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1. Mathematical Principles of Modern Natural
Philosophy

The book of nature is written in the language of mathematics.
Galileo Galilei (1564–1642)

At the beginning of the seventeenth century, two great philosophers, Fran-
cis Bacon (1561–1626) in England and René Descartes (1596–1650) in
France, proclaimed the birth of modern science. Each of them described
his vision of the future. Their visions were very different. Bacon said, “All
depends on keeping the eye steadily fixed on the facts of nature.” Descartes
said, “I think, therefore I am.” According to Bacon, scientists should travel
over the earth collecting facts, until the accumulated facts reveal how Na-
ture works. The scientists will then induce from the facts the laws that
Nature obeys. According to Descartes, scientists should stay at home and
deduce the laws of Nature by pure thought. In order to deduce the laws
correctly, the scientists will need only the rules of logic and knowledge of
the existence of God. For four hundred years since Bacon and Descartes led
the way, science has raced ahead by following both paths simultaneously.
Neither Baconian empiricism nor Cartesian dogmatism has the power to
elucidate Nature’s secrets by itself, but both together have been amaz-
ingly successful. For four hundred years English scientists have tended to
be Baconian and French scientists Cartesian.
Faraday (1791–1867) and Darwin (1809–1882) and Rutherford (1871–
1937) were Baconians; Pascal (1623–1662) and Laplace (1749–1827) and
Poincaré (1854–1912) were Cartesians. Science was greatly enriched by the
cross-fertilization of the two contrasting national cultures. Both cultures
were always at work in both countries. Newton (1643–1727) was at heart
a Cartesian, using pure thought as Descartes intended, and using it to
demolish the Cartesian dogma of vortices. Marie Curie (1867–1934) was
at heart a Baconian, boiling tons of crude uranium ore to demolish the
dogma of the indestructibility of atoms.1

Freeman Dyson, 2004

It is important for him who wants to discover not to confine himself to a
chapter of science, but keep in touch with various others.2

Jacques Hadamard (1865–1963)

1 From Dyson’s foreword to the book by P. Odifreddi, The Mathematical Century:
The 30 Greatest Problems of the Last 100 Years, Princeton University Press,
2004. Reprinted by permission of Princeton University Press.

2 J. Hadamard, The Psychology of Invention, Princeton University Press, 1945.
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Mathematics takes us still further from what is human, into the region of
absolute necessity, to which not only the actual world, but every possible
world must conform.3

Bertrand Russel (1872–1972)

1.1 Basic Principles

There exist the following fundamental principles for the mathematical de-
scription of physical phenomena in nature.

(I) The infinitesimal principle due to Newton and Leibniz: The laws of nature
become simple on an infinitesimal level of space and time.4

(II) The optimality principle (or the principle of least action): Physical pro-
cesses proceed in such an optimal way that the action is minimal (or at
least critical). Such processes are governed by ordinary or partial differ-
ential equations called the Euler–Lagrange equations.

(III) Emmy Noether’s symmetry principle: Symmetries of the action func-
tional imply conservation laws for the corresponding Euler–Lagrange
equations (e.g., conservation of energy).

(IV) The gauge principle and Levi-Civita’s parallel transport: The funda-
mental forces in nature (gravitational, eletromagnetic, strong, and weak
interaction) are based on the symmetry of the action functional un-
der local gauge transformations. The corresponding parallel transport
of physical information generates the intrinsic Gauss–Riemann–Cartan–
Ehresmann curvature which, roughly speaking, corresponds to the acting
force (also called interaction). Briefly: force = curvature.

(V) Planck’s quantization principle: Nature jumps.
(VI) Einstein’s principle of special relativity: Physics does not depend on the

choice of the inertial system.
(VII) Einstein’s principle of general relativity: Physics does not depend on

the choice of the local space-time coordinates of an observer.
(VIII) Dirac’s unitarity principle: Quantum physics does not depend on the

choice of the measurement device (i.e., on the choice of an orthonormal
basis in the relevant Hilbert space). This corresponds to the invariance
under unitary transformations.5

3 The Earl of Russel was awarded the Nobel prize in literature in 1950. He worked
in philosophy, mathematical logic, social sciences, and politics.

4 I. Newton, Philosophiae naturalis principia mathematica (Mathematical princi-
ples of natural philosophy) (in Latin), 1687. Translated into English by A. Motte,
in 1729, edited by F. Cajori, University of California Press, Berkeley, California,
1946. See also S. Chandrasekhar, Newton’s Principia for the Common Reader,
Oxford University Press, Oxford, 1997.

5 Newton (1643–1727), Leibniz (1646–1716), Euler (1707–1783), Lagrange (1736–
1813), Laplace (1749–1828), Legendre (1752–1833), Fourier (1768–1830), Gauss
(1777–1855), Poisson (1781–1840), Faraday (1791–1867), Green (1793–1841),
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Geometrization of physics. In mathematics, the properties of geomet-
ric objects do not depend on the choice of the coordinate system. This is
similar to the principles (VI)–(VIII). Therefore, it is quite natural that geo-
metric methods play a fundamental role in modern physics.

Linearity and nonlinearity. We have to distinguish between

(i) linear processes, and
(ii) nonlinear processes.

In case (i), the superposition principle holds, that is, the superposition of
physical states yields again a physical state. Mathematically, such processes
are described by linear spaces and linear operator equations. The mathe-
matical analysis can be simplified by representing physical phenomena as
superposition of simpler phenomena. This is the method of harmonic analy-
sis (e.g., the Fourier method based on the Fourier series, the Fourier integral,
or the Fourier–Stieltjes integral).

In case (ii), the superposition principle is violated. As a rule, interactions
in nature are mathematically described by nonlinear operator equations (e.g.,
nonlinear differential or integral equations). The method of perturbation the-
ory allows us to reduce (ii) to (i), by using an iterative method.

Basic properties of physical effects. For the mathematical investiga-
tion of physical effects, one has to take the following into account.

(A) Faraday’s locality principle: Physical effects propagate locally in space
and time (law of proximity theory).

(B) Green’s locality principle: The response of a linear physical system can be
described by localizing the external forces in space and time and by con-
sidering the superposition of the corresponding special responses (method
of the Green’s function). Furthermore, this can be used for computing
nonlinear physical systems by iteration.

(C) Planck’s constant: The smallest action (energy × time) in nature is given
by the action quantum h = 6.626 0755 · 10−34Js.

(D) Einstein’s propagation principle: Physical effects travel at most with the
speed of light c in a vacuum. Explicitly, c = 2.997 92458 · 108m/s.

(E) Gauge invariance principle: Physical effects are invariant under local
gauge transformations. Physical experiments are only able to measure
quantities which do not depend on the choice of the gauge condition.

Riemann (1826–1866), Maxwell (1831–1879), Lie (1842–1899), Klein (1849–

1925), Poincaré (1854–1912), Planck (1858–1947), Élie Cartan (1859–1951),
Hilbert (1862–1943), Minkowski (1864–1909), Levi-Civita (1873–1941), Einstein
(1879–1955), Emmy Noether (1882–1935), Weyl (1885–1955), Schrödinger (1887–
1961), Heisenberg (1901–1976), Dirac (1902–1984), Ehresmann (1905–1979),
von Neumann (1903–1957), Tomonaga (1906–1979), Landau (1908–1968), Lau-
rent Schwartz (1915–2002), Feynman (1918–1988), Schwinger (1918–1994), Yang
(born 1922), Dyson (born 1923), Salam (1926–1996), Gell-Mann (born 1929),
Glashow (born 1932), Weinberg (born 1933), Fritzsch (born 1943).



14 1. Mathematical Principles of Modern Natural Philosophy

(F) The Planck scale hypothesis: Physics dramatically changes below the
Planck length given by l = 10−35m.

In what follows, let us discuss some basic ideas related to all of the principles
summarized above. To begin with, concerning Faraday’s locality principle,
Maxwell emphasized the following:6

Before I began the study of electricity I resolved to read no mathematics on
the subject till I had first read through Faraday’s 1832 paper Experimental
researches on electricity. I was aware that there was supposed to be a
difference between Faraday’s way of conceiving phenomena and that of
the mathematicians, so that neither he nor they were satisfied with each
other’s language. I had also the conviction that this discrepancy did not
arise from either party being wrong. For instance, Faraday, in his mind, saw
lines of force traversing all space where the mathematicians (e.g., Gauss)
saw centers of force attracting at a distance; Faraday saw a medium where
they saw nothing but distance; Faraday sought the seat of the phenomena
in real actions going on in the medium, where they were satisfied that they
had found it in a power of action at a distance impressed on the electric
fluids.
When I had translated what I considered to be Faraday’s ideas into a
mathematical form, I found that in general the results of the two methods
coincide. . . I also found that several of the most fertile methods of research
discovered by the mathematicians could be expressed much better in terms
of the ideas derived from Faraday than in their original form.

1.2 The Infinitesimal Strategy and Differential
Equations

Differential equations are the foundation of the natural scientific, mathe-
matical view of the world.

Vladimir Igorevich Arnold (born 1937)

The infinitesimal strategy due to Newton and Leibniz studies the behavior of
a physical system for infinitesimally small time intervals and infinitesimally
small distances. This leads to the encoding of physical processes into differen-
tial equations (e.g., Newton’s equations of motion in mechanics, or Maxwell’s
equations in electrodynamics).

