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1 Introduction

Spartan spatial random fields (SSRFs) were introduced in [10]. Certain mathe-
matical properties of SSRFs were presented, inference of the model parameters
from synthetic samples was investigated [10], and methods for the uncondi-
tional simulation of SSRFs were developed [11]. This research has focused on
the fluctuation component of the spatial variability, which is assumed to be
statistically homogeneous (stationary) and normally distributed. The proba-
bility density function (pdf) of Spartan fields is determined from an energy
functional H[Xλ(s)], according to the familiar in statistical physics expression
for the Gibbs distribution

fx[Xλ(s)] = Z−1 exp {−H[Xλ(s)]} . (1)

The constant Z (called partition function) is the pdf normalization factor ob-
tained by integrating exp (−H) over all degrees of freedom (i.e. states of the
SSRF). The subscript λ denotes the fluctuation resolution scale. The energy
functional determines the spatial variability by means of interactions between
neighboring locations. One can express the multivariate Gaussian pdf, typi-
cally used in classical geostatistics, in terms of the following energy functional

H[Xλ(s)]= 1
2

∫
ds
∫

ds′Xλ(s)c−1
X (s, s′)Xλ(s′), (2)

where cX(s, s′) is the centered covariance function; the latter needs to be
determined from the data for all pairs of points s and s′, or (assuming sta-
tistical homogeneity) for all distance vectors s − s′. In contrast, the energy
functional in Spartan models is determined from physically motivated interac-
tions between neighbors. The name ‘Spartan’ emphasizes that the number Np

of model parameters to be determined from the data is small. For example,
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in the fluctuation – gradient – curvature (FGC) model, the pdf involves three
main parameters: the scale factor η0 , the covariance shape parameter η1, and
the correlation length ξ . Another factor that adds flexibility to the model is
the coarse-graining kernel that determines the fluctuation resolution λ [10].
As we show below, the resolution is directly related to smoothness properties
of the SSRF. In previous work [10, 11], we have used a kernel with a boxcar
spectral density that imposes a sharp cutoff in frequency (wavevector) space
at kc ∝ λ−1 . We have treated the cutoff frequency as a constant, but it is
also possible to consider it as an additional model parameter, in which case
Np = 4.

A practical implication of an interaction-based energy functional is that
the parameters of the model follow from simple sample constraints that do not
require the full calculation of two-point functions (e.g., correlation function,
variogram). This feature permits fast computation of the model parameters.
In addition, for general spatial distributions (e.g., irregular distribution of
sampling points, anisotropic spatial dependence with unknown a priori prin-
cipal directions), the parameter inference does not require various empirical
assumptions such as choice of lag classes, number of pairs per class, lag and
angle tolerance, etc. [7] used in the calculation of two-point functions. In the
case of SSRFs that model data distributed on irregular supports, the definition
of the interaction between ‘near neighbors’ is not uniquely defined. Determin-
ing the neighbor structure for irregular supports increases the computational
effort [10], but the model inference process is still quite fast. Methods for the
non-constrained simulation of SSRFs with Gaussian probability densities on
the square lattice (by filtering Gaussian random variables in Fourier space and
reconstructing the state in real space with the inverse FFT) and for irregular
supports (based on a random phase superposition of cosine modes with fre-
quency distribution modeled on the covariance spectral density), have been
presented in [11].

2 FGC Energy Functional

The energy functional involves the SSRF states (configurations) Xλ(s). For
notational simplicity, we will not use different symbols for the random field and
its states in the following. As hinted above, the energy functional is properly
defined for SSRFs Xλ(s) with an inherent scale parameter ‘λ’ that denotes
the spatial resolution of the fluctuations. At lower scales, the fluctuations are
coarse-grained. The fluctuation resolution scale is physically meaningful, since
it would be unreasonable to expect a model of fluctuations to be valid for all
length scales. In contrast with classical random field representations, which
do not have a built-in scale for a fluctuation cutoff, SSRFs provide an explicit
‘handle’ for this meaningful parameter. In practical situations, the fluctuation
resolution scale is linked to the measurement support scale and the sampling
density. In the case of numerical simulations, the lattice spacing provides
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a lower bound for λ. The fluctuation resolution can also exceed the lattice
spacing, to allow for smoother variations of the field. The general probability
density function of continuum FGC Spartan random fields (FGC-SSRF) in
IRd is determined from the following functional

