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The spacetime of general relativity and paths
of particles

2.0 Introduction

Einstein’s general theory of relativity postulates that gravitational effects may
be explained by the curvature of spacetime (modeled by a four-dimensional
pseudo-Riemannian manifold) and that gravity should not be regarded as a
force in the conventional sense. To get a preliminary idea of what is involved,
we shall follow the practice of a number of authors1 and consider ants crawling
over a curved surface, namely the skin of an apple.

Suppose then that an ant wishes to follow a straight path on the apple’s
skin. The straightest path it could take would be achieved by its making its
left-hand paces equal to its right-hand ones. This would clearly generate a
straight-line path if it were crawling on a plane, so it is natural to adopt a
path generated on a curved surface in this way as the analog of a straight
line. These paths are called geodesics. If the ant had inky feet, so that it left
footprints, then making cuts along the left-hand and right-hand tracks would
yield a thin strip of peel which could be removed. If this thin strip were laid
flat on a plane it would be straight, confirming that a geodesic, as we have
defined it, is the analog of a straight line.

Suppose now that we have several ants crawling over the apple (without
colliding) and each follows a geodesic path, leaving a record of its progress
on the apple’s skin. (A single track rather than a double one: ink on the tip
of its abdomen, rather than inky feet.) If we concentrate on a portion of the
apple’s skin which is so small that it may be considered flat, then the tracks
of the ants would appear as straight lines on this “flat” portion (see Fig. 2.1).
If, however, we take a larger view of things, then the picture is different.
For example, suppose two ants leave from nearby points on a starting line at
the same time, and move with the same constant speed, following geodesics
which are initially perpendicular to the starting line (see Fig. 2.2). Their paths

1Notably Misner, Thorne, and Wheeler, on whose well-known illustration our
Fig. 2.1 is based. See Misner, Thorne, and Wheeler, 1973, §1.1.
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Fig. 2.1. Small portions of an apple’s skin may be regarded as flat.

would initially be parallel, but because of the curvature of the apple’s skin,
they would start to converge. That is, their separation d does not remain
constant. More generally, we can see that the relative acceleration of ants
which follow neighboring geodesics with constant (but not necessarily equal)
speeds is non-zero, if the surface over which they are crawling is curved. In this
way, curvature may be detected implicitly by what is called geodesic deviation.

Fig. 2.2. Converging geodesics on an apple’s skin.

An apple is not a perfect sphere: there is a dimple caused by the stalk.
Should an ant pass near the stalk its geodesic path would suffer a marked
deflection, like that of a comet passing near the Sun, and it would look as if
the stalk attracted the ant. However, this is not the correct interpretation.
The stalk modifies the curvature of the apple’s skin in its vicinity, and this
produces geodesics which give the effect of an attraction by the stalk.

This allegory may be interpreted in the following way. The curved surface
which is the apple’s skin represents the curved spacetime of Einstein’s general
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theory, which bears the same relation to the flat spacetime of the special
theory as does the apple’s skin to a plane. Free particles (i.e., those moving
under gravity alone, gravity no longer being a force) follow the straightest
paths or geodesics in the curved spacetime, just as the ants follow geodesics
on the apple’s skin. Locally the spacetime of the general theory is like that of
the special theory,2 but on a larger view it is curved, and this curvature may
be detected implicitly by means of geodesic deviation, just as the curvature of
the apple’s skin may be detected by noting the convergence of neighboring
geodesics. The way in which the dimple around the stalk gives the impression
of attraction corresponds to the fact that massive bodies modify the curvature
of spacetime in their vicinity, and this modification affects the geodesics in
such a way as to give the impression that free particles are acted on by a force,
whereas in actual fact they are following the straightest paths in the curved
spacetime.

Given that Einstein’s general theory does not involve the idea of gravity as
a force, how does the gravitational “force” that is a feature of the Newtonian
theory arise? We remarked in the Introduction that in a local inertial frame (a
freely falling, nonrotating reference system occupying a small region of space-
time) the laws of physics are those of special relativity, and in particular free
particles (those moving under gravity alone) follow straight-line paths with
constant speed, so for these frames there is no acceleration and consequently
no “force.” When discussing gravity in Newtonian terms, it is customary to
insist that the frame used is nonrotating (so there are no centrifugal or Cori-
olis “forces”), but one does not normally use a frame that is freely falling,
and it is this use of nonfreely falling frames that gives rise to gravitational
forces. Just as the fictitious forces associated with rotation (the centrifugal
and the Coriolis forces) can be transformed away (locally) by changing to a
nonrotating frame, so can the fictitious force of gravity be transformed away
by changing to a freely falling frame.

Newton’s theory of gravity is nonrelativistic and uses a model for spacetime
that combines three-dimensional Euclidean space with one-dimensional time.
Getting the Newtonian theory as an approximation to Einstein’s general the-
ory of relativity therefore involves two things: passing from a relativistic to a
nonrelativistic way of looking at things and interpreting the effects of the cur-
vature of spacetime in the setting of three-dimensional Euclidean space plus
one-dimensional time. The whole process is quite complicated, but is essen-
tial for a proper understanding of the relationship between Einstein’s theory
and the Newtonian theory. We shall perform this approximation later in this
chapter and establish various points of contact between the two theories.

Before we can do this, we must explain how our model for spacetime
can handle the paths of particles by including the handling of geodesics as
part of our mathematical repertoire. The mathematics of geodesics is covered
in the next few sections, along with the related concepts of parallelism and

2Compare remarks made in the Introduction.
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absolute and covariant differentiation, needed for our discussion of curvature
in Chapter 3. Note that in the present chapter we are concerned only with the
motion of particles in a given spacetime: they are test particles responding to a
given gravitational field. How that field arises is answered in the next chapter,
where we relate the curvature of spacetime to the sources of the gravitational
field.

Exercise 2.0

1. Ants follow geodesics on a surface which is an infinite cylinder (i.e., the
outside of an infinitely long straight pipe).
Do the geodesics deviate?
By considering only the paths of itself and its neighbors, can an ant decide
whether it is on a cylinder or a plane?

2.1 Geodesics

A geodesic in Euclidean space is simply a straight line, which can be char-
acterized as the shortest curve between two points. Such a characterization
could be extended to a geodesic in a manifold, where the metric tensor field
gives us the length of a curve via the integral (1.82). However, this approach
to geodesics presents some technical difficulties, particularly when the metric
tensor field is indefinite (as in the spacetime of general relativity), since in that
case we can have curves (or parts of curves) that have zero length. We there-
fore adopt another characterization of a straight line, namely its straightness,
and use this as a guide to defining geodesics in a manifold.

What makes a straight line straight is the fact that its tangent vectors all
point in the same direction. If we use the arc-length s measured from some
base point on the line as a parameter, then the tangent vectors λ ≡ ṙ(s)
have constant length (as they are unit vectors: see Exercise 1.3.3), so we can
express the fact that they have constant direction by stating that

dλ/ds = 0. (2.1)

Let us see what form this equation takes when we use arbitrary coordinates
ui and the related natural basis {ei}.

Putting λ = λiei and using dots to denote differentiation with respect to
s give

0 = dλ/ds = d(λiei)/ds = λ̇iei + λiėi. (2.2)

Now
ėi = ∂jeiu̇

j

and in general the vector fields ∂jei are nonzero. At each point of space, we
can refer ∂jei to the basis {ei}, so that
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∂jei = Γ k
ijek,

which gives rise to 27 quantities Γ k
ij defined at each point of space. After some

manipulation and relabeling of dummy suffixes we then get

(λ̇i + Γ i
jkλj u̇k)ei = 0 (2.3)

from equation (2.2). Since λi = u̇i = dui/ds, we see that the components
dui/ds of the tangent vector to the straight line satisfy

d2ui

ds2
+ Γ i

jk

duj

ds

duk

ds
= 0. (2.4)

For this last equation to have any meaning, we must obtain an expression for
Γ i

jk in terms of known quantities.
We start by noting that3

∂jei =
∂2r

∂uj∂ui
=

∂2r
∂ui∂uj

= ∂iej ,

so that Γ k
ijek = Γ k

jiek. Forming the dot product with el then gives the sym-
metry property

Γ l
ij = Γ l

ji. (2.5)

We then use gij = ei · ej to get

∂kgij = ∂kei · ej + ei · ∂kej = Γm
ik em · ej + ei · Γm

jkem.

So
∂kgij = Γm

ik gmj + Γm
jkgim. (2.6)

Relabeling suffixes we have

∂igjk = Γm
ji gmk + Γm

ki gjm (2.7)

and
∂jgki = Γm

kjgmi + Γm
ij gkm. (2.8)

Subtracting equation (2.8) from the sum of equations (2.6) and (2.7), and
using the symmetry of both Γm

ij and gij give

2Γm
ki gmj = ∂kgij + ∂igjk − ∂jgki.

Contracting with 1
2glj then gives

3Provided that we can change the order of partial differentiation, which is cer-
tainly the case if the coordinate functions x(ui), y(ui), z(ui) have continuous second
partial derivatives.
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Γ l
ki = 1

2glj(∂kgij + ∂igjk − ∂jgki). (2.9)

Equation (2.4), with Γ i
jk given by equation (2.9) is the geodesic equation for

Euclidean space.
If we use a general parameter t to parameterize the straight line, then

the geodesic equation has a more complicated form. However, for parameters
related to the arc-length s by an equation of the form

t = As + B, (2.10)

where A, B are constants (A �= 0), the geodesic equation has basically the
same form as when s is used:

d2ui

dt2
+ Γ i

jk

duj

dt

duk

dt
= 0. (2.11)

(See Exercise 2.1.1 for a justification of these claims.) These privileged para-
meters for which the geodesic equation has the form (2.11) (with Γ i

jk given
by equation (2.9)) are known as affine parameters. For an affine parameter,
ds/dt is constant, so one is taken along the geodesic at a constant sort of rate.
(If we think of t as time, then the geodesic is traversed at constant speed.)

Equation (2.11) represents a system of second-order differential equa-
tions whose general solution ui(t) gives the geodesics of Euclidean space (i.e.,
straight lines) in whatever coordinate system we happen to be using. To ob-
tain a particular solution, six conditions are needed. These might take the
form of specifying a starting point and a starting direction, or of specifying a
starting point and an ending point for the geodesic.

Using the above ideas as a guide, we can define an affinely parameterized
geodesic in an N -dimensional Riemannian or pseudo-Riemannian manifold as
a curve given by xa(u) satisfying4

d2xa

du2
+ Γ a

bc

dxb

du

dxc

du
= 0, (2.12)

where the N3 quantities Γ a
bc are given by

Γ a
bc = 1

2gad(∂bgdc + ∂cgbd − ∂dgbc). (2.13)

These quantities are known as connection coefficients5 and, like their three-
dimensional Euclidean counterparts, they satisfy the symmetry relation

4Note the change of notation from ui for coordinates and t for parameter in
three-dimensional Euclidean space to xa for coordinates and u for parameter in an
N -dimensional manifold.