The task of mathematics is to decode this information; that is, to
solve the fundamental differential equations.

1.3 The Optimality Principle

It is crucial that the class of possible differential equations is strongly re-
stricted by the optimality principle. This principle tells us that the funda-
mental differential equations are the Euler–Lagrange equations to variational
6 J. Maxwell, A Treatise on Electricity and Magnetism, Oxford University Press,

Oxford, 1873.
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problems. In 1918, Emmy Noether formulated her general symmetry princi-
ple in the calculus of variations. The famous Noether theorem combines Lie’s
theory of continuous groups with the calculus of variations due to Euler and
Lagrange. This will be studied in Section 6.6.

1.4 The Basic Notion of Action in Physics and the Idea
of Quantization

The most important physical quantity in physics is not the energy, but the
action which has the physical dimension energy times time. The following is
crucial.

(i) The fundamental processes in nature are governed by the principle of
least action

S = min!

where we have to add appropriate side conditions. In fact, one has to use
the more general principal S = critical! (principle of critical action). For
example, if we consider the motion q = q(t) of a particle of mass m on
the real line, then the action is given by

S[q] :=
∫ t1

t0

(
1
2mq̇(t)2 − U(q(t))

)
dt.

Here, the function U = U(q) is the potential, and the negative derivative,
−U ′, describes the acting force. In this case, the principle of critical action
reads as

S[q] = critical!, q(t0) = q0, q(t1) = q1 (1.1)

where we fix the following quantities: the initial time t0, the initial posi-
tion q0 of the particle, the final time t1, and the final position q1 of the
particle. The solutions of (1.1) satisfy the Euler–Lagrange equation

mq̈(t) = F (t), t ∈ R

with the force F (t) = −U ′(q(t)). This coincides with the Newtonian
equation of motion (see Sect. 6.5).

(ii) In 1900 Planck postulated that there do not exist arbitrarily small
amounts of action in nature. The smallest amount of action in nature
is equal to the Planck constant h. In ancient times, philosophers said:

Natura non facit saltus. (Nature does never make a jump.)
In his “Noveaux essais,” Leibniz wrote:

Tout va par degrés dans la nature et rien par saut. (In nature
everything proceeds little by little and not by jumping.)
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In contrast to this classical philosophy, Planck formulated the hypothesis
in 1900 that the energy levels of a harmonic oscillator form a discrete set.
He used this fact in order to derive his radiation law for black bodies (see
Sect. 2.3.1 of Vol. I). This was the birth of quantum physics. More gen-
erally, the energy levels of the bound states of an atom or a molecule are
discrete. The corresponding energy jumps cause the spectra of atoms and
molecules observed in physical experiments (e.g., the spectral analysis of
the light coming from stars). Nowadays, we say that:

Nature jumps.

This reflects a dramatic change in our philosophical understanding of
nature.

(iii) In order to mathematically describe quantum effects, one has to modify
classical theories. This is called the process of quantization, which we
will encounter in this series of monographs again and again. As an in-
troduction to this, we recommend reading Chapter 7. Now to the point.
Feynman discovered in the early 1940s in his dissertation in Princeton
that the process of quantization can be most elegantly described by path
integrals (also called functional integrals) of the form

∫
eiS[ψ]/� Dψ

where we sum over all classical fields ψ (with appropriate side conditions).
Here, � := h/2π. For example, the quantization of the classical particle
considered in (i) can be based on the formula

G(q0, t0; q1, t1) =
∫

eiS[q]/� Dq.

Here, we sum over all classical motions q = q(t) which satisfy the side
condition q(t0) = q0 and q(t1) = q1. The Green’s function G determines
the time-evolution of the wave function ψ, that is, if we know the wave
function ψ = ψ(x, t0) at the initial time t0, then we know the wave
function at the later time t by the formula

ψ(x, t) =
∫

R

G(x, t; y, t0)ψ(y, t0)dy.

Finally, the wave function ψ tells us the probability

∫ b

a

|ψ(x, t)|2dx

of finding the quantum particle in the interval [a, b] at time t.
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(iv) In quantum field theory, one uses the functional integral
∫

eiS[ψ]/� ei〈ψ|J〉 Dψ

with the additional external source J . Differentiation with respect to J
yields the moments of the quantum field. In turn, the moments deter-
mine the correlation functions (also called Green’s functions). The cor-
relation functions describe the correlations between different positions of
the quantum field at different points in time. These correlations are the
most important properties of the quantum field which can be related to
physical measurements.

Feynman’s functional integral approach to quantum physics clearly shows
that both classical and quantum physics are governed by the classical action
functional S. This approach can also be extended to the study of many-
particle systems at finite temperature, as we have discussed in Sect. 13.8 of
Vol. I. Summarizing, let us formulate the following general strategy:

The main task in modern physics is the mathematical description of
the propagation of physical effects caused by interactions and their
quantization.

In Sect. 1.9 we will show that in modern physics, interactions are described
by gauge theories based on local symmetries.

1.5 The Method of the Green’s Function

Basic ideas. As a prototype, consider the motion x = x(t) of a particle
of mass m > 0 on the real line under the action of the continuous force
F : R → R. The corresponding Newtonian equation of motion reads as

mẍ(t) = F (t) for all t ∈ R (1.2)

with the initial condition

x(0) = a, ẋ(0) = v.

We are given the initial position a and the initial velocity v at time t = 0.
For simplifying notation, we set m := 1. In order to discuss Green’s locality
principle in physics, let us summarize the following facts. The unique solution
of (1.2) reads as

x(t) = a + vt +
∫ t

0

(t − τ)F (τ)dτ for all t ∈ R.

Equivalently, this can be written as
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x(t) = a + vt +
∫ ∞

−∞
G(t, τ)F (τ)dτ for all t ∈ R. (1.3)

The function G is called the Green’s function of the differential equation
(1.2). Explicitly,

G(t, τ) :=

⎧⎪⎨
⎪⎩

t − τ if 0 ≤ τ ≤ t,

τ − t if t ≤ τ < 0,

0 otherwise.

Let us discuss the physical meaning of the Green’s function G. To this end,
for fixed positive number Δt and all times t ∈ R, we introduce the Dirac
Δt-delta function

δΔt(t) :=

{
1

Δt if 0 ≤ t ≤ Δt,

0 otherwise.

Obviously, we have

lim
Δt→+0

δΔt(t) =

{
+∞ if 0 ≤ t ≤ Δt,

0 otherwise,

and the normalization condition
∫ ∞
−∞ δΔt(t)dt = 1 is satisfied.

(i) Localized force. We are given the parameters Δt > 0 and F0 ∈ R. For
fixed time t0, we choose the special force

F (t) := F0 · δΔt(t − t0) for all t ∈ R.

By (1.3), the corresponding motion reads as

xΔt(t) = a + vt + F0 ·
1

Δt

∫ t0+Δt

t0

G(t, τ)dτ for all t ∈ R.

Letting Δt → +0, we get the motion7

x(t) = a + vt + F0 · G(t, t0) for all t ∈ R. (1.4)

This can be considered as the motion of the particle under the influence
of the kick force t �→ F0δΔt(t − t0) at time t0, as Δt → +0. For t0 ≥ 0,
the motion (1.4) looks like

7 In fact, it follows from limε→+0 G(t, t0 + ε) = G(t, t0) for all t, t0 ∈ R that

lim
Δ→+0

1

Δt

Z t0+Δt

t0

G(t, τ)dτ = G(t, t0).
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x(t) =

{
a + vt if t < t0,

a + vt + F0 · (t − t0) if t ≥ t0.
(1.5)

That is, the velocity jumps at time t0. For t0 < 0, (1.4) looks like

x(t) =

{
a + vt if t > t0,

a + vt + F0 · (t0 − t) if t ≤ t0.
(1.6)

(ii) Superposition of the original force by kick forces (physical interpretation
of the Green’s function). Fix Δt > 0. Consider the discrete points in time
nΔt where n = 0,±1,±2, . . . In terms of physics, let us approximate the
given force F = F (t) by a step function Fapprox. That is, we use the
superposition

Fapprox(t) :=
∞∑

n=−∞
Fn(t), t ∈ R

of the kick forces Fn(t) := F (nΔt)δΔt(t − nΔt)Δt. Explicitly,

Fn(t) =

{
F (nΔt) if nΔt ≤ t ≤ (n + 1)Δt,

0 otherwise.

If Δt is sufficiently small, then the kick force Fn generates the approxi-
mate motion

xn(t) = F (nΔt)G(t, nΔt)Δt, t ∈ R

with xn(0) = 0 and ẋn(0) = 0 for all n = ±1,±2, . . . That is, the particle
rests at the initial time t = 0. Consequently, by superposition, the force
Fapprox generates the approximate motion

xapprox(t) =
∞∑

n=−∞
xn(t) =

∞∑
n=−∞

G(t, nΔt)F (nΔt)Δt, t ∈ R.

As Δt → 0, we get the motion x(t) =
∫ ∞
−∞ G(t, τ)F (τ)dτ for all t ∈ R.

