sharing the same dynamics, again from
the topological viewpoint.

Definition 2.23. We say that two flows ψ and φ of a compact manifold M are topo-
logically equivalent if there is an homeomorphism h : Y → X , mapping orbits of

11 A function f : X → Y is a surjection if, for every y ∈Y , there is an x ∈ X such that f (x) = y.
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ψ to orbits of φ homeomorphically, and preserving orientation of the orbits. This
means that

(i) {h(ψ(y,t)) : t ∈ R} = {φ(h(y),t) : t ∈ R} for each y ∈Y ;
(ii) for each y ∈ Y , there is δ > 0 such that, if 0 < |s| < t < δ , and if s satisfies

φ(h(y),s) = h(ψ(y,t)), then s > 0. �

2.13 Lyapunov Exponent

Although sensitive dependence on initial conditions can be verified in some cases,
it is not easy to verify for many systems. The Lyapunov exponent is a generalization
of the eigenvalues at an equilibrium point, and it is used as a measure of expo-
nential divergence of orbits. Suppose that φ(t,x0) and φ(t,y0) are solutions of an
autonomous vector field ẋ = f (x) starting from x0 and y0, respectively. By using the
linear approximation for fixed t, we get

φ(t,y0)−φ(t,x0) ≈ Dxφ(t,x0)(y0 − x0).

For any curve starting from initial condition xs, letting

v(t) :=
∂
∂ s

φ(t,xs)
∣∣∣∣
s=0

= Dxφ(t,x0)
∂xs

∂ s
= Dxφ(t,x0)v0

and v0 :=
∂xs

∂ s
, then v(t) satisfies the first variation equation

d
dt

v(t) = D f(φ(t,x0))v(t).

If v0 = y0 − x0, then v(t) would give the infinitesimal displacement at time t.
The growth rate of ‖v(t)‖ is a number χ such that

‖v(t)‖ ≈Ceχt ,

where C is a constant. Taking the logarithm, we have

ln‖v(t)‖
t

≈ ln(C)
t

+ χ ;

therefore,

χ = lim
t→∞

ln‖v(t)‖
t

.

Definition 2.24. Let v(t) be the solution of the first variation equation, starting from
x0 with v(0) = v0. The Lyapunov exponent for initial condition x0 and initial in-
finitesimal displacement v0 is defined as
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χ(x0,v0) = lim
t→∞

ln‖v(t)‖
t

,

whenever this limit exists. �

Remark 2.7. For most initial conditions x0 for which the forward orbit is bounded,
the Lyapunov exponents exist for all vectors v. In n-dimensional state space, there
are at most n distinct values for χ(x0,v) as v varies. If we count multiplicities, then
there are exactly n values,

χ1(x0) = χ(x0,v1), χ2(x0) = χ2(x0,v2), . . . ,χn(x0) = χ(x0,vn).

We can order these so that

χ1(x0) ≥ χ2(x0) ≥ ·· · ≥ χn(x0). �

Several results on Lyapunov exponents are listed as follows. For detailed proofs
please refer to [13].

Theorem 2.10. Assume that x0 is a fixed point of the differential equation ẋ = f (x).
Then, the Lyapunov exponents at the fixed point are the real parts of the eigenvalues
of the fixed point. �

Theorem 2.11. Let x0 be an initial condition such that φ(t,x0) is bounded andω(x0)
does not contain any fixed points. Then,

χ(x0, f (x0)) = 0. �

Remark 2.8. The above theorem means that there is no growth or decay in the direc-
tion of the vector field, v = f (x0). �

Theorem 2.12. Let x0 be an initial condition on a periodic orbit of period T . Then,
the principal (n−1) Lyapunov exponents are given by (ln |λ j|)/T , where λ j are the
characteristic multipliers of the periodic orbit and the eigenvalues of the Poincaré
map. �

Theorem 2.13. Assume that φ(t,x0) and φ(t,y0) are two orbits for the same dif-
ferential equation, which are bounded and converge exponentially (i.e., there are
constants a > 0 and C ≥ 1 such that ‖φ(t,x0)−φ(t,y0)‖ ≤Ce−at for t ≥ 0). Then,
the Lyapunov exponents for x0 and y0 are the same. So, if the limits defining the Lya-
punov exponents exist for one of the points, they exist for the other point. The vec-
tors which give the various Lyapunov exponents can be different at the two points.
�

Theorem 2.14. Consider the system of ẋ = f (x) in R
n. Assume that x0 is a point

such that the Lyapunov exponents χ1(x0), . . . ,χn(x0) exist.

(i) Then, the sum of Lyapunov exponents is the limit of the average of the diver-
gence along the trajectory,
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n

∑
j=1

χ j(x0) = lim
T→∞

1
T

∫ T

0
∇ · fφ(t,x0)dt.

(ii) In particular, if the system has constant divergence δ , then the sum of the Lya-
punov exponents at any point must equal δ .

(iii) In the three-dimensional case, assume that the divergence is a constant δ and
that x0 is a point for which the positive orbit is bounded and ω(x0) does not
contain any fixed points. If χ1(x0) is a nonzero Lyapunov exponent at x0, then
the other two Lyapunov exponents are 0 and δ − χ1. �

The definition of the Lyapunov exponent for discrete-time systems is similar to
the case of continuous time.

