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   The “knapsack problem” appears in many forms in economics, engineering, and 
business: any place where one must allocate a single scarce resource among multiple 
contenders for that resource. It has acquired the fanciful name “knapsack problem” 
because our common experience of packing luggage expresses something of the 
flavor of the problem: What should be chosen when space is limited?    

   Introduction 

  Alice and Bob were excited about the bicycle tour they had long planned. They were 
going to ride during the day, carrying only light supplies, and stay in hotels at night. 
Alice had suggested they coordinate packing to avoid duplication and extra weight. 

 Alice was to pack tools: a compass, spoke wrench, chain breaker, hub wrench, 
and spare tire tube; and Bob was to pack consumables: Water, toilet paper, sun-
screen, trail mix, soap. They agreed that neither would pack more than  c  = 7 pounds 
of supplies. 

 On the night before the trip Alice gathered everything on the kitchen table and 
prepared to pack; but it quickly became clear that she had staged rather more than 
7 pounds. Decision time. 

 Alice was a perfectionist. She realized the importance of packing the right 
stuff and so was prepared to think carefully about it. She methodically 
indexed the candidate items and listed the weight  w

   i
   of each item  i  (Table  2.1 , 

2nd row).    
  But what to pack? Alice saw that she could fill the knapsack to the limit with 

items 1, 2, and 4. But then again she could just as well fill it with items 3 and 5 or 
with items 2, 4, and 5. Which is best? Or might it be better to pack only items 2 and 
3 even if this alternative leaves some residual capacity unused? Why not pack only 
items 1 and 5 or only 3 and 4? 

 Alice realized that each item would either be packed or left behind—2 choices, 
and so there were up to 2 5  = 32 possible ways to pack the knapsack. Not all of these 
are possible or even desirable, but it seemed as if she would have to consider each 
possibility explicitly and choose the best, whatever that meant. 

 Alice saw that, to choose the best, she needed some way to distinguish the “value” of 
one packing from another. Was it better to pack the spoke wrench or the spare inner tube? 
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She thought she could answer simple questions like this, which asked her to compare 
the values of individual items, but it seemed harder to compare entire packings. 

 A good rule of thumb in making hard decisions is to formalize the choices in 
some way, in hopes of clarifying them. Alice did this by assigning “values”  v   

i
   to 

each candidate item  i  (Table  2.2 , 2nd row).
      Furthermore, it seemed reasonable to measure the value of a packing by the sum 

of the values of the items packed. Under this assumption it became clear that the 
packing of items 2, 4, and 5, which has a total value of 6 + 4 + 5 = 15, is less desir-
able, even though it fills the knapsack, than the packing of items 2 and 3, which 
does not fill the knapsack but has total value 6 + 11 = 17. 

 Alice saw that she could search for the best items to pack by the following process. 
Write out all 32 possible subsets of items, sum the values of the items in each sub-
set, eliminate those that are  not feasible (exceed the weight limit), and choose the 
subset of largest value. Tedious perhaps, but simple, straightforward, and guaran-
teed to produce a packing of maximum value. 

 Of course, this instance of a knapsack problem is so small that it presents 
scarcely any challenge. If Alice had had to choose from among, say, 20 items; then 
there would have been 2 20  = 1,048,576 possibilities and Alice would likely have 
been awake all night to evaluate them all. Things can become much worse quickly 
for larger versions of this problem: To choose from among 100 items requires 
 evaluating 2 100  = 1,267,650,600,228,229,401,496,703,205,376 possibilities and it is 
not likely Alice could evaluate all of them within her lifetime. 

   General Structure of a Knapsack Problem  

 In her professional life Alice is a fund manager who oversees investment portfolios. 
She is currently considering over 100 potential investments and has estimated the 
return expected from each one. But each investment has a certain cost and Alice may 
not exceed her budget. Which investments should she choose? You will recognize this 
as having the same structure as Alice’s problem of packing for the bicycle trip: How 
to choose a subset of items of maximum value while not exceeding a limit on total 
“weight.” For the bicycle trip, “value” was a subjective expression of importance 
and “weight” was physical weight. For the investment portfolio, “value” is estimated 
return, perhaps constructed via a financial or economic model; and “weight” is the 

 Table 2.2    Relative Values of Each Item to be Packed  

 Item   1  2   3  4  5 
 Value  10  6  11  4  5 

 Table 2.1    Weight in Pounds of Each Item to be Packed  

 Item  1  2  3  4  5 
 Weight (lbs)  3  2  4  2  3 
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cost of investment. The common structure of these problems of choice is called the 
“knapsack problem” and it is distinctive in the following ways.