The motions (1.5) and (1.6) have the following properties:

(a) t �→ x(t) is continuous on R.
(b) t �→ x(t) is smooth on R \ {t0}, and ẍ(t) = 0 for all t �= t0.
(c) ẋ(t0 + 0) = ẋ(t0 − 0) + F0 (jump of the velocity at time t0).
(d) In the sense of distributions, we have the following equation of motion:8

mẍ(t) = F0δ(t − t0), t ∈ R.

8 We choose m := 1.
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Let us prove (d). We have to show that
∫ ∞

−∞
x(t)ϕ̈(t)dt = F0ϕ(t0) for all ϕ ∈ D(R).

Noting (b), integration by parts yields that
∫ ∞

t0
x(t)ϕ̈(t)dt is equal to

−x(t0)ϕ̇(t0) −
∫ ∞

t0

ẋ(t)ϕ̇(t)dt = −x(t0)ϕ̇(t0) + ẋ(t0 + 0)ϕ(t0).

Similarly,
∫ t0
−∞ x(t)ϕ̈(t)dt = x(t0)ϕ̇(t0) − ẋ(t0 − 0)ϕ(t0). Finally, use (c). �

Examples. Fix t0 := 0 and F0 := 1. If we choose a = v := 0, then the
motion (1.5) looks like

x(t) = θ(t)t for all t ∈ R.

Here, θ denotes the Heaviside function.9 If we choose a := 0 and v := −1,
then the motion (1.5) looks like

x(t) = −θ(−t)t for all t ∈ R.

Finally, if we choose a := 0, v := −1
2 , then the motion (1.5) looks like

x(t) = 1
2 (θ(t)t − θ(−t)t) = 1

2 |t| for all t ∈ R.

The relation between the theory of distributions and the method of averaging
will be discussed in Sect. 1.7.

Iterative solution of nonlinear problems. The experience of physi-
cists shows that

Interactions in nature lead to nonlinear terms in the corresponding
differential equations.

This explains the importance of nonlinear problems in physics. We want
to show that the Green’s function can also be used in order to investigate
nonlinear problems. As a prototype, consider the differential equation

mẍ(t) = −κx(t)3, t ∈ R (1.7)

with the positive parameter κ called coupling constant, and the initial con-
dition x(0) = a, ẋ(0) = v. This problem describes an anharmonic oscillator
(see page 370). By (1.3), the initial-value problem (1.7) is equivalent to the
nonlinear integral equation

x(t) = a + vt − κ

∫ ∞

−∞
G(t, τ)x(τ)3dτ for all t ∈ R, (1.8)

9 Recall that θ(t) := 1 if t ≥ 0 and θ(t) := 0 if t < 0.
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by setting F (t) := −κx(t)3. The corresponding iterative method reads as

xn+1(t) = a + vt − κ

∫ ∞

−∞
G(t, τ)xn(τ)3dτ, n = −1, 0, 1, . . .

with x−1(t) := 0 for all t ∈ R. This iterative method is also called the
bootstrap method by physicists. In particular, x0(t) = a + vt for all t ∈ R.
The first approximation,

x1(t) = a + vt − κ

∫ ∞

−∞
G(t, τ)x0(τ)3dτ for all t ∈ R

is called the Born approximation by physicists. If the coupling constant κ is
sufficiently small, then the iterative method converges to the solution of the
original integral equation (1.8), that is, limn→∞ xn(t) = x(t) for all t ∈ R.

The two problems (1.7) and (1.8) reflect a crucial duality between dif-
ferential equations and integral equations. The kernel G of the inte-
gral equation (1.8) is the Green’s function of the linearized differential
equation (1.2).

In this series of monographs, we will frequently use this duality. For example,
in Sect. 8.6 we will study stationary scattering processes in quantum mechan-
ics by replacing the Schrödinger differential equation by the dual Lippmann–
Schwinger integral equation.

Therefore, nonlinear problems can be iteratively solved if the Green’s
function is known.

This is the method of perturbation theory, which is basic for quantum field
theory. For the computation of the Green’s function, one can use Fourier’s
method. For the Newtonian motion (1.2), this will be studied in Sect. 2.2.14
in terms of the Fourier integral transform.

1.6 Harmonic Analysis and the Fourier Method

The superposition principle. In 1822 Fourier published his monograph
Théorie analytique de la chaleur (analytic heat theory) where he used both
the Fourier series and the Fourier integral in order to solve numerous problems
in heat conduction. Let us sketch the basic ideas. For given time period T > 0,
let us introduce the corresponding angular frequency

Δω :=
2π

T
.

Fourier’s method of harmonic analysis is the most important method for get-
ting explicit solutions of linear partial differential equations in mathematical
physics and for explicitly computing the corresponding Green’s functions.10

10 Much material can be found in P. Morse and H. Feshbach, Methods of Theoretical
Physics, Vols. 1, 2, McGraw-Hill, New York, 1953. Fourier’s method is intimately
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(i) Discrete Fourier transformation. Let f : R → C be a smooth function of
period T > 0. Then11

F (t) =
∞∑

k=−∞
a(k)eitkΔω, t ∈ R (1.9)

with the so-called Fourier coefficients

a(k) :=
1
T

∫ T/2

−T/2

F (t)e−itkΔωdt, k = 0,±1,±2, . . .

Rigorously, the Fourier series (1.9) converges uniformly on the real line.
Equation (1.9) tells us that the force function F can be represented by
a superposition of special oscillating forces t �→ a(k)eitkΔω of period T ,
angular frequency kΔω, and amplitude a(k) with k = 0,±1,±2, . . . The
map

F �→ {a(k)}k∈Z

is called the discrete Fourier transformation (with respect to the given
period T ).

(ii) Rescaling. Set F̂ (kΔω) := Ta(−k)/
√

2π where k = 0,±1,±2, . . . , and
choose the angular frequencies

ω := kΔω, k = 0,±1,±2, . . .

Then

F (t) =
1√
2π

∞∑
k=−∞

F̂ (kΔω)e−itkΔωΔω, t ∈ R

with

F̂ (ω) :=
1√
2π

∫ T/2

−T/2

F (t)eitωdt, k = 0,±1,±2, . . .

(iii) Continuous Fourier transformation. Suppose that the period T goes to
infinity, T → ∞. Then we formally obtain the integral

F (t) =
1√
2π

∫ ∞

−∞
F̂ (ω)e−itωdω, t ∈ R (1.10)

related to special functions in mathematical physics based on symmetries. We
refer to N. Vilenkin and A. Klimyk, Special Functions and Representations of
Lie Groups, Vols. 1–4, Kluwer, Dordrecht, 1991, and to A. Wawrzyńczyk, Group
Representations and Special Functions, Reidel, Dordrecht, 1984 (see also the
references for further reading about special functions in quantum mechanics on
page 762).

11 Recall that, by definition,
P∞

k=−∞ b(k) :=
P∞

k=0 b(k) +
P−∞

k=−1 b(k).
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with

F̂ (ω) :=
1√
2π

∫ ∞

−∞
F (t)eitωdt, ω ∈ R. (1.11)

Rigorously, if the function F : R → C is smooth and rapidly decreasing
at infinity, that is, F ∈ S(R),12 then the function F can be represented
by (1.10) where the function F̂ is given by (1.11). Moreover, we have
F̂ ∈ S(R). Equation (1.10) tells us that each function F ∈ S(R) is the
superposition of harmonic waves t �→ F̂ (ω)e−itω of angular frequency ω,
and the corresponding amplitude function ω �→ F̂ (ω) lies in S(R). The
map F �→ F̂ is called the continuous Fourier transformation (or, briefly,
the Fourier transformation) from the time space to the frequency space.

Terminology. Passing from frequency ω to energy E = �ω, we define the
Fourier transformation from the time space to the energy space by setting

F (t) =
1√
2π�

∫ ∞

−∞
F̂∗(E)e−iEt/�dE, t ∈ R (1.12)

with

F̂∗(E) :=
1√
2π�

∫ ∞

−∞
F (t)eiEt/� dt, E ∈ R. (1.13)

Here,
√

�F̂∗(�ω) = F̂ (ω). This is also called the rescaled Fourier transfor-
mation. Motivated by the Fourier-Minkowski transformation in the 4-dimen-
sional space-time (Minkowski space) in Einstein’s theory of special relativity,
we will distinguish between the Fourier transformation (1.12), (1.13) from
the time space to the energy space and the Fourier transformation from the
position space to the momentum space given by

F (x) =
1√
2π�

∫ ∞

−∞
F̂∗∗(p)eixp/� dp, x ∈ R (1.14)

with

F̂∗∗(p) :=
1√
2π�

∫ ∞

−∞
F (x)e−ixp/� dx, p ∈ R. (1.15)

Note that
√

�F̂∗∗(p) = F̂ (−p/�) for all momenta p ∈ R. This is discussed on
page 538 of Vol. I. To simplify notation, we will frequently write F̂ instead
of F̂∗ (resp. F̂∗∗) if any misunderstanding is excluded.13

12 The definition of the space S(R) can be found in Sect. 10.3.3 of Vol. I.
13 In the literature, one also uses the asymmetrical formulas

F (x) =

Z ∞

−∞
F̂asym(p)eixp/� dp, x ∈ R
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Prototype of the Fourier method. Consider the differential equation

ẍ(t) = −ω2
0x(t) + F (t), t ∈ R. (1.16)

We are given the parameter ω0 > 0 and the periodic smooth force function
F : R → R with the period T > 0. We are looking for a solution x : R → R. In
terms of physics, the function x = x(t) describes the motion of a particle with
mass m = 1 under the action of the external force F (t) and the reactive force
−ω2

0x(t) at time t. Physicists call this an harmonic oscillator. The angular
frequency of the force F is given by Δω := 2π/T.

