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1. INTRODUCTION

Experimental models of cancer have played an important role in cancer drug dis-
covery for more than 60 years. The same models have proven critical as tools for the 
elucidation of the molecular basis of neoplastic transformation, the processes involved 
in tumor progression and metastasis, and the determinants of therapeutic success or 
failure. More recently, transgenic models in particular have been used to “validate” and 
prioritize new strategies for therapeutic intervention. In vivo cancer models can be 
considered to fall within two broad classes, transplantable models, and in situ models, 
each with a number of subtypes (Fig. 1). For pragmatic reasons, transplantable models 
as a group are the most commonly used for drug evaluation, while in situ models such 
as cancer-prone transgenic mice provide a rich source of information on cancer etiol-
ogy. It should be noted that each transplantable model represents the tumor of a single 
patient, not a tumor type. This discussion is centered on the application of both model 
types, and the potential impact of imaging technologies for cancer drug discovery. 
However, with recent advances in preclinical imaging technologies, these models are 
also proving useful in the development and testing of new imaging techniques and 
contrast agents. Increasingly, with the expanding role of drugs tied to specifi c molecular 
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targets, these models are also being used to optimize and validate clinical imaging 
strategies. Finally, molecular imaging techniques are fi nding a critical role preclinically 
in the simultaneous confi rmation of mechanism of action and assessment of effi cacy. 
This is particularly true in orthotopic or transgenic model systems.

2. TYPES OF TUMOR MODELS

2.1 Transplantable Syngeneic Models
Transplantable syngeneic leukemia and solid tumor models were developed from 

spontaneous or induced tumors subsequently adapted to serial in vivo passage in the 
same animal strain. The majority of early syngeneic models were leukemias, the most 
familiar of which are P388 and L1210 (1–4). Syngeneic transplantable solid tumor 
models were developed in the 1960s and 1970s by exposure of rodents to chemical 
carcinogens. This provided a variety of tumor histotypes and tumors with different 
growth rates within each histotype (5–11). Development of these tumor models was 
pioneered by investigators such as Fidler (12, 13), Morris (5, 14), Skipper (15–17), 
Schabel (18–20), Griswold (21–23), and Corbett (7, 8, 24–26).

Early drug screening strategies often involved an initial experiment against a murine 
leukemia with life span as the measured endpoint (27). Active compounds typically 
then moved into a solid tumor screening panel (15, 16, 18, 19, 28, 29) wherein solid 
tumor fragments were implanted into the subcutaneous space, and therapy was assessed 
by caliper measurement (27). Advantages of these models include their low cost and 
reproducibility. Imaging was generally not needed for assessment of tumor response in 
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Fig. 1. Schematic representation of the broad categories of preclinical cancer models in use today. 
In situ tumor models can be subcategorized by the method for induction of the tumor. Transplantable 
tumor models are commonly subcategorized according to whether the tumor is implanted in the organ 
in which the cell line originated (orthotopic versus ectopic) and in the species in which it originated 
(syngeneic versus xenogeneic).
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these easily accessible and observable tumors. However, many investigators have used 
such models in the development and testing of new imaging approaches. In addition, 
the tumors grow in an immune-competent host, making these models appropriate for 
the study of immune modulation and vaccine approaches. However, the genetics of 
murine cancer are not always identical to their human counterparts, reducing the expec-
tation of a direct correlation with clinical experience. The lack of progress in treatment 
of the major human solid tumors led to the conclusion that screening strategies with 
leukemias as the fi rst triage point may not be appropriate (30). Subsequently, many 
investigators adopted screening strategies that involved direct testing against a panel 
of solid tumors.

2.2 Spontaneous and Autochthonous Models
There has been a resurgence in autochthonous models (31–33), such as mammary 

(34) and colon tumors (35) induced in rats with a carcinogen. The major theoretical 
advantage of both spontaneous and autochthonous models is that they may be more 
relevant to the development of human disease because the tumors reside in the tissue 
appropriate for the histotype. However, studies against tumors induced in this fashion 
are diffi cult because of low tumor incidence, variable and delayed onset of tumor 
growth, and deep tissue location of the tumors. Often treatment is initiated on an 
animal-by-animal basis as tumors arise and assessment of tumor burdens is performed 
by terminal sacrifi ce, complicating treatment and data collection. Lastly, autochthon-
ous model systems require the handling and administration of known potent human 
carcinogens.