Definition 2.25. The Lyapunov exponent for the maps xn+1 = G(xn) is defined by

χ(x0,w) = lim
n→∞

ln
‖DnG(x0)w‖

‖w‖ ,

where
DnG(x0) = DG(x0)DG(x1) · · ·G(xn−1)

and w is a vector in the tangent space at x0. �

2.14 Examples

In this section, we will explore how chaos appears by investigating some examples.

2.14.1 Tent Map and Logistic Map

The tent map has the form of

GΛ (y) =

⎧⎪⎨
⎪⎩

2y, if 0 ≤ y ≤ 1
2
,

2(1− y), if
1
2

< y ≤ 1,

(2.31)

which is shown in Fig. 2.22.

Proposition 2.1. The tent map (2.31) is chaotic on [0,1].

Proof. Consider that the graph of the nth iteration of GΛ consists of 2n linear pieces,
each with slope ±2n. Each of these linear pieces of the graph is defined on a subin-
terval of [0,1] of length 2−n. Then, for any open subinterval J of [0,1], we can find
a subinterval K of J of length 2−n, such that the image of K under Gn

Λ covers the
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entire interval [0,1]. Therefore, GΛ is topologically transitive on [0,1]. This fact,
and the discussion in point (v) of Remark 2.4 [16], proves the proposition. �

Remark 2.9. From the geometry of the iterated map Gm
Λ , it appears that the graph of

Gm
Λ on J intersects the bisector and therefore Gm

Λ has a fixed point in J. This proves
that periodic points are dense in [0,1]. Also, for any x ∈ J there exists a y ∈ J such
that |Gn

Λ (x)−Gn
Λ (y)| ≥ 1/2 and, therefore, GΛ has sensitive dependence on initial

conditions. �

This result can be used to show that the logistic map

G4 : [0,1]→ [0,1], G4(x) = 4x(1− x)

(see Fig. 2.23) is also chaotic. Consider the map h(y) = sin2(πy/2). The map h is
continuous and, restricted to [0,1], is also one-to-one and onto. Its inverse is contin-
uous and h is thus a homeomorphism. Consider now the diagram

[0,1]
GΛ−−−−→ [0,1]

h(y)
⏐⏐�

⏐⏐�h(y)

[0,1] −−−−→
G4

[0,1]

where GΛ is the tent map. Recalling the trigonometric relations:

(i) sin2(θ )+ cos2(θ ) = 1;
(ii) 4sin2(θ )cos2(θ ) = sin2(2θ );

(iii) sin(π−θ ) = sin(θ );

we can see that the diagram is commutative. Hence, the map G4 is topologically
conjugate to GΛ and, therefore, its dynamics on [0,1] is chaotic.

1

(b)

1
2 1

3GΛ(x)

x1

1
GΛ

(a)

1
2

(x)

x

Fig. 2.22 The tent map: (a) GΛ ; (b) G3
Λ
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Fig. 2.23 The logistic map G4

Both the tent map and the logistic map are all from an interval of R to itself.
There are also many other one-dimensional mappings presenting chaotic dynamics.
In fact, for one-dimensional mappings from R to itself we have the following so-
called Li–Yorke theorem [13], famous for the phrase ‘period three implying chaos,’
and Sarkovskii’s theorem [13], the generalization of Li–Yorke’s result. Since many
references include the proof of these two theorems, we will only state the content of
the theorems.

Theorem 2.15 (Li–Yorke [13]). Assume that f is a continuous function from R to
itself.

(i) If f has a period-3 point, then it has points of all periods.
(ii) Assume that there is a point x0 such that either

a. f 3(x0) ≤ x0 < f (x0) < f 2(x0) or
b. f 3(x0) ≥ x0 > f (x0) > f 2(x0).

Then, f has points of all periods. �
This theorem was obtained by Li and Yorke in 1975 and soon after it was shown

that Li–Yorke theorem is a special case of Sharkovskii’s theorem. Before introduc-
ing Sharkovskii’s theorem, we first define a new order for natural numbers as fol-
lows:

3�5�7 · · ·�2 ·3�2 ·5�2 ·7� · · ·�2k ·3�2k ·5�2k ·7� · · ·�2k �2k−1 � · · ·�22 �2�1.

Theorem 2.16 (Sharkovskii’s theorem [13]). Let f be a continuous function from
R to itself. Suppose that f has period-n points and n � k. Then, f has period-k
points. �
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2.14.2 Smale Horseshoe

The Smale horseshoe is the prototypical map possessing a chaotic invariant set.
Therefore, a thorough understanding of the Smale horseshoe is absolutely essential
for understanding what is meant by the term ‘chaos’ as it is applied to the dynamics
of specific physical systems [10].

Consider the geometrical construction in Fig. 2.24. Take a square S on the plane
(Fig. 2.24 (a)). Contract it in the horizontal direction and expand it in the verti-
cal direction (Fig. 2.24 (b)). Fold it in the middle (Fig. 2.24 (c)) and place it so
that it intersects the original square S along two vertical strips (Fig. 2.24 (d)). This
procedure defines a map f : R

2 → R
2. The image f (S) of the square S under this

transformation resembles a horseshoe. That is why it is called a horseshoe map.
The exact shape of the image f (S) is irrelevant; however, for simplicity we assume
that both the contraction and expansion are linear and that the vertical strips in the
intersection are rectangle. The map f can be made invertible and smooth together
with its inverse. The inverse map f−1 transforms the horseshoe f (S) back into the
square S through stages (d)–(a). This inverse transformation maps the dotted square
S shown in Fig. 2.24 (d) into the dotted horizontal horseshoe in Fig. 2.24 (a), which
is assumed to intersect the original square S along two horizontal rectangles.