Hfgc[Xλ] =
1

2η0ξd

∫
ds hfgc [Xλ(s); η1, ξ] , (3)

where η0 is a scale factor with dimensions [X]2 that determines the magnitude
of the overall variability of the SSRF, η1 is a covariance shape parameter
(dimensionless), ξ is the correlation length, and hfgc is the normalized (to
η0 = 1) local energy at the point s. In the case of a Gaussian FGC random
field with mean (not necessarily stationary) mX;λ(s) = E [Xλ(s)] and isotropic
spatial dependence of the fluctuations, the functional hfgc [Xλ(s); η1, ξ] is given
by the following

hfgc [Xλ(s); η1, ξ] = [χλ(s)]2 + η1 ξ2 [∇χλ(s)]2 + ξ4
[
∇2χλ(s)

]2
, (4)

where χλ(s) is the local fluctuation field. The functional (4) is permissible
if Bochner’s theorem [3] for the covariance function is satisfied. As shown in
[10], permissibility requires η1 > −2. The covariance spectral density follows
from the equation

G̃x;λ(k) =

∣∣∣ Q̃λ(k)
∣∣∣
2

η0 ξd

1 + η1 (kξ)2 + (kξ)4
(5)

where Q̃λ(k) is the Fourier transform of the smoothing kernel. If the latter
is the boxcar filter with cutoff at kc, (5) leads to a band-limited spectral
density G̃x;λ(k). For negative values of η1 the spectral density develops a
sharp peak, and as η1 approaches the permissibility boundary value equal to
−2, the spectral density tends to become singular. For negative values of η1

the structure of the spectral density leads to a negative hole in the covariance
function in real space. If Q̃λ(k) has no directional dependence, the spectral
density depends on the magnitude but not the direction of the frequency
vector k. Thus, the covariance is an isotropic function of distance in this case.

On regular lattices, the FGC spectral density is obtained by replac-
ing the operators ∇ and ∇2 in the energy functional with the correspond-
ing finite differences. Then, the local energy becomes hfgc [Xλ(s); η1, ξ] =
hfgc [χλ {U(s); η1, ξ}], where U(s) = s ∪ nnb(s) is the local neighborhood set
that contains the point s and its nearest lattice neighbors, χλ {U(s)} is the
set of the SSRF values at the points in U(s), and hfgc [·] is a quadratic func-
tional of the SSRF states that defines interactions between the fluctuation
values χλ {U(s)}. For irregular spatial distributions, there are more than one
possibilities for modeling the interactions. One approach, explored in [10], is
to define a background lattice that covers the area of interest and to construct
interactions between the cells of the background lattice. If CB(s) denotes the
cell of the background lattice that includes the point s and nnb {CB(s)} is
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the set of nearest neighbors of the cell CB(s), the local neighborhood set in-
volves the sampled points that belong to the cell CB(s) and its neighbors, i.e.
U(s) = s′ ∈ CB(s) ∪ nnb {CB(s)}.

3 Model Inference

The problem of model inference from available data is a typical inverse prob-
lem. In order to determine the model parameters experimental constraints
need to be defined that capture the main features of the spatial variability
in the data. These constraints should then be related to the interactions in
the SSRF energy functional. The experimental constraints used in [10] for the
square lattice are motivated by the local ‘fluctuation energy measures’ S0(s) =
χ2

λ(s), S1(s) =
∑d

i=1 [∇iχλ(s)]2, and S2(s) =
∑d

i,j=1 Δ
(i)
2 [χλ(s)] Δ(j)

2 [χλ(s)],

where Δ
(i)
2 denotes the centered second-order difference operator. The respec-

tive experimental constraints are then given by S0(s) (sample variance), S1(s)
(average square gradient) and S2(s), where the bar denotes the sample aver-
age. The respective stochastic constraints are E [Sm(s)], m = 0, 1, 2 and they
can be expressed in terms of the covariance function. For the isotropic FGC
model, calculation of the stochastic constraints involves a one-dimensional
numerical integration over the magnitude of the frequency. Matching of the
stochastic and experimental constraints is formulated as an optimization prob-
lem in terms of a functional that measures the distance between the two sets
[10] of constraints. Minimization of the distance functional leads to a set of
optimal values η∗

0 , η∗
1 , ξ∗ for the model parameters. Use of kc as a fourth param-

eter needs further investigation. It should be noted that constraint matching
is based on the ergodic assumption, and thus a working approximation of
ergodicity should be established for the fluctuation field.