  •  We are faced with a number of yes/no decisions.  
 •  The decisions are independent, except that each yes decision consumes some 

known amount of a single, common, scarce resource.  
 •  None of the data will change during the time we make our decisions.    

 The most important part of this problem is the single, scarce resource. We are 
 challenged to use it wisely to achieve the greatest value. For the bicycle trip, that resource 
was weight capacity; for the investment portfolio, that resource is budget. The knapsack 
problem is a way of looking at decisions that focuses on that single constraint. 

 In real life there are not many decisions with single constraints; but there are 
many in which one constraint matters more than others, and so the knapsack model 
is much more widely applicable than the idea of a single constraint might suggest. 
For Alice and Bob there may be an additional constraint in the physical volume that 
can be packed in the knapsack, but they may be justified in ignoring this constraint 
for now, perhaps because from previous experience they expect to reach the 7-pound 
limit well before filling the knapsack. Other constraints might not have well defined 
thresholds. For example, the cost of supplies may be a “soft” constraint: As more 
items are packed, Alice and Bob might feel increasingly uncomfortable at the 
thought of all they must purchase, but there is no clear threshold as there is for the 
capacity of the knapsack. In such cases, one identifies the most important constraint 
and models that are in the knapsack formulation. Then, after solving, check that the 
remaining, unexpressed constraints are satisfied. 

 For the bicycle trip, Alice and Bob have decided that weight is the most sig-
nificant issue to them and they have stipulated a limit on it. After finding a good 
packing, Alice may check the resultant volume to see whether it is acceptable. 
If not, she might re-pose her problem as one of packing the most valuable load 
subject to a limit on the total volume. This would be a knapsack problem as well, 
but with volume as the scarce resource. 

 The knapsack problem Alice faces as a fund manager is too large to solve by 
 considering every possible solution (a process known as “total enumeration”); but the 
economic context gave her some insight that helped simplify her decision-making. In 
the business world, one hopes to achieve a high return on investment (ROI), because 
this indicates efficient use of financial resources. Accordingly, Alice prefers an invest-
ment that promises a greater return per dollar invested (“bang-for-buck”). For the 
bicycle trip, analogous reasoning suggests that she should prefer to pack items that 
have a large value-per-pound ratio  v   

i
  / w

   i
  , Table  2.3 .

 Table 2.3    Bang-for-Buck of Each Item to be Packed  

 Item  1  2  3  4  5 
 Bang-for-buck  10/3  6/2  11/4  4/2  5/3 
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      Alice realized she could avoid the work of total enumeration by simply choosing 
those items with greatest bang-for-buck. More formally, we can summarize the 
decision process as follows.

   Step 1:    For each item compute its bang-for-buck  v   
i
  / w   

i
  .   

  Step 2:    Sort the items from greatest to least bang-for-buck.   
  Step 3:    Choose items from the top of the list until the next item (call it item  k ) does not fit.   

   Using this procedure to pack for the trip, Alice would choose items 1 and 2, 
which together weigh 3 + 2 = 5 pounds and are of value 10 + 6 = 16. We know this 
is not the best possible solution—for such a small problem you can surely see better 
packings—but it was very easy to generate. Moreover, we have some reason to 
believe the solution might not be too far from the best because there is an undeniable 
logic behind the procedure: Choose those items that best use the scarce resource.   

  Bob Packs 

  Bob was to pack the consumables, which, for pedagogical convenience, had exactly 
the same weights as given in Table  2.1 . He noticed immediately that he had more choices 
in packing than did Alice: Because his items were divisible, he could repackage any 
of them and take only a portion; therefore his problem was to decide not which to pack, 
all or nothing, but the fraction of each item to pack. Like Alice, he saw that some items 
were more important than others. For example, he valued water more than soap, which 
they could do without if necessary. Bob listed the relative values of each item, which, 
again for pedagogical convenience, were identical to those of Table  2.2 .