Denote the vertical strips in the intersection S∩ f (S) by V1 and V2,

S∩ f (S) = V1 ∪V2

(see Fig. 2.25 (a)). Now make the most important step: perform the second iteration
of the map f . Under this iteration, the vertical strips V1 and V2 will be transformed

A D
A D

(d)

BC
f -1

f

S S

(c)(b)(a)

B C

B C

A D

A D

B

C

Fig. 2.24 Construction of the horseshoe map
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into two ‘thin horseshoes’ that intersect the square S along four narrow vertical
strips: V11,V21,V22, and V12 (see Fig. 2.25 (b)). We write this as

S∩ f (S)∩ f 2(S) = V11 ∪V21 ∪V22 ∪V12.

Similarly,
S∩ f−1(S) = H1 ∪H2,

where H1 and H2 are the horizontal strips shown in Fig. 2.25 (c), and

S∩ f−1(S)∩ f−2(S) = H11 ∪H12 ∪H22 ∪H21,

with four narrow horizontal strips Hi j (Fig. 2.25 (d)). Notice that f (Hi) =Vi, i = 1,2,
as well as f 2(Hi j) = Vi j, i, j = 1.2 (see Fig. 2.26).

Iterating the map f further, we obtain 2k vertical strips in the intersection S∩
f k(S), k ∈ N. Similarly, iteration of f−1 gives 2k horizontal strips in the intersection
S∩ f−k(S), k ∈ N.

Most points leave the square S under iterations of f or f−1. We consider all
remaining points in the square under all iterations of f and f−1:

Γ = {x ∈ S : f k(x) ∈ S, ∀k ∈ Z}.

Clearly, if the set Γ is nonempty, it is an invariant set of the discrete-time dynamical
system defined by f . This set can be alternatively presented as an infinite intersec-
tion,

Γ = · · · ∩ f−k(S)∩·· ·∩ f−1(S)∩S∩ f (S)∩·· · f k(S)∩·· · .

It is clear from this representation that the set Γ has a peculiar shape. Indeed, it
should be located within

f−1(S)∩S∩ f (S),

which is formed by four small squares (see Fig. 2.27 (a)). Furthermore, it should be
located inside

f−2(S)∩ f−1(S)∩S∩ f (S)∩ f 2(S),

2

V

11

12

22

V1

(b)(a)

H 1

2

H
21

V V

S

U

V2111 1222 V

U

H

H

(d)(c)

H

S -2f

U

H

S -1 S(   )ff (   )S -1f(   )

U

S f (   )S (   )SS(   )S

U U 2f

Fig. 2.25 Vertical and horizontal strips
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H
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H f  H
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21

22
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(      )

(      )

12(      ) 22

f  H 21

V 12V2111V 22V

(      )f  H 11

Fig. 2.26 Transformation f 2(Hi j) = Vi j , i, j = 1,2

which is the union of sixteen smaller squares (see Fig. 2.27 (b)), and so forth. In the
limit, we get a Cantor set. About the horseshoe map, we have the following lemma.

(b)(a)

Sf (   )S (   )f

UU

S

U

S

U

(   )Sf-1f (   )S 2f -1 (   )SS

U U-2f (   )

Fig. 2.27 Location of the invariant set

Lemma 2.1. There is a one-to-one correspondence h : Γ → Σ2 between points of Γ
and all bi-infinite sequences of two symbols.

Proof. For any point x ∈ Γ , define a sequence of the two symbols {1,2} by

ω = {. . . ,ω−2,ω−1,ω0,ω1,ω2, . . .}

by the formula

ωk =
{

1, if f k(x) ∈ H1,
2, if f k(x) ∈ H2,

(2.32)

for k ∈ Z. Here, f 0 = id, the identity map. Clearly, this formula defines a map
h : Γ → Σ2, which assigns a sequence to each point of the invariant set. To ver-
ify that this map is invertible, take a sequence ω ∈ Σ2, fix m > 0, and consider a set
Rm(ω) of all points x ∈ S, not necessarily belonging to Γ , such that
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f k(x) ∈ Hωk ,

for −m≤ k ≤m−1. For example, if m = 1, the set R1 is one of the four intersections
Vj∩Hk. In general, Rm belongs to the intersection of a vertical and a horizontal strip.
These strips are getting thinner and thinner as m → ∞, approaching in the limit a
vertical and a horizontal segment, respectively. Such segments obviously intersect
at a single point x with h(x) = ω . Thus, h : Γ → Σ2 is a one-to-one map. It implies
that Γ is nonempty. �

Remark 2.10. The map h : Γ → Σ2 is continuous together with its inverse (a home-
omorphism) if we use the standard Euclidean metric in S ⊂ R

2 and the metric given
by (2.30) in Σ2. �

Consider now a point x ∈Γ and its corresponding sequence ω = h(x), where h is
the map previously constructed. Next, consider a point y = f (x), that is, the image
of x under the horseshoe map f . Since y ∈ Γ by definition, there is a sequence that
corresponds to y : θ = h(y). As one can easily see from (2.32), there is a simple
relationship between these sequences ω and θ . Namely,

θk = ωk+1, k ∈ Z,

since
f k( f (x)) = f k+1(x).