4 Smoothness of FGC Spartan Random Fields

The probability density of the FGC-SSRF involves the first- and second-order
derivatives of the field’s states. This requires defining the energy functional in
a manner consistent with the existence of the derivatives. In general, for Gaus-
sian random fields [1, 15], the nth-order derivative ∂nXλ(s)/∂sn1

1 ...∂snd

d exists
in the mean square sense if (i) the mean function mX;λ(s) is differentiable,
and (ii) the following derivative of the covariance function exists [1, 15]

∂2nGx;λ(s,p)
∂sn1

1 ...∂snd

d ∂pn1
1 ...∂pnd

d

∣∣∣∣
s=p

, n = n1 + ... + nd. (6)

Since the FGC covariance function is statistically homogeneous and isotropic,
the above condition simply requires the existence of the isotropic derivative
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of order 2n at zero pair separation distance, i.e. the existence of the following
quantity

G
(2n)
x;λ (0) = (−1)n

[
d2nGx;λ(r)

dr2n

]∣∣∣∣
r=0

(7)

Equation (7) is equivalent to the existence of the corresponding integral of
the covariance spectral density

[
d2nGx;λ(r)

dr2n

] ∣∣∣∣
r=0

= η0 ξd Sd

∞∫

0

dk

∣∣∣ Q̃λ(k)
∣∣∣
2

kd+2n−1

1 + η1 (kξ)2 + (kξ)4
(8)

where Sd =
∫

d k̂ = 2πd/2
/
Γ (d/2) denotes the surface of the unit sphere in d

dimensions. Note that if
∣∣∣ Q̃λ(k)

∣∣∣
2

= 1 , i.e. in the absence of smoothing, the
above integral does not exist unless d+2n < 4, which can be attained only for
d = 1 and n = 1. If the smoothing kernel has a sharp cutoff kc (band-limited
spectrum), the 2n-th order derivative is expressed in terms of the following
integral

d2nGx;λ(r)
dr2n

∣∣∣∣
r=0

= η0 ξ−2n Sd

kcξ∫

0

dκ
κd+2n−1

1 + η1 κ2 + κ4
. (9)

The integral in 9 exists for all d and n. However, if the correlation length ξ
exceeds significantly the resolution scale, i.e. ξ >> λ and kcξ >> 1, for κ >>

1 the integrand behaves as κd+2n−5. Then, it follows G
(2n)
x;λ (0) = regular +

αd ξ−2n(kcξ)d+2n−4, where ‘regular’ represents the bounded contribution of
the integral, while for fixed ξ the remaining term increases fast with kcξ. The
constant αd depends on the dimensionality of space. Hence, for d ≥ 2 the
singular term in G

(2n)
x;λ (0) leads to large values of the covariance derivatives

for n ≥ 1. In [10] we focused on the case kcξ >> 1, which leads to ‘rough’
Spartan fields. Based on the above, the Gaussian FGC-SSRF can, at least
in principle, interpolate between very smooth Gaussian random fields (e.g.,
Gaussian covariance function) and non-differentiable ones (e.g., exponential,
spherical covariance functions). The ‘degree’ of smoothness depends on the
value of the combined parameter kcξ. Hence, the FGC-SSRF in effect has four
parameters, η0, η1, kc, ξ , and the value of kcξ, which controls the smoothness
of the model. This property of smoothness control is also shared by random
fields with Matérn class covariance functions [14].

5 Non-Gaussian Probability Densities

An issue of significant practical importance is the ability of geostatistical
models to capture fluctuations with non-Gaussian distributions. Such distri-
butions can be developed in the Spartan-Gibbs framework by adding suitable
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(higher than second order) interaction terms in the energy functional. An ex-
ample is the energy functional of the Landau model e.g. [10], which includes
non-Gaussian terms and exhibits a transition between exponential and power-
law spatial dependence of the covariance function. Geostatistical probability
density models provide sufficient flexibility for fitting various types of non-
Gaussian data. The approaches typically used in geostatistics for modeling
asymmetric distributions with higher-than-normal weight in their tails em-
ploy the logarithmic and the Box-Cox transforms. In the former approach,
the initial distribution is assumed to be approximately lognormal. The log-
arithmic mean mY (s) = E [log Xλ(s)] is first estimated. Then, the fluctu-
ations yλ(s) = log [Xλ(s)] − mY (s) follow the Gaussian distribution, and
they can be modeled by means of the FGC-SSRF normalized energy den-
sity hfgc [yλ(s); η1, ξ]. If the logarithm of the random field deviates from the
Gaussian distribution, it is possible to modify the energy functional by adding
a non-Gaussian term as follows

Hng [yλ(s); η0, η1, ξ,q] = Hfgc [yλ(s); η0, η1, ξ] + δH [yλ(s);q] , (10)

where δH is the non-Gaussian term that involves a parameter vector q. For
simplicity, below we are going to express (10) as H = HG + δH, where H is
the entire energy functional, and HG = Hfgc is the Gaussian FGC contribu-
tion. Now one has to determine the entire set of model parameters η0, η1, ξ,q
(and possibly kc ) simultaneously from the sample. The deviation of the dis-
tribution from the Gaussian dependence is captured by means of additional
constraints, e.g. based on the local terms S3(s) = y3

λ(s) and S4(s) = y4
λ(s).