We postulate that ω0 �= kΔω for all integers k.

In terms of physics, this crucial condition means that the external force F
is not in resonance with the eigenoscillations of the harmonic oscillator. The
general solution of (1.16) reads as

x(t) = 
(aeitω0 + be−itω0 + xspecial(t)), t ∈ R (1.17)

with arbitrary complex numbers a, b. Furthermore, we have the special solu-
tion

xspecial(t) :=
∫ T/2

−T/2

G(t, τ)F (τ)dτ, t ∈ R,

and the Green’s function

G(t, τ) :=
1
2π

∞∑
k=−∞

ei(t−τ)kΔω

ω2
0 − (kΔω)2

Δω. (1.18)

Let us prove this.
(I) Formal computation. In order to construct a special solution of (1.16),

we start with the ansatz

xspecial(t) :=
∞∑

k=−∞
b(k)eitkΔω.

Now insert this into (1.16) and use the Fourier series (1.9) for the force F .
From ẍ(t) + ω2

0x(t) − F (t) = 0 we get

with

F̂asym(p) =
1

2π�

Z ∞

−∞
F (x)e−ixp/� dx, p ∈ R.

However, whereas the transformations F �→ F̂ and F �→ F̂∗ generate unitary

operators on the Hilbert space L2(R), this is not the case for F �→ F̂asym. There-

fore, the choice of the transformation F �→ F̂asym has the disadvantage that it
violates the fundamental unitary symmetry between position and momentum in
quantum physics.
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∞∑
k=−∞

(
−(kΔω)2b(k) + ω2

0b(k) − a(k)
)
· eitkΔω = 0.

Hence −(kΔω)2b(k) + ω2
0b(k) − a(k) = 0. This implies

xspecial(t) =
∞∑

k=−∞

a(k)
ω2

0 − (kΔω)2
· eitkΔω. (1.19)

Noting that a(k) = Δω
2π

∫ T/2

−T/2
F (τ)e−iτkΔωdτ, we get the desired formula

(1.17), by formally interchanging summation and integration.
(II) Rigorous proof. Let N = 1, 2, . . . Since the function F is smooth, we

have

a(k) = O

(
1

kN

)
for all k ∈ Z.

The same is true for b(k). By the majorant criterion, all the Fourier series
involving a(k) and b(k) converge uniformly on the real line, and hence term-
by-term differentiation (resp. integration) is allowed. This shows that the
function xspecial given by (1.19) is indeed a special solution of the inhomoge-
neous differential equation (1.16). Finally, note that the general solution of the
homogeneous equation (1.16) with F = 0 is given by x(t) = aeitω0 + be−itω0

with arbitrary complex numbers a and b. This finishes the proof. �

Resonances and the singularities of the Green’s function. Suppose
that ω0 = k0Δω for some nonzero integer k0. Then it follows from (1.18) that
the Green’s function G has a singularity if we choose k = k0. In the case where
the function F satisfies the condition a(k0) �= 0, that is,

∫ T/2

−T/2

F (τ)e−iτω0dτ �= 0,

physicists say that the external force F is in resonance with the eigenfre-
quency ω0 of the harmonic oscillator.

Resonance effects cause singularities of the Green’s function.

In the present case, the difficulty disappears if we demand that a(k0) = 0.
Then the singularity drops out in (1.19).

Resonances are responsible for complicated physical effects.

For example, the observed chaotic motion of some asteroids is due to reso-
nance effects in celestial mechanics (the Kolmogorov–Arnold–Moser theory).
In quantum field theory, internal resonances of the quantum field cause spe-
cial quantum effects (e.g., the Lamb shift in the spectrum of the hydrogen
atom and the anomalous magnetic moment of the electron), which have to
be treated with the methods of renormalization theory (see Chap. 17 on
radiative corrections in quantum electrodynamics).
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1.7 The Method of Averaging and the Theory of
Distributions

In the early 20th century, mathematicians and physicists noticed that for
wave problems, the Green’s functions possess strong singularities such that
the solution formulas of the type (1.3) fail to exist as classical integrals.14 In
his classic monograph

The Principles of Quantum Mechanics,

Clarendon Press, Oxford, 1930, Dirac introduced a singular object δ(t) (the
Dirac delta function), which is very useful for the description of quantum
processes and the computation of Green’s functions. In the 1940s, Laurent
Schwartz gave all these approaches a sound basis by introducing the notion
of distribution (generalized function). In order to explain Laurent Schwartz’s
basic idea of averaging, consider the continuous motion

x(t) := |t| for all t ∈ R

of a particle on the real line. We want to compute the force F (t) = mẍ(t)
acting on the particle at time t. Classically, F (t) = 0 if t �= 0, and the force
does not exist at the point in time t = 0. We want to motivate that

F (t) = 2mδ(t) for all t ∈ R. (1.20)

(I) The language of Dirac. For the velocity, ẋ(t) = 1 if t > 0, and ẋ(t) = −1
if t < 0. For t = 0, the derivative ẋ(0) does not exist. We define ẋ(0) := 0.
Hence

ẋ(t) = θ(t) − θ(−t).

Since θ̇(t) = δ(t), we get

ẍ(t) = δ(t) + δ(−t) = 2δ(t) for all t ∈ R.

Formally, δ(t) = 0 if t �= 0, and δ(0) = ∞ with
∫ ∞
−∞ δ(t)dt = 1. Obviously,

there is no classical function δ which has such properties.15

(II) The language of Laurent Schwartz. Choose ε > 0. We first pass to the
regularized motion x = xε(t) for all t ∈ R. That is, the function xε : R → R

is smooth for all ε > 0 and
14 For example, see J. Hadamard, The Initial-Value Problem for Linear Hyperbolic

Partial Differential Equations, Hermann, Paris (in French). A modern version
of Hadamard’s theory can be found in P. Günther, Huygens’ Principle and Hy-
perbolic Differential Equations, Academic Press, San Diego, 1988. See also C.
Bär, N. Ginoux, and F. Pfäffle, Wave Equations on Lorentzian Manifolds and
Quantization, European Mathematical Society 2007.

15 See the detailed discussion of the formal Dirac calculus in Sect. 11.2 of Vol. I.
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lim
ε→+0

xε(t) = |t| for all t ∈ R,

where this convergence is uniform on all compact time intervals.16 We intro-
duce the averaged force

Fε(ϕ) :=
∫ ∞

−∞
mẍε(t)ϕ(t)dt

for all averaging functions ϕ ∈ D(R) (i.e., ϕ : R → C is smooth and vanishes
outside some bounded interval. In other words, ϕ has compact support.) Since
xε is smooth, integration by parts twice yields

Fε(ϕ) =
∫ ∞

−∞
mxε(t)ϕ̈(t)dt.

Letting ε → +0, we define the mean force by

F(ϕ) := lim
ε→+0

Fε(ϕ) =
∫ ∞

−∞
mx(t)ϕ̈(t)dt.

Integration by parts yields
∫ ∞
0

|t| ϕ̈(t)dt = −
∫ ∞
0

ϕ̇(t)dt = ϕ(0). Similarly,∫ 0

−∞ |t|ϕ̈(t)dt = −
∫ 0

−∞ ϕ̇(t)dt = ϕ(0). Summarizing, we obtain the averaged
force

F(ϕ) = 2mϕ(0) for all ϕ ∈ D(R). (1.21)

In the language of distributions, we have F = 2mδ, where δ denotes the
Dirac delta distribution. A detailed study of the theory of distributions and
its applications to physics can be found in Chaps. 11 and 12 of Vol. I. In
particular, equation (1.20) is equivalent to (1.21), in the sense of distribution
theory.

In terms of experimental physics, distributions correspond to the fact
that measurement devices only measure averaged values. It turns out that
classical functions can also be regarded as distributions. However, in contrast
to classical functions, the following is true:

Distributions possess derivatives of all orders.

Therefore, the theory of distributions is the quite natural completion of the
infinitesimal strategy due to Newton and Leibniz, who lived almost three
hundred years before Laurent Schwartz. This shows convincingly that the
development of mathematics needs time.
16 For example, choose xε(t) := rε(t)|t| for all t ∈ R, where the regularizing function

rε : R → [0, 1] is smooth, and rε(t) := 1 if t /∈ [−2ε, 2ε], as well as rε(t) := 0 if
t ∈ [−ε, ε].
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1.8 The Symbolic Method

The symbol of the operator d
dt . Consider again the Fourier transforma-

tion

F (t) =
1√
2π

∫ ∞

−∞
F̂ (ω)e−itωdω, t ∈ R (1.22)

with

F̂ (ω) :=
1√
2π

∫ ∞

−∞
F (t)eitωtdt, ω ∈ R. (1.23)

Let n = 1, 2, . . . Differentiation of (1.22) yields

dn

dtn
F (t) =

1√
2π

∫ ∞

−∞
(−iω)nF̂ (ω)eitωdω, t ∈ R. (1.24)

The function
s(ω) := −iω for all ω ∈ R

is called the symbol of the differential operator d
dt . For n = 0, 1, 2, . . . , we

have
dn

dtn
F ⇒ snF̂ .