In other words, the sequence θ can be obtained from the sequence ω by the shift
map σ :

θ = σ(ω).

Therefore, the restriction of f to its invariant set Γ ⊂ R
2 is equivalent to the shift

map σ on the set of sequences Σ2. This result can be formulated as the following
lemma.

Lemma 2.2. h( f (x)) = σ(h(x)), for all x ∈ Γ . �

This lemma can be written as an even shorter one:

f |Γ = h−1 ◦σ ◦h.

Combining Lemmas 2.1 and 2.2 with obvious properties of the shift dynamics
on Σ2, we get a theorem giving a rather complete description of the behavior of the
horseshoe map.

Theorem 2.17. The horseshoe map f has a closed invariant set Γ that contains a
countable set of periodic orbits of arbitrarily long period, and an uncountable set
of nonperiodic orbits, among which there are orbits passing arbitrarily close to any
point of Γ . �

Remark 2.11. The limit set Γ of a Smale horseshoe map is unstable and, therefore,
not attracting. It follows that the existence of a Smale horseshoe does not imply
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the existence of a chaotic attractor. The existence of a Smale horseshoe does imply,
however, that there is a region in state space that experiences sensitive dependence
on initial conditions. Thus, even when there is no strange attractor in the flow, the
dynamics of the system can appear chaotic until the steady state is reached. �

Remark 2.12. We can slightly perturb the constructed map f without qualitative
changes to its dynamics. Clearly, Smale’s construction is based on a sufficiently
strong contraction or expansion, combined with a fold. Thus, a (smooth) perturba-
tion f̃ will have similar vertical and horizontal strips, which are no longer rectangles
but curvilinear regions. However, provided that the perturbation is sufficiently small,
these strips will shrink to curves that deviate only slightly from vertical and hori-
zontal lines. Thus, the construction can be carried through word for word, and the
perturbed map f̃ will have an invariant set Γ on which the dynamics is completely
described by the shift map σ on the sequence space Σ2. This is an example of struc-
turally stable behavior. �

2.14.3 The Lorenz System

Although plenty of numerical evidence of chaotic behavior arising from a variety of
problems in different fields of applications has been provided, apart from the cases
of one-dimensional, noninvertible maps, there are few rigorous proofs that specific
mathematical models possess chaotic attractors as characterized in one or more of
the above definitions, and those proofs are mostly restricted to artificial examples
unlikely to arise in typical applications. We now turn to an example of a chaotic
attractor derived from a celebrated model first discussed in 1963 by E. Lorenz to
provide a mathematical description of atmospheric turbulence. Lorenz’s investiga-
tion was enormously influential and stimulated a vast literature in the years that
followed. Its extraordinary success was in part due to the fact that it showed how
computer technology could be effectively used to study nonlinear dynamical sys-
tems. Lorenz’s work provided strong numerical evidence that a low-dimensional
system of differential equations with simple nonlinearities could generate extremely
complicated orbits. The original Lorenz model is defined by the following three dif-
ferential equations: ⎧⎨

⎩
ẋ = −σx +σy,
ẏ = −xz+ rx− y,
ż = xy−bz,

(2.33)

where x,y,z ∈R and σ ,r,b > 0. System (2.33) is symmetrical under the transforma-
tion (x,y,z) → (−x,−y,z). The three equilibria are

E1 : (0,0,0),
E2 : (

√
b(r−1),

√
b(r−1),r−1),

E3 : (−
√

b(r−1),−
√

b(r−1),r−1).
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In numerical analysis of the Lorenz model, the typical parameter configuration is
σ = 10 and b = 8/3. When r < rH = 24.74 there are two symmetric unstable pe-
riodic orbits with the Lorenz system. When r > rH , the celebrated Lorenz attractor
(the so-called ‘butterfly’) is observed numerically (see Fig. 2.28). The three Lya-
punov exponents are 1.497,0, and −22.46, which imply that the Lorenz system has
sensitive dependence on initial conditions.

−20 −15 −10 −5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

x

z

Fig. 2.28 The Lorenz attractor

Remark 2.13. When we refer to a computer to visualize the numerical solution of
a chaotic system, an important issue arises. If we take into account the combined
influence of round-off errors in numerical computations and the property of diver-
gence of nearby trajectories for chaotic behavior, how can we trust numerical com-
putations of trajectories to give us reliable results? (We note that the same problem
arises in experimental measurements in which ‘noise’ plays the role of round-off
errors.) If the system’s behavior is chaotic, then even small numerical errors are
amplified exponentially in time. Perhaps all of our results for chaotic systems are
artifacts of the numerical computation procedure. Even if they are not artifacts, per-
haps the numerical values of the properties depend critically on the computational
procedures. If that is true, how general are our results? Although it is difficult to
answer these questions once and for all, it is comforting to know that while it is true
that the details of a particular trajectory do depend on the round-off errors in the
numerical computation, the trajectory actually calculated does follow very closely
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some trajectory of the system. That is, the trajectory one calculates might not be
exactly the one he thinks, but it is very close to one of the possible trajectories of
the system. In more technical terms, we say that the computed trajectory shadows
some possible trajectories of the system. (A proof of this shadowing property for
chaotic systems is given in [6] and [14].) In general, we are most often interested
in properties that are averaged over a trajectory; in many cases those average values
are independent of the particular trajectory we follow. So, as long as we follow some
possible trajectory for the system, we can have confidence that our results are a good
characterization of the system’s behavior. Recently, W. Tucker’s work [15] strength-
ened the above discussion, in which he has shown, using a computer-assisted proof,
that the Lorenz system not only has sensitive dependence on initial conditions, but
also has a chaotic attractor. �

Although a full mathematical analysis of the observed attractor is still lacking,
some of the attractor’s properties have been established through a combination of
numerical evidence and theoretical arguments. Before presenting the analysis we
first consider the following three facts about system (2.33).

(i) The trace of the Jacobian matrix

tr[D f (x,y,z)] =
∂ ẋ
∂x

+
∂ ẏ
∂y

+
∂ ż
∂ z

= −(b +σ + 1) < 0

is constant and negative along orbits. Thus, any three-dimensional volume of
initial conditions is contracted along orbits at a rate equal to

γ = −(b +σ+ 1) < 0;

that is to say, the system is dissipative.
(ii) It is possible to define a trapping region such that all orbits outside of it tend to

it, and no orbits ever leave it. To see this, consider the function

V (x,y,z) = x2 + y2 +(z− r−σ)2 = K2(r +σ)2 (2.34)

defining a sphere with center at (x = y = 0; z = σ + r) and radius K(σ + r). The
time derivative of (2.34) along the solution of (2.33) is

V̇ (x,y,z) = −2σx2 −2y2 −2b

(
z− r +σ

2

)2

+ b
(r +σ)2

2
.

V̇ = 0 defines an ellipsoid outside of which V̇ < 0. For a sufficiently large value
of the radius (for sufficiently large K, given r and σ ), the sphere (2.34) will
contain all three fixed points and all orbits on the boundary of the sphere will
point inward. Consequently, system (2.33) is ‘trapped’ inside the sphere.

(iii) Numerical evidence indicates that for r ∈ (13.8,14), there exist two symmetric
homoclinic orbits (that is, orbits that connect a fixed point to itself) asymptot-
ically approaching the origin for t → ±∞, tangentially to the z axis; see the
sketch in Fig. 2.29.
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Keeping the three facts in mind, we can investigate the Lorenz system by con-
structing a geometric model which, under a certain hypothesis, provides a reason-
able approximation of the dynamics of the original model with ‘canonical’ parame-
ter values σ = 10, b = 8/3, and r > rH .

We first consider a system of differential equations in R
3 depending on a param-

eter μ with the following properties:

(i) for a certain value μh of the parameter, there exists a pair of symmetrical ho-
moclinic orbits, asymptotically converging to the origin, and tangential to the
positive z axis;

(ii) the origin is a saddle-point equilibrium and the dynamics in a neighborhood
N of the equilibrium, for μ in a neighborhood of μh, is approximated by the
system ⎧⎨

⎩
ẋ = λ1x,
ẏ = λ2y,
ż = λ3z,

where λ2 < λ3 < 0 < λ1 and −λ3/λ1 < 1;
(iii) the system is invariant under the change of coordinates (x,y,z) → (−x,−y,z).

Under these conditions, for (x,y,z) ∈ N and μ near μh, it is possible to construct
a two-dimensional cross section Σ , such that the transversal intersections of orbits
with Σ define a two-dimensional Poincaré map P : Σ → Σ . For values of |x| and
|μ−μh| sufficiently small, the dynamics of P can further be approximated by a one-
dimensional, noninvertible map Gμ [−a,a]−{0}→ R defined on an interval of the
x axis, but not at x = 0.

A typical formulation of the map Gμ is

Gμ(x) =
{

aμ+ cxδ , if x > 0;
−aμ− c|x|δ , if x < 0;

Fig. 2.29 Homoclinic orbits in the Lorenz model
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αα– 0

0

α

Fig. 2.30 One-dimensional map for the Lorenz model

where a < 0, c > 0, δ = −λ3/λ1, and 0 < δ < 1.
Assuming that the one-dimensional approximation remains valid for values of the

parameter μ outside the neighborhood of μ = μh (that is, outside the neighborhood
of the homoclinic orbit), values of μ > μh can be chosen so that there exists a closed
interval [−α,α] with α > 0 such that Gμ [−α,α]\{0}→ [−α,α] and

lim
x→0−

Gμ(x) = α > 0, lim
x→0+

Gμ(x) = −α < 0.

Then, G′
μ(x) > 1 for x ∈ [−α,α] (x �= 0), and limx→0± G′

μ(x) = +∞. The map Gμ
on the interval is depicted in Fig. 2.30.

Because G′
μ(x) > 1 for all x ∈ [−α,α] (x �= 0), Gμ is a piecewise-expanding

map and has therefore sensitive dependence on initial conditions. There are no fixed
points or stable periodic points and most orbits on the interval [−α,0)∪ (0,α] are
attracted to a chaotic invariant set. Although increasing μ beyond the homoclinic
value μh leads to stable chaotic motion, if we take μ very large, the system reverts
to simpler dynamical behavior and stable periodic orbits reappear.