5The reason for this terminology is given in the next section.
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Γ a
bc = Γ a

cb, (2.14)

as is clear from their defining equation. It can be shown that in moving along
an affinely parameterized geodesic, the length of the tangent vector ẋa ≡
dxa/du remains constant (see Exercise 2.1.2), and it follows that if the geodesic
is not null (which could be the case with an indefinite metric tensor field),
then the affine parameter is related to the arc-length s by an equation of the
form

u = As + B, (2.15)

where A, B are constants (A �= 0) (see Exercise 2.1.3). If the metric tensor
field is indefinite, then we can have affinely parameterized null geodesics whose
tangent vectors ẋa satisfy gabẋ

aẋb = 0 and for which the arc-length s cannot
be used as a parameter.

Example 2.1.1
In this example we show that, of all the circles of latitude on a sphere, only

the equator is a geodesic. We take the radius of the sphere to be a, and use
u1 = θ and u2 = φ (borrowed from spherical coordinates) as parameters.

Fig. 2.3. A circle of latitude on a sphere.

The figure shows the circle of latitude given by θ = θ0. Since its radius is
a sin θ0, we can parameterize it by saying that

u1 ≡ θ = θ0, u2 ≡ φ = (a sin θ0)−1s,

where s is the arc-length measured round from the point where φ = 0. So (for
A = 1, 2)

uA = θ0δ
A
1 +

s

a sin θ0
δA
2 , u̇A =

1
a sin θ0

δA
2 , and üA = 0,

so, for the geodesic equation to be satisfied, we need
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üA + ΓA
BC u̇Bu̇C = 0 +

1
a2 sin2 θ0

ΓA
22 = 0. (2.16)

From Exercise 2.1.5 we have that the only nonzero connection coefficients are

Γ 1
22 = − sin θ cos θ, Γ 2

12 = Γ 2
21 = cot θ,

so equation (2.16) is satisfied for A = 2 (as Γ 2
22 = 0), while for A = 1 it gives

− cot θ0/a2 = 0, which is satisfied only if θ0 = π/2. So, of all the circles of
latitude, only the equator is a geodesic.

In order to obtain the parametric equations xa = xa(u) of an affinely para-
meterized geodesic, we must solve the system of differential equations (2.12).
These equations are second-order, and require 2N conditions to determine a
unique solution. Suitable conditions are given by specifying the coordinates xa

0

of some point on the geodesic, and the components ẋa
0 of the tangent vector

at that point. Bearing in mind the equations (2.13) which define the Γ a
bc, it

would seem to be a complicated procedure just to set up the geodesic equa-
tions, let alone solve them. Fortunately the equations may be generated by a
very neat procedure which also produces the Γ a

bc as a spin-off.
Consider the Lagrangian L(ẋc, xc) ≡ 1

2gab(xc)ẋaẋb, which we regard as a
function of 2N independent variables xc and ẋc. The Euler–Lagrange equations
for a Lagrangian are the equations

d

du

(
∂L

∂ẋc

)
− ∂L

∂xc
= 0, (2.17)

and for the given Lagrangian these reduce to the geodesic equations (in co-
variant rather than contravariant form), as we now show.

Differentiating the Lagrangian we have

∂L

∂ẋc
= 1

2gabδ
a
c ẋb + 1

2gabẋ
aδb

c = gcbẋ
b

and
∂L

∂xc
= 1

2∂cgabẋ
aẋb,

so equations (2.17) are

d(gcbẋ
b)/du − 1

2∂cgabẋ
aẋb = 0,

or
gcbẍ

b + ∂agcbẋ
aẋb − 1

2∂cgabẋ
aẋb = 0.

But
∂agcbẋ

aẋb = 1
2∂agcbẋ

aẋb + 1
2∂bgcaẋaẋb,

so we have
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gcbẍ
b + 1

2 (∂agcb + ∂bgca − ∂cgab)ẋaẋb = 0.

That is, the Euler–Lagrange equations reduce to

gcbẍ
b + Γcabẋ

aẋb = 0, (2.18)

where Γcab ≡ 1
2 (∂agcb + ∂bgca − ∂cgab) and raising c gives

ẍc + Γ c
abẋ

aẋb = 0, (2.19)

which are the equations of an affinely parameterized geodesic.
Those familiar with the calculus of variations or Lagrangian mechanics

will know that the Euler–Lagrange equations give the solution to the prob-
lem of finding the curve (with fixed endpoints) which extremizes the integral∫ u2

u1
L(ẋc, xc) du. While there is some connection with the characterization of

a geodesic as an extremal of length, it should be noted that the integral in-
volved does not give the length of the curve. For reasons stated earlier, we shall
not pursue this approach any further, but simply regard the Euler–Lagrange
equations as a useful device for generating the geodesic equations and the
connection coefficients which may be extracted from them.

Demonstrating the equivalence of the geodesic and the Euler–Lagrange
equations allows us to make a useful observation. If gab does not depend on
some particular coordinate xd, say, then equation (2.17) shows that

d

du

(
∂L

∂ẋd

)
= 0,

which implies that ∂L/∂ẋd is constant along an affinely parameterized geo-
desic. But ∂L/∂ẋd = gdbẋ

b, so we then have that pd ≡ gdbẋ
b is constant along

an affinely parameterized geodesic. The situation is exactly the same as in
Lagrangian mechanics where, if the Lagrangian does not contain a particu-
lar generalized coordinate, then the corresponding generalized momentum is
conserved, and borrowing a term from mechanics we call a coordinate which
is absent from gab cyclic or ignorable.6 Being able to say that pd = constant
whenever xd is cyclic gives us immediate integrals of the geodesic equations,
which help with their solution. An example should make some of these ideas
clear.

Example 2.1.2
The Robertson–Walker line element is used in cosmology (see Chap. 6). It is
defined by

gµνdxµdxν ≡ dt2 − (R(t))2
(
(1 − kr2)−1dr2 + r2dθ2 + r2 sin2 θ dφ2

)
,

where µ, ν = 0, 1, 2, 3 (our usual notation for spacetimes), k is a constant, and
x0 ≡ t, x1 ≡ r, x2 ≡ θ, x3 ≡ φ.

6See, for example, Goldstein, Poole, and Safko, 2002, §2–6, or Symon, 1971, §9–6.
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So the Lagrangian is

L(ẋσ, xσ) ≡ 1
2

{
ṫ 2 − (R(t))2

(
(1 − kr2)−1ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2

)}
,

where dots denote differentiation with respect to an affine parameter u. Partial
differentiation gives

∂L/∂ṫ = ṫ,

∂L/∂ṙ = −R2(1 − kr2)−1ṙ,

∂L/∂θ̇ = −R2r2θ̇,

∂L/∂φ̇ = −R2r2 sin2 θ φ̇,

∂L/∂t = −RR′[(1 − kr2)−1ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2]

(where R′ = dR/dt),

∂L/∂r = −R2(1 − kr2)−2krṙ2 − R2rθ̇2 − R2r sin2 θ φ̇2,

∂L/∂θ = −R2r2 sin θ cos θ φ̇2,

∂L/∂φ = 0.

Substitution of these derivatives in the Euler–Lagrange equations (2.17) gives

ẗ + RR′[(1 − kr2)−1ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2] = 0,

− R2(1 − kr2)−1r̈ − 2RR′(1 − kr2)−1ṫṙ

− R2(1 − kr2)−2krṙ2 + R2rθ̇2 + R2r sin2 θ φ̇2 = 0,

− R2r2θ̈ − 2RR′r2ṫθ̇ − 2R2rṙθ̇ + R2r2 sin θ cos θ φ̇2 = 0,

− R2r2 sin2 θ φ̈ − 2RR′r2 sin2 θ ṫφ̇

− 2R2r sin2 θ ṙφ̇ − 2R2r2 sin θ cos θ θ̇φ̇ = 0.

The above comprise the covariant version of the geodesic equations, as
given by equation (2.18). Because [gµν ] is diagonal, it is a simple matter to
obtain the contravariant form of the geodesic equations (as given by equa-
tion (2.19)). All we have to do is to divide each equation as necessary, so as
to make the coefficients of ẗ, r̈, θ̈ and φ̈ equal to one. We thus arrive at the
geodesic equations for the Robertson–Walker spacetime in standard form:

ẗ + RR′[(1 − kr2)−1ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2] = 0,

r̈ + 2R′R−1ṫṙ + kr(1 − kr2)−1ṙ2

− r(1 − kr2)θ̇2 − r(1 − kr2) sin2 θ φ̇2 = 0,

θ̈ + 2R′R−1ṫθ̇ + 2r−1ṙθ̇ − sin θ cos θ φ̇2 = 0,

φ̈ + 2R′R−1ṫφ̇ + 2r−1ṙφ̇ + 2 cot θ θ̇φ̇ = 0.

(2.20)
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Comparing these with equations (2.19) allows us to pick out the connection
coefficients. These are zero except for the following:

Γ 0
11 = RR′/(1 − kr2), Γ 0

22 = RR′r2, Γ 0
33 = RR′r2 sin2 θ,

Γ 1
01 = R′/R, Γ 1

11 = kr/(1 − kr2), Γ 1
22 = −r(1 − kr2),

Γ 1
33 = −r(1 − kr2) sin2 θ,

Γ 2
02 = R′/R, Γ 2

12 = 1/r, Γ 2
33 = − sin θ cos θ,

Γ 3
03 = R′/R, Γ 3

13 = 1/r, Γ 3
23 = cot θ.

Note, for example, that in the second geodesic equation 2R′R−1ṫṙ includes
two terms of the sum Γ 1

µν ẋµẋν , namely Γ 1
01ẋ

0ẋ1 and Γ 1
10ẋ

1ẋ0, and one must
remember to halve the multipliers of the cross terms ẋµẋν (µ �= ν) when
extracting the connection coefficients from the geodesic equations.

Note also that in the example above φ is a cyclic coordinate, so one may say
immediately that ∂L/∂φ̇ is constant; that is, R2r2 sin2 θ φ̇ = A. Differentiation
with respect to u results in the last geodesic equation, showing that we do
indeed have an integral.

Exercises 2.1

1. Show that if a general parameter t = f(s) is used to parameterize a
straight line in Euclidean space, then the geodesic equation takes the
form

d2ui

dt2
+ Γ i

jk

duj

dt

duk

dt
= h(s)

dui

dt
,

where h(s) = − d2t

ds2

(
dt

ds

)−2

.

Deduce that this reduces to the simple form (2.11) if, and only if, t =
As + B, where A, B are constants (A �= 0).

2. The aim of this exercise is to show that the length L of the tangent vector
ẋa to an affinely parameterized geodesic is constant.
(a) Start by arguing that ±L2 = gabẋ

aẋb.
(b) Differentiate this equation to obtain an expression for ±2LL̇ in terms

of the quantities gab, ġab, ẋa, and ẍa.
(c) Put ġab = ∂cgabẋ

c and use the geodesic equation (2.12) to express the
second derivatives ẍa in terms of the connection coefficients Γ a

bc and
the first derivatives ẋa.