   Building Intuition    The procedure defined by steps 1, 2, and 3 is of a type 
known as “greedy” because it simply sorts possible choices by some measure 
of attractiveness (in this case, bang-for-buck) and chooses from the top. It 
never reconsiders decisions. However, since this procedure is not guaranteed 
to find the best answer, we call it a “heuristic.” Hence choosing items by 
bang-for-buck is a “greedy heuristic.” Greedy procedures to find solutions to 
decision problems are appealing since, in general, they are intuitive. 

 Although a greedy procedure does not always optimally solve the knap-
sack problem, there are instances of decision problems in operations manage-
ment where such a procedure does find the best solution. One such example 
is the weighted completion time problem discussed in Chap. 1. As is shown 
in that chapter, a sequence (ordering) of tasks that minimizes the sum of 
weighted completion times is found by computing, for each task, the ratio 
of task time divided by weight and then sequencing the tasks in order of 
nondecreasing ratio values.  
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  Now Bob’s packing problem was similar to Alice’s: How much of each item 
to pack so as to maximize the total value of a load that may not exceed 7 
pounds. 

   Bob’s Solution  

 Bob tried Alice’s suggestion of choosing the items of greatest bang-for-buck; but 
when he had chosen items 1 and 2, he noticed that they weighed only 3 + 2 = 5 
pounds, which left unused a capacity for 7 − 5 = 2 pounds. Because his items were 
divisible, Bob decided to go one step further and pack 2 pounds of item 3, which 
was the next-most-attractive. Two pounds of item 3 represented half its weight and 
so may be assumed to contribute half the value, or 11/2 = 5.5. This results in a 
packing that uses all available capacity and achieves a value of 21.5. Furthermore, 
as can be verified by inspection of this small  example, this is the very best packing 
achievable. It provides the best packing possible in all instances because every sin-
gle unit of the scarce resource is devoted to that item, or fraction thereof, that 
returns the greatest possible bang-for-buck. 

 Let us make Bob’s decision process more specific, because, if we can formalize 
it, then we can program a computer to do it for us.

   Step 1:    For each item  i , compute its bang-for-buck  v   
i
  / w

   i
  .   

  Step 2:    Sort the items from greatest to least bang-for-buck.   

  Step 3a:    Choose items from the top of the list until the next item (call it item  k ) does 
not fit.   

  Step 3b:    Take only as much of item  k  as will fill the remainder of the knapsack.   

   Note that, for any capacity and for any set of items selected in this manner, Bob 
will have to repackage at most a single item, the one selected in less than full 
quantity. 

 For this version of the knapsack problem, in which items are continuously 
divisible, the procedure is optimal: There is no alternative choice of items to pack 
that will have greater total value. Let us call the resultant value  V* . It is the largest 
possible value that can be realized from these candidate items subject to this 
weight limit.   

  Alice Tries Harder 

  Alice was pleased to see that choosing by bang-for-buck always generated the very 
best possible choices for Bob; but she saw that it would not work for her because 
her items were indivisible. Half a chain breaker would be useless: Each of her items 
had either to be packed in its entirety or else not at all and so she could not “top 
off” remaining capacity by adding just a little of another item. 
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   Alice Finds a Guarantee  

 Alice saw that her procedure was similar to Bob’s except that it stopped one step 
short1 . (Step 3b). Surely her solution must be almost as good as Bob’s, and Bob’s 
was the best that could be hoped for. Surely, the value of the items greedily chosen 
could never be “too far” from  V* , the very best that would be achievable if Alice’s 
items were divisible. Alice reasoned thusly: Suppose the heuristic halts, unable to 
pack item  k  entirely in the remaining capacity of the knapsack. If item k were 
divisible, so that I could pack it to fill the remaining capacity, it would add value 
( v   

k
  / w   

k
  ) × (the remaining available capacity of the knapsack) to what had been 

already packed and this would be the best possible packing. But my items are not 
divisible and so this solution is an ideal, possibly unachievable. If I stop here, omit-
ting item  k , then the value of what I have packed must be within

 ( v   
k
  / w

   k
  ) × (the remaining available capacity of the knapsack)      (1)

of  V* .
 In short, Alice cannot have missed optimal by more than the value of that  k -th 

item, the first that that did not fit.  