Remark 2.14. The idea that some essential aspects of the dynamics of the original
system (2.33) could be described by a one-dimensional map was first put forward
by Lorenz himself. In order to ascertain whether the numerically observed attractor
could be periodic rather than chaotic, he plotted successive maxima of the variable
z along an orbit on the numerically observed attractor. In doing so, he discovered
that the plot of zn+1 against zn has a simple shape, as illustrated in Fig. 2.31. The
points of the plot lie almost exactly on a curve whose form changes as the parameter
r varies. Setting σ = 10, b = 8/3, and r = 28 (the traditional ‘chaotic values’), we
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Fig. 2.31 Successive maxima of z for the Lorenz attractor

obtain a curve resembling a distorted tent map. It has slope everywhere greater than
1 in absolute value so, again, it approximates a piecewise-expanding map. For such
a map there cannot be stable fixed points or stable periodic orbits and, for randomly
chosen initial values, orbits converge to a chaotic attractor. �

2.15 Basics of Functional Differential Equations Theory

In many applications, the system under consideration is not governed by a princi-
ple of causality; that is, the future state of the system is dependent not only on the
present state but also on the past states. The theory about these systems has been
extensively developed, which formed the framework of the subject – functional dif-
ferential equations (FDEs). In this section, we only provide some necessary notions
and theorems about FDEs so that this book can be read smoothly.

Let R = (−∞,∞) and R
+ = [0,∞). Let C = C([−τ,0],Rn) denote the space of

continuous functions mapping the interval [−τ,0] into R. We designate the norm of
an element φ in C by ‖φ‖τ = sup−τ≤θ≤0 ‖φ(θ )‖. Each x ∈ R

n can also be looked as
an element in C: x(θ ) = x, θ ∈ [−τ,0]. If σ ∈ R, α ≥ 0, and x ∈ C[σ − τ,σ +α],
then, for any t ∈ [σ ,σ+α], we let xt ∈C be defined by xt(θ )= x(t +θ ),−τ ≤ θ ≤ 0.
If D is a subset of R×C, f : D →R

n is a given function, and ‘·’ represents the right-
hand derivative, we say that the relation
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ẋ = f (t,xt ) (2.35)

is a retarded functional differential equation on D and will denote this equation by
RFDE. We write RFDE( f ) if we wish to emphasize that the equation is defined by
f .

Definition 2.26. A function x is said to be a solution of (2.35) on [σ − τ,σ +α] if
there are σ ∈ R and α > 0 such that x ∈C([σ − τ,σ +α],Rn), (t,xt) ∈ D, and x(t)
satisfies (2.35) for t ∈ [σ ,σ +α). For given σ ∈ R, φ ∈C, we say that x(σ ,φ , f ) is
a solution of (2.35) with initial value φ at σ or simply a solution through (σ ,φ) if
there is an α > 0 such that x(σ ,φ , f ) is a solution of (2.35) on [σ − τ,σ +α] and
xσ (σ ,φ , f ) = φ . �

In the following we only state the main results; the proofs can be found in [8].

Theorem 2.18 (Existence). Suppose that Ω is an open subset in R×C and f 0 ∈
C(Ω ,Rn). If (σ ,φ) ∈ Ω , then there is a solution of the RFDE( f 0) passing through
(σ ,φ). More generally, if W ⊆Ω is compact and f 0 ∈C(Ω ,Rn) is given, then there
is a neighborhood V ⊆ Ω of W such that f 0 ∈ C0(V,Rn), there is a neighborhood
U ⊆C0(V,Rn) of f 0, and an α > 0 such that, for any (σ ,φ) ∈ W , f ∈U , there is a
solution x(σ ,φ , f ) of the RFDE( f ) through (σ ,φ) which exists on [σ − τ,σ +α].
�

Theorem 2.19 (Continuous Dependence). Suppose thatΩ ⊆R×C is open, (σ0,φ0)∈
σ , f 0 ∈C(Ω ,Rn), and x0 is a solution of the RFDE( f 0) through (σ0,φ0) which ex-
ists and is unique on [σ0 − τ,b]. Let W 0 ⊆Ω be the compact set defined by

W 0 = {(t,x0
t )|t ∈ [σ0,b]}

and let V 0 be a neighborhood of W 0 on which f 0 is bounded. If (σ k,φ k, f k), k =
1,2, . . . , satisfies σ k → σ0, φ k → φ0, and ‖ f k − f 0‖V 0 → 0 as k →∞, then there is a
k0 such that the RFDE( f k) for k ≥ k0 is such that each solution xk = xk(σ k,φ k, f k)
through (σ k,φ k) exists on [σ k − τ,b] and xk → x0 uniformly on [σ0 − τ,b]. Since
all xk may not be defined on [σ0 − τ,b], by xk → x0 uniformly on [σ0 − r,b], we
mean that, for any ε > 0, there is a k1(ε) such that xk(t), k ≥ k1(ε), is defined on
[σ0 − τ+ ε,b], and xk → x0 uniformly on [σ0 − τ+ ε,b]. �

Theorem 2.20. Suppose that Ω is an open set in R×C, f : Ω → R
n is continuous,

and f (t,φ) is Lipschitzian in φ in each compact set in Ω , i.e.,

‖ f (t,φ)− f (t,ψ)‖ ≤ K‖φ −ψ‖,

for arbitrary φ ,ψ ∈ C, where K is a constant. If (σ ,φ) ∈ Ω , then there is a unique
solution of (2.35) through (σ ,φ). �

Definition 2.27. If, for all (σ ,φ) ∈ R×C, the solution of (2.35) through (σ ,φ),
x(σ ,φ)(t), exists on [σ − τ,∞), then we say that (2.35) has global solutions. �
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Theorem 2.21. If there exist continuous functions M,N : R → R
+ such that

‖ f (t,φ)‖ ≤ M(t)+ N(t)‖φ‖, (t,φ) ∈ R×C,

then (2.35) has global solutions. �

In the following, we introduce the stability theory for (2.35). Analogous to what
we have done with ordinary differential equations, the stability of a general solution
x(t) of (2.35) is equivalent to the stability of the zero solution of a new RFDE.
Therefore, without loss of generality, we assume that f (t,0) = 0 for all t ∈ R.

Definition 2.28.

(i) The solution x = 0 of (2.35) is said to be stable if, for any σ ∈ R and ε > 0,
there exists a δ = δ (ε,σ) > 0 such that ‖φ‖τ < δ implies that ‖x(t,σ ,φ)‖ < ε
for t ≥ σ .

(ii) The solution x = 0 of (2.35) is said to be uniformly stable if the δ in (i) is
independent of σ .

(iii) The solution x = 0 of (2.35) is said to be attractive if, for any σ ∈ R, there exists
a b = b(σ) such that ‖φ‖τ ≤ b implies that x(t,σ ,φ) → 0 (t → ∞). That is,
for any ε > 0 and ‖φ‖τ ≤ b, there exists a T (σ ,ε,φ) such that ‖x(t,σ ,φ)‖ < ε
whenever t ≥ σ + T (σ ,ε,φ). If b = +∞, the solution x = 0 of (2.35) is said to
be globally attractive.

(iv) The solution x = 0 of (2.35) is said to be asymptotically stable if it is both stable
and attractive.

(v) The solution x = 0 of (2.35) is said to be uniformly attractive if in (iii) b is
independent of σ and T only depends on ε .

(vi) The solution x = 0 of (2.35) is said to be uniformly asymptotically stable if it is
both uniformly stable and uniformly attractive.

(vii) The solution x = 0 of (2.35) is said to be globally asymptotically stable if it is
stable and globally attractive. �

Definition 2.29. The solution x = 0 of (2.35) is said to be exponentially stable if
there exists a β > 0 and, for any ε > 0, there is a δ = δ (ε) > 0 such that, for any
σ ∈ R, ‖φ‖τ < δ implies that

‖x(t,σ ,φ)‖ ≤ ε exp[−β (t −σ)]

for t ≥ σ . The solution x = 0 of (2.35) is said to be globally exponentially stable if
there exist a β > 0 and an η > 0 such that, for any (σ ,φ) ∈ R×C, the following
inequality holds:

‖x(t,σ ,φ)‖ ≤ η‖φ‖τ exp[−β (t −σ)]

for t ≥ σ . �

Definition 2.30. A solution x(t,σ ,φ) of (2.35) is bounded if there is a β (σ ,φ) such
that ‖x(t,σ ,φ)‖ < β (σ ,φ) for t ≥ σ − τ . The solution is uniformly bounded if, for
any α > 0, there is a β = β (α) > 0 such that, for all σ ∈ R, φ ∈ C, and ‖φ‖ ≤ α ,
we have ‖x(t,σ ,φ)‖ ≤ β (α) for all t ≥ σ . �
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In the following, we introduce some sufficient conditions for the stability of the
solution x = 0 of (2.35) which generalize the second method of Lyapunov for ordi-
nary differential equations.

If the functional V : R×C → R
+ is continuous and x(t,σ ,φ) is the solution of

(2.35) through (σ ,φ), we define

V̇ (t,φ) = lim
h→0+

1
h
[V (t + h,xt+h(t,φ))−V(t,φ)].

The function V̇ (t,φ) is the upper right-hand derivative of V (t,φ) along the solution
of (2.35).

If the function V : R×R → R
+ is continuous, we define

V̇ (t,φ(0)) = lim
h→0+

1
h
[V (t + h,x(t,φ)(t + h))−V(t,φ(0))].

The function V̇ (t,φ(0)) is the upper right-hand derivative of V (t,x) along the solu-
tion of (2.35).

Sometimes we write V̇(2.35)(t,φ) and V̇(2.35)(t,φ(0)) to emphasize the dependence
on (2.35), respectively.