This means that the action of the differential operator dn

dtn , with respect to
time t, can be described by the multiplication of the Fourier transform F̂ by
sn in the frequency space.

This corresponds to a convenient algebraization of derivatives.

Over the centuries, mathematicians and physicists tried to simplify compu-
tations. The relation

ln(ab) = ln a + ln b for all a, b > 0 (1.25)

allows us to reduce multiplication to addition. This fact was extensively used
by Kepler (1571–1630) in order to simplify his enormous computations in
celestial mechanics.

Similarly, the Fourier transformation allows us to reduce differenti-
ation to multiplication.

Furthermore, there exists a natural generalization of the logarithmic function
to Lie groups. Then the crucial formula (1.25) passes over to the transforma-
tion formula from the Lie group G to its Lie algebra LG. This transformation
is well defined for the group elements near the unit element (see Vol. III).

Pseudo-differential operators and Fourier integral operators. The
modern theory of pseudo-differential operators (e.g., differential and integral
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operators) and Fourier integral operators is based on the use of symbols of
the form

s = s(ω, t, τ),

which depend on frequency ω, time t, and time τ . The expressions

(AF )(t) :=
1
2π

∫
R2

s(ω, t, τ)F (τ)eiω(τ−t) dτdω, t ∈ R (1.26)

and

(BF )(t) :=
1
2π

∫
R2

s(ω, t, τ)F (τ)eiϕ(ω,t,τ) dτdω, t ∈ R (1.27)

correspond to the pseudo-differential operator A and the Fourier integral
operator B. If we choose the special phase function

ϕ(ω, t, τ) := ω(t − τ),

then the operator B passes over to A. If, in addition, the symbol s does not
depend on τ , then integration over τ yields

(AF )(t) =
1√
2π

∫ ∞

−∞
s(ω, t)F̂ (ω)e−iωt dω.

In the special case where the symbol s(ω, t) only depends on the frequency
ω, the pseudo-differential operator corresponds to the multiplication operator
ω �→ s(ω)F̂ (ω) in the frequency space (also called Fourier space).

Long before the foundation of the theory of pseudo-differential operators
and Fourier integral operators in the 1960s and 1970s, mathematicians and
physicists used integral expressions of the form (1.26) and (1.27) in order to
compute explicit solutions in electrodynamics (e.g., the Heaviside calculus
and the Laplace transform applied to the study of electric circuits17), elastic-
ity (singular integral equations), geometric optics (e.g., diffraction of light),
and quantum mechanics.

The point is that the symbols know a lot about the properties of the
corresponding operators, and an elegant algebraic calculus for opera-
tors can be based on algebraic operations for the symbols.

As an introduction, we recommend:

Yu. Egorov and M. Shubin, Foundations of the Classical Theory of Partial
Differential Equations, Springer, New York, 1998 (Encyclopedia of Math-
ematical Sciences).

Yu. Egorov, A. Komech, and M. Shubin, Elements of the Modern Theory
of Partial Differential Equations, Springer, New York, 1999 (Encyclopedia
of Mathematical Sciences).

17 See E. Zeidler (Ed.), Oxford Users’ Guide to Mathematics, Sect. 1.11, Oxford
University Press, 2004.
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F. Berezin and M. Shubin, The Schrödinger Equation, Kluwer, Dordrecht,
1991.

L. Faddeev and A. Slavnov, Gauge Fields, Benjamin, Reading, Mas-
sachusetts, 1980 (gauge theory, Weyl calculus, the Feynman path integral,
and the Faddeev–Popov ghost approach to the Standard Model in particle
physics).

We also refer to the following treatises:

L. Hörmander, The Analysis of Linear Partial Differential Operators.
Vol. 1: Distribution Theory and Fourier Analysis, Vol. 2: Differential Op-
erators with Constant Coefficients, Vol. 3: Pseudo-Differential Operators,
Vol. 4: Fourier Integral Operators, Springer, New York, 1993.

R. Dautray and J. Lions, Mathematical Analysis and Numerical Methods
for Science and Technology, Vols. 1–6, Springer, New York, 1988.

Heaviside’s formal approach. Consider the differential equation

d

dt
x(t) − x(t) = f(t). (1.28)

We want to discuss the beauty, but also the shortcomings of the symbolic
method due to Heaviside (1850–1925). Formally, we get

(
d

dt
− 1

)
x(t) = f(t).

Hence

x(t) =
f(t)
d
dt − 1

.

For complex numbers z with |z| < 1, we have the convergent geometric series
1

z−1 = −1 − z − z2 − z3 + ... This motivates

x(t) =
(
−1 − d

dt
− d2

dt2
− . . .

)
f(t). (1.29)

If we choose f(t) := t2, then

x(t) = −t2 − 2t − 2. (1.30)

Surprisingly enough, we get ẋ(t) = −2t−2 = x(t)+t2. Therefore, the function
x(t) from (1.30) is a solution of (1.28). The same is true for all polynomials.
To prove this, let f be a polynomial of degree n = 0, 1, 2 . . . Set

x(t) := −
n∑

k=0

dk

dtk
f(t).

Then we get ẋ(t) = −
∑n

k=0
dk+1

dtk+1 f(t) = f(t) + x(t), since the (n + 1)th
derivative of f vanishes. However, the method above fails if we apply it to
the exponential function f(t) := et. Then
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x(t) = et + et + et + . . . ,

which is meaningless. There arises the problem of establishing a more pow-
erful method. In the history of mathematics and physics, formal (also called
symbolic) methods were rigorously justified by using the following tools:

• the Fourier transformation,
• the Laplace transformation (which can be reduced to the Fourier transfor-

mation),
• Mikusiński’s operational calculus based on the quotient field over a convo-

lution algebra,
• von Neumann’s operator calculus in Hilbert space,
• the theory of distributions,
• pseudo-differential operators and distributions (e.g., the Weyl calculus in

quantum mechanics), and
• Fourier integral operators and distributions.

Mikusiński’s elegant approach will be considered in Sect. 4.2 on page 191.
Motivation of the Laplace transformation via Fourier transfor-

mation. Consider the motion x = x(t) of a particle on the real line with
x(t) = 0 for all t ≤ 0. Suppose that the function x : R → R is continuous
and bounded. The Fourier transform from the time space to the energy space
reads as

x̂(E) =
1√
2π�

∫ ∞

−∞
x(t)eiEt/� dt =

1√
2π�

∫ ∞

0

x(t)eiEt/� dt.

As a rule, this integral does not exist. To improve the situation, we fix the
regularization parameter ε > 0, and we define the damped motion

xε(t) := x(t)e−εt for all t ∈ R.

This is also called the adiabatic regularization of the original motion. Obvi-
ously, limε→+0 xε(t) = x(t) for all t ∈ R. The Fourier transform looks like

x̂ε(E) =
1√
2π�

∫ ∞

0

x(t)e−εteiEt/� dt =
1√
2π�

∫ ∞

0

x(t)eiEt/� dt,

by introducing the complex energy E := E + iε. To simplify notation, we set
� := 1.

Complex energies, damped oscillations, and the Laplace trans-
form. The formal Heaviside calculus was justified by Doetsch in the 1930s by
using the Laplace transform.18 As a simple example, let us use the Laplace
transformation in order to solve the differential equation (1.28). In particular,
we will consider the case
18 G. Doetsch, Theory and Applications of the Laplace Transform, Springer, Berlin,

1937 (in German). See also D. Widder, The Laplace Transform, Princeton Uni-
versity Press, 1944.
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f(t) := et

where the Heaviside method above fails. Let x : [0,∞[→ R be a smooth
function with the growth condition

|x(t)| ≤ const · eγ1t for all t ≥ 0

and fixed real number γ1. The Laplace transform reads as

L(x)(E) :=
∫ ∞

0

x(t) eiEt dt, �(E) > γ1 (1.31)

with the inverse transform

x(t) =
1
2π

PV

∫
L

(Lx)(E)e−iEtdE , t > 0 (1.32)

on the real line L := {E + (γ1 + 1)i : E ∈ R} of the complex energy space.
Here, we choose a system of units with � = h/2π := 1 for Planck’s action
quantum.19 The Laplace transform sends the function t �→ x(t) on the time
space to the function E �→ (Lx)(E) on the complex energy space. Here, it is
crucial to use complex energies E = E − Γ i. In what follows, we will use the
standard properties of the Laplace transformation which are proved in Sect.
2.2.6 of Vol. I. Let us start with an example. Choose the complex energy
E0 := E0 − Γ0i with real values E0 and Γ0, and set20

x(t) := e−iE0t = e−iE0t · e−Γ0t, t ∈ R. (1.33)

Then, γ1 = −Γ0 = �(E0), and we get

(Lx)(E) =
i

E − E0
, �(E) > �(E0).

Now to the point. We are given the smooth function f : [0,∞[→ C with the
growth condition

|f(t)| ≤ const · eγ0t for all t ≥ 0.

