Chapter 2
Preliminaries of Nonlinear Dynamics and Chaos

Abstract This chapter providesa brief review of some concepts and toolsrelated to
the subject of the monograph — chaos suppression, chaos synchronization, and chao-
tification. After a quick review of the history of ‘dynamical systems, we provide a
summary of important definitions and theorems, including equilibrium points, pe-
riodic orbits, quasiperiodic orbits, stable and unstable manifolds, attractors, chaotic
atractors, Lyapunov stability, orbital stability, and symbolic dynamics, which are
al from the theory of ordinary differential equations and ordinary difference equa-
tions. The results are summarized both for continuous time and for discrete time.
Then, we present three examples for chaotic attractors including the logistic map,
the Lorenz attractor, and the Smale horseshoe. At the end of the chapter, we pro-
vide some necessary definitions and theorems of functional differential equations
(PDEs).

2.1 Introduction

Roughly speaking, a dynamical system consists of two ingredients: a rule or ‘dy-
namics, which is described by a set of equations (difference, differential, integral,
functional, or abstract operator equations, or a combination of some of them) and
specifies how a system evolves, and an initial condition or ‘state’ from which the
system starts. A nonlinear dynamical systemis a dynamical system described by a
set of nonlinear equations; that is, the dynamical variables describing the properties
of the system (for example, position, velocity, acceleration, pressure, etc.) appear in
the eguations in a nonlinear form. The most successful class of rules for describ-
ing natural phenomena are differential equations. All the major theories of physics
are stated in terms of differential equations. This observation led the mathematician
V. I. Arnol’d to comment, ‘ consequently, differential equations lie at the basis of
scientific mathematical philosophy’ [2]. This scientific philosophy began with the
discovery of calculus by Newton and Leibniz and continues to the present day. The
theory of dynamical systems grew out of the qualitative study of differential equa-
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tions, which in turn began as an attempt to understand and predict the motions that
surround us such asthe orbits of the planets, the vibrations of astring, therippleson
the surface of apond, and the forever evolving patterns of the weather. Thefirst two
hundred years of this scientific philosophy, from Newton and Euler to Hamilton and
Maxwell, produced many stunning successesin formulating the ‘ rules of theworld,
but only limited resultsin finding their solutions.

By the end of the 19th century, researchers had realized that many nonlinear dif-
ferential eguations did not have explicit solutions. Even the case of three masses
moving under the laws of Newtonian attraction could exhibit very complicated be-
havior and its explicit solution was not possible to obtain (e.g., the motion of the
sun, the earth, and the moon cannot be given explicitly in terms of known func-
tions). Short-term solutions could be given by power series, but these were not use-
ful in determining long-term behavior. The modern theory of nonlinear dynamical
systems began with Poincaré at the end of the 19th century with fundamental ques-
tions concerning the stability and evolution of the solar system. Poincaré shifted
the focus from finding explicit solutions to discovering geometric properties of so-
lutions. He introduced many ideas in specific examples. In particular, he realized
that a deterministic system in which the outside forces are not varying and are not
random can exhibit behavior that is apparently random (i.e., chaotic). Poincaré's
point of view was enthusiastically adopted and developed by G. D. Birkhoff. He
found many different types of long-term limiting behavior. His work resulted in the
book [4] from which the term * dynamical systems came. Other people, such asLya
punov, Pontryagin, Andronov, Morser, Smale, Peixoto, Kolmogorov, Arnol’d, Sinai,
Lorenz, May, Yorke, Feigenbaum, Ruelle, and Takens, all made important contribu-
tionsto the theory of dynamical systems. The field of nonlinear dynamical systems
and especially the study of chaotic systems has been hailed as one of the important
breakthroughsin science in the 20th century. Today, nonlinear dynamical systems
are used to describe avast variety of scientific and engineering phenomenaand have
been applied to a broad spectrum of problemsin physics, chemistry, mathematics,
biology, medicine, economics, and various engineering disciplines.

This chapter is a brief review of some concepts and tools related to the subject
of the monograph — chaos suppression, chaos synchronization, and chaotification.
The goal of the chapter is to provide readers with some necessary background on
nonlinear dynamical systems and chaos so as to ease the difficulty when they read
subsequent chapters of this book. Readers interested in the complete theory of dy-
namical systems are recommended to refer to [1, 7, 11, 13, 17].

2.2 Background

Two types of models are extensively studied in the field of dynamical systems: the
continuous-time model and the discrete-time model. Most continuous-time nonlin-
ear dynamical systems are described by a differentia equation of the form
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x=f(xt;u), (2.1)

withxe U CR" te R, and u € V C RP, whereU and V are open setsin R" and
RP. Meanwhile, most discrete-time nonlinear dynamical systems are described by
an equation of the form

x(k+1) = f(x(k),k;u), k=0,1,2,.... (2.2)

Werefer to (2.1) as avector field or ordinary differential equation and to (2.2) as
amap or difference equation. By a solution of (2.1) we mean a map, x, from some
interval | C R into R", which is denoted by

x: 1 —R",
t—X(t),

such that x(t) satisfies (2.1), i.e.,

X(t) = f(x(t),t; ).

The map x has the geometrical interpretation of a curvein R", and (2.1) gives the
tangent vector at each point of the curve, hence the reason for referring to (2.1) as
avector field. We will refer to the space of independent variables of (2.1) (i.e., R")
as the phase space or state space. One goal of the study of dynamical systemsisto
understand the geometry of solution curvesin the phase space. It is useful to distin-
guish a solution curve which passes through a particular point in the phase space at
aspecifictime, i.e., for asolution x(t) with x(to) = Xo. We refer to this as specifying
an initial condition or initial value. This is often included in the expression for a
solution by x(t,to, o). In some situations explicitly displaying the initial condition
may be unimportant, in which case we will denote the solution merely as x(t). In
other situations the initial time may be always understood to be a specific value,
say to = 0; in this case we would denote the solution as X(t, Xp). Similarly, it may
be useful to explicitly display the parametric dependence of solutions. In this case
we would write X(t,tg,%o; ) or, if we were not interested in the initial condition,
X(t; ).

Ordinary differential equationsthat depend explicitly ontime (i.e., x= f(x,t; u))
are referred to as nonautonomous or time-dependent ordinary differential equations
or vector fields, and ordinary differential equations that do not depend explicitly
ontime (i.e., x= f(x; u)) arereferred to as autonomous or time-independent ordi-
nary differential equations or vector fields. The same terminology may be used in
the same way for discrete-time systems. It should be noted that a honautonomous
vector field or map can always be made autonomous by redefining time asanew in-
dependent variable. Thisis done asfollows. For avector field x= f(x,t), by writing
tes dx  f(xt)

&= 1 (2.3)
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and using the chain rule, we can introduce a new independent variable s so that (2.3)
becomes

=x= f(xt),
ds
&t (2.4)
ds =t=1
If wedefiney = (x,t)T and f(y) = (f(x,t),1)T, we see that (2.4) becomes

dy _fF n+1

gs = W), yeRME
For the map x(k+1) = f(x(k),k), if we define y(k) = (x(k),k)T and f(y) =
(f(x(k),k),k+1)T, we get the autonomous system under the new phase space

y(k+1) = f(y(k), yeR™™.
So, it is generally sufficient to consider autonomous systems
x=f(x), xeR", (2.5)

and
x(k+1) = g(x(k)), xeR". (2.6)

2.3 Existence, Uniqueness, Flow, and Dynamical Systems

2.3.1 Existence and Uniqueness

Consider the autonomous vector field (2.5). Geometrically, x(t) is a curve in R"
whose tangent vector x(t) exists for al t in its dominant field J and equals f (x(t)).
For simplicity, we usually take initial timetg = 0. The main problem in differential
equationsisto find the solution for any initial valueproblem; that is, to determinethe
solution of the system that satisfies the initial condition X(tp) = Xo for each xg € R".

Unfortunately, nonlinear differential equations may have no solutions satisfying
certain initial conditions.

Example 2.1 ([9]). Consider the following simplefirst-order differential equation:

« 1, ifx<O,
1 -1, ifx>0.

Thisvector field on R pointsto the left when x > 0 and to theright if X < 0. Conse-
quently, thereis no solution that satisfies theinitial conditionx(0) = 0. Indeed, such
asolution must initially decrease since x(0) = —1, but, for all negative values of x,
solutions must increase. This cannot happen. Note further that solutions are never
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defined for all time. For example, if Xp > 0, then the solution through xg is given by
X(t) = %o —t, but this solution is only valid for —ee < t < Xg for the same reason as
above.

The problemin this exampleis that the vector field is not continuous at 0; when-
ever avector field is discontinuous we face the possibility that nearby vectors may
pointin ‘opposing’ directions, thereby causing solutionsto halt at these points. [

Example 2.2. Consider the following differential equation:
% = 3x/3.

Theidentically zero functionu: R — R given by u(t) = 0 is clearly asolution with
initial condition u(0) = 0. But up(t) = t3 is also a solution satisfying this initial
condition. Moreover, for any t > 0, the function given by

. o, ift<r,
u =
<0 (t—1)3 ift>1

is also a solution satisfying the initial condition u;(0) = 0. While the differential
equation in this example is continuous at Xy = 0, the problems arise because 3x?/3
is not differentiable at this point. d

From these two examplesit is clear that, to ensure the existence and uniqueness
of solutions, certain conditions must be imposed on the function f. In the first ex-
ample, f isnot continuousat the point 0, while, in the second example, f failsto be
differentiable at 0. It turns out that the assumption that f is continuously differen-
tiableis sufficient to guarantee both existence and uniqueness of the solution. Infact,
we can furthermore guarantee the existence and uniqueness under a weaker condi-
tion, called the Lipschitz condition, on f. We now state several qualitative theorems
about the solutions of system (2.5) [7].

Theorem 2.1 (Local Existence and Uniqueness). Let U C R" be an open subset
of real Euclidean space (or of a differentiable manifold M), let xo € U, and let
f: U — R" bea(localy) Lipschitzian map, i.e.,

If(y) = f I <K[[x—y]

for some K < c. Then, there are some constant ¢ > 0 and a unique solution
X(-,%0): (—c,c) — U satisfying the differential equation described by (2.5) with
initial condition x(0) = Xo. O

1 Roughly speaking, amanifold is a set which locally has the structure of Euclidean space. In ap-
plications, manifolds are most often met as m-dimensional surfaces embedded in R". If the surface
has no singular points, i.e., the derivative of the function representing the surface has maximal
rank, then by the implicit function theorem it can locally be represented as a graph. The surface is
aC" manifold if the (local) coordinate charts representing it are C'.
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Thelocal existence theorem becomes global in al cases when we work on com-
pact manifolds? M instead of open spaceslike R".

Theorem 2.2 (Global Existence). The differential equation x = f(x), x € M, with
M compact, and f € C!, has solution curves defined for al t € R. |

The local theorem can be extended to show that solutions depend in a ‘nice’
manner oninitial conditions.

Theorem 2.3 (Dependenceon Initial Value). LetU € R" be open and suppose that
f: U — R"hasaLipschitz constant K. Let y(t), z(t) be solutions of x = f(x) on the
closed interval [to,t1]. Then, for al t € [to,t1],

Ily(t) = 2(t)]| < [|y(to) — z(to) || .

2.3.2 Flow and Dynamical Systems

If x(t) is a solution of (2.5), then x(t + 7) is aso a solution for any 7 € R. So, it
sufficesto choose afixed initial time, say, to = 0, which is understood and therefore
often omitted from the notation. If we denote by ¢:(x) = ¢(t,x) the state in R™
reached by the system at timet starting from x, then the totality of solutionsof (2.5)
can be represented by a one-parameter family of maps ¢': U — R™ satisfying

d
t,X = flo(1,X

4t [P ©X) . [¢(7,%)]
for al x e U and for al 7 € | for which the solution is defined. The family of
maps ¢ (X) = ¢(t,X) is called the flow (or the flow map) generated by the vector
field f. The set of points {¢(t,xg): t € |} defines an orbit of (2.5), starting from
a given point Xp. It is a solution curve in the state space, parameterized by time.
The set {[t,d(t,x0)]: t € |} is atrajectory of (2.5) and it evolves in the space of
motions. However, in applications, the terms ‘orbit’ and ‘trajectory’ are often used
as synonyms. A simple example of a trajectory in the space of motions R x R?
and the corresponding orbit in the state space R? are given in Fig. 2.1. Clearly,
the orbit is obtained by projecting the tragjectory on to the state space. The flows
generated by vector fields form a very important subset of a more general class of
maps, characterized by the following definition.