(d) Then use equation (2.13) to express the Γ a
bc in terms of the metric

tensor components and their derivatives.



64 2 The spacetime of general relativity and paths of particles

(e) Simplify to obtain 2LL̇ = 0, from which it follows that L̇ = 0 and L
is constant.

(See Exercise 2.3.4 for a much shorter derivation of this result.)

3. Use the result of Exercise 2 to show that, for a non-null geodesic affinely
parameterized by u, u = As + B, where A, B are constants (A �= 0).

4. Show that for any geodesic (non-null or null) any two affine parameters u
and u′ are related by an equation of the form u′ = Au + B, where A, B
are constants with A �= 0.

5. Use the result of Exercise 1.6.2(a) to show that, for a sphere of radius
a parameterized in the usual way by u1 ≡ θ, u2 ≡ φ (borrowed from
spherical coordinates), the metric tensor components are given by

[gAB ] =
[

a2 0
0 a2 sin2 θ

]
.

Deduce that the only nonzero connection coefficients are

Γ 1
22 = − sin θ cos θ, Γ 2

12 = Γ 2
21 = cot θ.

6. Show that all lines of longitude on a sphere (curves given by φ = constant)
are geodesics.

7. In a Robertson–Walker spacetime, a coordinate curve for which r, θ, φ
are constant and t varies is given by

xµ(u) = uδµ
0 + r0δ

µ
1 + θ0δ

µ
2 + φ0δ

µ
3 ,

where r0, θ0, φ0 are constants and u is a parameter. Verify that all such
coordinate curves are geodesics affinely parameterized by u.

(See Example 2.1.2 for the connection coefficients for a Robertson–Walker
spacetime.)

2.2 Parallel vectors along a curve

Our way of characterizing a straight line in Euclidean space and (by extension)
a geodesic in a manifold is related to the idea of parallelly transporting a vector
along a curve.

Let γ be a curve in three-dimensional Euclidean space given parametrically
by ui(t) and let P0 with parameter t0 be some initial point on γ where we
give a vector λ0. We can think of transporting λ0 along γ without any change
to its length or direction so as to obtain a parallel vector λ(t) at each point
of γ (see Fig. 2.4). The result is a parallel field of vectors along γ generated
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Fig. 2.4. A parallel field of vectors generated by parallel transport.

by the parallel transport of λ0 along γ. Since there is no change in the length
or direction of λ(t) along γ, it satisfies the differential equation

dλ/dt = 0, (2.21)

for which λ(t0) = λ0 is the initial condition. If we work on equation (2.21)
like we did on equation (2.1), then we can deduce from an equation like equa-
tion (2.3) that the components λi of the transported vector satisfy

λ̇i + Γ i
jkλj u̇k = 0, (2.22)

where the connection coefficients are given by equation (2.9).
Equation (2.22) is the component version of the equation for parallelly

transporting a vector along a curve in Euclidean space. Its generalization for
the parallel transport of a contravariant vector λa along a curve γ in an N -
dimensional manifold with metric tensor field gab is clearly

λ̇a + Γ a
bcλ

bẋc = 0, (2.23)

where the connection coefficients are given by equation (2.13) and ẋa is the
tangent vector arising from the parameterization xa(u) of γ. We now see that
our definition of an affinely parameterized geodesic in the previous section
amounts to saying that it is a curve characterized by the fact that its tangent
vectors ẋa form a parallel field of vectors along itself.

Parallel transport along curves in a curved manifold is significantly differ-
ent from that along curves in flat Euclidean space in that it is path-dependent:
the vector obtained by transporting a given vector from a point P to a re-
mote point Q depends on the route taken from P to Q. This path dependence
also shows up in transporting a vector around a closed loop, where on re-
turning to the starting point the direction of the transported vector is (in
general) different from the vector’s initial direction. This path dependence
can be demonstrated on a curved surface, in both practical and mathematical
terms.
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In Appendix B we describe the construction of a machine that gives a
practical means of transporting a vector parallelly along a curve on a surface.
It is a small two-wheeled vehicle carrying a pointer (which represents the
vector) equipped with some rather clever gearing that receives input from the
two wheels and outputs adjustments to the direction of the pointer. These
adjustments ensure that the pointer is parallelly transported along the path
taken by the vehicle. If we were to take this parallel transporter for walks on
various surfaces, we would confirm that, for a curved surface, parallel transport
is (in general) path-dependent, while, for a plane, it is path-independent. We
would also observe that on completing a closed loop on a curved surface, the
final direction of the pointer is (in general) different from its initial direction.
The following example illustrates in mathematical terms this phenomenon for
curves on a sphere.

Example 2.2.1
Consider a sphere of radius a, coordinatized in the usual way using u1 ≡ θ,

Fig. 2.5. Parallel transport around a circle of latitude.

u2 ≡ φ, where θ, φ are polar angles borrowed from spherical coordinates, with
0 ≤ θ ≤ π and (for convenience) 0 ≤ φ ≤ 2π. Then

[gAB ] =
[

a2 0
0 a2 sin2 θ

]

and the only nonzero connection coefficients are

Γ 1
22 = − sin θ cos θ, Γ 2

12 = Γ 2
21 = cot θ

(see Exercise 2.1.5). Let us transport a vector λ parallelly around the circle
of latitude γ given by θ = θ0 (θ0 = const), starting and ending at the point
P0 where φ = 0 or 2π (see Fig. 2.5). The circle is given parametrically by
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uA(t) = θ0δ
A
1 + tδA

2 , 0 ≤ t ≤ 2π,

so u̇A = δA
2 and the equation for parallel transport becomes λ̇A +ΓA

B2λ
B = 0,

which is equivalent to the pair
{

λ̇1 − sin θ0 cos θ0 λ2 = 0
λ̇2 + cot θ0 λ1 = 0

. (2.24)

Suppose initially that λ is a unit vector whose direction makes an angle α
east of south. Then

λ1(0) = a−1 cos α, λ2(0) = (a sin θ0)−1 sin α, (2.25)

as may be checked by noting that these must satisfy

gABλA(0)λB(0) = 1 and gABλA(0)SB = cos α,

where SA ≡ a−1δA
1 is the south-pointing unit vector at P0.

We have an initial-value problem comprising the pair of equations (2.24)
with initial conditions (2.25). Its solution is

{
λ1 = a−1 cos(α − ωt)
λ2 = (a sin θ0)−1 sin(α − ωt) , (2.26)

where ω = cos θ0, as may be checked (see Exercise 2.2.1). On completing the
circuit of γ, the vector obtained by parallel transport has components

{
λ1(2π) = a−1 cos(α − 2πω)
λ2(2π) = (a sin θ0)−1 sin(α − 2πω) .

We see that gABλA(2π)λB(2π) = 1, so λA(2π) is a unit vector (as it should
be), but its direction is not that of the initial vector λA(0) (unless ω happens
to be zero, as on the equator). Noting that

gABλA(0)λB(2π) = cos α cos(α − 2πω) + sin α sin(α − 2πω)
= cos(α − (α − 2πω))
= cos 2πω,

we see that the final vector makes an angle of 2πω with the initial vector,
where ω ≡ cos θ0. For example, for θ0 = 85◦ the vector has twisted through
31.4◦, whereas for θ0 = 5◦ (near the North Pole) the angle between the final
and initial vectors is 1.4◦.

The above example can be used to illustrate two further points concerning
parallel transport. The first of these is that if the curve along which the vector
is transported is a geodesic, then the angle between the transported vector
and the tangent to the geodesic remains constant. This is clearly the case
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when the geodesic is a straight line in Euclidean space and we shall obtain it
as a general result for a manifold in the next section. The verification of this
result for the sphere is left as an exercise for the reader (see Exercise 2.2.3).

The second point concerns transporting a vector parallelly around a closed
curve that is “small.” If in the example above θ0 is small, then γ is a small
circle about the North Pole, ω ≡ cos θ0 ≈ 1 and the angle between the initial
direction and the final direction is approximately 2π, which amounts to a
negligible discrepancy between the initial and final vectors. This illustrates
the fact that, by sticking to a small portion of a curved surface, we tend
not to pick up its curvature by parallel transport around a closed curve.7

Locally the surface behaves much as if it were flat, and experimentation over
an extended region gives us a better chance of detecting curvature. The same
is true for manifolds in general.

The connection coefficients Γ a
bc are said to define a connection on the mani-

fold. The reason for this kind of terminology is because it provides us with a
connection between tangent spaces at different points of a manifold, enabling
us to associate a vector in the tangent space at one point with the vector
parallel to it at another point. For widely separated points, this association
depends on the path used to connect the points, but for neighboring points
(separated by small coordinate differences) the association is unique (up to
first order in the small coordinate differences), as we now go on to show.

Suppose that P with coordinates xa and Q with coordinates xa + δxa are
nearby points. Let γ be any parameterized curve through P and Q, with P
having parameter u and Q having parameter u + δu, and let λ̄a ≡ λa + δλa

be the vector at Q parallel to a given vector λa at P. Since the vector at Q
is obtained by the parallel transport of λa at P along the short piece of curve
from P to Q, we have that

δλa ≈ dλa

du
δu,

where (from equation (2.23)) dλa/du = −Γ a
bcλ

bdxc/du, which gives

λ̄a ≈ λa − Γ a
bcλ

b dxc

du
δu ≈ λa − Γ a

bcλ
bδxc. (2.27)

So to first order in δxa, we have a linear mapping from the the tangent space
TP to the tangent space TQ in which the vector at P with components λa is
mapped into the parallel vector at Q with components λ̄a = Aa

bλb, where

Aa
b ≡ δa

b − Γ a
bcδx

c. (2.28)

We shall make use of this mapping in the next section when defining absolute
and covariant differentiation.

In adopting equation (2.23) as the equation defining the parallel transport of
a contravariant vector along a curve in a manifold, we completely ignored the

7This is because it is a second-order effect. See Sec. 3.3.
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question of coordinate independence. If we were to use a primed coordinate
system and perform parallel transport by having λa′

satisfy

λ̇a′
+ Γ a′

b′c′λ
b′ ẋc′ = 0, (2.29)

where
Γ a′

b′c′ ≡ 1
2ga′d′

(∂b′gd′c′ + ∂c′gb′d′ − ∂d′gb′c′), (2.30)

would we get the same parallel field of vectors along the curve? We can answer
this question in an indirect sort of way by showing that (to first order in small
coordinate differences) the mapping from TP to TQ given by equation (2.27)
does not depend on the coordinate system used. Thus we need to show that
if

λ̄a′ ≡ λa′ − Γ a′

b′c′λ
b′δxc′ ,

then
λ̄a′

(Xe
a′)Q = λ̄e,

where (Xe
a′)Q denotes ∂xe/∂xa′

evaluated at Q. In terms of values at P, we
can say that (to first order)

(Xe
a′)Q = Xe

a′ + Xe
d′a′δxd′

,

where Xe
d′a′ = ∂2xe/∂xd′

∂xa′
, so we need to show that

(λa′ − Γ a′

b′c′λ
b′δxc′)(Xe

a′ + Xe
d′a′δxd′

) = λe − Γ e
fgλ

fδxg.