2.3 Human Tumor Xenografts
Syngeneic models, however well characterized, are not human. Xenotransplantation 

is the transplantation of tissues or organs from one species into a different species. The 
application of xenotransplantation techniques to the growth of human tumors in ex-
perimental animals was a major breakthrough in cancer biology and drug discovery 
research.

2.3.1 Subrenal Capsule
One of the fi rst of these models sought to take advantage of the immunologically 

privileged status of the subrenal capsule (SRC) (36, 37). Human tumor fragments 
implanted under the SRC are not subject to immediate rejection. Changes in tumor 
volume during therapy are determined by invasive measurements with an ocular 
micrometer. Unfortunately, the SRC xenograft assay is labor intensive and both tumor 
growth and response to therapy are often highly variable.

2.3.2 Human Tumor Xenografts in Immunodefi cient Animals
A major breakthrough in the in vivo evaluation of novel agents against human tumors 

was the identifi cation and characterization of immunodefi cient mice and rats. These 
animals have genetic immune defi ciencies that minimize or prevent the rejection of the 
grafted tissues from other species. The diffi culty in using immune compromised animals 
is that they are highly susceptible to viral, bacterial, and fungal infections. These infec-
tions can alter the outcome and reproducibility of experiments. Therefore, immunode-
fi cient animals are maintained in specifi c pathogen-free (SPF) environments, dramatically 
increasing research costs (38, 39).
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Nude, scid, xid, and beige mice are the four primary types of immune-defi cient mice. 
Each type of immunodefi cient mouse has one or more mutations that diminish the ani-
mal’s capacity to reject transplanted allografts and xenografts. None of the mutations 
completely eliminates the immune system function (40–50). Nude and scid mice are 
predominantly used for cancer drug evaluation. Xenografted tumors often exhibit a 
more neoplastic phenotype in scid mice than in nudes, presumably because of the more 
severe immune defi ciency of scid mice. These animals are often crossed with beige 
and/or xid mice to further suppress immune function. The availability of these animals 
transformed drug discovery paradigms. However, the costs of purchasing and mainte-
nance of these animals is many fold higher than that of conventional animals.

2.3.3 Methods for Xenograft Studies in Immunodefi cient Mice
2.3.3.1 Subcutaneous Xenografts. Subcutaneous xenografts are human tumor 

xenografts (cells, brei, or fragments) that are injected underneath an immune-defi cient 
animal’s skin and not into the underlying tissue or cavities. These models are cost 
effective, and provide a direct assessment of effi cacy against a human cancer through 
simple, noninvasive caliper measurement of tumor size. The accessibility of the tumor 
is also an advantage for harvesting of tumor tissue. Several publications have suggested 
that human tumor xenograft models are better predictors of clinical activity than syn-
geneic models (51–55). Although the use of human tumor xenografts has many advan-
tages, there are also a number of disadvantages. Human cells are placed in a murine 
environment creating interactions that may not faithfully refl ect the human disease 
process (e.g., differences in the local cellular environment, cytokine, chemokine, and 
growth factor incompatibility, differences in immunologic state, etc.). Moreover, the 
subcutaneous environment of the xenograft may also fail to recapitulate normal interac-
tion of the tumor and stroma. Other disadvantages of this model include occasional 
tissue ulcerations, loss of metastatic potential, and dedifferentiation of the tumor. In 
addition, the genomic instability of human cancer requires that considerable care be 
taken to avoid unintended change of the model over time and multiple passages. Despite 
these potential shortcomings, human tumor xenograft testing remains the mainstay of 
in vivo anticancer therapeutics evaluation.

2.3.3.2 The Hollow Fiber Assay. The hollow fi ber assay (56) utilizes polyvinylidene 
fl uoride hollow fi bers inoculated with human tumor cell lines (57). The fi bers are then 
sealed and implanted into the intraperitoneal cavity or subcutaneous space of an immu-
nodefi cient mouse for 3–10 days. After treatment, the fi bers are removed and live cells 
are counted. Advantages of this method are that multiple cell lines can be tested simul-
taneously in one animal contributing to low cost and high throughput. Disadvantages 
are that the technique requires survival surgery, the tumor cells are unable to interact 
with the normal stroma, and the cells have no opportunity to develop a blood supply. 
Hence, this assay does not refl ect treatment-induced changes in stroma-tumor interac-
tions and vascular effects.