Definition 2.1. A flowisamap ¢: | C R x X — X where X is ametric space, that
is, a gpace endowed with a distance function, and ¢ has the following properties:

2 A compact manifold is a manifold that is compact as a topological space, such as the circle
(the only one-dimensional compact manifold) and the n-dimensional sphere and torus. For many
problems in topology and geometry, it is convenient to study compact manifolds because of their
‘nice’ behavior. Among the properties making compact manifolds ‘nice’ are the facts that they
can be covered finitely by many coordinate charts and that any continuous real-valued function is
bounded on a compact manifold.
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(i) ¢(0,x) = x for every x € X (identity axiom);
(i) p(t +5,x) = ¢(s,0(t,x)) = ¢(t,0(S,X)) = ¢(s+t,X), that is, time-trandated
solutions remain solutions;
(iii) for fixedt, ¢' := ¢(t,-) isahomeomorphism? of the phase space on X. O

Remark 2.1. A distance on a space X (or, ametric on X) isafunction d(-,-): X x
X — R satisfying the following propertiesfor al x,y € X:

(i) d(x,y) > 0and d(x,y) = 0if and only if x=;
(if) d(x,y) = d(y,x) (symmetry);
(i) d(x,y) < d(x,2) +d(zy) (triangle inequdlity).

Noticethat there al so exist notions of distance which are perfectly meaningful but
do not satisfy the definition above and therefore do not define ametric, for example
the distance between a point and a set A

d(xA) = inf dxy)

and the distance between two sets A and B

d(A,B):)l(QfA;Qde(x,y). O

In the following, we give aformal definition of a‘dynamical system.

Definition 2.2. A dynamical systemis atriplet {T,X,¢'} where T is atime set, X
isastate space, and ¢': X — X isaflow parameterized byt € T. O

o)

(@ (b) o
Fig. 2.1 A damped oscillator in R?: (a) space of motions; (b) state space

Sh:UCR"—V cR"issaidtobeaC' diffeomorphism if bothhand h~1 areC". hiscalled a
homeomorphism if r = 0.
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2.4 Equilibrium, Periodic Or bit, Quasiperiodic Orbit, and
Poincaré Map

2.4.1 Equilibrium of Continuous-Time Systems

Definition 2.3 (Equilibrium of Autonomous Systems). An equilibrium solution of
(2.5) isapoint x € R" such that
f(x) =0,

i.e., a solution which does not change in time. Other terms often substituted for the
term *equilibrium solution’ are ‘fixed point,” ‘ stationary point,” ‘rest point,” ‘singu-
larity, ‘critical point, or ‘steady state’ |

Remark 2.2. What about the notion of equilibria of nonautonomous vector fields?
We should note that ideas developed for autonomous systems can lead to incor-
rect results for nonautonomous systems. For example, consider the following one-
dimensional nonautonomousfield:

X=—X+t. 2.7
The solution through the point xg at t = 0 is given by
Xt)=t—1+e'(xo+1),

fromwhichit isclear that all solutions asymptotically approach the solutiont — 1 as
t — o, Thefrozen time or ‘instantaneous’ fixed pointsfor (2.7) are given by

X=t.

At afixedt, thisisthe unique point where the vector field is zero. However, x =t is
not a solution of (2.7). Thisis different from the case of an autonomous vector field
where afixed point is a solution of the vector field. O

Definition 2.4. Consider the following nonautonomous system:
x= f(t,x), (2.8)

where f : [0,00) x D — R" is piecewise continuousint and locally Lipschitzin x on
[0,0) x D, and D C R" is a domain that containsthe origin x= 0. The originis an
equilibrium point of (2.8) att = 0 if

f(t,00=0, ¥t > 0. O

For the discrete-time system (2.6), an equilibrium solution is the point x € R"
such that

X=g(x).
An equilibrium solution of adiscrete-time system is usually called afixed point.
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2.4.2 Periodic and Quasiperiodic Orbits

Consider again the basic system of differential equation
x= f(x) (2.9

and the derived flow ¢. A solution ¢ (t,x*) of system (2.9) through a point x* is said
to beperiodicwith period T > 0if ¢(T,x*) =x*. Theset Lo = {¢(t,x*): t € [0, T)}
isaclosed curvein the state space and is called aperiodic orbit or cycle. T is called
the period of the cycle and measures its time length. It should be emphasized that
isolated periodic solutions are possible only for nonlinear differential equations.
Moreover, a limit cycle* can be structurally stable in the sense that, if it exists for
a given system of differentia equations, it will persist under a slight perturbation
of the system in the parameter space. On the contrary, linear systems of differential
equationsin R™ (m > 2) may have a continuum of periodic solutions characterized
by a pair of purely imaginary eigenvalues (the case of a center, which will be in-
troduced later). But, these periodic solutions can be destroyed by arbitrarily small
perturbations of the coefficients. In other words, these periodic solutions are not
structurally stable.

For the discrete-time system of xx.1 = G(Xx), an n-periodic orbit is defined as
the set of points Lo = {Xo,X1,...,X—1} With X # X; (i # ]) such that

x1 = G(Xp), X2 = G(X1),...,Xn—1 = G(Xn—2), X0 = G(Xn-1)-

It should be noted that each point in an n-periodic orbit is an n-periodic point since,
fork=0,...,n—1,

X = G"(x¢) and GJ(x) # % for 0< j <n.

Periodic orbits of continuous-time systems and discrete-time systems are illus-
trated in Fig. 2.2.

To illustrate what quasiperiodic orbits are we will consider two examples, one
for discrete time and one for continuoustime.

Example 2.3. Consider the following unit-circle map:
Me: St —S' z011 = Me(z0) = €z, (2.10)

where z, = €% 9, € R, a is a positive constant, and ¢ = €27*. The map (2.10)
describes an anticlockwise jump of a particle on the unit circle St. The length of
the circular arc between two adjacent jump points is . If o is rationd, that is,
a = p/q with p and q integers, then any (initial) point on S' is a g-periodic point
of the map M. If  isirrational, at each iteration a new point is added on the unit

4 A limit cycleis an isolated periodic solution of an autonomous system. The points on the limit
cycle constitute the limit set, which isthe set of pointsin the state space that a trajectory repeatedly
visits. A limit set is only defined for discrete-time or continuous-time autonomous systems.



26 2 Preliminaries of Nonlinear Dynamics and Chaos

G2
ety
Xo

G"™ (%) N

s

NS

(a) (b)
Fig. 2.2 Periodic orbitsin: (a) a continuous-time system; (b) a discrete-time system
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circle. For any jump point there exist other jump points arbitrarily closeto it, but no
point is revisited in finite time. This means that the map is topologically transitive
(see Definition 2.12). However, points that are close to each other will remain close
under the iteration. O

Example 2.4. The simplest example of quasi periodic motion in continuoustimeisa
system defined by a pair of oscillators of the form

X+ w12x: 0, y+ wzzy: 0,

wherex,y € R and w1 and w», are real constants. The above system can be rewritten
in the form of first-order linear differential equationsin R*:

X1 = —W1X2,

Xp = w1, (2.11)
y1 = —w2y>,

Yo = oY1,

where X, = x and y, = y. Transforming the variables x;,%, and yi,y» into polar
coordinates, system (2.11) can be written as

01 = wy,
';_l = Oa
0 = wy,
fr=0,

(2.12)

where 6; and r; (i = 1,2) denote the angle and the radius, respectively. We can see
that the above equations describe a particle rotating on a two-dimensional torus for
agiven pair (r1,rz2), ri > 0 (i = 1,2) (see Fig. 2.3). There are two basic possibilities
for the motion:

() w1/, isarational number, in which case there exists a continuum of periodic
orbits of period q;
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(ii) w1/ w7 isanirrational number, in which case the orbit starting from any initial
point on the torus wanders on it, getting arbitrarily near any other point, with-
out ever returning to that exact initial point. The flow generated by (2.12) is
topologically transitive on the torus (see Fig. 2.4).

In both cases, pointsthat are close to each other remain close under the action of the
U

flow.
A general definition of quasiperiodicity of an orbit as a function of time can be

given asfollows:
Definition 2.5 ([11], p. 128). A functionh: R — RMiscalled quasiperiodicif it can
be written in the form of h(t) = H (wst, wat, ..., omt), where H is periodic of period
27 in each of its arguments, and two or more of the m (positive) frequencies are
[l

incommensurable.
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Fig. 2.4 The quasiperiodic motions with different evolution times
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2.4.3 Poincaré Map

A Poincaré map is a classical technique for analyzing dynamical systems. It re-
places the flow of an nth-order continuous-time system with an (n — 1)st-order
discrete-time system. The definition of the Poincaré map ensures that the limit sets
of the discrete-time system correspond to the limit sets of the underlying flow. The
Poincaré map's usefulness lies in the reduction of order and the fact that it bridges
the gap between continuous-time and discrete-time systems.

The definitions of a Poincaré map are different for autonomous systems and
nonautonomous systems. We present the two cases separately.

Casel: Inthiscasewe consider an nth-order time-periodic nonautonomous sys-
tem x = f(t,x), with period T. We can convert it into an (n+ 1)st-order au-
tonomoussystem by appending an extrastate 0 := 2zt /T. Then, the autonomous
system is given by

x=1(x,0T/2n), X(to) = Xo,
{ 6 —21/T, O(to) = 2to/T. (2.13)

Since f istime periodic with period T, system (2.13) is periodicin 6 with period
2r. Hence, the planes 6 = 0 and 6 = 2 may be identified and the state space
transformed from the Euclidean space R™! to the cylindrical space R" x S,
where St isthe unit circle. The solution of (2.13) in the cylindrical state spaceis

X)) _ ¢ (Xo,10)
(G(t)) = (Znt/T mod 27 ) (214)
where the modulo function restrictsto 0 < 6 < 2z. Consider the n-dimensional
hyperplane X € R" x St defined by

Z:={(x,0) cR"x S 6 = 6}.

Every T seconds, thetrajectory of (2.14) intersects X (see Fig. 2.5). Theresulting
mapRy: £ — X (R"— R") isdefined by

PN (X) = dry+7 (X 10)-

Py is called the Poincaré map of the nonautonomous system.

Case2: Consider an nth-order autonomous system with alimit cycle I shownin
Fig. 2.6. Let xg be apoint on the limit cycle and let ¥ be an (n— 1)-dimensional
hyperplane transversal to I" at Xg. The trgjectory emanating from xo will hit =
a Xp in T seconds, where T is the minimum period of the limit cycle. Due to
the continuity of ¢: with respect to the initial condition, the trajectory starting on
X in a sufficiently small neighborhood of xg will, in approximately T seconds,
intersect 2 in the vicinity of Xp. Hence, ¢x and X define a mapping Py of some
neighborhood U C X of xg on to another neighborhood V C X of xg. Pa isa
Poincaré map of the autonomous system.
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Fig. 2.6 The Poincaré map of athird-order autonomous system

Remark 2.3.

(i) Pa is defined locally, i.e., in a neighborhood of xg. Unlike the nonautonomous
case, it isnot guaranteed that the trajectory emanating from any point on X will
intersect X.

(i) For a Euclidean state space, the point Pa(X) is not the first point where ¢ (x)
intersects X; ¢ (X) must pass through X at least once beforereturningto V. This
isin contrast with the cylindrical state spacein Fig. 2.5.

(iii) Py isadiffeomorphismand is, therefore, invertible and differentiable[12]. O

2.5 Invariant and Attracting Sets

Definition 2.6 (Invariant Set). Let SC R" be aset. Then,

(i) (Continuoustime) Sissaid to beinvariant under the vector field x = f(x) if for
any Xp € Swe havex(t,0,xp) € Sforall t € R, wherex(0,0,X%p) = Xo.
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(ii) (Discrete time) Sis said to be invariant under the map Xq;1 = g(xx) if for any
Xo € Swehaveg"(xg) € Sfordlne Z.

If werestrict ourselvesto positivetime (i.e.,t > 0, and n > 0), then werefer to Sas
apositively invariant set, while, for negativetime, as anegatively invariant set. [

The definition means that trajectories starting in the invariant set remain in the
invariant set, for al of their future and all of their past.

Definition 2.7. Aninvariant set SC R"issaidtobeaC' (r > 1) invariant manifold
if Shas the structure of aC" differentiable manifold. Similarly, a positively (nega-
tively) invariant set SC R" issaid to beaC" (r > 1) positively (negatively) invariant
manifold if Shas the structure of aC" differentiable manifold. O

Definition 2.8. Let ¢(t,x) be aflow on a metric space M. Then, apointy € M is
caled an w-limit point of x € M for ¢(t,x) if there exists an infinitely increasing
sequence {tj } such that

limd(¢(ti,x),y) =0.

| —oo

The set of al w-limit points of x for ¢(t,x) is called the w-limit set and is denoted
by w(x). O

The definitions of o-limit point and a-limit set of apoint x € M are obtained just
by taking sequencest; decreasingini to —ee. The a-limit set of x isdenoted as c¢(x).

Definition 2.9. A point Xg is called nonwandering if the following condition holds.
Flows: for any neighborhood U of xg and T > 0, there exists some [t| > T such that

9(t,U)NU #0;
Maps: for any neighborhood U of xg, there exists some n # 0 such that
g"(U)nu #0.