In order to solve the differential equation (1.28), we proceed as follows.
(I) Suppose first that the differential equation (1.28) has a smooth solution

x : [0,∞[→ C with |x(t)| ≤ const · eγ1t for all t ≥ 0 with γ1 ≥ γ0. Then
19 Set γ2 := γ1 + 1. The principal value of the integral is defined by

PV

Z

L

g(E)dE := lim
E0→+∞

Z E0+γ2i

−E0+γ2i

g(E + γ2i)dE.

20 If E0 > 0 and Γ0 > 0 then (1.33) is a damped oscillation with angular frequency
ω0 := E0/� = E0 and mean lifetime Δt = Γ0/� = Γ0.
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the Laplace transforms Lx and Lf exist for all E ∈ C with �(E) > γ1.
Furthermore,

(Lẋ)(E) = −iE(L)(E) − x(+0),

that is, the Laplace transforms converts differentiation into multiplication
and translation in the complex energy space. By (1.28),

−iE(Lx)(E) − (Lx)(E) − x(+0) = (Lf)(E), �(E) > γ1.

This yields the Laplace transform of the solution t → x(t), namely,

(Lx)(E) =
ix(+0)
E − i

+
i(Lf)(E)
E − i

.

Setting g(t) := et, we get (Lg)(E) = i
E−i . Therefore,

Lx = (Lg)x(+0) + (Lg)(Lf).

The convolution rule from Sect. 2.2.6 of Vol. I tells us that

x = gx(+0) + g ∗ f.

Explicitly, this reads as

x(t) = etx(+0) +
∫ t

0

e(t−τ)f(τ)dτ. (1.34)

Our argument shows that a solution of (1.28) has necessarily the form (1.34).
(II) Conversely, differentiation yields

ẋ(t) = etx(+0) + f(t) +
∫ t

0

e(t−τ)f(τ)dτ = x(t) + f(t)

for all t ≥ 0. Consequently, the function x = x(t) given by (1.34) is indeed
a solution of the original differential equation (1.28) for all times t ≥ 0. For
example, if f(t) := et, then

x(t) = etx(+0) + tet.

This is a solution of (1.28) for all times t ∈ R.
The same method of the Laplace transformation can be applied to general

systems of ordinary differential equations with constant coefficients. Such
equations are basic for the investigation of electrical circuits. Therefore, the
Laplace transformation plays a key role in electrical engineering.
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1.9 Gauge Theory – Local Symmetry and the
Description of Interactions by Gauge Fields

As we have discussed in Chap. 2 of Vol. I, the Standard Model in particle
physics is based on

• 12 basic particles (6 quarks and 6 leptons), and
• 12 interacting particles (the photon, the 3 vector bosons W+, W−, Z0 and

8 gluons).

This model was formulated in the 1960s and early 1970s. Note the following
crucial fact about the structure of the fundamental interactions in nature.

The fields of the interacting particles can be obtained from the fields
of the basic particles by using the principle of local symmetry (also
called the gauge principle).

Prototype of a gauge theory. Let us explain the basic ideas by consid-
ering the following simple model. To this end, let us choose the unit square
Q := {(x, t) : 0 ≤ x, t ≤ 1}. We start with the principle of critical action

∫
Q

L(ψ, ψt, ψx; ψ†, ψ†
t , ψ

†
x) dxdt = critical! (1.35)

with the boundary condition ψ = ψ0 on ∂Q and the special Lagrangian

L := ψ†ψt + ψ†ψx. (1.36)

Here, ψt (resp. ψx) denotes the partial derivative of ψ with respect to time
t (resp. position x). We are given a fixed continuous function ψ0 : ∂Q → C

on the boundary of the square Q. We are looking for a smooth function
ψ : Q → C which solves the variational problem (1.35).

By a basic result from the calculus of variations, we get the following.
If the function ψ is a solution of (1.35), then it is a solution of the two
Euler–Lagrange equations

∂

∂t
Lψ†

t
+

∂

∂x
Lψ†

x
= Lψ† (1.37)

and

∂

∂t
Lψt +

∂

∂x
Lψx = Lψ. (1.38)

Here, the symbol Lψ (resp. Lψ†) denotes the partial derivative of L with
respect to the variable ψ (resp. ψ†). The proof can be found in Problem 14.7
of Vol. I. Explicitly, the two Euler–Lagrange equations read as

ψt + ψx = 0, ψ†
t + ψ†

x = 0. (1.39)
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If the function ψ is a solution of (1.39), then we have

(ψψ†)t + (ψψ†)x = 0, (1.40)

which is called a conservation law. In fact, ψtψ
† + ψ†

t ψ = −ψxψ† − ψ†
xψ.

This is equal to −(ψψ†)x. Conservation laws play a fundamental role in all
fields of physics, since they simplify the computation of solutions. In the 18th
and 19th century, astronomers unsuccessfully tried to find 6N conservation
laws for the motion of N bodies in celestial mechanics (N ≥ 3), in order to
compute the solution and to prove the stability of our solar system.21

Step by step, mathematicians and physicists discovered that

Conservation laws are intimately related to symmetries.

The precise formulation of this principle is the content of the Noether theorem
proved in 1918 (see Sect. 6.6). We want to show that the invariance of the
Lagrangian L (with respect to a global gauge transformation) is behind the
conservation law (1.40).

(i) Global symmetry and the Noether theorem. Let α be a fixed real number.
We consider the global symmetry transformation

ψ+(x, t) := eiαψ(x, t) for all x, t ∈ R, (1.41)

that is, the field ψ is multiplied by the constant phase factor eiα, where
α is called the phase. The transformation (1.41) is also called a global
gauge transformation, by physicists. We also define the infinitesimal
gauge transformation δψ by setting

δψ(x, t) :=
d

dα

(
eiαψ(x, t)

)
|α=0

= iψ(x, t).

This means that ψ+(x, t) = 1+α ·δψ(x, t)+O(α2) as α → 0. Noting that
ψ†

+ = e−iαψ†, the special Lagrangian L from (1.36) is invariant under the
global gauge transformation (1.41), that is,

ψ†
+(ψ+)t + ψ†

+(ψ+)x = ψ†ψt + ψ†ψx.

Generally, the Lagrangian L is invariant under the global gauge trans-
formation (1.41) iff

L(ψ+, (ψ+)t, (ψ+)x; ψ†
+, (ψ†

+)t, (ψ
†
+)x) = L(ψ, ψt, ψx; ψ†, ψ†

t , ψ
†
x).

21 See D. Boccaletti and G. Pucacco, Theory of Orbits, Vol 1: Integrable Systems
and Non-Perturbative Methods, Vol. 2: Perturbative and Geometrical Methods,
Springer, Berlin, 1996.
Y. Hagihara, Celestial Mechanics, Vols. 1–5, MIT Press, Cambridge, Mas-
sachusetts, 1976.
W. Neutsch and K. Scherer, Celestial Mechanics: An Introduction to Classical
and Contemporary Methods, Wissenschaftsverlag, Mannheim, 1992.
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Then a special case of the famous Noether theorem on page 387 tells us
the following: If the function ψ is a solution of the variational problem
(1.35), then

∂

∂t

(
Lψtδψ + Lψ†

t
δψ†

)
+

∂

∂x

(
Lψxδψ + Lψ†

x
δψ†

)
= 0.

If we choose the special Lagrangian L = ψ†ψt + ψ†ψx, then we obtain
the conservation law (1.40).

(ii) Local symmetry and the covariant derivative. We now replace the global
gauge transformation (1.40) by the following local gauge transformation

ψ+(x, t) := eiα(x,t)ψ(x, t) for all x, t ∈ R, (1.42)

where the phase α depends on space and time. We postulate the following
crucial local symmetry principle:

(P) The Lagrangian L is invariant under local gauge transforma-
tions.

It can be easily shown that the function L from (1.36) does not possess
this invariance property for arbitrary functions α = α(x, t). This follows
from

(ψ+)t = iαteiαψ + eiαψt.

Here, the appearance of the derivative αt of the phase function α destroys
the invariance property of L.
Our goal is to modify the function L in such a way that it is invariant
under (1.42). To this end, we introduce the so-called covariant partial
derivatives

∇t :=
∂

∂t
+ iU(x, t), ∇x :=

∂

∂x
+ iA(x, t), (1.43)

where U, A : R
2 → R are given smooth real-valued functions called gauge

fields. The local gauge transformation of U and A is defined by

U+ := U − αt, A+ := A − αx.

Furthermore, we define the following transformation law for the covariant
partial derivatives:

∇+
t :=

∂

∂t
+ iU+, ∇+

x :=
∂

∂x
+ iA+. (1.44)

The key relation is given by the following elegant transformation law for
the covariant partial derivatives:

∇+
t ψ+ = eiα∇tψ, ∇+

x ψ+ = eiα∇xψ. (1.45)
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Theorem 1.1 There holds (1.45).

This theorem tells us the crucial fact that, in contrast to the classical
partial derivatives, the covariant partial derivatives are transformed in
the same way as the field ψ itself. This property is typical for covariant
partial derivatives in mathematics. Indeed, our construction of covariant
partial derivatives has been chosen in such a way that (1.45) is valid.
Proof. By the product rule,

(
∂

∂t
+ iU+

)
ψ+ = eiα(iαtψ + ψt + iU+ψ) = eiα

(
∂

∂t
+ iU

)
ψ.