Theorem 2.22. Suppose that f : R×C → R
n takes R× (bounded set of C) into

bounded sets of R
n, and u,v,w : R

+ → R
+ are continuous nondecreasing functions,

u(s) and v(s) are positive for s > 0, and u(0) = v(0) = 0. If there is a continuous
functional V : R×C → R

+ such that

u(‖φ(0)‖) ≤V (t,φ) ≤ v(‖φ‖τ),

V̇(2.35)(t,φ) ≤−w(‖φ(0)‖),

then the solution x = 0 of (2.35) is uniformly stable. If u(s) → ∞ as s → ∞, the
solutions of (2.35) are uniformly bounded. If w(s) > 0 for s > 0, then the solution
x = 0 is uniformly asymptotically stable. �

Corollary 2.1. Suppose that f : R ×C → R
n takes R× (bounded set of C) into

bounded sets of R
n, and u,w : R

+ → R
+ are continuous nondecreasing functions,

u(s) and w(s) are positive for s > 0, u(0) = w(0) = 0, and u(s) → ∞ (s → ∞). If
there is a continuous functional V : R×C → R

+ such that

u(‖φ(0)‖) ≤V (t,φ), V (t,0) = 0,

V̇(2.35)(t,φ) ≤−w(‖φ(0)‖),
then the solution x = 0 of (2.35) is globally asymptotically stable. �

Theorem 2.23. Suppose that f : R×C → R
n takes R× (bounded set of C) into

bounded sets of R
n, and u,v,w : R

+ → R
+ are continuous nondecreasing functions,

u(s),v(s), and w(s) are positive for s > 0, and u(0) = v(0) = 0. Suppose that P(s) is
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a continuous and nondecreasing function satisfying P(s) > s for s > 0. If there is a
continuous function V : R×R

n → R
+ such that

u(‖x‖) ≤V (t,φ) ≤ v(‖x‖)

and

V̇(2.35)(t,φ(0)) ≤−w(‖φ(0)‖) when V (t +θ ,φ(θ )) < P(V (t,φ(0))),θ ∈ [−τ,0],

then, the solution x = 0 of (2.35) is uniformly asymptotically stable. Moreover, if
u(s) → ∞ as s → ∞, then the solution x = 0 of (2.35) is globally asymptotically
stable. �

Theorem 2.24. Suppose that α, β , p, and μ are positive constants. If there is a
continuous function V : R×R

n → R
+ such that

α‖x‖p ≤V (t,x) ≤ β‖x‖p

and

V̇(2.35)(t,φ(0)) ≤−μV(t,φ(0)) when sup
−τ≤θ≤0

[eμθV (t +θ ,x(t +θ ))] = V (t,x(t)),

then, the solution x = 0 of (2.35) is globally exponentially stable. �

2.16 Summary

One basic goal in studying dynamical systems is to explore how the trajectories of a
system evolve as time proceeds. So, in this chapter, we began with the theorems on
existence and uniqueness of solutions of ordinary differential equations. In the sub-
sequent sections we focused on a special class of solutions: equilibrium solutions.
Besides that notion, we introduced other definitions such as fixed point, periodic
orbit, quasiperiodic orbit, ω-limit set, invariant set, etc., and, furthermore, the key
concepts of the book, chaos and chaotic attractors, were introduced. Two power-
ful tools in studying chaotic systems, Lyapunov exponents and symbolic dynamics,
were discussed briefly. The stability issue was discussed and a detailed category of
the types of fixed point of planar systems for both continuous time and discrete time
was provided. Three famous examples on chaos were carefully presented through
which we wanted to give a concrete understanding about chaos. Finally, we pro-
vided some necessary preliminaries on retarded functional differential equations for
the purpose of self-containment of the book.



76 2 Preliminaries of Nonlinear Dynamics and Chaos

References

1. Alligood KT, Sauer TD, Yorke JA (1997) Chaos – An Introduction to Dynamical Systems.
Springer, New York

2. Arnold VI (1988) Geometrical Methods in the Theory of Ordinary Differential Equations,
2nd edn. Springer, New York

3. Banks J, Brooks J, Cairns G, Davis G, Stacey P (1992) On Devaney’s definition of chaos. Am
Math Mon 99:332–334

4. Birkhoff GD (1927) Dynamical Systems. American Mathematical Society, Providence, RI
5. Devaney RL (1989) An Introduction to Chaotic Dynamical Systems, 2nd edn. Addison-

Wesley, New York
6. Grebogi C, Hammel SM, Yorke JA, Sauer T (1990) Shadowing of physical trajectories in

chaotic dynamics: containment and refinement. Phys Rev Lett 65:1527–1530
7. Guckenheimer J, Holmes P (1983) Nonlinear Oscillations, Dynamical Systems, and Bifurca-

tions of Vector Fields. Springer, New York
8. Hale J (1977) Theory of Functional Differential Equations. Springer, New York
9. Hirsch MW, Smale S (1974) Differential Equations, Dynamical Aystems and Linear Algebra.

Academic Press, New York
10. Kuznetsov YA (1998) Elements of Applied Bifurcation Theory, 2nd edn. Springer, New York
11. Medio A, Lines M (2001) Nonlinear Dynamics: A Primer. Cambridge University Press, Lon-

don
12. Parker TS, Chua LO (1989) Practical Numerical Algorithms for Chaotic Systems. Springer,

New York
13. Robinson RC (2004) An Introduction to Dynamical Systems: Continuous and Discrete. Pren-

tice Hall, Upper Saddle River, NJ
14. Sauer T, Grebogi C, Yorke JA (1997) How long do numerical chaotic solutions remain valid?

Phys Rev Lett 79:59–62
15. Tucker W (2002) A rigorous ODE solver and Smale’s 14th problem. Found Comput Math

2:53–117
16. Vellekoop M, Berglund R (1994) On intervals: transitivity → chaos. Am Math Mon 101:353–

355
17. Wiggins S (2003) Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn.

Springer, New York