But λa′
Xe

a′ = λe, so (to first order) the above condition reduces to

Xe
d′a′λa′

δxd′ − Γ a′

b′c′X
e
a′λb′δxc′ = −Γ e

fgλ
fδxg,

which is equivalent to

(Γ a′

b′c′ − Γ d
fgX

a′

d Xf
b′X

g
c′ − Xd

c′b′X
a′

d )Xe
a′λb′δxc′ = 0, (2.31)

since Xf
b′λ

b′ = λf and (to first order) Xg
c′δx

c′ = δxg. Using the defining equa-
tions (2.13) and (2.30), we can show that the connection coefficients transform
according to

Γ a′

b′c′ = Γ d
fgX

a′

d Xf
b′X

g
c′ + Xd

c′b′X
a′

d (2.32)

(see Exercise 2.2.4), so condition (2.31) is satisfied and the coordinate inde-
pendence of parallel transport is established. (See Exercise 2.2.6 for a more
direct way of establishing this result.) Since we can express the definition of
a geodesic in terms of parallel transport, it follows that this definition is also
coordinate-independent.

We finish this section by establishing a few formulae involving the connection
coefficients Γ a

bc and the related quantities Γabc defined by
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Γabc ≡ 1
2 (∂bgac + ∂cgba − ∂agbc). (2.33)

The traditional names for Γabc and Γ a
bc are Christoffel symbols of the first and

second kinds, respectively, and the notation Γabc ≡ [bc, a], Γ a
bc ≡ { a

bc} is often
used, especially in older texts.

From equation (2.13) we see that

Γ a
bc = gadΓdbc (2.34)

and a short calculation shows that

Γabc = gadΓ
d
bc. (2.35)

Adding Γbac to Γabc gives

∂cgab = Γabc + Γbac, (2.36)

allowing us to express the partial derivatives of the metric tensor components
in terms of the connection coefficients. If we denote the value of the determi-
nant |gab| by g, then the cofactor of gab in this determinant is ggab. (Note that
g is not a scalar: changing coordinates changes the value of g at any point.) It
follows that ∂cg = (∂cgab)ggab, so from equations (2.36) and (2.34) we have

∂cg = ggab(Γabc + Γbac) = g(Γ b
bc + Γ a

ac) = 2gΓ a
ac.

So the contraction Γ a
ab of the connection coefficients is given by

Γ a
ab = 1

2g−1∂bg = 1
2∂b ln |g| , (2.37)

the modulus signs being needed as g is not necessarily positive in the indefinite
case. Alternative expressions are

Γ a
ab = ∂b ln |g|1/2 and Γ a

ab = |g|−1/2
∂b |g|1/2

. (2.38)

Exercises 2.2

1. Verify that the initial-value problem comprising the pair of equations
(2.24) with initial conditions (2.25) has a solution given by equations
(2.26).

2. For what circle(s) of latitude is the final direction of the transported vector
in Example 2.2.1 exactly opposite to that of the initial direction?
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3. Noting the result of Example 2.1.1, verify that for parallel transport along
a geodesic the angle between the transported vector of Example 2.2.1 and
the tangent to the geodesic is constant.

4. Verify that the connection coefficients transform according to equation
(2.32).

5. Show that an alternative form for the transformation formula (2.32) is

Γ a′

b′c′ = Γ d
efXa′

d Xe
b′X

f
c′ − Xe

b′X
f
c′X

a′

ef . (2.39)

6. By transforming the left-hand side of equation (2.23) to a primed coordi-
nate system, show that this defining equation for the parallel transport of
a contravariant vector along a curve is coordinate-independent.

2.3 Absolute and covariant differentiation

In this section, we turn our attention to the effect of differentiation on tensor
fields on a manifold M . Initially we shall consider fields defined along a curve,
rather than throughout a region U or throughout the whole manifold M . Here
we can regard the components of the field as functions of the parameter u used
to label points on the curve, and we can consider their derivatives with respect
to u. As we shall see, these derivatives are not the components of a tensor,
which may come as a surprise to those used to differentiating the velocity com-
ponents of a particle with respect to time t (which acts as a parameter along
the particle’s path) to obtain its acceleration. To make differentiation respect
the tensor character of fields it needs to be modified, which, for differentiation
along curves, leads to the idea of the absolute derivative. Having made this
modification for fields along curves, we shall then go on to consider tensor
fields defined throughout a region covered by a coordinate system, where the
components can be regarded as functions of the coordinates. For these there is
a corresponding modification of partial differentiation, called covariant differ-
entiation, which is defined so that it respects tensor character. Both absolute
and covariant differentiation depend on the notion of parallelism introduced in
the previous section. These ideas play a crucial role in the formulation of the
general theory of relativity and, because of this, this section and the following
one are particularly important.

Suppose that we have a vector field λa(u) defined along a curve γ given
parametrically by xa(u). As we remarked above, the N quantities dλa/du are
not the components of a vector. To see this we use another (primed) coordinate
system and look at the corresponding primed quantities dλa′

/du to see how
they are related to the unprimed quantities dλa/du. These primed quantities
are given by

dλa′
/du = d(Xa′

b λb)/du = Xa′

b (dλb/du) + Xa′

bc (dxc/du)λb, (2.40)
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and the term involving Xa′

bc ≡ ∂2xa′
/∂xb∂xc would be absent if the dλa/du

were the components of a vector. The reason for the presence of this term is
that in the defining equation

dλa

du
≡ lim

δu→0

λa(u + δu) − λa(u)
δu

, (2.41)

we take differences of components at different points of γ, and here is the origin
of our problem. Because in general the transformation coefficients depend on
position, we have (Xa′

b )u �= (Xa′

b )u+δu, which means that these differences in
components are not the components of a vector (at either of the points in
question). In the limit the difference between (Xa′

b )u and (Xa′

b )u+δu shows
up as Xa′

bc . For differentiation to yield a vector, we must take component
differences at the same point of γ, and we can do this by exploiting the notion
of parallelism introduced in the previous section.

Let P be the point on γ with parameter value u and Q be a neighboring
point with parameter value u+ δu. Then λa(u+ δu) is a vector at Q, as is the
vector λ̄a obtained by the parallel transport of λa(u) at P to Q. The difference
λa(u+δu)−λ̄a is then a vector at Q, and so is the quotient (λa(u+δu)−λ̄a)/δu.
It is the limit of this quotient (as δu → 0) that gives the absolute derivative
Dλa/du of λa(u) along γ. Now

λa(u + δu) ≈ λa(u) +
dλa

du
δu

and, from equation (2.27),

λ̄a ≈ λa(u) − Γ a
bcλ

b(u)δxc,

so
λa(u + δu) − λ̄a

δu
≈ dλa

du
+ Γ a

bcλ
b(u)

δxc

δu
.

As δu → 0, the point Q tends to P, and the limit of the quotient is

Dλa

du
≡ dλa

du
+ Γ a

bcλ
b dxc

du
, (2.42)

where all quantities are evaluated at the same point P of γ. Thus the absolute
derivative of a vector field λa along a curve γ (which is a vector field along
γ) involves not only the total derivative dλa/du (which is not a vector field
along γ), but also the connection coefficients Γ a

bc.
The claim that the absolute derivative is a vector field along γ is justified

by the way in which it is defined. It can also be justified by checking that
(

dλa′

du
+ Γ a′

b′c′λ
b′ dxc′

du

)
= Xa′

d

(
dλd

du
+ Γ d

efλe dxf

du

)
, (2.43)
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using the transformation equations (2.40) and (2.39) for dλa/du and Γ a
bc. Both

of these involve second derivatives of the form Xa′

bc , but in such a way that they
cancel when used to transform the quantities Dλa/du. (See Exercise 2.3.1.)

We now see that equation (2.23) for parallelly transporting a contravariant
vector along a curve can be written as Dλa/du = 0 and that λa(u) form a
parallel field of vectors along γ if, and only if, Dλa/du = 0. By extending the
definition of absolute differentiation to general tensor fields τa1...ar

b1...bs
(u) defined

along a curve γ, we can also extend the notion of parallel transport along γ
by requiring that Dτa1...ar

b1...bs
/du = 0.

There are two approaches which may be taken to defining the absolute
derivative of general tensor fields along a curve. One is to extend the notion
of parallelism between neighboring tangent spaces TP and TQ to one between
the space of type (r, s) tensors at P and the space of type (r, s) at Q, while
the other is to demand that the operation of absolute differentiation satisfies
certain reasonable conditions which allow us to extend the concept to general
tensor fields along curves. We shall take the latter course, and impose the
following conditions on the differential operator D/du applied to tensor fields
defined along a curve parameterized by u:

(a) When applied to a tensor field, D/du yields a tensor field of the same
type.

(b) D/du is a linear operation.
(c) D/du obeys Leibniz’ rule with respect to tensor products.
(d) For any scalar field φ, Dφ/du = dφ/du.

Condition (b) is a normal requirement of a differential operator and simply
means that we are allowed to say things like D(σab

c + τab
c )/du = Dσab

c /du +
Dτab

c /du, and D(kτa
bc)/du = k(Dτa

bc/du) for constant k, while condition (c)
allows us to say things like D(σa

b τ cd)/du = (Dσa
b /du)τ cd + σa

b (Dτ cd/du).
We now show how, by using conditions (a)–(d) and the expression already

obtained for a contravariant vector field, we can obtain expressions for the
absolute derivatives of tensor fields of any type. We shall do this in detail for
some simple fields of specific type, from which we shall be able to infer the
general pattern for a field of any type.

The absolute derivative of a scalar field
From condition (d) above, we have

Dφ/du ≡ dφ/du. (2.44)

The absolute derivative of a contravariant vector field
With the dot-notation for derivatives, equation (2.42) takes the form

Dλa/du ≡ λ̇a + Γ a
bcλ

bẋc. (2.45)
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The absolute derivative of a covariant vector field
If µa is a covariant vector field along a curve γ, then for any contravariant
vector field λa along γ, λaµa is a scalar field, so using equation (2.44) we have

d(λaµa)/du = D(λaµa)/du. (2.46)

Then using Leibniz’ rule (condition (c)) on the contracted tensor product we
get

dλa

du
µa + λa dµa

du
=

Dλa

du
µa + λa Dµa

du

= µa

(
dλa

du
+ Γ a

bcλ
b dxc

du

)
+ λa Dµa

du
,

which implies that

λa Dµa

du
= λa dµa

du
− Γ a

bcλ
b dxc

du
µa = λa

(
µ̇a − Γ d

acµdẋ
c
)
.

Since this holds for arbitrary vector fields λa, we deduce that

Dµa/du ≡ µ̇a − Γ d
acµdẋ

c, (2.47)

and in this way our conditions yield the absolute derivative of a covariant
vector field. (As we note below, when forming the absolute derivative of a
tensor field, a Γ term with a minus sign is included for each subscript. As a
reminder, we can extend our mnemonic to “co-below and minus.”)