This yields ∇+
t ψ+ = eiα∇tψ. Similarly, we get ∇+

x ψ+ = eiα∇xψ. �

Now let us discuss the main idea of gauge theory:

We replace the classical partial derivatives ∂
∂t ,

∂
∂x by the covariant

partial derivatives ∇t,∇x, respectively.

This is the main trick of gauge theory. In particular, we replace the
Lagrangian

L = ψ† ∂

∂t
ψ + ψ† ∂

∂x
ψ

from the original variational problem (1.35) by the modified Lagrangian

L := ψ†∇tψ + ψ†∇xψ.

Explicitly, we have

L = ψ†ψt + ψ†ψx + iψ†Uψ + iψ†Aψ.

The corresponding Euler–Lagrange equations (1.37) and (1.38) read as

∇tψ + ∇xψ = 0, (1.46)

and (∇tψ + ∇xψ)† = 0, respectively.

The local symmetry principle (P) above is closely related to the Faraday–
Green locality principle, saying that physical interactions are localized in
space and time.

Summarizing, the local symmetry principle (P) enforces the existence
of additional gauge fields U, A which interact with the originally given
field ψ.

In the Standard Model in particle physics and in the theory of general rela-
tivity, the additional gauge fields are responsible for the interacting particles.

Consequently, the mathematical structure of the fundamental inter-
actions in nature is a consequence of the local symmetry principle.
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In his search of a unified theory for all interactions in nature, Einstein was
not successful, since he was not aware of the importance of the principle of
local symmetry. In our discussion below, the following notions will be crucial:

• local gauge transformation,
• gauge force F ,
• connection form A,
• curvature form F (gauge force form), and
• parallel transport of information.

Gauge force. Covariant partial derivatives can be used in order to in-
troduce the following notions:

(a) Gauge force (also called curvature): We define

iF := ∇x∇t −∇t∇x. (1.47)

In physics, the function F is called the force induced by the gauge fields
U, A. Explicitly, we get

F = Ux − At. (1.48)

Relation (1.47) tells us that:
The “gauge force” F measures the non-commutativity of the co-
variant partial derivatives.

In particular, the force F vanishes if the gauge fields U, A vanish. The
proof of (1.48) follows from

∇t(∇xψ) =
(

∂

∂t
+ iU

)
(ψx + iAψ)

= ψtx + iAtψ + iAψt + iUψx − UAψ

and

∇x(∇tψ) =
(

∂

∂x
+ iA

)
(ψt + iUψ)

= ψxt + iUxψ + iUψx + iAψt − AUψ.

Hence (∇x∇t −∇t∇x)ψ = i(Ux − At)ψ. �

The transformation of the force F with respect to the gauge transforma-
tion ψ+(x, t) = eiα(x,y)ψ(x, t) is defined by

iF+ := ∇+
x ∇+

t −∇+
t ∇+

x .

Theorem 1.2 F+ = eiαF e−iα.
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Proof. It follows from Theorem 1.1 on page 37 that

iF+ψ+ = (∇+
x ∇+

t −∇+
t ∇+

x )ψ+ = ∇+
x (eiα∇tψ) −∇+

t (eiα∇xψ)
= eiα(∇x∇tψ −∇t∇xψ) = eiαiFψ = (eiαiF e−iα)ψ+.

�

In the present case, we have the commutativity property F e−iα = e−iαF.
Hence

F+ = eiαe−iαF = F,

that is, the force F is gauge invariant. In more general gauge theories,
the phase factor eiα(x,t) is a matrix. In this case, the force F is not gauge
invariant anymore. However, it is possible to construct gauge invariants
which depend on F . This is the case for the Standard Model in particle
physics (see Vol. III).

(b) Covariant directional derivative: Consider the curve

C : x = x(σ), t = t(σ),

where the curve parameter σ varies in the interval [0, σ0]. The classical
directional derivative along the curve C is defined by

d

dσ
:=

dx(σ)
dσ

∂

∂x
+

dt(σ)
dσ

∂

∂t
.

Explicitly, we get

d

dσ
ψ(x(σ), t(σ)) =

dx(σ)
dσ

ψx(x(σ), t(σ)) +
dt(σ)
dσ

ψt(x(σ), t(σ)).

Similarly, the covariant directional derivative along the curve C is defined
by

D

dσ
:=

dx(σ)
dσ

∇x +
dt(σ)
dσ

∇t.

Explicitly,

D

dσ
ψ(x(σ), t(σ)) =

d

dσ
ψ(x(σ), t(σ)) + iA(x(σ)), t(σ))

dx(σ)
dσ

+iU(x(σ), t(σ))
dt(σ)
dσ

. (1.49)

(c) Parallel transport: We say that the field function ψ is parallel along the
curve C iff

D

dσ
ψ(x(σ), t(σ)) = 0, 0 ≤ σ ≤ σ0. (1.50)

By (1.49), this notion depends on the gauge fields U, A. In particular, if
the gauge fields U, A vanish, then parallel transport means that the field
ψ is constant along the curve C.
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The following observation is crucial. It follows from the key relation (1.45)
on page 36 that the equation (1.50) of parallel transport is invariant under
local gauge transformations. This means that (1.50) implies

D+

dσ
ψ+(x(σ), t(σ)) = 0, 0 ≤ σ ≤ σ0.

Consequently, in terms of mathematics, parallel transport possesses a geo-
metric meaning with respect to local symmetry transformations.

In terms of physics, parallel transport describes the transport of phys-
ical information in space and time.

This transport is local in space and time, which reflects the Faraday–Green
locality principle.

The Cartan differential. The most elegant formulation of gauge theo-
ries is based on the use of the covariant Cartan differential. As a preparation,
let us recall the classical Cartan calculus. We will use the following relations:

dx ∧ dt = −dt ∧ dx, dx ∧ dx = 0, dt ∧ dt = 0. (1.51)

Moreover, the wedge product of three factors of the form dx, dt is always
equal to zero. For example,

dx ∧ dt ∧ dt = 0, dt ∧ dx ∧ dt = 0. (1.52)

For the wedge product, both the distributive law and the associative law are
valid. Let ψ : R

2 → C be a smooth function. By definition,

• dψ := ψxdx + ψtdt.

The differential 1-form

A := iAdx + iUdt (1.53)

is called the Cartan connection form. By definition,

• dA := idA ∧ dx + idU ∧ dt,
• d(ψ dx ∧ dt) = dψ ∧ dx ∧ dt = 0 (Poincaré identity).

The Poincaré identity is a consequence of (1.52).
The covariant Cartan differential. We now replace the classical par-

tial derivatives by the corresponding covariant partial derivatives. Therefore,
we replace dψ by the definition

• Dψ := ∇xψ dx + ∇tψ dt.

Similarly, we define

• DA := iDA ∧ dx + iDU ∧ dt,
• D(ψ dx ∧ dt) = Dψ ∧ dx ∧ dt = 0 (Bianchi identity).
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The Bianchi identity is a consequence of (1.52). Let us introduce the Cartan
curvature form F by setting

F := DA. (1.54)

Theorem 1.3 (i) Dψ = dψ + Aψ.
(ii) F = dA + A ∧A (Cartan’s structural equation).
(iii) DF = 0 (Bianchi identity).

In addition, we have the following relations for the curvature form F :

• F = dA + [U, A]−.22

• F = iFdx ∧ dt, where iF = Ux − At.

Proof. Ad (i). Dψ = (ψx + iAψ)dx + (ψt + iUψ)dt.
Ad (ii). Note that

DA = i(Ax + A2)dx + i(At + iUA)dt,

DU = i(Ux + iAU)dx + (Ut + iU2)dt,

and

A ∧A = −(Adx + Udt) ∧ (Adx + Udt) = (UA − AU) dx ∧ dt.

Hence

DA = iDA ∧ dx + iDU ∧ dt

= i(At + iUA) dt ∧ dx + i(Ux + iAU) dx ∧ dt = dA + A ∧A.

This yields all the identities claimed above. �

The results concerning the curvature form F above show that Cartan’s
structural equation (1.54) is nothing else than a reformulation of the equation

iF = Ux − At,

which relates the force F to the potentials U, A. Furthermore, we will show
in Sect. 5.11 on page 333 that Cartan’s structural equation is closely related
to both

• Gauss’ theorema egregium on the computation of the Gaussian curvature of
a classic surfaces by means of the metric tensor and its partial derivatives,

• and the Riemann formula for the computation of the Riemann curvature
tensor of a Riemannian manifold by means of the metric tensor and its
partial derivatives.

In the present case, the formulas can be simplified in the following way. It
follows from the commutativity property AU = UA that:
22 Here, we use the Lie bracket [U, A]− := UA − AU.
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• F = dA,
• F = iF dx ∧ dt = i(Ux − At) dx ∧ dt.

A similar situation appears in Maxwell’s theory of electromagnetism. For
more general gauge theories, the symbols A and U represent matrices. Then
we obtain the additional nonzero terms [U, A]− and A ∧ A. This is the case
in the Standard Model of elementary particles (see Vol. III).