The set of al nonwandering points of a flow or map is called the nonwandering set
of that particular flow or map. O

Definition 2.10. A closed invariant set A C R" is called an attracting set if thereis
some neighborhood U of A such that

Flows: foranyt >0, ¢(t,U) CU and (-9 (t,U) =A;

Maps: foranyn> 0, g"(U) CcU and(,-09"(U) = A. O

Definition 2.11. The basin of attraction of an attracting set A is given by

Flows: U< (t,U);

Maps: UngO g"(U);

whereU isany open set satisfying Definition 2.10. O

Definition 2.12. A closed invariant set A is said to be topologically transitiveif, for
any two open setsU,V C A,

Flows: thereexistsat € R such that ¢(t,U) NV # 0;

Maps: there existsan n € Z such that g"(U) NV # 0. O
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Definition 2.13. An attractor is atopologically transitive attracting set. O

2.6 Continuous-Time Systemsin the Plane

In this section and the next two sections we will discuss the types of eguilibrium
points of planar systems of continuous time and discrete time, respectively. In ap-
plications, we very often encounter linear systems described by two first-order dif-
ferential equations (or a differential equation of second order), either because the
underlying model is linear or because it is linearized around an equilibrium point.
Systems in two-dimensional space are particularly easy to discussin full detail and
giveriseto anumber of interesting basic dynamic configurations. Moreover, in prac-
tice, itisvery difficult or impossibleto determinethe exact values of the eigenvalues
and eigenvectors for matrices of order greater than two. Thus, one can draw inspi-
ration from the discussion about planar systems when studying high-dimensional
systems.
The genera form of a continuous-time planar system can be written as

()-20)-(=32)(5) o1

wherex,y € R and a;; arereal constants. If det(A) # O, the unique equilibrium, for
whichx=y =0, isx=y= 0. The characteristic equation is

A2 —tr(A)A + det(A) =0,

and the eigenvalues are
1
Mz=(Ir(A)£VA),

where A = (tr(A))? — 4det(A) is called the discriminant. For system (2.15) the dis-
criminant is
A = (a11 — ag)® + dagoap:.

The different types of dynamical behavior of (2.15) can be described in terms of
the two eigenvalues of the matrix A, which in planar systems can be completely
characterized by the trace and determinant of A. In the following we consider non-
degenerate equilibriafor which A1 and A, are both nonzero, when thereisno explicit
claim. We distinguish behaviors according to the sign of the discriminant.

Casel: A > 0. Eigenvaluesand eigenvectorsare real. Solutions have the form

X(t) = cretult + ey,
y(t) = cr et u(lz) + cpet?t uéz),
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Fig. 2.7 Equilibrium typesin the plane

T T
where u; = (u(ll), u(12)> and up = (u(zl), u(22)) are eigenvectors corresponding

to the eigenvalues A; and Ay, respectively. We have three basic subcases corre-
sponding to Fig. 2.7 (a), (b), and (e), respectively (eigenvalues are plotted in the

complex plane).
(i) tr(A) <O, det(A) > 0. In this case, eigenvalues and eigenvectors are real
and both eigenvalues are negative (say, 0 > A1 > Ay). The two-dimensional
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Fig. 2.8 Equilibrium types in the plane with repeated eigenvalue: (a) bicritical node; (b) Jordan
node

state space coincides with the stable eigenspace.® The equilibrium is called
a stable node, and the term ‘node’ refers to the characteristic shape of the
ensembl e of orbits around the equilibrium.

(i) tr(A) >0, det(A) > 0. Inthiscase, eigenvaluesand eigenvectorsarereal, both
eigenvaluesare positive (say, A1 > A, > 0), and the state space coincideswith
the unstable eigenspace. The equilibrium is called an unstable node.

(iii) det(A) =0.Inthiscase, A > 0independent of the sign of thetrace of A. One
eigenvalueis positive, and the other is negative (say, A1 > 0> A). Thereare,
then, a one-dimensional stable eigenspace and a one-dimensional unstable
eigenspace and the equilibrium is known as a saddle point.

Case2: A <0.Theeigenvaluesand eigenvectorsare complex conjugate pairsand
we have

(A1, A2) = (A, A) = a +ip
with 1

o= t(A), B= V-A.
The solutions have the form

X(t) = Ce™ cos(Bt + ¢),
y(t) =Ce*sin(Bt+9¢),

and the motion is oscillatory. If o # O there is no strict periodicity in the sense
that there exists no 7 such that x(t) = x(t + 7). However, aconditional period can
be defined as the length of time between two successive maxima of a variable,
which is equal to 27/B. The frequency is simply the number of oscillations per

5 An eigenspace is spanned by eigenvectors. A stable eigenspace is spanned by the eigenvectors
corresponding to negative elgenvalues, and an unstable eigenspace is spanned by the eigenvectors
corresponding to positive eigenval ues.
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time unit, that is, B/2x. The amplitude or size of the oscillations depends on
theinitial condition and e (more on this point below). There are three subcases
depending on thesign of tr(A) and therefore of Re(A ) = «; seethe corresponding
illustrationsin Figs. 2.7 (c), (d), and (f), respectively.

(i) tr(A) <0, Re(A) = o < 0. The oscillations are dampened and the system
converges to the equilibrium. The equilibrium point is known as a focus or,
sometimes, a vortex, due to the characteristic shape of the orbits around
the equilibrium. In this case the focus or vortex is stable and the stable
eigenspace coincides with the state space.

(i) tr(A) >0, Re(A) = a > 0. The amplitude of the oscillations getslarger with
time and the system diverges from the equilibrium. The unstable eigenspace
coincides with the state space and the equilibrium point is called an unstable
focus or vortex.

(iii) tr(A)=0,Re(A) = a =0. Inthisspecia case we haveapair of purely imag-
inary eigenvalues. Orbits neither converge to, nor diverge from, the equilib-
rium point, but they oscillate regularly around it with a constant amplitude
that depends only on initial conditions and the equilibrium point is called a
center.

Case3: A = 0. The eigenvalues are real and equal to each other, A1 = A, = A.
In this case, if A # Al, only one eigenvector can be determined, say u =

:
(u(l), u(z)) , defining a single straight line through the origin. We can write the
general solution as

X(t) = (cou® + cpvV)et + teuMelt,
y(t) = (c1u® 4 V@) 1 tou@elt,

with
x(0) = cau® + vtV
y(0) = c1u® 4 v,

The equilibrium type is again a node, sometimes called a Jordan node. An ex-
ample of this typeis provided in Fig. 2.8 (b), where it is obvious that there is
asingle eigenvector. If A= Al the equilibrium is till a node, sometimes called
a bicritical node. However, al half-lines from the origin are solutions, giving a
star-shaped form (see Fig. 2.8 (a)).

Fig. 2.9 provides a very useful geometric representation in the (tr(A), det(A))
plane of the various cases discussed above. Quadrants |11 and 1V of the plane cor-
respond to saddle points, quadrant Il to stable nodes and foci, and quadrant | to
unstable nodes and foci. The parabola divides quadrants | and 11 into nodes and
foci (the former below the parabola and the latter above it). The positive part of the
det(A) axis correspondsto centers.

The analysis of systems with n > 2 variables can be developed along the same
lines although geometric insight will fail when the dimension of the state space is
larger than three. In order to give the reader a broad idea of common situations we
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Fig. 2.9 Continuous-time dynamicsin R?

depict sample orbits of three-dimensional systemsin Fig. 2.10, which indicates the
corresponding eigenvaluesin the complex plane. The system in Fig. 2.10 (a) hastwo
positive real eigenvalues and one negativereal eigenvalue. The equilibrium point is
an unstable saddle. In this case the plane associates with the positive real eigen-
values. All orbits eventually converge to the unstable eigenspace and are captured
by the expanding dynamics. The only exceptions are those orbits initiating on the
stable eigenspace (defined by the eigenvector associated with the negative eigen-
value) which converge to the plane at the equilibrium point. When Aisan mx m
matrix, we divide the eigenvectors (or, in the complex case, the vectors equal to the
real and imaginary parts of them) into three groups, according to whether the cor-
responding eigenval ues have negative, positive, or zero real parts. Then, the subsets
of the state space spanned (or generated) by each group of vectors are known asthe
stable, unstable, and center eigenspaces, respectively, and denoted by ES EY, and
E°. Notice that the term saddle in R™ refersto all cases in which there exist some
eigenvalues with positive and some with negativereal parts. We use the term saddle
node when eigenvalues are al real, saddle focus when some of the eigenvalues are
complex. An example of the latter is presented in Fig. 2.10 (b). Thetwo real vectors
associated with the complex conjugate pair of eigenvalues, with negative real parts,
span the stable eigenspace. Orbits approach asymptotically the unstabl e eigenspace
defined by the eigenvector associated with the positive eigenvalue, along which the
dynamicsis explosive.
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(b)
Fig. 2.10 Continuous-time dynamicsin R3: (a) saddle node; (b) saddle focus
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2.7 General Solutions of Discrete-Time Linear Systems

Now consider the following linear, discrete-time system described by
x(n+1) =Bx(n), xe R™. (2.16)

It is easy to see that x = 0 is the only equilibrium solution. If k; is aredl, distinct
eigenvalue of them x mmatrix B and v; isthe corresponding real eigenvector so that
Bvi = kv, it can be verified that

X(n) = kv; (2.17)

isasolution of (2.16). Suppose that we have apair of eigenvaluesof B
(K}, Kj+1) = (Kj, Kj) = 0] £i0]

with a corresponding pair of eigenvectors

(Vj,Vit1) = (v}, Vj) = pj £iq;,

where p; and g; are m-dimensional vectors. Then, the pair of functions
1 n, N n H

Xj(n) = ) (kVj +k]Vj) = r][pj cos(wjn) — g;sin(w;n)],

| (2.18)
Xj+1(n) = =, (k]'vj = K]V}) = r{{[p; sin(w;n) +q; cos(w;n)]

are the jth and (j 4+ 1)st solutions of (2.16), respectively. Here, we have used the
polar coordinate transformations

{ O} =TI Coswj, (2.19)

0 =rjsinwj,
and awell-known result
(cosw isinw)" = cos(wn) £isin(wn).

From (2.19) we haver;j = \/sz + 9j2. Then, rj issimply the modulus of the complex

eigenvalues. If p}') and qﬁ') denote the Ith elements of p; and qj, respectively, then
in polar coordinates we have

pﬁ-” =c!" cos(p!"),
| 1) . |
a)) =’ sin(e!"),

wherel =1,2,....m. (2.18) can be rewritten as m-dimensional vectors whose |th
elements have the form
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[ D)
{xélz(n) Cf(r) cos(a),n+d>J ),
Xj11(n) =Cjr] sm(a),n+d>J )
Assuming that we have m linearly independent solutions defined by (2.17) and
(2.18), by the superposition principle the general solution of (2.16) can be written
as alinear combination of theindividual solutions, namely

X(N) = c1x1(N) 4 Cox2(N) + - - - + CmXm(N),

where ¢; are constants depending on theinitial conditions.
When eigenvalues are repeated, the general solution becomes

h nj—1

=3 X kin'x,

j=11=0
wheren; > 1isthe multiplicity of the jth eigenvalue, h < misthe number of distinct
eigenvalues, and k; areindependent vectorswhose val ues depend on the marbitrary
initial conditions.

Inspection of (2.17) and (2.18) indicates that if the modulus of any of the eigen-
values is greater than 1, solutions tend to 4o Or —ee as time goes to +-eo. On the
contrary, if all eigenvalues have modulus smaller than 1, solutions converge asymp-
toticaly to the equilibrium point. Analogousto the situation of continuoustime, we
call the space spanned by the eigenvectors whose corresponding eigenvalues have
modulus less than 1 (greater than 1) a stable eigenspace (unstable eigenspace) and
call the space spanned by the eigenvectors whose corresponding eigenvalues have
modulus equal to 1 a center eigenspace. We also use the same symbols, ES,EY, and
EC, to denote them.

2.8 Discrete-Time Systemsin the Plane

The discrete-time autonomous system that is analogous to the continuous-time sys-
tem (2.15) is described by

Xn+1 Xn b11 b2\ [ Xn
=B = ) 2.20
(Yn+1> <Yn> <b21 bzz) <Yn> (2.20)
We assume that the matrix | — B is nonsingular. Thus, the origin is the unique equi-
librium point of (2.20). The characteristic equation is analogous to the continuous

case aswell,
K% —tr(B)k + det(B) = 0,

and the eigenvalues are given by
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K12 = (tr i\/tr — Adet( ))

We also assume that the equilibria of (2.20) are nondegenerate, i.e., |k1|, |ko| # 1.
We will discuss the dynamics of the discrete-time system (2.20) for the following
three cases.

Casel: A > 0. Theeigenvaluesare real and solutionstake the form

X(n) = clxlv(1 )+ czxgvé ),

y(n) = C1K1V(l ) + czxgvéz).
(i) If |k1] < 1 and |k2| < 1 the fixed point is a stable node. This means that
solutions are sequences of points approaching the equilibrium as n — oo,
If k1, K2 > O the approach is monotonic; otherwise, there are improper os-

Fig. 2.11 Phase diagrams for real eigenvalues: (a) and (c) stable nodes; (b) and (d) saddle points
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cillations® (see Figs. 2.11 (a) and (c), respectively). In this case, the stable
eigenspace coincides with the state space.