2.4 Orthotopic Models
An orthotopic model involves the implantation of a tumor into the organ from which 

it arose. This is an increasingly popular assay format. A theoretical advantage of this 
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format is that the tumor cells grow in the “context” of their native in situ environment 
(58–60). Orthotopic models have additional advantages over subcutaneous and hollow 
fi ber systems besides cell context. These advantages may include retention of differenti-
ated structures within the tumor, vascular growth differences, more realistic tissue 
pharmacokinetics at the tumor site, and metastatic spread. However, tumor implantation 
for orthotopic models requires potentially complex survival surgery. Observation of 
tumor growth in internal organs typically requires serial sacrifi ce of cohorts of animals, 
tumor take rates and growth can be highly variable, and it may be diffi cult and costly 
to harvest tumor tissue for pharmacodynamic and pathological analyses. These factors 
increase cost and decrease throughput. The use of imaging technologies can dramati-
cally enhance the effi ciency of orthotopic models. Although it is generally accepted 
that orthotopic implants often better preserve various aspects of tumor biology, dem-
onstrations that they give different or more predictive assessments of therapeutic poten-
tial are lacking. The recent focus on signal transduction pathways (where context may 
be important) as targets for cancer drug discovery has renewed interest in the relevance 
of this assay format.

2.5 Models of Metastasis
While the general stability of the tumor tissue in the models discussed above can be 

an advantage, they often lack key features of human cancer, such as metastasis to sec-
ondary organ sites. Prevention of the metastatic process and specifi c targeting of meta-
static lesions offers opportunities for therapeutic intervention. However, reproducible 
animal models of metastasis that recapitulate all aspects of the metastatic cascade are 
rare.

Clinically, metastases to the lungs, regional lymph nodes, liver, and brain are most 
common. A major determinant of the metastatic site is simply location of the primary 
tumor and the next capillary bed capable of trapping blood-borne tumor emboli. 
However, the process of metastasis is also critically dependent on the ability of cells 
that metastasize to promote angiogenesis and proliferate in the new organ environment, 
giving rise to the “seed and soil” hypothesis (61–64).

Several models of metastasis employ direct or systemic injection techniques. The 
choice of the site or route of injection is generally based on vascular proximity to the 
target organ. For example, liver metastases models often rely on intrasplenic injection, 
lung metastases can be reproducibly obtained from tail vein injection, and bone metas-
tases from intracardiac injection. While direct injection models generally provide the 
most reproducible and cost-effective models, they have the limitation of not encompass-
ing the entire metastatic process.

Spontaneous models of metastasis, including subcutaneous, transgenic, orthotopic, 
and autochthonous models provide a better representation of the entire metastatic 
process than direct injection models, and are specifi cally suited to the testing of thera-
peutics for prevention of metastasis. The most common of these relies on continuous 
passage of metastatic lesions arising from subcutaneous tumors to maintain target organ 
specifi city and metastatic potential. However, these models require longer staging 
periods and generally have poorer reproducibility and organ specifi city than direct 
injection methods. In addition, these models may require excision of the primary 
tumor.
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Regardless of the model, the study of metastatic lesions has traditionally required 
ineffi cient experimental designs that involve serial sacrifi ce of cohorts of animals. 
However, in vivo imaging technologies can dramatically facilitate these assessments 
and are fi nding increased use.

2.6 Transgenic Tumor Models
The massive shift of drug discovery efforts toward inhibition of specifi c oncogene 

or suppressor gene related targets has led to increased interest in the use of transgenic 
models for target validation and the evaluation of drug candidates (65–70). Transgenic 
tumor models are created by the introduction of heritable (germ line) or somatic 
mutations that are implicated in neoplastic transformation. Target genes can be replaced 
by new alleles, conditionally expressed, conditionally turned off, or mutated. A key 
advantage of transgenic models is that the etiology of tumor development closely 
mimics that in humans. The animals can be treated with therapeutic agents at any stage 
of tumor development to further elucidate therapeutic effi cacy and the mechanism of 
action (71).

Three examples of transgenic mouse models with germline mutations are the TRAMP 
(transgenic adenocarcinoma of the mouse prostate) model, and the p53 and PTEN 
knockout mice. The TRAMP model was created by linking the prostate-specifi c pro-
basin promoter to the SV40 large T antigen. These animals develop variably differenti-
ated tumors that metastasize primarily to the lungs and lymph nodes (71, 72). This 
model has been used to study late events in prostate tumorigenesis and mechanisms of 
angiogenesis. p53 is the most commonly mutated gene in human cancer. In the p53 
knockout mouse, the p53 tumor suppressor gene is inactivated by mutation to create a 
model of the human Li-Fraumeni familial cancer predisposition syndrome. These mice 
are more susceptible to spontaneous and carcinogen-induced tumors in many organs 
(70). The average tumor latency for a homozygous p53 (−/−) mouse is about 4.5 months 
with an increased latency period for heterozygous p53 (−/+) animals (73). The PTEN 
heterozygous knockout mouse is predisposed to many tumor types, including colon 
carcinomas, leukemia, germline tumors, and T cell lymphomas (71, 74). Elimination 
of one PTEN allele results in the inactivation of proapototic pathways possibly 
contributing to drug resistance. The PTEN double null (−/−) is an embryonic lethal 
mutation.