   How Wrong Can Alice Be?  

 Expression (1) bounds the opportunity Alice might forfeit by accepting an easy-to-
compute solution rather than insisting on an optimal solution. Here is an example 
that embarrasses the greedy heuristic: Consider a knapsack of capacity  c  for which 
two items contend. One is of weight 1 and value 1; the other is of weight  c  and value 
just shy of  c , call it  c-ε . The greedy heuristic would choose the first item and halt, 
because the second item no longer fits. The total value achieved would be 1; yet if 
the second item had been chosen the total value would have been  c-ε . Since  c  could 
be any large number, the error, both relative and absolute could be arbitrarily large. 

 That is the worst case. What might we actually expect? In some circumstances 
this worst-case error is small, perhaps small enough that we would feel comfortable 
accepting it. For example, we would expect the worst-case error (1) to be small and 
the solution to be quite close to  V*  whenever any of the terms of (1) are small; that 
is, in any of the following situations.

  •  If  v   
k
   is small compared to the total value packed; or  

 •  If  v   
k  
/ w   

k  
 is small compared to the average bang-for-buck of the packed items; or  

 •  If the remaining capacity of the knapsack is a small fraction of the total.    

  1 Alice’s procedure could be made a little more effective by having it try to fit each successive 
candidate item into the knapsack rather than stopping at the first failure. This will not affect our 
subsequent discussion. 
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 All of these conditions, and especially the third one, may be expected to hold if most 
items are small with respect to the capacity of the knapsack. In such case we are packing 
lots of small items into a large container, which, as we know from experience, is easy 
to do well (think socks in a suitcase). Many items will fit before the first one fails, and 
consequently that item may be expected to have a relatively small bang-for-buck  v   

k
  / w   

k
  . 

This is so for the simple reason that we will have already packed those items that have 
the greatest bang-for-buck. Moreover, because the items are small with respect to the 
capacity of the knapsack, we would expect any capacity unused after Step 3 to be small. 
Consequently we would expect the solution to be quite close to  V* , the upper bound. 
For example, if no item weighs more than x% of the weight limit, then we can be sure 
that a greedy packing will always fill the knapsack to within x% of its capacity and pro-
vide total value within x% of the maximum possible. Statistics are on our side here.  

   Is It Good Enough?  

 Is it “good enough” to know that your solution is close to the best possible? The answer 
to this question is the ubiquitous “it depends.” In particular, it depends on how 
much you are willing to pay in money, time, and effort to get a better solution. 
It is probably not worth worrying over if you are packing a knapsack for a bike 
trip; but it may well be worth anguish if you are loading a space vehicle for 
an expedition to Mars. 

 There are some situations in which it makes sense to accept an approximate solution, 
even if you wish for the best. For example, the best may not be well defined when the 
data are uncertain. For the bike trip, the weights of the items to be packed can easily 
be measured and everyone can agree on them, assuming we have a scale of sufficient 
accuracy. It is not so clear how to measure value. It may be that Alice and Bob disa-
gree on the value of sunscreen; indeed, Alice might be uncertain herself exactly what 
number to assign to the value of a compass. When the data are uncertain, the expense 
of careful optimization may not be worthwhile.   

  Alice Is Difficult to Please 

  Alice was a perfectionist. She took pride in owning a top-of-the-line touring bicycle, 
which had been fine-tuned for lightness and strength. She was dissatisfied that the 
greedy solution to her knapsack problem might not be the best possible. She wanted 
to know for sure whether it was the best; and if it was not … well, then she wanted 
the best. As we saw, Alice could be sure by methodically evaluating all possible 
solutions and choosing the best. But this is practical only when the number  n  of 
candidate items is quite small because the work to evaluate 2  n   possibilities increases 
very rapidly in  n  and so is impractical for any but the smallest instances of the 
knapsack problem. 
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 It is possible to compute an optimal solution for fairly large problems by trying 
carefully to fit items into the knapsack, adding one after another, possibly removing 
some if we have come to an impasse, and resuming. We can formalize such a 
 process by representing it as a network that summarizes the sequence of decisions 
about what to pack, the resultant state of the partially packed knapsack, and the 
remaining choices available to us. For example, Fig.  2.1  shows the network of deci-
sions representing Alice’s problem if she, unlike Bob, could not split any item.  