The mathematical language of fiber bundles. In mathematics, we
proceed as follows:

• We consider the field ψ : R
2 → C as a section of the line bundle R

2 × C

(with typical fiber C) (see Fig. 4.9 on page 208).
• The line bundle R

2×C is associated to the principal fiber bundle R
2×U(1)

(with structure group U(1) called the gauge group in physics).23

• As above, the differential 1-form A := iAdx+iUdt is called the connection
form on the base manifold R

2 of the principal fiber bundle R
2×U(1) , and

• the differential 2-form

F = dA + A ∧A

is called the curvature form on the base manifold R
2 of the principle fiber

bundle R
2 × U(1).

• Finally, we define

Dψ := dψ + Aψ. (1.55)

This is called the covariant differential of the section ψ of the line bundle
R

2 × C.

Observe that:

The values of the gauge field functions iU, iA are contained in the Lie
algebra u(1) of the Lie group U(1). Thus, the connection form A is
a differential 1-form with values in the Lie algebra u(1).

This can be generalized by replacing

• the special commutative Lie group U(1)
• by the the general Lie group G.

Then the values of the gauge fields iU, iA are contained in the Lie algebra LG
to G. If G is a noncommutative Lie group (e.g., SU(N) with N ≥ 2), then the
additional force term A∧A does not vanish identically, as in the special case
of the commutative group U(1).24 In Vol. III on gauge theory, we will show
that the Standard Model in particle physics corresponds to this approach by
choosing the gauge group U(1) × SU(2) × SU(3). Here,
23 Recall that the elements of the Lie group U(1) are the complex numbers eiα with

real parameter α. The elements of the Lie algebra u(1) are the purely imaginary
numbers αi.

24 The Lie group SU(N) consists of all the unitary (N ×N)-matrices whose deter-
minant is equal to one (special unitary group).
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• the electroweak interaction is the curvature of a (U(1) × SU(2))-bundle
(Glashow, Salam and Weinberg in the 1960s), and

• the strong interaction is the curvature of a SU(3)-bundle (Gell-Mann and
Fritzsch in the early 1970s).

Historical remarks. General gauge theory is equivalent to modern dif-
ferential geometry. This will be thoroughly studied in Vol. III. At this point
let us only make a few historical remarks.

In 1827 Gauss proved that the curvature of a 2-dimensional surface
in 3-dimensional Euclidean space is an intrinsic property of the man-
ifold.

This means that the curvature of the surface can be measured without using
the surrounding space. This is the content of Gauss’ theorema egregium. The
Gauss theory was generalized to higher-dimensional manifolds by Riemann
in 1854. Here, the Gaussian curvature has to be replaced by the Riemann
curvature tensor. In 1915 Einstein used this mathematical approach in or-
der to formulate his theory of gravitation (general theory of relativity). In
Einstein’s setting, the masses of celestial bodies (stars, planets, and so on)
determine the Riemann curvature tensor of the four-dimensional space-time
manifold which corresponds to the universe. Thus, Newton’s gravitational
force is replaced by the curvature of a four-dimensional pseudo-Riemannian
manifold M4. The motion of a celestial body (e.g., the motion of a planet
around the sun) is described by a geodesic curve C in M4. Therefore, Ein-
stein’s equation of motion tells us that the 4-dimensional velocity vector of
C is parallel along the curve C. Roughly speaking, this corresponds to (1.50)
where ψ has to be replaced by the velocity field of C. In the framework of
his theory of general relativity, Einstein established the principle

force = curvature

for gravitation. Nowadays, the Standard Model in particle physics is also
based on this beautiful principle which is the most profound connection be-
tween mathematics and physics.

In 1917 Levi-Civita introduced the notion of parallel transport, and he
showed that both the Gaussian curvature of 2-dimensional surfaces and the
Riemann curvature tensor of higher-dimensional manifolds can be computed
by using parallel transport of vector fields along small closed curves. In the
1920s, Élie Cartan invented the method of moving frames.25 In the 1950s,
Ehresmann generalized Cartan’s method of moving frames to the modern
curvature theory for principal fiber bundles (i.e., the fibers are Lie groups)
and their associated vector bundles (i.e., the fibers are linear spaces). In 1963,
Kobayashi and Nomizu published the classic monograph
25 For an introduction to this basic tool in modern differential geometry, we refer

to the textbook by T. Ivey and J. Landsberg, Cartan for Beginners: Differential
Geometry via Moving Frames and Exterior Differential Systems, Amer. Math.
Soc., Providence, Rhode Island, 2003. See also Vol. III.
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Foundations of Differential Geometry,

Vols. 1, 2, Wiley, New York. This finishes a longterm development in math-
ematics.

In 1954, the physicists Yang and Mills created the Yang–Mills theory. It
was their goal to generalize Maxwell’s electrodynamics. To this end, they
started with the observation that Maxwell’s electrodynamics can be formu-
lated as a gauge theory with the gauge group U(1). This was known from
Hermann Weyl’s paper: Elektron und Gravitation, Z. Phys. 56 (1929), 330–
352 (in German). Yang and Mills

• replaced the commutative group U(1)
• by the non-commutative group SU(2).

The group SU(2) consists of all the complex (2×2)-matrices A with AA† = I
and det A = 1. Interestingly enough, in 1954 Yang and Mills did not know
a striking physical application of their model. However, in the 1960s and
1970s, the Standard Model in particle physics was established as a modified
Yang–Mills theory with the gauge group

U(1) × SU(2) × SU(3).

The modification concerns the use of an additional field called Higgs field
in order to generate the masses of the three gauge bosons W+, W−, Z0. In
the early 1970s, Yang noticed that the Yang–Mills theory is a special case of
Ehresmann’s modern differential geometry in mathematics. For the history
of gauge theory, we refer to:

L. Brown et al. (Eds.), The Rise of the Standard Model, Cambridge Uni-
versity Press, 1995.

L. O’Raifeartaigh, The Dawning of Gauge Theory, Princeton University
Press, 1997.

C. Taylor (Ed.), Gauge Theories in the Twentieth Century, World Scien-
tific, Singapore, 2001 (a collection of fundamental articles).

Mathematics and physics. Arthur Jaffe writes the following in his
beautiful survey article Ordering the universe: the role of mathematics in the
Notices of the American Mathematical Society 236 (1984), 589–608:26

There is an exciting development taking place right now, reunification of
mathematics with theoretical physics. . . In the last ten or fifteen years
mathematicians and physicists realized that modern geometry is in fact
the natural framework for gauge theory. The gauge potential in gauge
theory is the connection of mathematics. The gauge field is the mathe-
matical curvature defined by the connection; certain charges in physics are
the topological invariants studied by mathematicians. While the mathe-
maticians and physicists worked separately on similar ideas, they did not

26 Reprinted by permission of the American Mathematical Society. This report was
originated by the National Academy of Sciences of the U.S.A.
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duplicate each other’s efforts. The mathematicians produced general, far-
reaching theories and investigated their ramifications. Physicists worked
out details of certain examples which turned out to describe nature beauti-
fully and elegantly. When the two met again, the results are more powerful
than either anticipated. . . In mathematics, we now have a new motivation
to use specific insights from the examples worked out by physicists. This
signals the return to an ancient tradition.

Felix Klein (1849–1925) writes about mathematics:
Our science, in contrast to others, is not founded on a single period of
human history, but has accompanied the development of culture through
all its stages. Mathematics is as much interwoven with Greek culture as
with the most modern problems in engineering. It not only lends a hand
to the progressive natural sciences but participates at the same time in
the abstract investigations of logicians and philosophers.
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J. Wheeler and K. Ford, Geons, Black Holes, and Quantum Foam: a Life
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46 1. Mathematical Principles of Natural Philosophy

1.10 The Challenge of Dark Matter

Although science teachers often tell their students that the periodic table
of the elements shows what the Universe is made of, this is not true. We
now know that most of the universe – about 96% of it – is made of dark
matter that defies brief description, and certainly is not represented by
Mendeleev’s periodic table. This unseen ‘dark matter’ is the subject of
this book. . .
Dark matter provides a further remainder that we humans are not essential
to the Universe. Ever since Copernicus (1473–1543) and others suggested
that the Earth was not the center of the Universe, humans have been on
a slide away from cosmic significance. At first we were not at the center of
the Solar System, and then the Sun became just another star in the Milky
Way, not even in the center of our host Galaxy. By this stage the Earth
and its inhabitants had vanished like a speck of dust in a storm. This was
a shock.
In the 1930s Edwin Hubble showed that the Milky Way, vast as it is, is a
mere ‘island Universe’ far removed from everywhere special; and even our
home galaxy was suddenly insignificant in a sea of galaxies, then clusters
of galaxies. Now astronomers have revealed that we are not even made of
the same stuff as most of the Universe. While our planet – our bodies, even
– are tangible and visible, most of the matter in the Universe is not. Our
Universe is made of darkness. How do we respond to that?

Ken Freeman and Geoff McNamarra, 2006

This quotation is taken from the monograph by K. Freemann and G. Mc-
Namarra, In Search of Dark Matter, Springer, Berlin and Praxis Publishing
Chichester, United Kingdom, 2006 (reprinted with permission). As an intro-
duction to modern cosmology we recommend the monograph by S. Weinberg,
Cosmology, Oxford University, 2008.