Transgenic models driven by germline mutations can be problematic. Mutations of 
interest are often embryonic lethal. Additionally, unwanted physiological or toxic effects 
during development may occur that render the model unusable. Organ specifi city can 
also be diffi cult to control and the study of multiple gene defects can require complex 
breeding efforts. Lastly, these animal models are often characterized by long tumor 
latency periods.

Somatic cell modifi cation strategies offer advantages over germline modifi cation 
strategies that include improved tissue specifi city of transgene expression, avoidance 
of embryonic lethal events, and opportunities for introduction of sequential multigene 
defects. An example of a transgenic mouse model created by somatic cell mutation 
strategies is the TVA model, which is based on retroviral gene transfer. A transgenic 
animal is created that expresses the avian leukosis virus (ALV) receptor 1 (TVA) from 
a tissue-specifi c promoter. These animals are not predisposed to develop cancer without 
further manipulation. The target gene construct of interest is cloned into a replication-
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competent ALV splice-acceptor (RCAS) vector followed by direct injection of the 
modifi ed virus or virus-infected cells into the TVA-expressing tissue (75). The TVA/
RCAS system has been used in mouse models of induction of gliomas (76) (Fig. 2) 
and ovarian cancer (77, 78).

3. ENDPOINTS AND MEASUREMENTS

Diverse types of information may be gleaned from any of the tumor models described 
above. Historically, with the exception of transgenic systems, these models have been 
used primarily to simultaneously assess the response of tumors to drug treatment and 
the potential for host toxicity (therapeutic index). Imaging technologies are routinely 
used for anatomical detection of tumors, particularly in orthotopic, metastatic, and 
transgenic models. However, trends toward molecular-targeted therapies are increasing 
the use of imaging technologies for quantifying drug-induced changes in physiology. 
Such methods can enable the use of endpoints that are tied to target modulation, in 
addition to more traditional growth-based endpoints.

(A)

(C)

(B)

T2-weighted

T1-weighted, pre-contrast

T1-weighted, post-contrast

Fig. 2. MRI of PDGF-induced glioma in a Ntv-a mouse (76). The same four contiguous slices are 
shown for (A) T2-weighted scans showing the tumor as a hyperintense region in the right upper 
cortex, and T1-weighted scans (B) before, and (C) after administration of Gd-DTPA. The T1-
weighted scans highlight localized, heterogeneous contrast enhancement in the tumor. The MRI 
appearance of glioma in this model is typical of that of human glioma.
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3.1 Detection or Diagnosis of Tumors

The basic method of tumor detection and quantitation is visual observation. Tradi-
tionally this involves palpation followed by caliper measurements. Calculation of tumor 
volume and an assumption of unit density generate an estimate of tumor burden. Caliper 
measurements have proven representative when compared to actual weights of excised 
tumors. This detection method is cost effective but primarily limited to subcutaneous 
tumors.

Increased interest in orthotopic and transgenic systems has created a demand for 
imaging-based methods for tumor diagnosis or detection. A broad array of imaging 
modalities and techniques is available for in vivo detection of tumors in mouse cancer 
models. These include bioluminescence imaging (BLI) and in vivo fl uorescence imaging, 
magnetic resonance imaging (MRI), magnetic resonance spectroscopy imaging (MRSI), 
X-ray computed tomography (CT), positron emission tomography (PET), and single 
photon emission computed tomography (SPECT). Additional technologies not dis-
cussed in this chapter include ultrasound imaging and optical coherence tomography.

Bioluminescence imaging and fl uorescence imaging—in vivo: BLI is a recently 
developed optical imaging method that allows visualization of luciferase-driven light 
emitted from within an animal (79, 80). In the most basic application, mice are inocu-
lated with tumor cells that have been stably transfected with the luciferase gene, and 
the constitutive expression of luciferase allows assessment of tumor burden after sys-
temic injection of substrate (luciferin). High sensitivity and the ability to quantify tumor 
burden make BLI ideally suited to detection of the spread and growth of metastases 
and in situ tumor models. Throughput is also high since image acquisition is generally 
rapid and several mice may be imaged simultaneously. Low spatial resolution is a limi-
tation of BLI. In addition, since the images are commonly two dimensional, images 
from several animal positions may be necessary to unambiguously identify the anatomi-
cal location of a given signal.