 There are  1 + n = 6  columns of vertices indexed by  i = 0, 1,…,n  ; the first vertex 
corresponds to the start (an empty knapsack) and each of the next 5 columns corre-
sponds to the disposition of an item. Each column is composed of  1 + c = 8  rows 
indexed by  w = 0, 1,…,c , each corresponding to one additional unit of weight. Each 
vertex  (i,w)  represents a possible state of a partially packed knapsack, the state in 
which items  1,…,i-1  have been considered and either packed or rejected, resulting 
in a knapsack of weight  w . Each edge is directed from left to right, bottom to top, 
and represents the inclusion or exclusion of an item. In particular:

  •  Any edge from  (i-1,w)  to  (i,w)  represents the exclusion of item  i : We have 
 considered item  i  but not packed it and so the cumulative weight of the partially 
filled knapsack remains  w . Such an edge is assigned length 0.  

  Fig. 2.1    Alice’s decision modeled as a problem of finding the longest path through a network       
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 •  Any edge from  (i-1,w)  to  (i,w + w   
i
   )  represents the inclusion of item  i : We have 

considered item  i  and packed it and so the cumulative weight of the knapsack 
has increased by  w 

  i
  . Such an edge is assigned length  v   

i
  .  

 •  Any edge from  (n,w)  to  (n,w + 1)  represents the decision to leave one unit of 
capacity of the knapsack unused. Such an edge is assigned length 0 .    

 NOTE: To avoid clutter in the figure, only a very few edges have lengths indi-
cated on them. The complete figure would have a length indicated on each edge.

Here is the key insight: Any path from the bottom-left origin  (0,0)  to the vertex 
on the top right  (n,w)  corresponds to a sequence of decisions of what to put in the 
knapsack and what to omit. We want a selection of items that gives greatest value, 
which means we want the longest-path from  (0,0)  to  (n,c) . 

 Fortunately, there are simple methods to compute the longest path in a network 
such as this, in which all edges point in the same direction (so that there are no 
cycles). The standard method is called dynamic programming and it works like this:

  •  Start at the last column and label each vertex in this column with 0, which is the 
length of the longest path from it to vertex  (n,c) .  

 •  Working backward to preceding columns, label each vertex in the current column 
with the largest value of: the length of an edge departing this vertex plus the 
label of the vertex on the other end of that edge. This will be the length of the 
longest path from the current vertex to vertex  (n,c) .    

 When we have finished labeling the first column, the label of vertex  (0,0)  will 
give the length of the longest path to vertex  (n,c) , which will also, by the clever way 
we have built the network, be the maximum value of any way of packing the knap-
sack. The path of this length, which we can discern by the pattern of labeling, tells 
us exactly which items to pack and which to leave, Fig.  2.2 .  

 As you will have surmised, this method is tedious for a human but simple for a 
computer. One can think of it as merely a clever way of organizing a search. It 
reduces the work by taking advantage of the observation that the best-packed knap-
sack of capacity  c  must also contain the same loads as the best-packed knapsacks 
of smaller capacity. In any event, this methodical search takes substantially less 
time than evaluating every one of the 2  n   possible loads. 

   The Cost of Finding Optimum  

 To find the longest path on the network above requires us to examine about  nc  vertices2 , 
and so we may take this as an estimate of the total work required. Notice that this 
depends on the number of items to be packed, which seems reasonable; but it also 
depends on the capacity  c  of the knapsack. This is more troubling because it seems 

  2 Some vertices are clearly spurious to the solution, such as those in the upper left-hand corner, but 
it is generally not worth the effort to identify those that can be ignored. 
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to suggest that the work can depend on how accurately we measure the capacity. 
For example, the network to represent Alice’s problem would have been larger if 
she measured all weights to the nearest ounce, and larger still if she measured to the 
nearest tenth of an ounce. This observation works in the other direction as well. 
Alice could reduce the size of the network, and presumably the work of computing 
a solution, by measuring less accurately: to the nearest kilogram instead of to the 
nearest pound. This reveals an interesting feature of the knapsack problem: The 
greatest determinant of the work to construct an optimal solution is the precision of 
the weights  w   

i
   more so than the number of items  n . The more precise the data, the 

more work is required to take advantage of that precision. The work increases 
exponentially with any increase in precision but only linearly in the number of 
items. For example, if capacity of the knapsack had been specified as 7.01 pounds 
instead of 7 then the network would require 701 rows of vertices and the work to 
solve would have increased by a factor of 100.   