The absolute derivative of a type (2,0) tensor field
As a guide to obtaining an expression for the absolute derivative of a type
(2, 0) tensor field, we consider the special case in which τab = λaµb, where λa,
µa are contravariant vector fields along the curve. Then using condition (c)
we have

Dτab/du = D(λaµb)/du = (Dλa/du)µb + λa(Dµb/du).

Inserting appropriate expressions for Dλa/du and Dµb/du, and recombining
λaµb as τab results in

Dτab/du ≡ τ̇ab + Γ a
cdτ

cbẋd + Γ b
cdτ

acẋd, (2.48)

which we take to be the formula for the absolute derivative of a type (2, 0)
tensor field.
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The absolute derivative of a type (0,2) tensor field
Similarly, by considering τab = λaµb, we can arrive at

Dτab/du ≡ τ̇ab − Γ c
adτcbẋ

d − Γ c
bdτacẋ

d (2.49)

as the formula for the absolute derivative of a type (0, 2) tensor field. (See
Exercise 2.3.2.)

The absolute derivative of a type (1,1) tensor field
Likewise, by considering τa

b = λaµb, we get

Dτa
b /du ≡ τ̇a

b + Γ a
cdτ

c
b ẋd − Γ c

bdτ
a
c ẋd (2.50)

for the absolute derivative of a type (1, 1) tensor field. (Again, see Exer-
cise 2.3.2.)

The pattern should now be clear. The absolute derivative of a type (r, s)
tensor field τa1...ar

b1...bs
along a curve γ is given by the sum of the total derivative

τ̇a1...ar

b1...bs
of its components, r terms of the form Γ ak

cd τ ...c...
... ẋd and s terms of the

form −Γ c
bkdτ

...
...c...ẋ

d. For example,

Dτab
c /du ≡ τ̇ab

c + Γ a
deτ

db
c ẋe + Γ b

deτ
ad
c ẋe − Γ d

ceτ
ab
d ẋe. (2.51)

As we remarked above, we can extend the notion of parallel transport to a
tensor of any type, simply by requiring that its absolute derivative along the
curve be zero. Again we emphasize that the parallel transport of tensors is in
general path-dependent. Scalar fields are, of course, excepted, since Dφ/du = 0
implies that dφ/du = 0, which in turn implies that φ is constant along the
curve.

We are now in a position to introduce the covariant derivative of a tensor
field, which is closely related to the absolute derivative. For absolute differ-
entiation, the tensor fields involved need only be defined along the curve in
question. The covariant derivative arises where we have a tensor field defined
throughout M (or throughout a region of M).

Suppose, for example, we have a contravariant vector field λa defined
throughout a region U . If γ is a curve in U , we can restrict λa to γ, and
define its absolute derivative:

Dλa/du ≡ λ̇a + Γ a
bcλ

bẋc. (2.52)

But λ̇a =
∂λa

∂xc
ẋc, so this may be written

Dλa

du
=
(

∂λa

∂xc
+ Γ a

bcλ
b

)
ẋc.
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The bracketed expression on the right of this last equation does not depend
on γ but only on the components λa and their derivatives at the point in
question, and the equation is true for arbitrary tangent vectors ẋa at the point
in question. The usual argument involving the quotient theorem entitles us to

deduce that
∂λa

∂xc
+Γ a

bcλ
b are the components of a type (1, 1) tensor field. This

tensor field is the covariant derivative of the vector field λa, and we denote it
by λa

;c.
It is convenient at this point to introduce some more notation. We have

already used ∂a as an abbreviation for ∂/∂xa and we shall continue to use it
when dealing with covariant derivatives. We shall also use a comma followed
by a subscript a written after the object on which it is acting to mean the
same thing. So the covariant derivative of λa may be written as

λa
;c = ∂cλ

a + Γ a
bcλ

b = λa
,c + Γ a

bcλ
b. (2.53)

This notation extends naturally to repeated derivatives. For example, we write
∂2λa/∂xb∂xc as ∂b∂cλ

a or as λa
,cb. In a similar way we shall use λa

;cb to denote
the repeated covariant derivative (λa

;c);b.
Returning now to covariant differentiation, we see that the argument above

may be applied to a type (r, s) tensor field so as to define its covariant deriva-
tive, and it is clear that the resulting tensor field is of type (r, s+1). It follows
that covariant differentiation satisfies conditions analogous to (a)–(d) stipu-
lated for absolute differentiation. Expressions for the covariant derivatives of
general lower-rank tensor fields are noted below.

Covariant derivatives of lower-rank tensor fields
For a scalar field φ, covariant differentiation is simply partial differentiation:

φ;a ≡ ∂aφ. (2.54)

For a contravariant vector field λa, we have

λa
;b ≡ ∂bλ

a + Γ a
cbλ

c. (2.55)

For a covariant vector field µa, we have

µa;c ≡ ∂cµa − Γ b
acµb. (2.56)

For a type (2, 0) tensor field τab, we have

τab
;c ≡ ∂cτ

ab + Γ a
dcτ

db + Γ b
dcτ

ad. (2.57)
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For a type (0, 2) tensor field τab, we have

τab;c ≡ ∂cτab − Γ d
acτdb − Γ d

bcτad. (2.58)

For a type (1, 1) tensor field τa
b , we have

τa
b;c ≡ ∂cτ

a
b + Γ a

dcτ
d
b − Γ d

bcτ
a
d . (2.59)

Again, the mnemonic “co-below and minus” is a useful reminder for the sign
of a Γ term.

The essential property common to both covariant and absolute differentia-
tion is that when the operation is applied to a tensor field it produces a tensor
field, while the operations of partial and total differentiation do not (i.e., the
partial derivatives and total derivatives of tensor components do not obey
transformation laws of the kind (1.73)). Another way in which the covariant
derivative differs from the partial derivative is that in repeated differentia-
tion the order matters. Thus for a vector field λa, we must acknowledge that
even if λa

,bc = λa
,cb holds, in general, λa

;bc �= λa
;cb. We shall have more to

say on this matter in the next chapter. We finish this section by considering
the derivatives of the metric tensor field and its associated fields, noting in
particular a special property that they possess.

Using equation (2.35) and the fact that Γ a
bc = Γ a

cb, we can rewrite equa-
tion (2.36) as

∂cgab − Γ d
cagdb − Γ d

cbgad = 0,

which shows that gab;c = 0. That is, the covariant derivative of the metric
tensor field is identically zero. The Kronecker tensor field with components
δa
b and the contravariant metric tensor field with components gab also have

covariant derivatives that are zero, as we now show. For the Kronecker tensor
field, we simply note that

δa
b;c = ∂cδ

a
b + Γ a

dcδ
d
b − Γ d

bcδ
a
d = 0 + Γ a

bc − Γ a
bc = 0,

while for the contravariant metric tensor field, we use the result just estab-
lished to argue that

0 = δa
b;c = (gadgdb);c

= gad
;cgdb + gadgdb;c (by Leibniz’ rule)

= gad
;cgdb (as gdb;c = 0).

Then contraction with gbe gives

0 = gad
;cδ

e
d = gae

;c,
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as claimed. Along any curve γ, where we can regard the components gab as
functions of the parameter u, we have that Dgab/du = gab;cẋ

c = 0, establish-
ing that the absolute derivative of the metric tensor field along γ is zero. We
can argue similarly that the absolute derivatives of the Kronecker tensor field
and the contravariant metric tensor field are also zero along any curve.

To sum up, we have shown that the metric tensor field gab, the Kronecker
tensor field with components δa

b and the contravariant metric tensor field gab

have covariant derivatives that are zero:

gab;c = 0, δa
b;c = 0, gab

;c = 0; (2.60)

and that along any curve γ their absolute derivatives are also zero:

Dgab/du = 0, Dδa
b /du = 0, Dgab/du = 0. (2.61)

These special properties of the metric tensor field and its associated fields
allow us to establish the important result that inner products are preserved
under parallel transport. What we mean by this is that if two vector fields λa,
µa are parallelly transported along a curve γ, then the inner product gabλ

aµb

is constant along γ. We prove this by noting that

d(gabλ
aµb)/du = D(gabλ

aµb)/du

= (Dgab/du)λaµb + gab(Dλa/du)µb + gabλ
a(Dµb/du)

= 0,

since Dλa/du = Dµb/du = 0 (because the vectors are parallelly transported)
and Dgab/du = 0 (established above). It follows that the length of a parallelly
transported vector is constant, and also that the angle between two parallelly
transported vectors is constant. Since the tangent vector to an affinely para-
meterized geodesic is parallelly transported along the geodesic, we can deduce
that if a vector is parallelly transported along a geodesic, then the angle be-
tween the transported vector and the tangent to the geodesic remains constant.
(See the remarks after Example 2.2.1 and Exercise 2.2.3.)

Having defined covariant differentiation, we can extend the familiar notion
of the divergence of a vector field in Euclidean space to vector and tensor fields
on a manifold. For a contravariant vector field λa we define its divergence
to be the scalar field λa

;a. This definition is reasonable, for in a Cartesian
coordinate system in Euclidean space gij = δij , so ∂kgij = 0 giving Γ i

jk = 0,
and λi

;i reduces to λi
,i. The divergence of a covariant vector field µa is defined

to be that of the associated contravariant vector field µa ≡ gabµb. For a type
(r, s) tensor field we may define (r + s) divergences,

τa1...c...ar

b1...bs ;c, (τa1...ar

b1...c...bs
gcd);d,
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although these will not be distinct if the tensor field possesses symmetries. We
can use this approach to calculate the divergence of a vector field in Euclidean
space using curvilinear coordinate systems, as in the following example.

Example 2.3.1
In spherical coordinates the position vector field is r = rer = re1 (on labeling
the coordinates according to u1 ≡ r, u2 ≡ θ, u3 ≡ φ), so its components are
ri = rδi

1. Its divergence can then be calculated by saying

∇ · r = ri
;i = ∂ir

i + Γ i
jir

j = ∂i(rδi
1) + Γ i

ji(rδ
j
1) = ∂r/∂r + rΓ i

1i

= 1 + 1
2rg−1∂1g (using equation (2.37))

= 1 + 1
2r(r4 sin2 θ)−1∂(r4 sin2 θ) /∂r (as g = det[gij ] = r4 sin2 θ)

= 1 + 2 = 3.

Exercises 2.3

1. Check formula (2.43).
(Most of the work was done in Exercise 2.2.6.)

2. Obtain formulae (2.49) and (2.50), using methods similar to that used in
deriving the result (2.48).

3. Show that equation (2.12) for an affinely parameterized geodesic can be
written as Dẋa/du = 0.

4. Prove that the length of the tangent vector ẋa to an affinely parameterized
geodesic is constant.

2.4 Geodesic coordinates

It can be seen from equation (2.13) that if we could introduce a coordinate sys-
tem throughout which the metric tensor components were constant, then the
connection coefficients would be zero, and the mathematics of parallel trans-
port, absolute differentiation, and covariant differentiation would be much
simpler. It is possible to introduce such a coordinate system in Euclidean
space, for example, by using Cartesian coordinates in which gij = δij , but
in a general curved manifold it is not. However, it is possible to introduce a
system of coordinates in which Γ a

bc = 0 at a given point O, and such systems
have their uses in simplifying some calculations involving the connection co-
efficients (see, e.g., Sec. 3.2 where the Bianchi identity is established). Such
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coordinates are generally referred to as geodesic coordinates with origin O,
but this is not always appropriate, as they need not be based on geodesics.