If |x1] > 1 and |k2| > 1 the fixed point is an unstable node. In this case,
solutions are sequences of points approaching equilibrium as n — —eo, If
K1, K2 > 0 the approach is monotonic; otherwise, there are improper oscil-
lations (as in Figs. 2.11 (a) and (c), respectively, but arrows point in the
opposite direction and the time order of pointsis reversed). In this case, the
unstable eigenspace coincides with the state space.

If |x1] > 1 and |k2| < 1 the fixed point is a saddle point. No sequences of
points approach the equilibrium for n — e except for those originating
from points on the eigenvectors associated with x,. Again, if k1, ko > 0
orbits move monotonically (see Fig. 2.11 (b)); otherwise they oscillate im-
properly (see Fig. 2.11 (d)). The stable and unstable eigenspaces are one
dimensional.

Case2: A <O0.Inthiscase, det(B) > 0. Eigenvalues are acomplex conjugate pair
given by

(k1,k2) = (K, k) =0 £i0

and solutions are sequences of points situated on a spiral whose amplitude in-
creases or decreases in time according to the factor r", where

r=|o+i0] = /o2 + 62 = det(B)

isthe modulus of the complex eigenvalue pair. Solutions are of the form

0]
(if)

(iii)

x(n) = Cr"cos(wn+ ¢),
{ y(n) =Cr"sin(on+ ¢).

If r < 1 solutions converge to equilibrium and the equilibrium point is a

stable focus (see Fig. 2.12 (a)).

If r > 1 solutions diverge and the equilibrium point is an unstable focus (as
in Fig. 2.12 (&), but arrows point in the opposite direction and the time order
of pointsisreversed).

If r =1 the eigenvalues lie exactly on the unit circle, an exceptional case.

There are two subcases which depend on the frequency of the oscillation

®/2m,w = arccosftr(B)/2]:

a o/2risrationa and the orbit in the state space is a periodic sequence
of points situated on acircle, the radius of which dependson initial con-
ditions (see Fig. 2.12 (b));

b. w/2nisirrationa and the sequenceisnonperiodic or quasiperiodic, that
is, starting from any point on the circle, orbits stay on the circle but no

6 First-order, discrete-time equations (where the order is determined as the difference between the
extreme time indices) can also have fluctuating behavior, called improper oscillations, owing to the
fact that if their eigenvalue f < O, B" will be positive or negative according to whether niseven or
odd. The term improper refers to the fact that in this case oscillations of variables have a ‘kinky’
form that does not properly describe the smoother ups and downs of real variables.
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Fig. 2.12 Phase diagrams for complex eigenvalues: (a) a stable focus; (b) periodic cycles; (c) a
quasiperiodic solution

sequence returns to the initial point in finite time. Therefore, solutions
wander on the circle filling it up, without ever becoming periodic (see
Fig. 2.12 (c)).

Case3: A =0.Thereisarepeatedreal eigenvaluek; = tr(B)/2. Thegeneral form
of solutionswith arepeated eigenvalue k is asfollows:

x(n) = (cv® + cou@) k" + nepv Wi,
y(n) = (v + cou@) k" + nepv@ kN,

If |x| < 1,limy_.nk" = O. If the repeated eigenvalue is equal to 1 in absolute
value, the equilibriumis unstable (with improper oscillationsfor k3 = —1). How-
ever, the divergenceis linear not exponential.

The dynamics of the discrete case can be conveniently summarized by the di-
agram in Fig. 2.13. (For the sake of simplicity, we represent orbits as continuous
rather than dotted curves.) If we replace the greater-than sign with the equal sign
in conditions (i)—(iii) of Case 2, we obtain three lines intersecting each other in the
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(tr(B), det(B)) plane, defining a triangle. Points inside the triangle correspond to
stable combinations of the trace and determinant of B.” The paraboladefined by

tr(B)? = 4det(B)

divides the plane into two regions corresponding to real eigenvalues (below the
parabola) and complex eigenval ues (above the parabola). Combinations of trace and
determinant above the parabola but in the triangle lead to stable foci, combinations
below the parabola but in the triangle are stable nodes. All other combinations lead
to unstable equilibria

Fig. 2.14 is an example of a system in R3. There are a complex conjugate pair
with modulusless than one, and one dominant real eigenvalue greater than one. The
equilibrium point is a saddle focus.

det (B)
R R
. .
)
L tr (B) 2‘
N
NZd N | e
P P)
/

Fig. 2.13 Discrete-time dynamics in R?

7 In Case 2, if 1+ tr(B) + det(B) = 0 while (ii) and (iii) hold, one eigenvalue is equal to —1; if
1—tr(B) + det(B) = 0 while (i) and (iii) hold, one eigenvalue is equal to +1; and if det(B) = 1
while (i) and (ii) hold, the two eigenvalues are a complex conjugate pair with modulus equal to 1.
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Fig. 2.14 A discretetime dynamicsin R3

2.9 Stabilitiesof Trajectories|: The Lyapunov First Method

Stahility theory playsacentral rolein systemstheory and engineering. The so-called
Lyapunov first method or Lyapunov indirect method is used to study the stability of
a system’s trajectories through calculating the eigenvalues of a linearized system at
the objective trajectories. This meansthat the Lyapunov first method is essentialy a
local method which can only be used in a neighborhood of the objective trgjectory.

2.9.1 The Definition of Lyapunov Stability

Let X(t) beany solution of (2.5). Roughly speaking, X(t) isstableif solutionsstarting
‘close’ to x(t) at a given time remain close to x(t) for all later times. It is asymp-
totically stable if nearby solutions not only stay close, but also convergeto x(t) as

1 — oo,
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Definition 2.14 (Lyapunov Stability). x(t) issaid to be stable (or Lyapunov stable)
if, for any given € > 0, thereexistsad = §(¢) > 0 such that, for any other solution,
y(t), of (2.5) satisfying ||x(to) — y(to)|| < &, we have ||x(t) —y(t)|| < € fort > to,
to e R. O

A solution which is not stable is said to be unstable.

Definition 2.15 (Asymptotic Stability). x(t) is said to be asymptotically stableiif it
is Lyapunov stable and, for any other solution, y(t), of (2.5), there exists a constant
b > O such that, if ||x(to) — y(to)|| < b, then limy_.. ||x(t) — y(t)|| = O. O

A new stability definition which is different from Lyapunov’sdefinitionsis given
asfollows.

Definition 2.16. An orbit generated by system x = f(x) (x € R"), with initial condi-
tion xp on a compact, ¢-invariant subset A of the state space (i.e., ¢(A) C A), issaid
to be orbitally stable (asymptotically orbitaly stable) if the invariant set

I'={¢(t,x): X0 €A, t >0}

(the forward orbit of xg) is stable (asymptotically stable) according to Definition
2.14 (Définition 2.15). O

The analogous definitions of stability for autonomous dynamical systemsin dis-
crete time with the general form

x(n+1) =G(x(n)), xe R (2.21)

areasfollows.
Definition 2.17. The equilibrium point X is Lyapunov stable (or, simply, stable) if,
for every € > 0, there exists § (&) such that

Ixo—X]| < 8(e) = [|G"(x0) — X]| < &, ¥n > 0. O

Definition 2.18. The equilibrium point X is asymptotically stable if
(i) it isstable and
(i) 3b > O such that
I —X]| < b= lim [|G"(x0) —X] =O. O

Property (ii) can be replaced by the following equivalent property:

(ii") there exists b > 0 and, for each € > 0, there existsan integer T = T(b,¢) >0
such that
X0 —X]| <b=[|G"(x0) =X <& Vn=T.

Figs. 2.15 and 2.16 are the visualization of Definitions 2.14 and 2.15. Notice
that these two definitions imply that we have information on the infinite-time exis-
tence of solutions. Thisis obviousfor equilibrium solutions but is not necessary for
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& (&

Fig. 2.15 (a) Lyapunov stahility; (b) asymptotic stability

@)

(b) 7 ’II

Fig. 2.16 (a) Lyapunov stability; (b) asymptotic stability

nearby solutions. Also, these definitions are for autonomous systems, since in the
nonautonomous case it may be that 6 and b depend explicitly onto.

In order to determine the stability of x{t) we must understand the nature of solu-
tions near X(t). Let

X(t) = X(t) +V. (2.22)

Substituting (2.22) into (2.5) and performing Taylor expansion about X(t) gives
=X(t) +y= f(x(t) + Df (x(t))y+o(ly]?), (223)
where Df isthe derivative of f called the Jacobian matrix of f, || - || denotesanorm

on R", and o(||y||?) denotes the higher-order infinitesimal term of ||y||?. Using the
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fact that x(t) = f(X(t)), (2.23) becomes
y = DF(X(t))y+o([lyl®)- (2.24)

Equation (2.24) describes the evolution of orbits near x(t). For stability questions
we are concerned with the behavior of solutions arbitrarily closeto x(t), so it seems
reasonable that this question could be answered by studying the associated linear
system

y=DF(X(t))y. (2.25)

Usually it is difficult to determine the stability of x(t) by (2.25) since there are no
general analytical methods for finding the solution of linear ordinary differential
equations with time-dependent coefficients. However, if X is an eguilibrium solu-
tion, i.e., X(t) = x, then Df (x(t)) = Df(X) isamatrix with constant entries, and the
solution of (2.25) through the point yo € R" at t = 0 can immediately be written as

y(t) = &' yp.

Thus, y(t) is asymptotically stable if al eigenvalues of Df (x) have negative real
parts.

Theorem 2.4. Supposethat al of the eigenvaluesof D f (X) have negativereal parts.
Then, the equilibrium solution x = X of the nonlinear vector field (2.5) is asymptot-
ically stable. |

Definition 2.19. Let x = x be a fixed point of x = f(x), x € R". Then, Xis caled a
hyperbolic fixed point if none of the eigenvalues of Df (x) has zero real part. O

The eigenvalues of the Jacobian matrix Df (X) are also referred to as the eigen-
values of the fixed point X.

Theorem 2.5 (Hartman—-Grobman). If X is a hyperbolic fixed point of (2.5), then
there is a homeomorphism h defined on some neighborhood N of x'in R", locally

w*.

u

w

Fig. 2.17 The Hartman—-Grobman theorem
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WS E®

Fig. 2.18 Stable and unstable eigenspaces and manifolds in R?

mapping orbits of the nonlinear system (2.5) to those of the linear system (2.25).
The map h preserves the sense of orbits and can also be chosen so as to preserve
parameterization by time. O

If h is a homeomorphism, then from Theorem 2.5 we can deduce that asymp-
totic stability (or the lack of it) for the linear system (2.25) implieslocal asymptotic
stability of the nonlinear system (2.5) (or the lack of it). However, homeomorphic
equivalence does not preserve al the interesting geometric features of a dynamical
system. For example, alinear system characterized by an asymptotically stable node
is topologically conjugate to another linear system characterized by an asymptoti-
cally stable focus.

If the equilibrium point is not hyperbolic, that isto say, if there exists at |east one
eigenvalue with real part exactly equal to 0, the Hartman—Grobman theorem cannot
be applied. The reason is that the linearized system is not sufficiently informative.
In particular, the stability properties of the system depend on the higher-order terms
of the expansion which have been ignored in the approximation (2.25).

In the above discussion of linear systems we emphasized the importance of cer-
tain invariant subspaces, i.e., the eigenspaces, defined by the eigenvectors of the
Jacobian matrix. If the nonlinear system (2.5) has an isolated,® hyperbolic equilib-
rium X, in the neighborhood of X there exist certain invariant surfaces, called stable
and unstable manifolds, which are the nonlinear counterparts of the stable and un-
stable eigenspaces. Locally, these manifolds are continuous deformations, respec-
tively, of the stable and unstable eigenspaces of the linear system (2.25) (because x’
is hyperbolic, there is no center eigenspace for (2.25)) and they are tangents to the
eigenspaces of the linear system (2.25) at x. We denote stable manifolds, unstable
manifolds, and center manifolds by WS, WY, and W°. Some simple examples of the
phase diagrams of nonlinear systems and the corresponding linearized systems in
R? and R? are provided in Figs. 2.17, 2.18, and 2.19.

8 An equilibrium point isisolated if it has a surrounding neighborhood containing no other equi-
librium point.
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Fig. 2.19 Stable and unstable eigenspaces and manifoldsin R3
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The method of linear approximation can be applied in a perfectly analogous man-
ner to nonlinear systems described by difference equations. Consider system (2.21),
with afixed point X, and assume that G is differentiable. A local linear approxima-
tion of (2.21) near xis

£(n+1) = DG(X)E(n), (2.26)

where £ = x— X and DG(x) is the Jacobian matrix of partial derivatives of G, eval-
uated at x.

The discrete-time version of the Hartman—Grobman theorem for x(n+1) =
G(x(n)) is perfectly analogous to that for flows except for the following important
differences:

(i) For discrete-time systems, fixed pointsare hyperbolicif none of the eigenvalues
of the Jacobian matrix, evaluated at the equilibrium, is equal to 1 in modulus.