In vivo fl uorescence imaging can also be used to detect and monitor tumor growth 
in small animals (81–83). The fl uorescent signal is emitted following excitation with 
monochromatic light of fl uorescent proteins or dye-labeled biological molecules. Unlike 
BLI, fl uorescence imaging does not require the injection of exogenous substrate. 
In addition, the high fl uorescence signal allows image acquisition on a millisecond 
time scale, compared to minutes for BLI. Signal attenuation in deep tissues and a 
high background of autofl uorescence can be problematic for standard fl uorescent 
compounds, however, newer imaging agents provide fl uorescent emission at the near-
infrared wavelengths that minimizes these effects (84).

Magnetic resonance imaging: MRI of preclinical tumor models combines outstand-
ing soft tissue contrast with high spatial resolution (85–87). Due to differential MR 
relaxation properties, tumors can usually be distinguished from normal tissue in rapid 
anatomical scans (Fig. 2). Another common approach to detection of tumors is with a 
contrast agent such as gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA). Dif-
ferential uptake of the contrast agent by the tumor compared with surrounding normal 
tissue, allows the tumor to be delineated in MR images (Fig. 2). MRI has been used in 
mouse models to detect tumors in the brain, lung, liver, and pancreas, among others 
(87). Tumors as small as 0.5 mm in diameter can be detected and monitored in vivo 
using MRI.
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Magnetic resonance spectroscopic imaging: MRSI involves the combination of 
MR imaging techniques with conventional NMR spectroscopic methods (commonly 
proton or phosphorus based) to provide spatially localized spectra. Pathological tumor 
biology provides unique spectral signatures of various metabolites that distinguish 
tumors from normal tissue. For example, metabolites such as choline, creatine, lactate, 
ATP, lipid, and lysine can differentiate certain tumor types from surrounding normal 
tissue, as well as distinguish between benign and malignant disease in some cases 
(85, 88).

Computed tomography: The application of high-resolution X-ray CT to preclinical 
cancer models has recently become feasible, particularly for detection of lesions in 
bone, lung, and mammary glands (89). Three-dimensional images with resolution on 
the order of a 10–50 µm are produced. With the use of CT contrast agents and blood 
pool agents, soft tissues such as liver, pancreas, spleen, and kidney, as well as vascula-
ture can also be imaged (89).

Positron emission tomography: PET is increasingly used to study tumor biology. 
Equipment design and sensitivity have improved, allowing higher image resolution and 
animal throughput. Tumor detection using micro-PET takes advantage of pathological 
changes in tumor cells that promote enhanced uptake of positron-emitting radiotracers. 
PET tracers have been developed to measure cellular glucose metabolism ([18F]fl uoro
deoxyglucose, FDG), cellular proliferation ([18F]fl uorothymidine, FLT), protein 
synthesis ([11C]methionine, MET; [18F]tyrosine), as well as transgene expression (90–
96). An alternative method [124I] uses radioimmunotracers targeting tumor-
specifi c antigens that provides distinction between normal and malignant tissues 
(97, 98).

3.2 Assessments of Change in Tumor Burden
Change in tumor burden, usually in response to drug treatment, has historically been 

measured directly with calipers, by weight of an excised tumor mass, or by inference 
from measurement of host lifespan (1, 27). Excised tumor masses and tumors measured 
in situ contain both viable and dead tissue, and gross assessment of their mass is not 
equivalent to determination of the surviving fraction. The surviving fraction can be 
estimated for excised tumor masses by in vitro determination of clonogenic survival 
(99).

By far the most common format for the determination of therapeutic effect involves 
the estimation of tumor burden from caliper measurements of subcutaneous tumor 
masses. A number of mathematical treatments of these types of data have been devel-
oped, but two are dominant. The most common assesses response to therapy by com-
parison of control and treated tumor burdens as simple ratios of tumor mass (T/C) at a 
single point in time. Alternatively, ratios of the change in mass over the course of treat-
ment (∆T/∆C) are generated (100, 101). This method is quick and economical, but it 
is also prone to severe variability, and the results are not directly comparable between 
experiments or across models. In addition, the same data set can give different estimates 
of therapeutic effect depending on the day of measurement, making the data highly 
subjective. Finally this method cannot give a quantitative estimate of the number of 
tumor cells surviving treatment. An alternative approach, pioneered by the group at 
Southern Research Institute, uses more data points to assess a therapy-induced tumor 
growth delay (T–C) from which estimates of net change in tumor burden are derived 
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(27). The advantages of this more rigorous method are that it produces data that are 
quantitatively comparable between experiments and across models.