The corresponding distance functional then becomes

Φs [Xλ(s)] =
∣∣∣1 −

√
S1

S0

E[S0]
E[S1]

∣∣∣
2

+
∣∣∣1 −

√
S2

S0

E[S0]
E[S2]

∣∣∣
2

+ (11)
∣∣∣∣1 −

√
S3

S0
3/2

E[S0]
3/2

E[S3]

∣∣∣∣
2

+
∣∣∣∣1 −

√
S4

S0
2

E[S0]
2

E[S3]

∣∣∣∣
2

The ratio S3

/
S0

3/2
represents the sample skewness coefficient, while S4

/
S0

2

the sample kurtosis coefficient. In the case of the Gaussian FGC-SSRF model,
the stochastic moments E [Sm] , m = 0, 1, 2 (which are used in determining
the model parameters) are expressed exactly in terms of the two-point covari-
ance function. The covariance spectral density also follows directly from the
energy functional. Such explicit expressions are not available for non-Gaussian
energy functionals. The moments must be calculated either by numerical in-
tegration (e.g., Monte Carlo methods) for each set of parameters visited by
the optimization method or by approximate, explicit methods that have been
developed in the framework of many-body theories, e.g. [5, 8, 9, 13].

In statistical physics, e.g. [4, 5, 6] there is a long literature on approxi-
mate but explicit methods (variational approximations, Feynman diagrams,
renormalization group, replicas) that address calculations with non-Gaussian



Spartan Random Fields 23

probability densities. Preliminary efforts to apply these methods in geosta-
tistical research [9, 12], and references therein] should be followed by further
research on closed-form expressions for non-Gaussian Spartan densities and
the accuracy of such approximations in various areas of the parameter space.
In the variational approach [2, 5, 8], the non-Gaussian probability density is
expanded around an ‘optimal’ Gaussian. The variational Gaussian can then
be used as the zero-point approximation for low-order or diagrammatic per-
turbation expansions of the moments [9, 13]. Below, we outline the application
of the variational method [2, 4, pp. 198–200, 5, pp. 71–77].

5.1 The Variational Method

We present the formalism of the variational method assuming that the SSRF
is defined in a discretized space (e.g. on a lattice). The fluctuation random
field and its states are denoted by the vector y. The characteristic function
Z[J] corresponding to the energy functional H is defined as

Z[J] = Tr [exp(−H + J · y)] . (12)

The symbol ‘Tr’ denotes the trace over all the field variables in H. For a lattice
field the trace is obtained by integrating over the fluctuations at every point
of the lattice. The cumulant generating functional (CGF) is defined by

F [J] = − log Z[J]. (13)

The cumulants of the distribution are obtained from the derivatives of the
CGF with respect to J. For example, the mean is given by

E [y(si)] = −∂F [J]
∂Ji

∣∣∣∣
J=0

, (14)

and the covariance function by

Gy;λ(s1, s2) =
∂2F [J]
∂J1∂J2

∣∣∣∣
J=0

. (15)

Higher-order cumulants are given by higher order derivatives of the CGF. The
CGF of the Gaussian part H0−J ·y is denoted as F0[J]. Let us now consider a
variational Gaussian energy functional H0, which is in general different than
the Gaussian component HG of H. The average of an operator A with respect
to the pdf with energy H0, is obtained by means of

〈A〉0 =
Tr Ae−H0

Tr e−H0
. (16)

The following inequality [5] is valid for all H0

F [J] ≤ F0[J] + 〈H − H0〉0 . (17)
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The optimal Ĥ0 that gives the best approximation of F [J], is obtained by min-
imizing the variational bound F0 + 〈H − H0〉0 with respect to the parameters
of H0. The optimal Gaussian pdf has energy Ĥ0 and provides approximate
estimates of the non-Gaussian covariance function.