(ii) The map h of the Hartman—Grobman theorem defining the local relationship
between the nonlinear system (2.21) and the linearized system (2.26) is a dif-
feomorphism if the eigenvalues of DG(X) satisfy a nonresonance condition. In
the case of mapsthis condition requiresthat no eigenvalue ki, of DG(X) satisfies

m
K = H KiCl
i=1

for any choiceof ¢; > Owith ¥, ¢ > 2.

2.9.2 Floquet Theory

Local stahility of a periodic solution of the system x = f(x) (x € R") can be dis-
cussed in terms of eigenvalues of certain matrices. Suppose that the system has a
periodic orbit I' = {x*(t): t € [0,T), x*(t) =x*(t+T)}. Define & := x(t) — x*(t).
Linearizing £ about £ = 0, i.e., about the periodic orbit I", we obtain

£ =A(t)E, (2.27)

where the matrix A(t) := Df(x*(t)) has periodic coefficients of period T, so that
A(t) = A(t+T). Solutions of (2.27) take the general form of

B(t)eM,
where the vector B(t) is periodicin timewith period T, B(t) = B(t+ T). Denote the

fundamental matrix of (2.27) as @(t), that is, the mx mtime-varying matrix whose
m columns are solutions of (2.27). Thus, @(t) can be written as
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where Z(t) isan mx m, T-periodic matrix and R is a constant m x mmatrix. More-
over, we can always set @(0) = Z(0) = I, from which we get

o(T)=e'R

Therefore, the dynamicsof orbitsnear thecycleI” are determined by the eigenvalues
(A1,...,Am) of thematrix e"R which are uniquely determined by (2.27).° The Asare
called characteristic (Floquet) multipliers of (2.27), whereas the eigenvalues of R,
(k1,...,km), are caled characteristic (Floquet) exponents.

One of the roots (multipliers), say A1, is always equal to 1, so that one of the
characteristic exponents, say ki, is aways equal to 0, which implies that one of
the solutions of (2.27) must have the form B(t) = B(t + T). This can be verified
by putting B(t) = x*(t) and differentiating it with respect to time. The presence of
a characteristic multiplier equal to 1 (a characteristic exponent equal to 0) can be
interpreted as that if, starting from a point on the periodic orbit I', the system is
perturbed by a small displacement in the direction of the flow, it will remainon I".
What happensfor small, random displacements off I" dependsonly on theremaining
m— 1 multipliers Aj (j = 2,...,m) (or the remaining kj exponents, j = 2,...,m),
provided none of the other moduli is equal to 1 (provided none of them is equal to
0). In particular, we have

(i) If @l the characteristic multipliers Aj (j = 2,...,m) satisfy the conditions
|Aj| < 1, then the periodic orbit is asymptotically (in fact, exponentially) or-
bitally stable.

(i) If for at least one of the multipliers, say Ak, |Ak| > 1, then the periodic orbit is
unstable.

2.10 Stabilitiesof Trajectories|l: The Lyapunov Second Method

The so-called second or direct method of Lyapunov is one of the greatest landmarks
in the theory of dynamical systems and has proved to be an immensely fruitful tool

for analysis. The basicideaof the methodis asfollows. Supposethat thereisavector

field in the plane with afixed point X, and we want to determine whether it is stable
or not. Roughly speaking, according to our previous definitions of stability it would

be sufficient to find a neighborhood U of x for which orbits starting in U remain

inU for al positive time (for the moment we do not distinguish between stability
and asymptotic stability). This condition would be satisfied if we could show that
the vector field is either tangent to the boundary of U or pointing inward toward x
(see Fig. 2.20). This situation should remain true even as we shrink U down to x.
Now, Lyapunov’s method gives us away of making this precise; we will show this
for vector fieldsin the plane and then generalize our resultsto R".

9 The matrix e"R itself is uniquely determined but for a similarity transformation, that is, we can
substitute e™R with P~1e"RP where P is a nonsingular mx m matrix. This transformation leaves
eigenval ues unchanged.
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Suppose that we have the vector field

x=f(xy),
{ y=0(xy), (xy)€R? (2.28)

which has afixed point at (X,y) (assume that it is stable). We want to show that in
any neighborhood of (X,y) the above situation holds. Let V (x,y) be a scalar-val ued
function on R?, i.e, V: R? — R (and at least C1), with V(x,y) = 0, and such that
theloci of points satisfying V (x,y) = C = constant form closed curves for different
values of C encircling (x,y) with V(x,y) > 0 in a neighborhood of (x,y) (see Fig.
2.21).

Recall that the gradient of V, VV, is avector perpendicular to the tangent vector
aong each curve V = C which points in the direction of increasing V. So, if the
vector field were always to be either tangent or pointing inward for each of these
curves surrounding (X, y), we would have

W(Xv y) ’ (va) < 07

Fig. 2.20 The vector field on the boundary of U

0\ vV

\A%

V = constant

\A%4 vV

Fig. 2.21 Level set of V and VV denotes gradient vector of V at various points on the boundary
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wherethe*-’ representsthe usual vector scalar product. (Thisissimply thederivative
of V aong orbits of (2.28), and is sometimes referred to as the orbital derivative.)
We now state the general theorem which makes these ideas precise.

Theorem 2.6. Consider the following vector field:
x=f(x), xeR". (2.29)

Let x be afixed point of (2.29) and letV: U — R be aC! function defined on some
neighborhood U of x such that

(i) V(X) =0and V(x) > 0if x# .
(i) V <0inU — {x}.

Then, xiis stable. Moreover, if
(i) V <0inU — {x},
then Xis asymptotically stable. O

We refer to'V as a Lyapunov function. If U can be chosen to be all of R", then X
is said to be globally asymptotically stable, if (i) and (iii) hold.

Sometimesit is possible to prove asymptotic stability of afixed point even when
the Lyapunov function V in the relevant neighborhood of the point implies that
V <0, but not necessarily V < 0. For that case we have the following theorem.

Theorem 2.7 (Invariance Principle of LaSalle). Let x= 0 be afixed point of x =
f(x) and V aLyapunov function such that V < 0 on some neighborhood N of X= 0.
If Xo € N hasitsforward orbit, y* (xo) = {¢(t,X0) : t > 0}, bounded with limit points
inN, and M isthe largest invariant subset of E = {x € N: V(x) = 0}, then

o(t,%) =M as t — oo, O

According to Theorem 2.7, if a Lyapunov function V (x) can be found such that
V(x) < 0 for x € N, among the sets of points with forward orbitsin N there exist
sets of points defined by

Vik={x: V(x<Kk)}

(kisafinite and positive scalar) which lie entirely in N. SinceV < 0, the setsVj are
invariant in the sense that no orbit starting in a Vi can ever move outside of it. If,
in addition, it could be shown that the fixed point X = 0 is the largest (or, for that
matter, the only) invariant subset of E, Theorem 2.7 would guarantee its asymptotic
stability.

The direct method can aso be extended to discrete-time systems. We only state
aresult analogous to Theorem 2.6 in the following. A discrete-time version of the
invariance principle of LaSalle will be introduced in Chap. 5.

Theorem 2.8. Consider the system described by the difference equation given in
(2.21). Let x = 0 again be an isolated equilibrium point at the origin. If there exists
aC! functionV (xy): N — R, defined on some neighborhood N ¢ R™ of X = 0, such
that
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(i)V(0) =
(i) V(x) > 0in N — {0},
(i) AV (Xn) :=V[G(¥n)] =V (Xa) <0inN— {0},

01
0

then x= 0 is stable (in the sense of Lyapunov). Moreover, if
(iv) AV(x) < 0inN — {0},
then X= 0 is asymptotically stable. O

2.11 Chaotic Sets and Chaotic Attractors

More complicated invariant, attracting sets and attractors in structure than that of
periodic or quasiperiodic sets are called chaotic. A dynamical system (discrete-time
or continuous-time) is called chaotic if itstypical orbits are aperiodic, bounded, and
such that nearby orbits separate fast in time. Chaotic orbits never convergeto astable
fixed or periodic point, but exhibit sustained instability, while remaining forever in
a bounded region of the state space.

Definition 2.20. A flow ¢ (a continuous map G) on a metric space M is said to
possess sensitive dependence on initial conditionson M if there existsareal number
0 > Osuchthat forall xe M andforall € > 0, thereexistye M (y#x)and T > 0 (an
integer n > 0) such that d(x,y) < € and d[¢(T,x),¢(T,y)] > o (d[G"(x),G"(y)] >
0). O

Definition 2.21. A flow ¢ (a continuous map G) is said to be chaotic on a compact
invariant set'® A if:

(i) itistopologicaly transitive on A (Definition 2.12);
(i) it has sensitive dependence on initial conditionson A. O

Remark 2.4. There is something that should be pointed out.

(i) Condition (i) of Definition 2.21 guarantees that the invariant set is single and
indecomposable.

(i) Condition (ii) of Definition 2.21 can be made sharper (and more restrictive) in
two ways. Firgt, the divergence of nearby points taking place at an exponential
rateisrequired. This property can be made more precise by means of Lyapunov
exponents which will be introduced later. Second, we may require that the di-
vergence (exponential or otherwise) occurs for each pair X,y € A. In this case,
theflow ¢ or map G is called expansive on A.

(iif) The requirement that A is compact is necessary. Consider the following differ-
ential equation:
x=ax, XxeR, a>0,

10 Roughly spesking, a subset D of R" is said to be compact if it can be covered by a finite
collection of open sets {Uj}}_.
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which is linear and its solution is ¢(t,Xx) = xo€®. Therefore, the flow map ¢
is topologically transitive on the open, unbounded (and therefore noncompact)
invariant sets (—ee,0) and (0, ). Also, for any two pointsx;, Xz € R and X # Xp
we have

|0(t,x1) — 9(t,%2)| = €% [x1 — X

and ¢ has sensitive dependence on initial conditions on R. However, the orbits
generated by ¢ are not chaotic.

(iv) This definition refers to a ‘chaotic flow (or map) on a set A’ or, for short, a
‘chaotic set A’ It does not imply that all orbits of a chaotic flow (or map) on A
are chaotic. In fact, there are many nonchaotic orbits on chaotic sets, in particu-
lar, many unstable periodic orbits. They are so important that some researchers
add a third condition for chaos, that periodic orbits are dense on A [5]. Thisis
an interesting property and it is automatically satisfied if the chaotic invariant
set ishyperbolic[17].

(v) Two quite general results can be used to confirm the close relationship between
chaos, as characterized in Definition 2.21, and dense periodic sets. Thefirst re-
sult [3] statesthat for any continuous map on ametric space, transitivity and the
presence of a dense set of periodic orbits imply sensitive dependence on initial
conditions, that is, chaos. The second result [16] states that for any continuous
map on an interval of R, transitivity alone implies the presence of a dense set
of periodic orbits and, therefore, in view of the first result, it implies sensitive
dependence on initial conditions, and therefore chaos.

(vi) There are several other different definitions of chaos based on orbits rather than
sets. For example, in [1] (p. 196, Definition 5.2; p. 235, Definition 6.2; pp. 385—
386, Definition 9.6), a chaotic set is defined as the w-limit set of a chaotic orbit
G"(xp) which itself is contained in the w-limit set. In this case, the presence
of sensitive dependence on initial conditions (or a positive Lyapunov charac-
teristic exponent) is not enough to characterize chaotic properties of orbits and
additional conditions must be added to exclude unstable periodic or quasiperi-
odic orbits. O

2.12 Symbolic Dynamics and the Shift Map

Symbolic dynamicsis apowerful tool for understanding the orbit structure of alarge
class of dynamical systems. In this section we only provide a brief introduction to
thistool.

To establish the tool, three steps are needed. First, we define an auxiliary system
characterized by a map, called a shift map, acting on a space of infinite sequences
called the symbol space. Next, we prove some properties of the shift map. Finaly,
we establish a certain equivalence relation between a map we want to study and the
shift map, and show that the relationship preservesthe propertiesin question.
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We begin by defining the symbol space and the shift map. Let S be a collection
of symbols. In a physical interpretation, the elements of S could be anything, for
exampleletters of an alphabet or discrete readings of some measuring devicefor the
observation of agiven dynamical system. To make ideas more clear, we assume here
that S consists of only two symboals; let them be 0 and 1. Then, we have S= {0,1}.
Next, we want to construct the space of all possible bi-infinite sequencesof 0 and 1,
defined as

2y:i=--SXSXSxX---.

A pointin X, s, is therefore represented as a bi-infinity-tuple of elements of S, that
is, s€ X means
s={...Sqn...51%%---S..- },

whereVi, s € S(i.e, s =0or 1). For example, s= {...00010100111...}.
We can define adistance function d in the space X,

_ oo . o
dsg=Y d(;;f), (2.30)

—
whered isthe discrete distancein S= {0, 1}, that is

.o JOif s=s;
d(s,s){lif S £5.

This means that two points of X, are close to each other if their central elements
are closg, i.e, if the elements whose indexes have small absolute values are close.
Notice that, from the definition of d(s, §), theinfinite sum on the right-hand side of
(2.30) islessthan 3, and, therefore, converges.

Next, we define the shift map on X, as

T:3 =3, T(s)=dands =s,1.