Suppose we start with some system of coordinates in which O has coor-
dinates xa

O. Let us define a new system of (primed) coordinates by means of
the equation

xa′ ≡ xa − xa
O + 1

2 (Γ a
bc)O(xb − xb

O)(xc − xc
O), (2.62)

where (Γ a
bc)O are the connection coefficients at O, as given in the original

(unprimed) coordinate system. Differentiation with respect to xd gives

Xa′

d = δa
d + 1

2 (Γ a
bc)Oδb

d(x
c − xc

O) + 1
2 (Γ a

bc)O(xb − xb
O)δc

d

= δa
d + (Γ a

dc)O(xc − xc
O),

so (Xa′

d )O = δa
d and det[Xa′

d ]O �= 0. This means that equation (2.62) defines
a new system of coordinates in some neighborhood U ′ of O, as claimed (see
Sec. 1.7). A second differentiation gives

Xa′

ed = (Γ a
dc)Oδc

e = (Γ a
de)O,

showing that (Xa′

ed)O = (Γ a
de)O. If we now use the transformation equation of

Exercise 2.2.5 (noting that (Xd
a′)O = δd

a as a consequence of (Xa′

d )O = δa
d ),

we get

(Γ a′

b′c′)O = (Γ d
ef )Oδa

dδe
bδ

f
c − δe

bδ
f
c (Γ a

fe)O = (Γ a
bc)O − (Γ a

bc)O = 0.

So in the new (primed) coordinate system the connection coefficients at O are
zero, and we have a system of geodesic coordinates with origin O.

Geodesic coordinates can be used to construct a system of local Carte-
sian coordinates about a point O. These are an approximation to Cartesian
coordinates, valid near O in a region of limited extent where the curvature
of the manifold can be neglected. To get at such a system, we make use of
a second coordinate transformation that brings the metric tensor at O to a
simple diagonal form, while keeping the connection coefficients at O zero. To
this end, we introduce a third (double-primed) system of coordinates about
O defined by

xa′′
= pa

bxb′ , (2.63)

where pa
b are constants such that the matrix P ≡ [pa

b ] is nonsingular. Differ-
entiation of equation (2.63) shows that

Xa′′

c′ = pa
bδb

c = pa
c ,

so that the matrix version of

(ga′′b′′)O = (gc′d′)O(Xc′

a′′)O(Xd′

b′′)O
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is
G′′

O = PTG′
OP.

This means that, in matrix terms, G′′
O is obtained from G′

O by a similarity
transformation using the matrix P (see, e.g., Birkhoff and Mac Lane, 1977,
§2–6). Matrix theory tells us that there exists a matrix P that brings G′′

O to
diagonal form in which each diagonal entry is either +1 or −1. If the metric
tensor is positive definite, then all these entries are +1, but if it is indefinite,
some will be +1 and others will be −1. In the latter case it is usual to use a
diagonalizing matrix P that gives a diagonal form for G′′

O with all the positive
entries preceding the negative ones, so that

[ga′′b′′ ]O = G′′
O = diag(1, . . . , 1,−1, . . . ,−1).

This second transformation has Xa′′

d′c′ = 0, so it follows from the equation
of Exercise 2.2.5 (adapted for primed and double-primed coordinates) that if
(Γ a′

b′c′)O = 0, then (Γ a′′

b′′c′′)O = 0, which is what we required of it. Note that
xa′

O = 0 (from equation (2.62)), so xa′′

O = 0 (from equation (2.63)), showing
that the point O is the “origin” of the double-primed coordinate system.

Dropping the double primes, we see that about O we have introduced a
system of coordinates in which

xa
O = 0, (Γ a

bc)O = 0,

and
[gab]O = diag(1, . . . , 1,−1, . . . ,−1)

(where the negative entries are absent in the positive definite case), so that

Γ a
bc ≈ 0, [gab] ≈ diag(1, . . . , 1,−1, . . . ,−1), (2.64)

in some neighborhood of O. These are local Cartesian coordinates, and the
extent of the region in which the approximation (2.64) is valid depends (in a
way to be made precise later) on the curvature of the manifold in the vicinity
of O.

The implication of this for general relativity is that about each point of
spacetime we can introduce a coordinate system in which

Γµ
νσ ≈ 0, gµν ≈ ηµν , (2.65)

where [ηµν ] = diag(1,−1,−1,−1), showing that locally the spacetime of gen-
eral relativity looks like that of special relativity. This observation is a key
factor in our discussion of the spacetime of general relativity in the next sec-
tion.

Exercise 2.4

1. Show that, as a result of the coordinate transformation leading to geodesic
coordinates (equation (2.62)), (ga′b′)O = (gab)O.
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2.5 The spacetime of general relativity

The spacetime of special relativity is discussed in Appendix A. In the language
of Section 1.9, it is a four-dimensional pseudo-Riemannian manifold with the
property that there exist global coordinate systems in which the metric tensor
takes the form

[ηµν ] ≡





1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1





and we call such coordinate systems Cartesian. As explained in Section 1.2,
we use xµ to label points in spacetime, where the Greek suffixes, µ, ν, etc.,
have the range 0, 1, 2, 3, there being a certain convenience in counting from
zero rather than one. As is customary in relativity we shall frequently refer
to a point in spacetime as an event. Cartesian coordinates are related to the
more familiar coordinates, t, x, y, z of special relativity by x0 ≡ ct, x1 ≡ x,
x2 ≡ y, x3 ≡ z, c being the speed of light. We may, of course, use non-
Cartesian coordinates, where the metric tensor gµν �= ηµν but the essential
feature of the spacetime of special relativity is that we may always introduce
a Cartesian coordinate system about any point, so that gµν = ηµν , and this
coordinate system is global in the sense that it covers the whole of spacetime.

One of our guiding requirements for the spacetime of general relativity
is that locally it should be like the spacetime of special relativity. We there-
fore assume that it is a four-dimensional pseudo-Riemannian manifold with
the property that about any point there exists a system of local Cartesian
coordinates in which the metric tensor field gµν is approximately ηµν . Note
that we do not assert the existence of coordinate systems in which gµν = ηµν

exactly, and this is the essential difference between the spacetimes of general
and special relativity.

As explained in the previous section, we can construct a coordinate system
about any point P of general-relativistic spacetime in which (Γµ

νσ)P = 0, and
(xµ)P = (0, 0, 0, 0). This means that (∂σgµν)P = 0, and so for points near to
P , where the coordinates xµ are small, Taylor’s theorem gives

gµν ≈ ηµν + 1
2 (∂α∂βgµν)P xαxβ , (2.66)

and this approximation is valid for small xµ.
If we are sufficiently close to P for the second term on the right of equa-

tion (2.66) to be neglected, we have a coordinate system in which gµν = ηµν

approximately, and the extent of the region in which this approximation is
valid will depend on the sizes of the second derivatives (∂α∂βgµν)P , and also
on the accuracy of our measuring procedures. It should be stressed that in spe-
cial relativity we have global Cartesian coordinate systems, where gµν = ηµν

exactly, whereas in general relativity we have only local Cartesian coordinate
systems of limited extent, where gµν = ηµν approximately. We distinguish the
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two by saying that the spacetime of special relativity is flat, while that of gen-
eral relativity is curved. The above discussion shows that the departure from
flatness is connected with the nonvanishing of the second derivatives ∂α∂βgµν ,
and we shall see the significance of this in Chapter 3, when we give a more
formal definition of flatness in terms of the curvature tensor.

The purpose of the above discussion was to show, by introducing local
Cartesian coordinates, the sense in which the spacetime of general relativity is
locally like that of special relativity. However, it is not sensible to work in terms
of local Cartesian coordinates as these involve approximations which amount
to neglecting gravity, nor is it often convenient, since more suitable coordinates
may be defined in a natural way. We therefore use general coordinates, and
formulate things in ways which are valid in any coordinate system.

Another feature of the above discussion is that it gives us a means of
generalizing to general relativity results which are valid in special relativity.
For example, it is shown in Appendix A that in a Cartesian coordinate system
of special-relativistic spacetime, Maxwell’s equations may be written in the
form

Fµν
,ν = µ0j

µ,

Fµν,σ + Fνσ,µ + Fσµ,ν = 0.
(2.67)

where a comma denotes partial differentiation. We may adopt

Fµν
;ν = µ0j

µ,

Fµν;σ + Fνσ;µ + Fσµ;ν = 0.
(2.68)

where a semicolon now denotes covariant differentiation, as the general-
relativistic version of these, for in a local Cartesian coordinate system (where
gµν = ηµν approximately, and we can neglect Γµ

νσ) equations (2.68) reduce to
equations (2.67). There are really two points to note here. The first is that if
any physical quantity can be defined as a Cartesian tensor in special relativity,
then we can give its definition in general relativity by defining it in exactly
the same way in a local Cartesian coordinate system; its components in any
other coordinate system are then given by the usual transformation formulae
(1.73). Given this first point, the second is that any Cartesian tensor equation
valid in special relativity may be converted to an equation valid in general
relativity in any coordinate system, simply by replacing partial differentiation
with respect to coordinates by covariant differentiation, total derivatives along
curves by absolute derivatives, and ηµν by gµν . (Compare remarks made in
the Introduction.)

As an example of this, consider the path of a particle (with mass) in special
relativity. Its world velocity is uµ ≡ dxµ/dτ (see Sec. A.5), where the proper
time τ for the particle is defined by (see Sec. A.0)

c2dτ2 ≡ ηµνdxµdxν .

Its equation of motion is then (equation (A.29))
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dpµ/dτ = fµ,

where pµ ≡ muµ, m being the proper mass of the particle and fµ the 4-
force acting on it. The generalization of these ideas to general relativity gives
uµ ≡ dxµ/dτ as the definition of the world velocity of the particle, where now
the proper time τ is defined by

c2dτ2 ≡ gµνdxµdxν (2.69)

and
Dpµ/dτ = fµ, (2.70)

as the equation of motion, where pµ ≡ muµ, and the definitions of m and
fµ are taken over from special relativity as explained above. Moreover, these
equations are valid in any coordinate system.

As in special relativity we assume that a clock measures its own proper
time. In particular, if the particle is a pulsating atom, the proper time interval
between events on the atom’s path where successive pulses occur is constant.

In the case of a free particle for which fµ = 0, equation (2.70) reduces to
D(dxµ/dτ)/dτ = 0, or

d2xµ

dτ2
+ Γµ

νσ

dxσ

dτ

dxν

dτ
= 0. (2.71)

This reinforces our assertion that the path of a free particle is a geodesic in
spacetime, and establishes that the proper time experienced by the particle is
an affine parameter along it. This result is often stated as an explicit postulate
of general relativity (the geodesic postulate), but it emerges here as a natural
consequence of the way in which we generalize special-relativistic concepts.
It is a perfectly natural generalization, for the path of a free particle in the
flat spacetime of special relativity is a straight line and this generalizes to a
geodesic in curved spacetime.

