
Chapter 2

Post-processing Data Mining Models for

Actionability

Qiang Yang

Abstract Data mining and machine learning algorithms are, in the most part, aimed
at generating statistical models for decision making. These models are typically
mathematical formulas or classification results on the test data. However, many of
the output models do not themselves correspond to actions that can be executed.
In this paper, we consider how to take the output of data mining algorithms as in-
put, and produce collections of high-quality actions to perform in order to bring out
the desired world states. This article gives an overview on two of our approaches
in this actionable data mining framework, including an algorithm that extracts ac-
tions from decision trees and a system that generates high-utility association rules
and an algorithm that can learn relational action models from frequent item sets for
automatic planning. These two problems and solutions highlight our novel compu-
tational framework for actionable data mining.

2.1 Introduction

In data mining and machine learning areas, much research has been done on
constructing statistical models from the underlying data. These models include
Bayesian probability models, decision trees, logistic and linear regression models,
kernel machines and support vector machines as well as clusters and association
rules, to name a few [1,11]. Most of these techniques are what we refer to as predic-
tive pattern-based models, in that they summarize the distributions of the training
data in one way or another. Thus, they typically stop short of achieving the final
objectives of data mining by maximizing utility when tested on the test data. The
real action work is waiting to be done by humans, who read the patterns, interpret
them and decide which ones to select to put into actions.

Qiang Yang
Department of Computer Science and Engineering, Hong Kong University of Science and Tech-
nology, e-mail: qyang@cse.ust.hk

11

12 Qiang Yang

In short, the predictive pattern-based models are aimed for human consumption,
similar to what the World Wide Web (WWW) was originally designed for. However,
similar to the movement from Web pages to XML pages, we also wish to see knowl-
edge in the form of machine-executable patterns, which constitutes truly actionable
knowledge.

In this paper, we consider how to take the output of data mining algorithms as
input and produce collections of high-quality actions to perform in order to bring
out the desired world states. We argue that the data mining methods should not stop
when a model is produced, but rather give collections of actions that can be executed
either automatically or semi-automatically, to effect the final outcome of the system.
The effect of the generated actions can be evaluated using the test data in a cross-
validation manner. We argue that only in this way can a data mining system be truly
considered as actionable.

In this paper, we consider three approaches that we have adopted in post-
processing data mining models for generation actionable knowledge . We first con-
sider in the next section how to postprocess association rules into action sets for
direct marketing [14]. Then, we give an overview of a novel approach that extracts
actions from decision trees in order to allow each test instance to fall in a desirable
state (a detailed description is in [16]). We then describe an algorithm that can learn
relational action models from frequent item sets for automatic planning [15].

2.2 Plan Mining for Class Transformation

2.2.1 Overview of Plan Mining

In this section, we first consider the following challenging problem: how to con-
vert customers from a less desirable class to a highly desirable class. In this section,
we give an overview of our approach in building an actionable plan from association
mining results. More detailed algorithms and test results can be found in [14].

We start with a motivating example. A financial company might be interested
in transforming some of the valuable customers from reluctant to active customers
through a series of marketing actions. The objective is find an unconditional se-
quence of actions, a plan, to transform as many from a group of individuals
as possible to a more desirable status. This problem is what we call the class-
transformation problem. In this section, we describe a planning algorithm for the
class-transformation problem that finds a sequence of actions that will transform an
initial undesirable customer group (e.g., brand-hopping low spenders) into a desir-
able customer group (e.g., brand-loyal big spenders).

We consider a state as a group of customers with similar properties. We apply
machine learning algorithms that take as input a database of individual customer
profiles and their responses to past marketing actions and produce the customer
groups and the state space information including initial state and the next states

2 Post-processing Data Mining Models for Actionability 13

after action executions. We have a set of actions with state-transition probabilities.
At each state, we can identify whether we have arrived at a desired class through a
classifier.