As the use of transgenic, orthotopic, and metastasis models increases, all of the 
imaging modalities described above are being increasingly utilized for detection of 
tumor masses and measurement of the effect of therapeutic intervention. Imaging can 
greatly increase the effi ciency of these models and provide a more accurate assessment 
of tumor burden than traditional determination after serial sacrifi ce. However, imaging 
can be associated with increased cost and decreased throughput. In certain cases, the 
use of a contrast agent or labeled molecule may also be required for image-based 
assessment of tumor burden, which may further increase the complexity of the assay.

3.3 Pharmacokinetics
Pharmacokinetic analysis quantifi es the processes of absorption, distribution, metab-

olism, and elimination (ADME) of compounds over time. Often this is accomplished 
through serial collection and analysis of body fl uids or tissues, or by autoradiography 
to generate a concentration–time profi le. These traditional methods typically consume 
large numbers of animals, time, and resources.

In autoradiography, animals are systemically exposed to radiolabeled compounds 
and sacrifi ced at specifi c time points. Frozen tissue sections are exposed to imaging 
plates to produce high-resolution images directly from tissue samples (102). Two-
dimensional images can then be stacked to form a three-dimensional image (103). 
However, this technology is time and labor intensive and relies on the use of potentially 
hazardous and long-lived radioisotopes.

As imaging modalities have advanced, a number of techniques have been applied 
to the determination of pharmacokinetic profi les. Positron emission tomography and 
SPECT have shown particular promise in this respect. These imaging technologies can 
be used to track movement of compounds, formation of metabolites, tissue concentra-
tions, and drug half-lives. These are noninvasive imaging modalities that image radio-
tracer distribution after systemic injection into the animal. However, quantifi cation can 
be problematic due to tissue scattering of emitted photons. While PET is 10- to 20-fold 
more sensitive with better image resolution than SPECT (104), the generally shorter 
half-lives of PET isotopes can make the generation and use of labeled compounds 
challenging. Both imaging modalities are broadly applicable in clinical and preclinical 
settings.

3.4 Drug Effects at the Molecular Target
The dramatic shift of cancer drug discovery efforts toward a focus on specifi c 

molecular targets over the past decade has prompted an increased interest in pharma-
codynamic analysis of drug function. These analyses confi rm target modulation and 
can allow quantitative correlation of target modulation with both pharmacokinetics and 
preclinical effi cacy (105–107). Pharmacodynamic analyses can also be used produc-
tively to enhance the effi ciency of the discovery process by preempting doomed effi cacy 
determinations. Pharmacodynamic analyses to determine the extent and duration of 
target modulation are typically rapid (1–2 days), and they require minimal drug supplies 
and only a few animals. By comparison to effi cacy testing against a xenograft model, 
a pharmacodynamic analysis consumes 10- to 25-fold fewer resources. It can allow 
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effi cient “drop” decisions for weak compounds and enable an informed design (with 
respect to dose selection and treatment schedule) of effi cacy experiments for com-
pounds with strong potential. Optimization of in vivo function for target modulation 
prior to effi cacy determination is becoming the discovery paradigm of choice for tar-
geted programs. These correlations can also be used to set decision-making thresholds 
for biomarker analyses in phase I clinical trials. Failure to reach a predetermined thresh-
old for target modulation at tolerated dose levels would prompt a decision to terminate 
development of the targeted compound.

Pharmacodynamic analysis traditionally has involved harvest of tumor tissue from 
treated animals and quantitative assessment of target modulation with techniques that 
include Western or Northern blot analysis, biochemical assays for enzyme activity, 
or immunohistochemistry. More recently in vivo imaging-based assays have been 
developed to measure changes in enzyme activity, substrate or reaction product concen-
trations, and protein interactions. Imaging-based pharmacodynamic analyses using 
modalities such as bioluminescence, fl uorescence, PET, and SPECT are becoming more 
widely used. They offer simultaneous evaluation of drug function at the molecular level 
and effi cacy at the whole animal level, dramatically increasing effi ciency, reducing 
animal use, and generating tighter correlations.