The map T maps each entry of a sequence from one place to the left. Similarly, the
one-sided shift map T, can be defined on the space of one-sided infinite sequences,
X, thatis, s€ X, wheres= {$S;...S... }. Inthis case, we have

Ty X — Xy, To(9) =S ands =511,

so that
T (051 -.) = (99%---) = (1953 -.).-

Itisobviousthat the T map shiftsaone-sided sequence from one placeto theleft
and dropsitsfirst element. Although maps T and T, have very similar properties, T
isinvertiblewhereas T, isnot. Thedistanceon X5, isessentially the same as (2.30)
with the difference that the infinite sum will now run from zero to «=. The map T,
can be used to prove chaotic properties of certain noninvertible, one-dimensional
maps frequently employed in applications.
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Theorem 2.9. Theshift map T, on 25, is chaotic according to Definition 2.21. [

Remark 2.5. The shift map T, on X,, has a property that is stronger than topo-
logical transitivity called topological mixing. In general, we say that amap G is
topologicaly mixing on a set A if for any two open subsets U and V of A there
exists a positive integer Np such that G"(U) NV £ 0 for all n > Np. If amap G is
topologically mixing, then for any integer n the map G" is topologically transitive.
O

The importance of the fact that the shift map is chaotic in a precise sense lies
in that the chaotic properties of invariant sets of certain one- and two-dimensional
maps and three-dimensional flows may sometimes be proved by showing that the
dynamics on these sets are topologically conjugate to that of a shift map on asym-
bol space. This indirect argument is often the only available strategy for investi-
gating nonlinear maps (or flows). We have encountered the concept of topological
conjugacy in the Hartman—Grobman theorem (Theorem 2.5, which we called home-
omorphic equivalence) between a nonlinear map (or flow) and its linearization in a
neighborhood of afixed point. We now provide some formal definitions.

Definition 2.22. Let X and Y betopological spaces, and let f: X — X andg: Y —
Y be continuous functions. We say that f is topologically semiconjugate to g if
there exists a continuous surjection'? h: Y — X such that foh=hog. If hisa
homeomorphism, then we say that f and g are topologically conjugate, and we call
h atopological conjugation between f and g.

Similarly, aflow ¢ on X istopologicaly semiconjugateto aflow y onY if there
isacontinuoussurjection h: Y — X suchthat ¢ (h(y),t) = h(w(y,t)) foreachy €Y,
t € R. If hisahomeomorphism, then ¢ and y are topologically conjugate. |

Remark 2.6. Topological conjugation defines an equivalence relation in the space
of all continuous surjections of atopological spaceto itself, by declaring f and g to
be related if they are topologically conjugate. This equivalence relationship is very
useful in the theory of dynamical systems, since each class contains all functions
which share the same dynamics from the topological viewpoint. In fact, orbits of
g are mapped to homeomorphic orbits of f through the conjugation. Writing g =
h=1o f o h makesthisfact evident: g” = h~1o "o h. Roughly speaking, topological
conjugationis a‘change of coordinates’ in the topological sense. O

However, the analogous definition for flows is somewhat restrictive. In fact, we
require the maps ¢(-,t) and w(-,t) to be topologically conjugate for each t, which
requires more than simply that orbits of ¢ be mapped to orbits of y homeomorphi-
cally. This motivatesthe definition of topological equivalence, which also partitions
the set of all flowsin X into classes of flows sharing the same dynamics, again from
the topological viewpoint.

Definition 2.23. We say that two flows y and ¢ of a compact manifold M are topo-
logically equivalent if there is an homeomorphism h: Y — X, mapping orbits of

1L A function f: X — Y isasurjection if, for every y € Y, thereisan x € X such that f(x) =Y.
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v to orbits of ¢ homeomorphically, and preserving orientation of the orbits. This
means that

() {h(w(yt)): te R} ={o(h(y),t): t € R} foreachy e Y;
(i) for eech y € Y, there is § > 0 such that, if 0 < || <t < §, and if s setisfies
9(h(y),s) = h(w(y.t)), then's > 0. 0

2.13 Lyapunov Exponent

Although sensitive dependence on initial conditions can be verified in some cases,
it isnot easy to verify for many systems. The Lyapunov exponent is a generalization
of the eigenvalues at an equilibrium point, and it is used as a measure of expo-
nential divergence of orbits. Suppose that ¢ (t,xp) and ¢(t,yp) are solutions of an
autonomous vector field x = f(x) starting from xg and yp, respectively. By using the
linear approximation for fixed t, we get

o (t,Yo) — ¢ (t,X0) = Dx¢(t,%0) (Yo — Xo)-

For any curve starting from initial condition xs, letting

_d B OXs
V(t) T 8S¢(t7XS) <0 - DX¢(t7XO) as - DX¢(t7XO)V0
andvp = %XSS then v(t) satisfies thefirst variation equation

d
dtv(t) =D f(¢(t7X0))V(t).

If Vo = Yo — Xo, then v(t) would give the infinitessmal displacement at timet.
The growth rate of ||v(t)|| isanumber x such that

Iv(t)]| ~ Ce*!,
where C is a constant. Taking the logarithm, we have

Inflv(t)[| _In(C) .
t T tE

therefore,
Inflv(t)]|

t—oo t

Definition 2.24. Let v(t) be the solution of thefirst variation equation, starting from
Xo With v(0) = vp. The Lyapunov exponent for initiad condition X and initia in-
finitesimal displacement vg is defined as
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. In||v(t
x(%o,Vo) = lim Ht()”,

whenever thislimit exists. O

Remark 2.7. For most initial conditions Xg for which the forward orbit is bounded,
the Lyapunov exponents exist for all vectors v. In n-dimensional state space, there
are at most n distinct values for y(xo,V) asv varies. If we count multiplicities, then
there are exactly n values,

Xl(XO) = X(XOvVl)v XZ(XO) = Xz(Xo,V2)7 e a%n(XO) = X(XO’VH)'

We can order these so that

21(X0) > x2(X0) > -+ > xn(Xo)- O

Several results on Lyapunov exponents are listed as follows. For detailed proofs
please refer to [13].

Theorem 2.10. Assume that Xg is afixed point of the differential equation x = f(X).
Then, the Lyapunov exponentsat the fixed point are the real parts of the eigenvalues
of the fixed point. O

Theorem 2.11. Let xp beaninitial condition such that ¢ (t,Xo) isbounded and (o)
does not contain any fixed points. Then,

X (%o, f(x0)) = 0. O
Remark 2.8. The above theorem meansthat thereis no growth or decay in the direc-
tion of the vector field, v= f(Xo). O

Theorem 2.12. Let xg be aninitial condition on a periodic orbit of period T. Then,
the principal (n— 1) Lyapunov exponentsare given by (In|Aj|)/T, where A arethe
characteristic multipliers of the periodic orbit and the eigenvalues of the Poincaré
map. O

Theorem 2.13. Assume that ¢(t,xp) and ¢(t,yo) are two orbits for the same dif-
ferential equation, which are bounded and converge exponentialy (i.e., there are
congtants a > 0 and C > 1 such that ||¢(t,Xo) — ¢ (t,Yo)|| < Ce 2 fort > 0). Then,
the Lyapunov exponentsfor Xp and yp are the same. So, if the limits defining the Lya-
punov exponents exist for one of the points, they exist for the other point. The vec-
tors which give the various Lyapunov exponents can be different at the two points.
O

Theorem 2.14. Consider the system of x = f(x) in R". Assume that X is a point
such that the Lyapunov exponents y1(Xo), - .., Xn(Xo) exist.

(i) Then, the sum of Lyapunov exponents is the limit of the average of the diver-
gence aong the trgjectory,
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n ) 1 T
lej'(xo): lim T/O V- Toag dt-
=

T —co

(i) In particular, if the system has constant divergence , then the sum of the Lya-
punov exponents at any point must equal 6.

(iii) In the three-dimensional case, assume that the divergenceis a constant 6 and
that xg is a point for which the positive orbit is bounded and w(Xp) does not
contain any fixed points. If y1(xo) isanonzero Lyapunov exponent at xo, then
the other two Lyapunov exponentsare 0 and & — 1. O

The definition of the Lyapunov exponent for discrete-time systemsis similar to
the case of continuoustime.

Definition 2.25. The Lyapunov exponent for the maps x,.1 = G(X,) is defined by

— lim I 1P"C (o)W

)

where
D"G(x0) = DG(X0)DG(X1) - - - G(Xn—1)

and w is avector in the tangent space at Xg. O

2.14 Examples

In this section, we will explore how chaos appears by investigating some exampl es.

2.14.1 Tent Map and Logistic Map
The tent map has the form of

2y, if0<y< ;
Galy) = 1 (2.31)
2(17y)7 |f2<YS17

whichisshownin Fig. 2.22.
Proposition 2.1. The tent map (2.31) is chaotic on [0, 1].

Proof. Consider that the graph of the nthiteration of G, consistsof 2" linear pieces,
each with slope +2". Each of these linear pieces of the graph is defined on a subin-
terval of [0, 1] of length 2. Then, for any open subinterval J of [0, 1], we can find
asubinterval K of J of length 27", such that the image of K under G} covers the
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entire interval [0,1]. Therefore, G, is topologically transitive on [0,1]. This fact,
and the discussion in point (v) of Remark 2.4 [16], provesthe proposition. d

Remark 2.9. From the geometry of theiterated map G, it appears that the graph of
G on J intersects the bisector and therefore G has afixed pointin J. This proves
that periodic points are dense in [0, 1]. Also, for any x € J thereexistsay € J such
that |G} (x) — G} (y)| > 1/2 and, therefore, G, has sensitive dependence on initial
conditions. O

Thisresult can be used to show that the logistic map
G4: [0,1] — [0,1], Ga(x) =4x(1—Xx)

(see Fig. 2.23) is aso chaotic. Consider the map h(y) = sin?(my/2). The map h is
continuous and, restricted to [0, 1], is also one-to-one and onto. Itsinverseis contin-
uous and h is thus a homeomorphism. Consider now the diagram

0,1] —A— [0,1]

o) | [

[0,1] — [0,1]

4
where G, isthe tent map. Recalling the trigonometric relations:

(i) sin?(6)+cos?(0) = 1;
(ii) 4sin?(0)cos?(0) = sin?(20);
(iii) sin(m—06)=sin(0);
we can see that the diagram is commutative. Hence, the map G is topologicaly
conjugateto G, and, therefore, its dynamicson [0, 1] is chaotic.

Ga(a) G3(2)

F1 / F1

=

T

2

(a) (b)
Fig. 2.22 Thetent map: (a) G,; () G3
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1
G, (@
0.8

0.6

0.4

0.2

% 02 0.4 06 08 1

Fig. 2.23 Thelogistic map G4

Both the tent map and the logistic map are al from an interval of R to itself.
There are also many other one-dimensional mappings presenting chaotic dynamics.
In fact, for one-dimensional mappings from R to itself we have the following so-
called Li—Yorke theorem [13], famous for the phrase ‘ period three implying chaos,
and Sarkovskii’s theorem [13], the generalization of Li—Yorke's result. Since many
referencesinclude the proof of these two theorems, we will only state the content of
the theorems.

Theorem 2.15 (Li—Yorke [13]). Assume that f isa continuous function from R to
itself.

(i) If f hasaperiod-3 point, then it has points of al periods.
(if) Assumethat thereis apoint Xo such that either

a f3(xg) < xo < f(X0) < F2(xo) Or
b. £3(x0) > X0 > f(x0) > f2(x0).

Then, f has points of al periods. O

This theorem was obtained by Li and Yorkein 1975 and soon after it was shown
that Li—Yorke theorem is a special case of Sharkovskii’'stheorem. Before introduc-
ing Sharkovskii’s theorem, we first define a new order for natural numbers as fol-
lows:

3555732352502 75> 2K 32K 502K 7 p K n 2K ln L n 225 05 1

Theorem 2.16 (Sharkovskii’'stheorem [13]). Let f be a continuous function from
R to itself. Suppose that f has period-n points and ni> k. Then, f has period-k
points. O
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2.14.2 Smale Horseshoe

The Smale horseshoe is the prototypical map possessing a chaotic invariant set.
Therefore, athorough understanding of the Smale horseshoeis absolutely essential
for understanding what is meant by the term ‘ chaos' asit is applied to the dynamics
of specific physical systems[10].

Consider the geometrical construction in Fig. 2.24. Take a square S on the plane
(Fig. 2.24 (@)). Contract it in the horizontal direction and expand it in the verti-
cal direction (Fig. 2.24 (b)). Fold it in the middle (Fig. 2.24 (c)) and place it so
that it intersects the original square S along two vertical strips (Fig. 2.24 (d)). This
procedure defines a map f: R? — R2. The image f(S) of the square S under this
transformation resembles a horseshoe. That is why it is called a horseshoe map.
The exact shape of theimage f(S) isirrelevant; however, for smplicity we assume
that both the contraction and expansion are linear and that the vertical stripsin the
intersection are rectangle. The map f can be made invertible and smooth together
with its inverse. The inverse map f~? transforms the horseshoe f (S) back into the
sguare Sthrough stages (d)—(a). This inverse transformation maps the dotted square
Sshown in Fig. 2.24 (d) into the dotted horizontal horseshoein Fig. 2.24 (a), which
is assumed to intersect the original square Salong two horizontal rectangles.