The path of a photon (or any other zero-rest-mass particle) in the space-
time of special relativity is also a straight line, and this also generalizes to
a geodesic in curved spacetime. However, there is no change in proper time
along the path of a photon, so τ cannot be used as a parameter. But we can
still use an affine parameter u so that the analog of equation (2.71) for a
photon is

d2xµ

du2
+ Γµ

νσ

dxσ

du

dxν

du
= 0. (2.72)

The fact that the photon’s speed is c finds expression as

gµν
dxµ

du

dxν

du
= 0, (2.73)



2.5 The spacetime of general relativity 85

which generalizes the relation ηµν
dxµ

du

dxν

du
= 0 (equivalent to c2dt2 − dx2 −

dy2 − dz2 = 0) of special relativity.
We have already remarked on the characterization of a vector λµ as






timelike
null
spacelike

if gµνλµλν






> 0
= 0
< 0

(see Sec. 1.9). One should note that at any point of spacetime the null cone
of vectors given by gµνλµλν = 0 lies in the tangent space at that point and
not in the manifold. This fact is not readily appreciated in the flat spacetime
of special relativity, because its basic linear structure allows one to regard the
tangent space at each point as being embedded in the spacetime.

At any point on the path of a particle (with mass) its world velocity is
a tangent vector to the path, and equation (2.69) tells us that this tangent
vector is timelike. So a particle with mass follows a timelike path through
spacetime, and in particular a free particle follows a timelike geodesic. A
photon, however, follows a null geodesic, as equation (2.73) tells us that the
tangent vectors to its path are null. Spacelike paths and spacelike geodesics
may also be defined, but these have no physical significance.8

In moving from the flat spacetime of special relativity to the curved space-
time of general relativity we hope somehow to incorporate the effects of grav-
ity, and the point of view we are adopting is that gravity is not a force,
and that gravitational effects may be explained in terms of the curvature of
spacetime. It should therefore be understood that by free particles we mean
particles moving under gravity alone. Comparing equation (2.71) with its
special-relativistic analog d2xµ/dτ2 = 0 indicates that the connection coeffi-
cients play an important role in explaining gravitational effects. Since these
are given by derivatives of the metric tensor field, we see that it is this tensor
field which, in a sense, carries the gravitational content of spacetime. For the
moment we shall take the metric tensor field as given, and postpone until
Chapter 3 the question of how it is determined by the distribution of matter
and energy in spacetime. In the rest of this chapter we take a closer look
at equations (2.70) and (2.71), and relate them to some familiar Newtonian
ideas.

Exercises 2.5

1. Is the world velocity of a stationary chair (in the lab) timelike or spacelike?
Is its world line a geodesic?

2. Deduce the geodesic equation (2.71) from equation (2.70).

8Unless one believes in tachyons.
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2.6 Newton’s laws of motion

Newton’s first law that “every body perseveres in its state of rest, or of uni-
form motion in a right [straight] line, unless it is compelled to change that
state by forces impressed thereon” clearly has its counterpart in the statement
that “every particle follows a geodesic in spacetime.”9 Indeed, in a local iner-
tial coordinate system where we may neglect the Γµ

νσ, the geodesic equation
reduces to d2xµ/dτ2 = 0. For nonrelativistic speeds dτ/dt is approximately
one, so the geodesic equation yields d2xi/dt2 = 0 (i = 1, 2, 3), the familiar
Newtonian equation of motion of a free particle. Newton’s second law that

Newton Einstein

Free particles move in Free particles follow
straight lines through space. geodesics through spacetime.

F = m
d2x

dt2
fµ = m

(
d2xµ

dτ2
+ Γ µ

νσ
dxν

dτ

dxσ

dτ

)

To every action there The third law is true for non-
is always opposed an gravitational forces, just
equal reaction. as in Newtonian physics (but see

text for gravitational interaction).

Table 2.1. Newton’s laws and their relativistic counterparts.

“the alteration of motion is ever proportional to the motive force impressed;
and is made in the right line in which that force is impressed” is usually
rendered as the 3-vector equation

dp/dt = F,

where p is the momentum and F the applied force. This clearly has its coun-
terpart in equation (2.70).

Newton’s third law that “to every action there is always opposed an equal
reaction: or the mutual actions of two bodies upon each other are always equal,
and directed to contrary parts” is true in general relativity also. However,
we must be careful, because Newton’s gravitational force is now replaced by
Einstein’s idea that a massive body causes curvature of the spacetime around
it, and a free particle responds by moving along a geodesic in that spacetime.
It should be noted that this viewpoint ignores any curvature produced by the
particle following the geodesic. That is, the particle is a test particle, and there

9The versions of Newton’s laws quoted here are from Andrew Motte’s translation
(London, 1729) of Newton’s Principia.
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is no question of its having any effect on the body producing the gravitational
field.

The gravitational interaction of two large bodies is not directly addressed
by Einstein’s theory, although it is of importance in astronomy, as for example
in the famous pair of orbiting neutron stars PSR 1913+16. Approximation
methods for such cases were studied in the 1980s,10 but are beyond the scope
of our book.

2.7 Gravitational potential and the geodesic

Suppose we have a coordinate system in which the metric tensor field is given
by

gµν ≡ ηµν + hµν , (2.74)

where the hµν are small, but not so small that they may be neglected. Our
aim in this section is to obtain a Newtonian approximation to the geodesic
equation given by the metric tensor field (2.74) valid for a particle whose
velocity components dxi/dt (i = 1, 2, 3) are small compared with c. We shall
assume that the gravitational field, as expressed by hµν , is quasi-static in the
sense that ∂0hµν ≡ c−1∂hµν/∂t is negligible when compared with ∂ihµν .

If instead of the proper time τ we use the coordinate time t (defined by
x0 ≡ ct) as a parameter, then the geodesic equation giving the path of a free
particle has the form

d2xµ

dt2
+ Γµ

νσ

dxν

dt

dxσ

dt
= h(t)

dxµ

dt
, (2.75)

where

h(t) ≡ − d2t

dτ2

(
dt

dτ

)−2

=
d2τ

dt2

(
dτ

dt

)−1

. (2.76)

This can be deduced by an argument like that used in Exercise 2.1.1 and by

noting that
d

dτ

(
dt

dτ

)
=

dt

dτ

d

dt

(
dτ

dt

)−1

. On dividing by c2, the spatial part

of equation (2.75) may be written

1
c2

d2xi

dt2
+ Γ i

00 + 2Γ i
0j

(
1
c

dxj

dt

)
+ Γ i

jk

(
1
c

dxj

dt

)(
1
c

dxk

dt

)
=

1
c
h(t)

(
1
c

dxi

dt

)
,

(2.77)
and the last term on the left is clearly negligible.

If we put hµν ≡ ηµσηνρhσρ, then a short calculation shows that, to first
order in the small quantities hµν and hµν ,

gµν = ηµν − hµν and Γµ
νσ = 1

2ηµρ(∂νhσρ + ∂σhνρ − ∂ρhνσ). (2.78)

10See Damour and Deruelle, 1986.
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So to first order,

Γ i
00 = 1

2ηiρ(∂0h0ρ + ∂0h0ρ − ∂ρh00)

= − 1
2ηij∂jh00 = 1

2δij∂jh00,

on neglecting ∂0hµν in comparison with ∂ihµν . Also to first order,

Γ i
0j = 1

2ηiρ(∂0hjρ + ∂jh0ρ − ∂ρh0j)

= − 1
2δik(∂jh0k − ∂kh0j),

again on neglecting ∂0hµν .
We have now approximated all the terms on the left-hand side of equa-

tion (2.77), and there remains the right-hand side to deal with. Working to the
same level of approximation as above, and neglecting squares and products of
c−1dxi/dt, we find from

(
dτ

dt

)2

=
1
c2

gµν
dxµ

dt

dxν

dt

that
dτ/dt = (1 + h00)1/2 = 1 + 1

2h00, (2.79)

so
d2τ/dt2 = 1

2ch00,0

and
1
c
h(t) = 1

2h00,0(1 − 1
2h00) = 1

2h00,0

from equation (2.76).
It follows that the right-hand side of equation (2.77) is negligible, and our

approximation gives

1
c2

d2xi

dt2
+ 1

2δij∂jh00 − δik(∂jh0k − ∂kh0j)
1
c

dxj

dt
= 0.

Introducing the mass m of the particle and rearranging gives

m
d2xi

dt2
= −mδij∂j( 1

2c2h00) + mcδik(∂jh0k − ∂kh0j)
dxj

dt
. (2.80)

Let us now interpret this in Newtonian terms. The left-hand side is mass ×
acceleration, so the right-hand side is the “gravitational force” on the particle.
The first term on the right is the force −m∇V arising from a potential V given
by V ≡ 1

2c2h00, while the second term on the right is velocity-dependent and
clearly smacks of rotation.11 This is not surprising, for the principle of equiv-
alence asserts that the forces of acceleration, such as the velocity-dependent

11Most authors assume that the derivatives ∂ihµν are small along with the hµν ,
and therefore do not obtain these velocity-dependent rotational terms. However, the
fact that the hµν are small does not mean that their derivatives are also small (see
Sec. 2.9).
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Coriolis force12 which would arise from using a rotating reference system, are
on the same footing as gravitational forces. If we agree to call a nearly inertial
coordinate system in which ∂jh0k−∂kh0j is zero nonrotating, then we have for
a slowly moving particle in a nearly inertial, nonrotating, coordinate system,
in which the quasi-static condition holds, the approximation

d2xi/dt2 = −δij∂jV, (2.81)

where
V ≡ 1

2c2h00 + const. (2.82)

This is the Newtonian equation of motion for a particle moving in a gravita-
tional field of potential V , provided we make the identification (2.82). This
gives

g00 = 2V/c2 + const,

and if we choose the constant to be 1, then g00 reduces to its flat spacetime
value when V = 0. This gives

g00 = 1 + 2V/c2 (2.83)

as the relation between g00 and the Newtonian potential V in this approxi-
mation.

Exercises 2.7

1. Check approximations (2.78) and (2.79).

2. Show that equation (2.81) is equivalent to ma = F = −m∇V , where a is
the acceleration and F is the force on the particle.

2.8 Newton’s law of universal gravitation

Newton’s law of universal gravitation does not survive intact in general relativ-
ity, which is after all a new theory replacing the Newtonian theory. However,
we should be able to recover it as an approximation.