It is possible to improve on the variational approximation by expressing
the energy functional H as follows

H = Ĥ0 + (H − Ĥ0) = Ĥ0 + (HG − Ĥ0 + δH), (18)

and treating the component Hpert = HG−Ĥ0+δH of the energy functional as
a perturbation around the optimal Gaussian Ĥ0. Corrections of the stochastic
moments can then be obtained either by means of simple (low-order) per-
turbation expansions, or by means of diagrammatic perturbation methods.
However, there is no a priori guarantee that such corrections will lead to more
accurate estimates, and such approximation must be investigated for each
energy functional.

5.2 Example of Variational Calculation

Here we present a simple example for a univariate non-Gaussian pdf, which il-
lustrates the application of the variational method. Consider the non-Gaussian
energy functional

H(y) = a2 y2 + β4 y4, (19)

where y is a fluctuation with variance E[y2], and the average is over the pdf
p(y) = Z−1 exp(−H). The following Gaussian variational expression is used
as an approximation of the non-Gaussian pdf

p0(y) =
(√

2πσ
)−1

exp
(
−y2

/
2σ2
)
. (20)

Hence, the variational energy functional is H0 = y2
/
2σ2 and σ is the vari-

ational parameter. It follows that F0 = − log(
√

2πσ) and 〈H − H0〉0 =
a2 σ2 +3β4 σ4 −1/2. The variational bound given by (17) is a convex upward
function of σ, as shown in Fig. 1. The bound is minimized for the following
value of σ

σ̂ =
α

6β2

{
3
[√

1 + 12 ρ4 − 1
]}1/2

=
α−1

6ρ2

{
3
[√

1 + 12 ρ4 − 1
]}1/2

. (21)

In the above, ρ = β
α is the dimensionless ratio of the quartic over the quadratic

pdf parameters that measures the deviation of the energy functional from the
Gaussian form. The value of σ̂2 is the variational estimate of the variance.
The exact variance, calculated by numerical integration, and the variational
approximation for various values of the dimensionless coefficient ratio ρ = β/α
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Fig. 1. Plots of the variational bound as a function of σ for four different values of
the ratio β/α

are plotted in Fig. 2, which shows that the variational estimate is an excellent
approximation of the exact result even for large values of the ratio ρ. Esti-
mates based on first-order and cumulant perturbation expansions around the
optimal Gaussian (these will be presented in detail elsewhere) are also shown
in Fig. 2. The additional corrections do not significantly alter the outcome
of the variational approximation for the variance, since all three plots almost
coincide. However, such corrections will be necessary for calculating higher
moments of non-Gaussian distributions. For example, the kurtosis of the
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Fig. 2. Plots of the exact variance (numerical) and approximate estimates based
on the variational approach as well as combinations of variational and perturbation
methods (first order and cumulant expansion)
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variational Gaussian is equal to 3, and thus it is not an accurate approxi-
mation of the kurtosis of the non-Gaussian distribution except for very small
values of β.

6 Discussion

Spartan random fields provide an alternative to classical geostatistics for mod-
eling the local variability of spatial processes. Spartan models are computa-
tionally efficient for large samples. In addition, they allow quantifying the
variability of spatially sparse data sets, since the model parameters can be
determined from a small number of measurements, in contrast with models
based on variograms. The SSRFs also include a resolution scale that controls
the smoothness of the field.

For SSRFs the structure of the energy functional, which may involve only
short-range interactions, also determines the spatial dependence at large dis-
tances. In principle, the impact of this property on geostatistical modeling
is mixed: On one hand, it does not allow estimating long-range dependence
directly from the data. On the other hand, the estimation of the variogram
at large distance often suffers from significant uncertainty due to insufficient
number of pairs. Hence, the ability of SSRFs to model the long-range behavior
of spatial processes needs to be investigated. It should also be mentioned that
it is possible to modify the energy functional of the SSRFs by adding explicit
long-range interactions.

Non-Gaussian distributions can be handled by means of the standard loga-
rithmic transform. It is also possible to define interactions in the energy func-
tional that lead to specific non-Gaussian probability densities. The complexity
of the inference problem in this case increases compared to the Gaussian case.
Certain methods that may be helpful for calculations with non-Gaussian den-
sities were suggested in this paper, and the variational method was presented
in more detail with the help of a specific univariate example.

Certain other methodological and numerical issues of SSRFs require further
investigation. The methodological issues include estimation at unsampled
points, Monte Carlo simulation, application to real data sets, formulation
of estimation uncertainty, stability of model parameters to uncorrelated
noise, modelling of spatial processes with multiple scales of variability and
anisotropic structures. Estimation has been briefly discussed in [10], and un-
conditional simulation in [11]. Numerical issues involve efficient algorithms
for optimization (model inference process), simulation, and the processing of
spatial information in problems with irregular supports.
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