  Fig. 2.2    The longest path corresponds to packing items 1 and 3 and omitting the remainder. The 
total value is 21, the length of the path       
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  Pedaling Into the Sunset 

  As Alice and Bob have determined, we can approach any problem with knapsack 
structure via the most appropriate of the following:

  •  If there are few items from which to select, we can simply enumerate all possi-
bilities and choose the most valuable subset of items.  

 •  If there are a moderate number of items from which to select or if the precision 
of the weights is not too great then we can compute the optimal solution by 
dynamic programming, as on the network above.  

 •  If there are very many items contending for selection or if the data are very precise 
(so that it is impractical to compute an optimal solution) or if the data are very 
imprecise (so that an optimum solution is not to be relied upon), then the greedy 
heuristic—choosing items of greatest bang-for-buck—is suitable.    

 In many practical applications, there is much merit in Alice’s greedy heuristic if 
the potential shortfall in quality of solution can be tolerated. Besides ease of com-
putation, Alice’s solution has the advantage that it is simply a sorted list of all the 
items, ranked from greatest to least bang-for-buck. If the bang-for-buck of an item 
were to change, it is a simple matter to move this item to its new position in the 
sorted list. This allows us to incrementally adjust the knapsack solution as data 
changes, so that the greedy solution can support  dynamic decision-making . That is, 
we might monitor items and remove or insert them as their values or weights 
change or as the capacity of the knapsack changes. This would be useful, for example, 
in maintaining an investment portfolio that must adapt to changes in the  financial 
marketplace, or in keeping the right product stored in the right locations of a distri-
bution center even as the patterns of customer orders change.  

  Applications of the Knapsack Problem 

  Among the straightforward applications of the knapsack problem are, unsurpris-
ingly, problems of loading shipping containers especially when one of weight or 
volume is known in advance to be the limiting constraint. These issues can be quite 
significant when space is scarce, as is the case when manufactured product is 
shipped to the US from China in advance of the holiday selling season. 

 Another common application is to cutting stock problems. For example, paper 
mills produce huge rolls of paper, the dimensions of which are determined by the 
manufacturing process. These roles are subsequently sliced into smaller rolls to fill 
customer orders. The value of the smaller rolls depends on the selling price. A similar 
problem is faced by manufacturers of fiber optic cable, who must decide how to cut 
lengths of cable to satisfy customer orders while extracting the greatest value from 
each length of cable. 

 As suggested earlier, the knapsack problem is a basic tool of portfolio optimiza-
tion, where budget is almost always the most important constraint. Many portfolio 
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optimization problems generalize the knapsack problem in ways that more exactly 
model economic phenomena. Thus it may be possible to purchase 0, 1, 2, or more 
shares of an investment; and the additional shares may bring diminishing returns. 
Many of the ideas mentioned by Alice and Bob can be extended to account for such 
additional complexities. 

 In a warehouse or distribution center (DC), space is frequently a scarce resource 
because of inevitable growth in the number of products handled. There is competi-
tion among the stockkeeping units for storage in the most convenient areas of the 
DC, where customer orders can be filled most quickly. This can be modeled as a 
knapsack with space as the limited resource and labor-savings as the value of stor-
ing a product in a convenient location. 

 Many scheduling problems can be posed as knapsack problems with machine 
time the most important scarce resource. This is especially appropriate when the 
machine represents a large capital investment. In such case it can make economic 
sense to schedule the machine, perhaps by solving a knapsack problem, and then 
purchasing whatever additional resources, such as workforce or transportation or 
raw materials, as are necessary to meet the schedule. 

 The knapsack appears as a sub-problem in many, more complex mathematical 
models of real world problems. One general approach to difficult problems is to 
identify the most restrictive constraint, ignore the others, solve a knapsack problem, 
and somehow adjust the solution to satisfy ignored constraints.  