Suppose that a company is interested in marketing to a large group of customers
in a financial market to promote a special loan sign-up. We start with a customer-
loan database with historical customer information on past loan-marketing results
in Table 2.1. Suppose that we are interested in building a 3-step plan to market to
the selected group of customers in the new customer list. There are many candidate
plans to consider in order to transform as many customers as possible from non-
sign-up status to a sign-up one. The sign-up status corresponds to a positive class
that we would like to move the customers to, and the non-signup status corresponds
to the initial state of our customers. Our plan will choose not only low-cost actions,
but also highly successful actions from the past experience. For example, a candidate
plan might be:

Step 1: Offer to reduce interest rate;
Step 2: Send flyer;
Step 3: Follow up with a home phone call.

Table 2.1 An example of Customer table

Customer Interest Rate Flyer Salary Signup
John 5% Y 110K Y
Mary 4% N 30K Y

...
Steve 8% N 80K N

This example introduces a number of interesting aspects for the problem at hand.
We consider the input data source, which consists of customer information and their
desirability class labels. In this database of customers, not all people should be con-
sidered as candidates for the class transformation, because for some people it is too
costly or nearly impossible to convert them to the more desirable states. Our output
plan is assumed to be an unconditional sequence of actions rather than conditional
plans. When these actions are executed in sequence, no intermediate state informa-
tion is needed. This makes the group marketing problem fundamentally different
from the direct marketing problem. In the former, the aim is to find a single se-
quence of actions with maximal chance of success without inserting if-branches in
the plan. In contrast, for direct marketing problems, the aim is to find conditional
plans such that a best decision is taken depending on the customers’ intermediate
state. These are best suited for techniques such as the Markov Decision Processes
(MDP) [5, 10, 13].

14 Qiang Yang

2.2.2 Problem Formulation

To formulate the problem as a data mining problem, we first consider how to
build a state space from a given set of customer records and a set of plan traces
in the past. We have two datasets as input. As in any machine learning and data
mining schemes, the input customer records consist of a set of attributes for each
customer, along with a class attribute that describes the customer status. A second
source of input is the previous plans recorded in a database. We also have the costs of
actions. As an example, after a customer receives a promotional mail, the customer’s
response to the marketing action is obtained and recorded. As a result of the mailing,
the action count for the customer in this marketing campaign is incremented by one,
and the customer may have decided to respond by filling out a general information
form and mailing it back to the bank. Table 2.2 shows an example of plan trace
table.

Table 2.2 A set of plan traces as input

Plan # State0 Action0 State1 Action1 State2
Plan1 S0 A0 S1 A1 S5
Plan2 S0 A0 S1 A2 S5
Plan3 S0 A0 S1 A2 S6
Plan4 S0 A0 S1 A2 S7
Plan5 S0 A0 S2 A1 S6
Plan6 S0 A0 S2 A1 S8
Plan7 S0 A1 S3
Plan8 S0 A1 S4

2.2.3 From Association Rules to State Spaces

From the customer records, a can be constructed by piecing together the associ-
ation rule mining [1]. Each state node corresponds to a state in planning, on which
a classification model can be built to classify a customer falling onto this state into
either a positive (+) or a negative (-) class based on the training data. Between two
states in this state space, an edge is defined as a state-action sequence which allows
a probabilistic mapping from a state to a set of states. A cost is associated with each
action.

To enable planning in this state space, we apply sequential association rule min-
ing [1] to the plan traces. Each rule is of the form: S1,a1,a2, . . . ,→ Sn, where each
ai is an action, S1 and Sn are the initial and end states for this sequence of actions.
All actions in this rule start from S1 and follow the order in the given sequence to
result in Sn. By only keeping the sequential rules that have high enough support,

2 Post-processing Data Mining Models for Actionability 15

we can get segments or paths that we can piece together to form a search space. In
particular, in this space, we can gather the following information:

• fs(ri) = s j maps a customer record ri to a state s j. This function is known as
the customer-state mapping function. In our work, this function is obtained by
applying odd-log ratio analysis [8] to perform a feature selection in the cus-
tomer database. Other methods such as Chi-squared methods or PCA can also
be applied.