The Schwarzschild solution is an exact solution of the field equations of
general relativity, and it may be identified as representing the field produced
by a massive body. This solution is derived in the next chapter (see Sec. 3.7),
and its line element is

c2dτ2 = (1 − 2GM/rc2)c2dt2 − (1 − 2GM/rc2)−1dr2 − r2dθ2 − r2 sin2 θ dφ2,

12See, for example, Goldstein, Poole, and Safko, 2002, §4–10.
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where M is the mass of the body and G the gravitational constant. For small
values of GM/rc2 this is close to the line element of flat spacetime in spherical
coordinates, and r then behaves like radial distance. If we were to put

x0 ≡ ct, x1 ≡ r sin θ cos φ, x2 ≡ r sin θ sin φ, x3 ≡ r cos θ,

we would obtain a line element whose metric tensor had the form gµν =
ηµν + hµν , where, for large values of rc2/GM , the hµν are small and g00 =
1 − 2GM/rc2. This gives h00 = −2GM/rc2, and according to the results of
the last section, a Newtonian potential V = −GM/r. The 3-vector form of
equation (2.81) gives

md2r/dt2 = −m∇V = −GMmr−2r̂,

where r ≡ (x1, x2, x3), m is the mass of the test particle, and r̂ is a unit
vector in the direction of r. The “force” on the test particle is in agreement
with that given by Newton’s law, and in this way the law is recovered as an
approximation valid for large values of rc2/GM and slowly moving particles.

2.9 A rotating reference system

The principle of equivalence (see the Introduction) implies that the “fictitious”
forces of accelerating coordinate systems are essentially in the same category
as the “real” forces of gravity. Put another way, if the geodesic equation
contains gravity in the Γµ

νσ it must also contain any accelerations which may
have been built in by choice of coordinate system. In a curved spacetime it
is not always easy, and often impossible, to sort these forces out, but in flat
spacetime we have only the fictitious forces of acceleration and these should be
included in the Γµ

νσ. As an example of this, let us consider a rotating reference
system in flat spacetime.

Starting with a nonrotating system K with coordinates (T,X, Y, Z) and
line element

c2dτ2 = c2dT 2 − dX2 − dY 2 − dZ2, (2.84)

let us define new coordinates (t, x, y, z) by (see Fig. 2.6)

T ≡ t,

X ≡ x cos ωt − y sin ωt,

Y ≡ x sin ωt + y cos ωt,

Z ≡ z.

(2.85)

Note that at this point we are only defining a change of coordinates and we
are not too concerned (yet) about their physical meanings. Points given by
x, y, z constant rotate with angular speed ω about the Z axis of K, and this
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Fig. 2.6. Coordinate system K′(t, x, y, z) rotating relative to the coordinate system
K(T, X, Y, Z).

defines the rotating system K ′ (see Fig. 2.6). In terms of the new coordinates
the line element is

c2dτ2 = [c2−ω2(x2 +y2)]dt2 +2ωy dx dt−2ωx dy dt−dx2−dy2−dz2, (2.86)

and the geodesic equations are

ẗ = 0,

ẍ − ω2xṫ2 − 2ωẏṫ = 0,

ÿ − ω2yṫ2 + 2ωẋṫ = 0,

z̈ = 0.

(2.87)

where dots denote differentiation with respect to proper time (see Exercises
2.9.1 and 2.9.2). These constitute the equation of motion of a free particle
(with mass).

The first of equations (2.87) implies that dt/dτ is constant, so the remain-
ing equations may be written as

d2x/dt2 − ω2x − 2ω dy/dt = 0,

d2y/dt2 − ω2y + 2ω dx/dt = 0,

d2z/dt2 = 0.

Introducing the mass m of the particle and rearranging gives

md2x/dt2 = mω2x + 2mω dy/dt,

md2y/dt2 = mω2y − 2mω dx/dt,

md2z/dt2 = 0.

(2.88)
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or, in 3-vector notation,

md2r/dt2 = −mω × (ω × r) − 2mω × (dr/dt), (2.89)

where r ≡ (x, y, z) and ω ≡ (0, 0, ω).
An observer using t for time would interpret the left-hand side of equa-

tion (2.89) as mass × acceleration, and would therefore assert the existence
of a “gravitational force” as given by the right-hand side. This “force” is,
of course, the sum of the centrifugal force −mω × (ω × r) and the Coriolis
force −2mω × (dr/dt), and this would seem to bear out our assertion that
the geodesic equation does indeed include the forces of acceleration in the
Γµ

νσ. However, such an observer would be using the time associated with the
nonrotating system K, because t ≡ T and T is the time measured by clocks
at rest in K. It is possible to define a time for K ′ based on a system of clocks
at rest in K ′, but we shall not follow that course, as it would involve replacing
equations (2.88) and (2.89) by more complicated ones that tend to conceal
the Coriolis and centrifugal forces. Note that t is exactly the proper time for
an observer situated at the common origin O of the two systems, so observers
close to O who are at rest in the rotating system would accept equations
(2.88) and (2.89) as approximately valid and recognize the terms on the right
as forces of acceleration.

We can relate the situation described above to the approximation methods
of Section 2.7 by putting x0 ≡ ct, x1 ≡ x, x2 ≡ y, x3 ≡ z, and noting that
the line element (2.86) then gives gµν = ηµν + hµν , where

[hµν ] ≡





−ω2(x2 + y2)/c2 ωy/c −ωx/c 0
ωy/c 0 0 0
−ωx/c 0 0 0

0 0 0 0



 .

The hµν are small, provided we restrict ourselves to the region near the z
axis where ω2(x2 + y2)/c2 is small. Moreover, ∂0hµν = 0, so the quasi-static
condition is fulfilled. However, our system is rotating, so we must use the
approximation (2.80) rather than (2.81). We see that

1
2c2h00 = − 1

2ω2(x2 + y2),

and a straightforward calculation (see Exercise 2.9.4) gives

[Ai
j ] ≡




0 2ω 0

−2ω 0 0
0 0 0



 , (2.90)

where Ai
j ≡ cδik(∂jh0k − ∂kh0j). Hence the approximation (2.80) gives

md2x/dt2 = mω2x + 2mω dy/dt,

md2y/dt2 = mω2y − 2mω dx/dt,

md2z/dt2 = 0.
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These equations are identical with equations (2.88), and may be rearranged
to exhibit the centrifugal and Coriolis forces, as before.

Exercises 2.9

1. Check the form of the line element (2.86) and verify that

[gµν ] = c−2





c2 ωyc −ωxc 0
ωyc ω2y2 − c2 −ω2xy 0
−ωxc −ω2xy ω2x2 − c2 0

0 0 0 −c2



 .

.

2. Obtain the geodesic equations (2.87) in three different ways:
(a) By using the Euler–Lagrange equations (and [gµν ] from Exercise 1).
(b) By extracting [gµν ] from the line element (2.86), and then calculating

the Γµ
νσ (again using [gµν ] from Exercise 1).

(c) By substituting for T , X, Y , Z in T̈ = Ẍ = Ÿ = Z̈ = 0, using
equations (2.85).

3. Cylindrical coordinates (ρ, φ, z) may be introduced into the rotating sys-
tem K ′ by putting x ≡ ρ cos φ, y ≡ ρ sin φ. Show that in terms of these
the geodesic equations are

ẗ = 0,

ρ̈ − ρω2ṫ2 − ρφ̇2 − 2ωρφ̇ṫ = 0,

φ̈ + 2ρ−1ρ̇φ̇ + 2ωρ−1ρ̇ṫ = 0,

z̈ = 0,

so that corresponding to equations (2.88) one has

m

[
d2ρ

dt2
− ρ

(
dφ

dt

)2
]

= mρω2 + 2mωρ
dφ

dt
,

m

(
ρ
d2φ

dt2
+ 2

dρ

dt

dφ

dt

)
= −2mω

dρ

dt
,

m
d2z

dt2
= 0.

Interpret these in terms of the radial, transverse, and axial components
of acceleration, centrifugal, and Coriolis forces.

4. Check that the matrix [Ai
j ] is as given by equation (2.90), and that the

approximation (2.80) does give equations (2.88).
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Problems 2

1. Obtain the geodesic equations (using arc-length s as a parameter) for the
hyperbolic paraboloid of Example 1.6.1.

Deduce that all parametric curves are geodesics.

2. Using polar coordinates ρ ≡ u1, φ ≡ u2, obtain the geodesic equations for
the plane and verify that the ray φ = φ0 (φ0 = constant) is a geodesic.
Use the equations of parallel transport to show that if λA is parallelly
transported along this ray from its initial value λA

0 at (ρ0, φ0), then

λ1 = λ1
0, λ2 = (ρ0/ρ)λ2

0.

Verify that its length is constant and that it makes a constant angle with
the ray.

3. If in spherical coordinates we set θ = θ0, where θ0 is a constant between
0 and π/2, we get a cone, and the remaining coordinates (r, φ) act as
parameters on the cone. Show that the line element of the cone is

ds2 = dr2 + ω2r2dφ2,

where ω ≡ sin θ0, and that the Euler–Lagrange equations for geodesics on
the cone yield

r̈ − ω2rφ̇2 = 0, φ̇ = k/r2,

where k is constant. By eliminating the parameter, show that the geodesics
satisfy

d

dφ

(
1
r2

dr

dφ

)
=

ω2

r
.

Use the substitution u = 1/r to solve this equation and hence show that
the geodesics are given by 1 = Ar cos(ωφ) + Br sin(ωφ), where A and B
are constants of integration.

Use this result to show that (as intuition suggests) if the cone is cut along
a generator and flattened to lie in a plane, then the geodesics are straight
lines on the resulting flat surface.

4. The curl of a covariant field λa is the skew-symmetric tensor field Aab

defined by
Aab ≡ λa;b − λb;a.

Show that Aab = λa,b − λb,a.

5. If Aab is a skew-symmetric type (0, 2) tensor field, prove that

Babc ≡ Aab,c + Abc,a + Aca,b

are the components of a type (0, 3) tensor field.

(Hint: Put Aab,c = Aab;c + Γ d
acAdb + Γ d

bcAad.)
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6. Show that when spherical coordinates are used the line element of flat
spacetime is

c2dτ2 = c2dt2 − dr2 − r2dθ2 − r2 sin2 θ dφ2.

7. The line element of a static spherically symmetric spacetime is

c2dτ2 = A(r)dt2 − B(r)dr2 − r2dθ2 − r2 sin2 θ dφ2.

Use the Euler–Lagrange equations to obtain the geodesic equations, and
hence show that the only nonvanishing connection coefficients are:

Γ 0
01 = A′/2A, Γ 1

00 = A′/2B, Γ 1
11 = B′/2B,

Γ 1
22 = −r/B, Γ 1

33 = −(r sin2 θ)/B, Γ 2
12 = 1/r,

Γ 2
33 = − sin θ cos θ, Γ 3

13 = 1/r, Γ 3
23 = cot θ,

where primes denote derivatives with respect to r, and

x0 ≡ t, x1 ≡ r, x2 ≡ θ, x3 ≡ φ.

8. One can conceive of an observer in a swivel chair located above the Sun,
looking down on the plane of the Earth’s orbit. If the chair rotates at
the rate of one revolution a year, then to the observer the Earth appears
stationary. If for some reason all heavenly bodies other than the Earth
and the Sun are invisible, how does the observer explain why the Earth
does not collapse in towards the Sun, there being no detectable orbit?