Extensions of the basic BLI experiment include various strategies for coupling the 
expression or activation of luciferase to molecular events within the cell, so that the 
event is signaled by light production of the active luciferase (79, 108). For example, 
BLI has been used to image DNA damage in vivo with a transgenic mouse that harbors 
an Mdm2-Luc cassette. Events that induce DNA damage cause stabilization of p53 
wherein it accumulates approximately 100-fold, followed by induction of p53 transcrip-
tional activity, leading to activation of the Mdm2 promoter. Subsequent luciferase 
expression can be detected by BLI. This has been used to demonstrate the radio-sensi-
tizing effect of 5-fl uorouricil in mice (A Rehemtulla et al., University of Michigan, 
2003, personal communication).

3.5 Drug-Induced Physiological Changes
Direct assessment of drug function at the molecular target is often diffi cult or impos-

sible. This is particularly true in the clinic, where the requisite biopsies may not be 
possible. In these situations, surrogate or indirect measures of drug-induced changes in 
physiology can be useful. Perhaps the best examples are assessments of drug-induced 
changes in tumor blood fl ow, vascular density, and vascular permeability now popularly 
applied to the development of antiangiogenic agents (109–111). However, a key differ-
ence between most clinical and preclinical imaging applications is the preclinical use 
of anesthesia such as isofl urane or ketamine/xylazine. The potential infl uence of anes-
thesia on the signal of interest must be carefully considered (112). Examples of changes 
in drug-induced physiology that can be measured with imaging technologies include 
the following.

Blood fl ow (MRI/PET): Blood fl ow, blood volume, and vascular permeability can be 
assessed in tumors using a variety of MRI-based techniques such as dynamic contrast-
enhanced MRI (DCE MRI) (113, 114), arterial spin labeling (115, 116), and iron-oxide-
based contrast MRI (117). These methods have been widely used to detect response to 
antangiogenic therapies in mouse cancer models (118). Tumor blood fl ow measure-
ments have also been performed using clinical PET imaging of 15O[H2O] (119), and 
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may show future widespread use in preclinical PET. Imaging of tumor perfusion 
and vascularity by PET and MRI is described in more detail in Chapters 4 and 5, 
respectively.

Apoptosis (BLI/SPECT/PET/MRI: Imaging of apoptosis provides a means of assess-
ing the extent of tumor response to cytotoxic therapy. Several in vivo approaches have 
been developed utilizing BLI, MRI, PET, and SPECT (120–124). One technique using 
BLI makes use of tumor cells that have been transfected with a hybrid recombinant 
reporter consisting of luciferase linked to the estrogen receptor (ER) regulatory domain 
via a cleavage site for caspase-3 (DEVD) (120). The presence of ER in the hybrid 
reporter renders the luciferase inactive. On activation of caspase-3 during apoptosis, 
the DEVD site is cleaved and the luciferase becomes active, signaling the onset of 
apoptosis in the presence of luciferin. Other strategies for in vivo imaging of apoptosis 
are described in Chapter 16.

Metabolism. PET scans using [18F]FDG provide a common approach to in vivo 
assessment of energy metabolism. Since tumors generally have elevated glucose metab-
olism, [18F]FDG can be used to diagnose tumors as well as monitor changes in tumor 
metabolism in response to therapy (125). However, these types of images must be 
interpreted with care because elevated glucose metabolism may be associated with 
other physiological processes such as macrophage activity and infl ammation. Methods 
such as MRI or MRSI can be used to quantify the levels of metabolites such as choline, 
lactate, and lipids using 1H-MR, and ATP and phosphocreatine using 31P MR 
(126, 127).

3.6 Assessment and Early Prediction of Response
Conventional imaging methods for evaluating tumor response to therapy have gener-

ally been limited to simple morphological criteria such as an apparent reduction in 
tumor volume (128). Determination of these endpoints can take weeks or months, hin-
dering timely detection of failed therapies and delaying opportunities to shift to po-
tentially more effi cacious treatment. Clearly the development of highly prognostic 
indicators of therapeutic benefi t would be a meaningful advance; FDG-PET has proven 
to be useful for assessing response to therapy at early time points in cancers such 
as lung, colorectal, cervical, and esophageal carcinomas (129–131). Assessment of 
response is achieved in these cases by following the relative change in FDG uptake 
during tumor treatment. Other PET tracers that are associated with cellular proliferation 
and protein synthesis have also been used to evaluate tumor response to therapy. Further 
discussion may be found in Chapters 4, 7, 8, and 9.