  Historical Background 

  The knapsack problem seems to have first been identified in print in 1957, in two 
important publications. One was a paper by  George Dantzig (1957)  , one of the 
developers of linear programming and a creator of the field of Operations Research. 
He showed that the continuous version of the knapsack problem (the one faced by 
Bob) is perfectly maximized by choosing items by bang-for-buck. 

 The problem must have been a topic of conversation amongst the early  specialists 
in discrete optimization because in the same year Richard Bellman, another impor-
tant early figure in Operations Research, described how to use dynamic  programming 
to solve the knapsack problem. (This is equivalent to the method above in which 
we find the longest path on a special network.) Very quickly thereafter the knapsack 
model was applied to a range of applications, including most of those listed above. 

 Throughout the 1980s there was much work on approximation algorithms, solu-
tion techniques that cannot be guaranteed to produce optimal solutions because 
they strategically give up some quality to achieve speed of execution. The knapsack 
problem was a popular target for the development of such approximation methods. 
Indeed, one of the first “polynomial approximation schemes” was developed for the 
knapsack problem by Sahni (1975). Such schemes may be thought of as solution 
methods in which one may specify a desired guarantee for the quality of solution 
in advance of solving. As to be expected, the work to solve increases quickly with 
the quality required. Immediately afterwards, this was improved by  Ibarra and Kim 
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(1975)  to a “fully polynomial approximation scheme,” which makes the trade-off 
between quality of solution and effort slightly more favorable. Specialized solution 
techniques to solve the knapsack problem and its variants are provided by  Martello 
and Toth (1990) . More recently, researchers, such as  Kellerer et al. (2005)  have 
worked on ways to exactly solve ever larger instances of the knapsack problem. 
Many of these involve solving some “core” of the problem and then building this 
partial solution to a full solution. 

 Interestingly, the knapsack problem figured prominently as the first suggested 
basis for a public key encryption system. This early work is described in  Diffie and 
Helman (1976)  and  Merkle and Helman (1978) . It should be noted that the approach 
was later “cracked” by cryptographers and replaced by more resistant schemes. 

 As an example of the flexibility conferred by the simplicity of the greedy algo-
rithm,  Bartholdi and Hackman (2006)  make extensive use of the knapsack problem 
as part of a larger model to cache product in a distribution center.   

   Selected Bibliography 

  Bartholdi, J. J. III and S.T. Hackman, (2006).  Warehouse and Distribution Science s. Georgia 
Institute of Technology, Altanta, GA. This book is freely available at   www.warehouse-science.
com.      

  Bellman, R. (1957)  Dynamic Programming , Princeton University Press Princeton, N.J., Reprinted 
(2003) Dover Publications, Mineola, N.Y.  

  Dantzig, G. (1957). “Discrete variable extremum problems”, Operations Research 5,266–277.  
  Diffie, W. and Μ. Helman, (1976) “New directions in cryptography”, IEEE Transactions on 

Information Theory 22(6):644–654.  
   Ibarra, O. H. and C. E. Kim, (1975) “Fast Approximation Algorithms for the Knapsack and Sum 

of Subset Problems”, Journal of ACM 22,463–468.   
  Kellerer, H., U. Pferschy and D. Pisinger (2005)  Knapsack Problems , Springer, Berlin, 

Germany.  
  Martello, S. and P. Toth, (1990).  Knapsack Problems: Algorithms and Computer Implementation,  

John Wiley, Ltd. This book is freely available at   www.or.deis.unibo.it/knapsack.html.      
  Merkle, R. and Μ. Helman, (1978). “Hiding information and signatures in trapdoor knapsacks”, 

IEEE Transactions on Information Theory 24(5),525–530.  
  Sahni, S. (1975). “Approximate algorithms for the 0–1 knapsack problem”, Journal of ACM 

22:115–124.          



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /DetectCurves 0.100000
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /PreserveDICMYKValues true
  /PreserveFlatness true
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /ColorImageMinDownsampleDepth 1
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /GrayImageMinDownsampleDepth 2
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /CheckCompliance [
    /None
  ]
  /PDFXOutputConditionIdentifier ()
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