Denote the vertical stripsin the intersection SN f(S) by V; and Vs,

SN f(S) =ViUV,

(seeFig. 2.25 (a)). Now make the most important step: perform the second iteration
of the map f. Under this iteration, the vertical stripsV, and V. will be transformed

A D
(a) (b) (© (d)
Fig. 2.24 Construction of the horseshoe map
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into two ‘thin horseshoes' that intersect the square S along four narrow vertical
strips: Vi1, Vo1, Voo, and Vi (see Fig. 2.25 (b)). We write thisas

SN f(S) n fz(S) =V11 UVo1 UVor UV1o.

Similarly,
SNf1(S) =HiUHy,

where Hy and H, are the horizontal strips shownin Fig. 2.25 (c), and
SN fﬁl(S) N fﬁz(S) = Hyg UH1p2 UH2» UHog,

with four narrow horizontal stripsH;; (Fig. 2.25(d)). Noticethat f(H;) =V;,i =1,2,
aswell as f2(Hij) = Vij, i,j = 1.2 (see Fig. 2.26).

Iterating the map f further, we obtain 2 vertical strips in the intersection SN
K(S), ke N. Similarly, iteration of f~ gives 2 horizontal stripsin theintersection
SN fK(S), ke N.

Most points leave the square S under iterations of f or f~1. We consider all
remaining pointsin the square under al iterations of f and f—:

I={xeS: fXx) eS vkez}.

Clearly, if theset I" is nonempty, it isan invariant set of the discrete-time dynamical
system defined by f. This set can be alternatively presented as an infinite intersec-
tion,

r=--nfXgn---nfYsnsnf(9n---f*9n---.

It is clear from this representation that the set I has a peculiar shape. Indeed, it
should be located within
f=1(9nsnf(9),

which is formed by four small squares (see Fig. 2.27 (a)). Furthermore, it should be
located inside
f2(9Nf LS NS (SN TES),

\A V, VieVa Vo Vo
H H21
2 H22
H12
Hl Hll
SNf(S) SNf(sS) NES) sNf(s) SNiLs)Nf2(s)

(@ (b) (© (d)
Fig. 2.25 Vertical and horizontal strips
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‘ >sz f(Hy) f(Hy)
‘ 2 f(Hy) f(H,)
O
_ BN
@) (b) (©)
Fig. 2.26 Transformation f2(Hij) =Vij,i,j=1,2

whichisthe union of sixteen smaller squares (see Fig. 2.27 (b)), and so forth. Inthe
limit, we get a Cantor set. About the horseshoe map, we have the following lemma.

imi
i
f1(s) NSNE(S) f2(S) NF(S) NsNf(s)NfZs)
@ (b)

Fig. 2.27 Location of theinvariant set

Lemma 2.1. Thereis aone-to-one correspondenceh: I — X5 between points of I"
and al bi-infinite sequences of two symbols.

Proof. For any point x € I", define a sequence of the two symbols {1,2} by
o={... 0 20 1,00,01,0,...}

by the formula

[ 1if fXX) € Hy,
O = {2, it fK(x) € Hy, (2.32)

for k € Z. Here, f° = id, the identity map. Clearly, this formula defines a map
h: I' — %5, which assigns a sequence to each point of the invariant set. To ver-
ify that this map is invertible, take a sequence w € X, fix m> 0, and consider a set
Rm(w) of all pointsx € S, not necessarily belonging to I', such that
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f*(X) € Ho

for —-m <k <m-1. For example, if m= 1, the set R; isone of thefour intersections
VjNH. Ingeneral, Ry belongsto theintersection of avertical and ahorizontal strip.
These strips are getting thinner and thinner as m — oo, approaching in the limit a
vertical and a horizontal segment, respectively. Such segments obviously intersect
at asingle point x with h(x) = w. Thus, h: I — X, is aone-to-one map. It implies
that I" is nonempty. O

Remark 2.10. Themap h: I' — X, is continuous together with its inverse (a home-
omorphism) if we use the standard Euclidean metric in Sc R? and the metric given
by (2.30) in X5. O

Consider now apoint x € I" and its corresponding sequence w = h(x), wherehis
the map previously constructed. Next, consider a point y = f(x), that is, the image
of x under the horseshoe map f. Sincey € I" by definition, there is a sequence that
corresponds to y: 6 = h(y). As one can easily see from (2.32), there is a simple
relationship between these sequences w and 6. Namely,

6k = k41, ke Z7
since
FE(F(x) = ().

In other words, the sequence 6 can be obtained from the sequence w by the shift
map o

0 =o(w).
Therefore, the restriction of f to itsinvariant set I' ¢ R? is equivalent to the shift

map o on the set of sequences X,. This result can be formulated as the following
lemma.

Lemma2.2. h(f(x)) = o(h(x)), foral xe I O
Thislemma can be written as an even shorter one:
flr —hloooh.

Combining Lemmas 2.1 and 2.2 with obvious properties of the shift dynamics
on X», we get atheorem giving arather complete description of the behavior of the
horseshoe map.

Theorem 2.17. The horseshoe map f has a closed invariant set I" that contains a
countable set of periodic orbits of arbitrarily long period, and an uncountable set
of nonperiodic orbits, among which there are orbits passing arbitrarily close to any
point of I'. O

Remark 2.11. The limit set I" of a Smale horseshoe map is unstable and, therefore,
not attracting. It follows that the existence of a Smale horseshoe does not imply
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the existence of a chaotic attractor. The existence of a Smale horseshoe doesimply,
however, that there is aregion in state space that experiences sensitive dependence
on initial conditions. Thus, even when there is no strange attractor in the flow, the
dynamics of the system can appear chaotic until the steady state is reached. O

Remark 2.12. We can dightly perturb the constructed map f without qualitative
changes to its dynamics. Clearly, Smale's construction is based on a sufficiently
strong contraction or expansion, combined with a fold. Thus, a (smooth) perturba-
tion f will havesimilar vertical and horizontal strips, which are no longer rectangles
but curvilinear regions. However, provided that the perturbationis sufficiently small,
these strips will shrink to curves that deviate only slightly from vertical and hori-
zontal lines. Thus, the construction can be carried through word for word, and the
perturbed map f will have an invariant set I on which the dynamics is completely
described by the shift map o on the sequence space X,. Thisis an example of struc-
turally stable behavior. O

2.14.3 TheLorenz System

Although plenty of numerical evidence of chaotic behavior arising from avariety of
problemsin different fields of applications has been provided, apart from the cases
of one-dimensional, noninvertible maps, there are few rigorous proofs that specific
mathematical models possess chaotic attractors as characterized in one or more of
the above definitions, and those proofs are mostly restricted to artificial examples
unlikely to arise in typical applications. We now turn to an example of a chaotic
attractor derived from a celebrated model first discussed in 1963 by E. Lorenz to
provide a mathematical description of atmospheric turbulence. Lorenz's investiga-
tion was enormously influential and stimulated a vast literature in the years that
followed. Its extraordinary success was in part due to the fact that it showed how
computer technology could be effectively used to study nonlinear dynamical sys-
tems. Lorenz’s work provided strong numerical evidence that a low-dimensional
system of differential equationswith simple nonlinearitiescould generate extremely
complicated orbits. The original Lorenz model is defined by the following three dif-

ferential equations:

X= —0X+ oY,

Y= —XZ+IX—Y, (2.33)
z=xy—bz

wherex,y,z€ R and o,r,b > 0. System (2.33) is symmetrical under the transforma-
tion (x,y,2) — (—x,—Y,2). Thethree equilibriaare

E;: (0,0,0),
Ez: (v/b(r—1),/b(r—1),r — 1),
Es: (—/b(r—1),—/b(r—1),r —1).
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In numerical analysis of the Lorenz model, the typical parameter configuration is
o =10and b =8/3. When r < ry = 24.74 there are two symmetric unstable pe-
riodic orbits with the Lorenz system. When r > ry, the celebrated Lorenz attractor
(the so-called ‘butterfly’) is observed numerically (see Fig. 2.28). The three Lya
punov exponentsare 1.497, 0, and —22.46, which imply that the L orenz system has
sensitive dependence on initial conditions.

50

40

35

30

15

101

Fig. 2.28 The Lorenz attractor

Remark 2.13. When we refer to a computer to visualize the numerical solution of
a chaotic system, an important issue arises. If we take into account the combined
influence of round-off errorsin numerical computations and the property of diver-
gence of nearby trajectories for chaotic behavior, how can we trust numerical com-
putations of trajectories to give us reliable results? (We note that the same problem
arises in experimental measurements in which ‘noise’ plays the role of round-off
errors.) If the system’s behavior is chaotic, then even small numerical errors are
amplified exponentialy in time. Perhaps all of our results for chaotic systems are
artifacts of the numerical computation procedure. Even if they are not artifacts, per-
haps the numerical values of the properties depend critically on the computational
procedures. If that is true, how general are our results? Although it is difficult to
answer these questionsonce and for all, it is comforting to know that whileit istrue
that the details of a particular trgjectory do depend on the round-off errorsin the
numerical computation, the trajectory actually calculated does follow very closely
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some trgjectory of the system. That is, the trajectory one calculates might not be
exactly the one he thinks, but it is very close to one of the possible trajectories of
the system. In more technical terms, we say that the computed trajectory shadows
some possible tragjectories of the system. (A proof of this shadowing property for
chaotic systemsiis given in [6] and [14].) In general, we are most often interested
in propertiesthat are averaged over atrgjectory; in many cases those average values
areindependent of the particular trajectory we follow. So, aslong aswefollow some
possibletrajectory for the system, we can have confidencethat our results are agood
characterization of the system’s behavior. Recently, W. Tucker’swork [15] strength-
ened the above discussion, in which he has shown, using a computer-assisted proof,
that the Lorenz system not only has sensitive dependence on initial conditions, but
also has a chaotic attractor. O

Although a full mathematical analysis of the observed attractor is till lacking,
some of the attractor’s properties have been established through a combination of
numerical evidence and theoretical arguments. Before presenting the analysis we
first consider the following three facts about system (2.33).

(i) Thetrace of the Jacobian matrix

tr[Df(x,y,2)] = ox + N, 0z _

ox ay+az——(b+6+1)<0

is constant and negative along orbits. Thus, any three-dimensional volume of
initial conditionsis contracted along orbits at arate equal to

y=—-(b+0+1) <0

that is to say, the system is dissipative.
(ii) Itispossibleto define atrapping region such that all orbits outside of it tend to
it, and no orbits ever leave it. To see this, consider the function

V(x,Y,2) =X +Y2+(z—1—0)2=K2(r + )2 (2.34)
defining aspherewith center at (x=y=0;z= o +r) andradiusK(o +r). The
time derivative of (2.34) along the solution of (2.33) is

2 2
r+o (r+o)
,7) e

V(X,y,2) = —20x> —2y*—2b (z

V = 0 definesan ellipsoid outside of whichV < 0. For asufficiently large value
of the radius (for sufficiently large K, given r and o), the sphere (2.34) will
contain al three fixed points and all orbits on the boundary of the sphere will
point inward. Consequently, system (2.33) is ‘trapped’ inside the sphere.

(iii) Numerical evidenceindicatesthat for r € (13.8,14), there exist two symmetric
homoclinic orbits (that is, orbits that connect a fixed point to itself) asymptot-
ically approaching the origin for t — +eo, tangentialy to the z axis; see the
sketchin Fig. 2.29.
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Keeping the three facts in mind, we can investigate the Lorenz system by con-
structing a geometric model which, under a certain hypothesis, provides a reason-
able approximation of the dynamics of the original model with ‘canonical’ parame-
ter valueso =10, b=28/3,and r > ry.

We first consider a system of differential equationsin R® depending on a param-
eter u with the following properties:

(i) for a certain value uy of the parameter, there exists a pair of symmetrical ho-
moclinic orbits, asymptotically converging to the origin, and tangential to the
positive z axis;

(ii) the origin is a saddle-point equilibrium and the dynamics in a neighborhood
N of the equilibrium, for u in a neighborhood of uy, is approximated by the

system
X= )LJ_X,
y =4z,
zZ= A.gZ,

where Ay < A3 <0< Ag and —A3/A1 < 1;
(iii) the system isinvariant under the change of coordinates (x,y,z) — (—Xx, —Y, ).

Under these conditions, for (x,y,z) € N and u near up, it is possible to construct
atwo-dimensional cross section X, such that the transversal intersections of orbits
with X define a two-dimensional Poincaré map P: £ — X. For values of |x| and
|u — un| sufficiently small, the dynamics of P can further be approximated by aone-
dimensional, noninvertible map G, [—a,a] — {0} — R defined on an interval of the
x axis, but not at x = 0.

A typical formulation of the map G, is

 Jau+od, ifx>0;
CuX) _{auc|x|5, if x<O;

Fig. 2.29 Homoclinic orbitsin the Lorenz model
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Fig. 2.30 One-dimensional map for the Lorenz model

wherea< 0,c>0,8 = —A3/A1,and0< 6 < 1.