Diffusion MRI (dMRI) has been widely used in the clinic to assess acute stroke 
patients (132, 133), but is being increasingly used in oncology applications for the early 
evaluation of tumor response to therapy. It provides a measure of the apparent diffu-
sional mobility of water in tissue. The apparent diffusion of tissue water is infl uenced 
by diffusion barriers such as cytoplasmic structures, organelles, cell membranes, and 
the extracellular matrix. These break down in response to treatment. Measurement of 
water diffusivity by dMRI yields images or maps of the apparent diffusion coeffi cient 
(ADC). Several studies of different tumor types and models have shown that ADC 
within the tumor is correlated with tissue cell density (134–137). When a tumor 
responds to therapy, an early change in ADC can be observed, often before a measur-
able decrease in tumor volume (138). This has been interpreted as a decrease in tumor 
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cell density and increase in necrotic fraction (135, 136) (Fig. 3). In preclinical tumor 
models, this change in tumor ADC may be correlated with cell kill, providing an earlier 
indication of the activity of the therapeutic agent without the requisite measurement of 
tumor regrowth. Relative changes in ADC may also be used to optimize combination 
therapies or dose schedules. Recent clinical trials suggest a positive prognostic value 
for early ADC change in brain tumors (139). Advantages of dMRI include the follow-
ing: (1) it is directly translatable to the clinic, (2) it does not require injection of contrast 
agents or tracers, and (3) it can be carried out with standard MRI equipment and very 
short scan times.

4. SUMMARY AND FUTURE DIRECTIONS

A wide range of in vivo tumor models is available. Although most have been criti-
cized for poor correlation with clinical outcomes, compelling evidence exists indicating 
that for several types of models, the absence of preclinical in vivo anticancer activity 
is a negative indicator of clinical utility (53–55). The well-recognized shift to drug 
discovery strategies targeting specifi c molecules thought to cause or support the trans-
formed phenotype has led to increased interest in the use of orthotopic and transgenic 
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Fig. 3. Diffusion MRI of Panc-1 subcutaneous xenograft treated with Gemzar (160 mg/kg Q3D × 4 
IP). On the left, ADC maps are shown of a single slice on day 46 for control (vehicle) and treated 
tumors from two different animals. Control tumor ADC values are approximately 75 × 10−5 mm2/sec; 
the treated tumor has focal regions with ADC values approaching 130 × 10−5 mm2/sec. Tumor burden 
(mean fold growth) is plotted in the upper right panel, and mode tumor ADC change relative to pre-
treatment values in the lower right panel. Open symbols are means of treated animals (N = 4) and 
closed symbols are means of control animals (N = 4).
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tumor models. These discovery strategies are also facilitated by correlation of drug 
effect at the molecular target with effi cacy. Fortunately, recent advances in preclinical 
imaging technologies offer enhanced opportunities for noninvasive analysis of drug 
function in addition to basic tumor biology at anatomic, physiologic, and mechanistic 
levels. These technologies are especially well suited to the use of the increasingly rel-
evant transgenic and orthotopic models.

With the shift toward therapeutic targeting of cancer-specifi c molecular defects, 
confi rmation of the interaction of the drug with its target and analyses of downstream 
effects (drug-induced changes in physiology) are also frequently sought. Imaging tech-
nologies are increasingly used to this end. However, imaging at the resolution required 
in small animals presents many challenges. While MRI is a relatively mature modality 
that is now used routinely for small animal imaging, modalities such as micro-PET, 
micro-SPECT, and in vivo optical imaging have only seen widespread use in the past 
decade, and they pose greater challenges in terms of sensitivity and resolution. Related 
to these issues is the image time required, or “throughput.” Improvements in animal 
imaging throughput are critical in enabling meaningful and effi cient animal studies that 
involve suffi cient animal numbers and multiple time points to provide statistical power 
and biological relevance (140). With future technological advancements that improve 
sensitivity, resolution, and throughput, clinical protocols that are already used routinely 
in nuclear imaging, CT and MRI, will be successfully translated to true quantitative 
imaging in the preclinical arena. Similarly, advances in novel preclinical imaging tech-
nologies and imaging agents will be translated to clinical trial.

Quantitative imaging can offer correlations of effi cacy and therapeutic index with 
either target modulation at the molecular level or surrogate markers of drug function. 
These correlations can then be used to establish decision-making thresholds for measur-
able endpoints in early clinical trials. Hence, the future of imaging in preclinical tumor 
models lies in the development and validation of image-based biomarkers and surrogate 
markers for tumor response that will be used in clinical trials. These technologies will 
be used increasingly in the earlier stages of preclinical development of new therapies 
as correlates for growth-based determination of effi cacy.
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