Assuming that the one-dimensional approximationremainsvalid for values of the
parameter u outside the neighborhood of u = uy, (that is, outside the neighborhood
of the homoclinic orhit), valuesof u > u, can be chosen so that there existsaclosed
interval [—c, o] with o > 0 such that G, [— o, ]\ {0} — [—c, o] and

Xﬂrgf Gu(x) =a >0, Xﬂrgl Gu(x) =—oa <O.
Then, G, (x) > 1for x € [~a, o (x# 0), and lim,_q+ G}, (X) = —+eo. The map Gy,
ontheinterval isdepictedin Fig. 2.30.

Because G, (x) > 1 for al x € [~a,a] (x# 0), G, is a piecewise-expanding
map and has therefore sensitive dependence on initial conditions. There are no fixed
points or stable periodic points and most orbits on the interval [—az,0) U (0, o] are
attracted to a chaotic invariant set. Although increasing 1 beyond the homoclinic
value uy, leads to stable chaotic motion, if we take u very large, the system reverts
to simpler dynamical behavior and stable periodic orbits reappear.

Remark 2.14. The idea that some essential aspects of the dynamics of the original
system (2.33) could be described by a one-dimensional map was first put forward
by Lorenz himself. In order to ascertain whether the numerically observed attractor
could be periodic rather than chaotic, he plotted successive maxima of the variable
z adlong an orbit on the numerically observed attractor. In doing so, he discovered
that the plot of z,,1 against z, has a simple shape, asillustrated in Fig. 2.31. The
points of the plot lie almost exactly on a curve whose form changes as the parameter
r varies. Setting o = 10, b =8/3, and r = 28 (the traditional ‘ chaotic values'), we
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Fig. 2.31 Successive maxima of zfor the Lorenz attractor

obtain a curve resembling a distorted tent map. It has slope everywhere greater than
1in absolute value so, again, it approximates a piecewise-expanding map. For such
amap there cannot be stable fixed points or stable periodic orbits and, for randomly
chosen initial values, orbits convergeto a chaotic attractor. O

2.15 Basics of Functional Differential Equations Theory

In many applications, the system under consideration is not governed by a princi-
ple of causality; that is, the future state of the system is dependent not only on the
present state but also on the past states. The theory about these systems has been
extensively developed, which formed the framework of the subject — functional dif-
ferential equations (FDES). In this section, we only provide some necessary notions
and theorems about FDEs so that this book can be read smoothly.

Let R = (—oo,00) and Rt = [0,0). Let C = C([—7,0],R") denote the space of
continuous functions mapping the interval [—7,0] into R. We designate the norm of
anelement ¢ iNChy ||¢||: = sUp_,«g<oll¢(0)]]. Each x € R" can also belooked as
anelementinC: x(0) =x,0 € [-1,0[. If 6 € R, > 0,and x € C[c — 7,0 + &,
then, foranyt € [0, 0+ ], welet % € C bedefinedby % (0) =x(t+0), —7< 6 <0.
If Disasubset of R xC, f: D — RMisagivenfunction, and ‘-’ representsthe right-
hand derivative, we say that the relation
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x=f(t,x) (2.35)

is a retarded functional differential equation on D and will denote this equation by
RFDE. We write RFDE( f) if we wish to emphasize that the equation is defined by
f.

Definition 2.26. A function X is said to be a solution of (2.35) on [0 — 7,0 + o] if
thereare 0 € R and o > O suchthat x € C([o — 7,0 + «],R"), (t,%) € D, and x(t)
satisfies (2.35) fort € [0,0+ ). For given 6 € R, ¢ € C, we say that x(a,¢, f) is
a solution of (2.35) with initia value ¢ a o or simply a solution through (o, ¢) if
thereisan o > 0 such that x(o, ¢, f) is a solution of (2.35) on [c — 7,0 + o] and
XO‘(O-v(Pvf):(P' U

In the following we only state the main results; the proofs can be found in [8].

Theorem 2.18 (Existence). Suppose that Q is an open subset in R x C and f° €
C(Q,R"). If (0,¢) € , then there is a solution of the RFDE( f°) passing through
(c,0). Moregeneraly, if W C Q iscompact and % € C(Q,R") isgiven, then there
is aneighborhood V C Q of W such that f0 € C°(V,R"), there is a neighborhood
U CCO(V,R") of f9, and an o > 0 such that, for any (o,¢) € W, f € U, thereisa
solution x(o, ¢, f) of the RFDE(f) through (o, ¢) which existson [c — 7,0 + a.
0

Theorem 2.19 (Continuous Dependence). Supposethat 2 C R x Cisopen, (69, ¢°) €
o, 9 C(Q,R"), and xo isasolution of the RFDE( f°) through (0, ¢°) which ex-
ists and is unique on [6° — 7,b]. Let W° C Q be the compact set defined by

WO = {(t,¥)lt € [o°,b]}

and let VO be a neighborhood of WO on which f° is bounded. If (o¥, ¢, f), k =
1,2,..., sttisfies ok — 69, ok — ¢, and || Tk — fO|,0 — 0 ask — o, thenthereisa
kO such that the RFDE( k) for k > Kk is such that each solution x¢ = xX(c*, ¢k, £K)
through (o, ¢¥) exists on [6X — 7,b] and X — X2 uniformly on [6° — 7,b]. Since
all XX may not be defined on [6° — 7,b], by X — x° uniformly on [6° —r,b], we
mean that, for any & > 0, there is a ky(¢) such that XX(t), k > ki (¢), is defined on
[69 — T+ ¢,b], and X — X0 uniformly on [6° — 7+ ¢, b). O

Theorem 2.20. Supposethat Q isanopensetin R x C, f: Q — R" is continuous,
and f(t,¢) isLipschitzianin ¢ in each compact setin Q, i.e.,

1f(t,0) = ft,w)ll <Ko —wl,

for arbitrary ¢,y € C, where K isa constant. If (o,¢) € Q, then thereis a unique
solution of (2.35) through (o, ¢). a

Definition 2.27. If, for al (o0,¢) € R x C, the solution of (2.35) through (o, ¢),
x(o,9)(t), existson [0 — 7,0), then we say that (2.35) has global solutions. O
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Theorem 2.21. If there exist continuousfunctionsM,N: R — R* such that
o) <ME)+NE)[[ofl, (t,9) eRxC,

then (2.35) has global solutions. O

In the following, we introduce the stahility theory for (2.35). Analogous to what
we have donewith ordinary differential equations, the stability of ageneral solution
X(t) of (2.35) is equivalent to the stability of the zero solution of a new RFDE.
Therefore, without loss of generality, we assumethat f(t,0) = Ofordlt € R.

Definition 2.28.

(i) The solution x = 0 of (2.35) is said to be stable if, for any 0 € R and € > 0,
thereexistsad = d(e,0) > O such that || 9| < & impliesthat ||x(t,0,9)| < &
fort > o.

(i) The solution x = 0 of (2.35) is said to be uniformly stable if the 6 in (i) is
independent of o.

(iii) The solution x = 0 of (2.35) issaid to be attractiveif, for any o € R, thereexists
ab=b(o) such that ||¢||; < b implies that x(t,o,¢) — O (t — o). That is,
forany e > 0and||¢||: < b, thereexistsaT (o, ¢,¢) suchthat ||x(t,o,9)| < &
whenevert > o+ T(o,€,¢). If b= 4o, the solution x = 0 of (2.35) issaid to
be globally attractive.

(iv) Thesolution x = 0 of (2.35) issaid to be asymptotically stableif it isboth stable
and attractive.

(v) The solution x = 0 of (2.35) is said to be uniformly attractive if in (iii) b is
independent of o and T only dependson .

(vi) The solution x = 0 of (2.35) is said to be uniformly asymptotically stableif itis
both uniformly stable and uniformly attractive.

(vii) The solution x = 0 of (2.35) is said to be globally asymptotically stable if it is
stable and globally attractive. O

Definition 2.29. The solution x = 0 of (2.35) is said to be exponentially stable if
there existsa § > 0 and, for any € > 0, thereisa é = d(¢) > 0 such that, for any
o €R, ||¢]l: < d impliesthat

Ix(t,0,¢)|| < eexp[-p(t —o)]

fort > 0. The solution x = 0 of (2.35) is said to be globally exponentially stable if
there exist a8 > 0 and an np > 0 such that, for any (o,¢) € R x C, the following
inequality holds:

IX(t,0,9)ll < nll¢||-exp[-B(t—0)]
fort > o. O

Definition 2.30. A solution x(t, o, ¢) of (2.35) isbounded if thereisa (o, ¢) such
that ||x(t,0,¢)|| < B(o,¢) fort > o — 7. The solution is uniformly bounded if, for
any o > 0, thereisaff = f(a) > Osuch that, forall 6 € R, ¢ € C, and ||¢]| < «,
we have ||x(t,0,¢)|| < B(a) fordlt > o. O
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In the following, we introduce some sufficient conditions for the stability of the
solution x = 0 of (2.35) which generalize the second method of Lyapunov for ordi-
nary differential equations.

If the functional V: R x C — R* is continuous and x(t, o, ¢) is the solution of
(2.35) through (o, ¢ ), we define

V(t,9) = lim [V (t+h xen(t,0)) - V(E,0)]

The function V (t,9) isthe upper right-hand derivative of V (t, ¢) along the solution
of (2.35).
If thefunctionV: R x R — R™ is continuous, we define

. 1
V(€.9(0) = lim | [V(t+hx(t0)(t+h) ~V(t,0(0)]
The function V (t, ¢ (0)) is the upper right-hand derivative of V (t,x) along the solu-
tion of (2.35). _ _
Sometimeswewrite V(2 35)(t, ¢) and V(2.35)(t, ¢ (0)) to emphasize the dependence
on (2.35), respectively.

Theorem 2.22. Suppose that f: R x C — R" takes Rx (bounded set of C) into
bounded sets of R", and u,v,w: Rt — R are continuous nondecreasing functions,
u(s) and v(s) are positive for s> 0, and u(0) = v(0) = 0. If there is a continuous
functional V: R x C — R* such that

u(lle(0))) <V(t,9) < v(([0]]<),

Vizas)(t,0) < —w([[¢(0)])),

then the solution x = 0 of (2.35) is uniformly stable. If u(s) — e as s — oo, the
solutions of (2.35) are uniformly bounded. If w(s) > 0 for s > 0, then the solution
x = 0isuniformly asymptotically stable. O

Corollary 2.1. Suppose that f: R x C — R" takes Rx (bounded set of C) into
bounded sets of R", and u,w: R — R* are continuous nondecreasing functions,
u(s) and w(s) are positive for s > 0, u(0) = w(0) = 0, and u(s) — oo (S — o). If
thereisacontinuousfunctional V: R x C — R™ such that

u(lle(0))) <V(t,¢), V(t,0)=0,
Vizas)(t,9) < —w([¢(0)])),
then the solution x = 0 of (2.35) is globally asymptotically stable. |

Theorem 2.23. Suppose that f: R x C — R" takes Rx (bounded set of C) into
bounded sets of R", and u,v,w: Rt — R are continuous nondecreasing functions,
u(s), v(s), and w(s) are positive for s> 0, and u(0) = v(0) = 0. Supposethat P(s) is
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a continuous and nondecreasing function satisfying P(s) > sfor s> 0. If thereisa
continuousfunctionV: R x R" — R* such that

u([Ix[) <V (t,¢) < v(|Ix[|)
and
Vizas)(t,9(0)) < —w([|9(0)[)) whenV(t+6,¢(0)) < P(V(t,9(0))),0 € [-7,0],

then, the solution x = 0 of (2.35) is uniformly asymptotically stable. Moreover, if
u(s) — « as s — oo, then the solution x = 0 of (2.35) is globally asymptotically
stable. O

Theorem 2.24. Suppose that o, B, p, and u are positive constants. If there is a
continuousfunctionV: R x R" — R such that

afX[P<V(t,x) < B|X|°
and

Viz3s)(t,$(0)) < —uV(t,9(0)) when sup [e“OV(t+0,x(t+0))] = V(t,x(t)),

—7<6<0

then, the solution x = 0 of (2.35) is globally exponentially stable. O

2.16 Summary

One basic goal in studying dynamical systemsisto explore how the trgjectories of a
system evolve as time proceeds. So, in this chapter, we began with the theorems on
existence and uniqueness of solutions of ordinary differential equations. In the sub-
sequent sections we focused on a special class of solutions: equilibrium solutions.
Besides that notion, we introduced other definitions such as fixed point, periodic
orbit, quasiperiodic orbit, w-limit set, invariant set, etc., and, furthermore, the key
concepts of the book, chaos and chaotic attractors, were introduced. Two power-
ful tools in studying chaotic systems, Lyapunov exponents and symbolic dynamics,
were discussed briefly. The stability issue was discussed and a detailed category of
the types of fixed point of planar systems for both continuoustime and discretetime
was provided. Three famous examples on chaos were carefully presented through
which we wanted to give a concrete understanding about chaos. Finally, we pro-
vided some necessary preliminaries on retarded functional differential equationsfor
the purpose of self-containment of the book.
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