• p(+|s) is the classification function that is represented as a probability function.
This function returns the conditional probability that state s is in a desirable
class. We call this function the state-classification function;

• p(sk|si,a j) returns the transition probability that, after executing an action a j in
state si, one ends up in state sk.

Once the customer records have been converted to states and the state transitions,
we are now ready to consider the notion of a plan. To clarify matters, we describe the
state space as an AND/OR graph. In this graph, there are two types of node. A state
node represents a state. From each state node, an action links the state node to an
outcome node, which represents the outcome of performing the action from the state.
An outcome node then splits into multiple state nodes according to the probability
distribution given by the p(sk|si,a j) function. This AND/OR graph unwraps the
original state space, where each state is an OR node and the actions that can be
performed on the node form the OR branches. Each outcome node is an AND node,
where the different arcs connecting the outcome node to the state nodes are the AND
edges. Figure 2.1 is an example AND/OR graph. An example plan in this space is
shown in Figure 2.2.

Fig. 2.1 An example of AND/OR graph

We define the utility U(s,P) of the plan P = a1a2 . . .an from an initial state s
as follows. Let P′ be the subplan of P after taking out the first action a1; that is,
P = a1P′. Let S be a set of states. Then the utility of the plan P is defined recursively

16 Qiang Yang

��

�� ��

�� �� ��

���	

�������

�������

Fig. 2.2 An example of a plan

U(s,P) = (∑
s′∈S

p(s′|s,a1)∗U(s′,P′))− cost(a1) (2.1)

where s′ is the next state resulting from executing a1 in state s. The plan from the
leaf node s is empty and has a utility

U(s,{}) = p(+|s)∗R(s) (2.2)

p(+|s) is the probability of leaf node s being in the desired class, R(s) is a reward (a
real value) for a customer to be in state s.

Using Equations 2.1 and 2.2, we can evaluate the utility of a plan P under an
initial state U(s0,P).

Let next(s,a) be the set of states resulting from executing action a in state s. Let
P(s,a,s′) be the probability of landing in s′ after executing a in state s. Let R(s,a)
be the immediate reward of executing a in state s. Finally, let U(s,a) be the utility
of the optimal plan whose initial state is s and whose first action is a. Then

U(s,a) = R(s,a)+ γ max
a′

{Σs′∈next(s,a)U(s′,a′)P(s,a,s′)} (2.3)

This equation provides the foundation for the class-transformation planning solu-
tion: in order to increase the utility of plans, we need to reduce costs (-R(s,a)) and
increase the utility of the expected utility of future plans. In our algorithm below,
we achieve this by minimizing the cost of the plans while at the same time, increase
the expected probability for the terminal states to be in the positive class.

2 Post-processing Data Mining Models for Actionability 17

2.2.4 Algorithm for Plan Mining

We build an AND-OR space using the retained sequences that are both begin-
ning and ending with states and have high enough frequency. Once the frequent
sequences are found, we piece together the segments of paths corresponding to the
sequences to build an abstract AND-OR graph in which we will search for plans. If
〈s1,a1,s2〉 and 〈s2,a3,s3〉 are two segments found by the string-mining algorithm,
then 〈s1,a1,s2,a2,s3〉 is a new path in the AND-OR graph.

We use a utility function to denote how “good" a plan is. Let s0 be an initial
state and P be a plan. Let be a function that sums up the cost of each action in the
plan. Let U(s,P) be a heuristic function estimating how promising the plan is for
transferring customers initially belonging to state s. We use this function to perform
a best-first search in the space of plans until the termination conditions are met. The
termination conditions are determined by the probability or the length constraints in
the problem domain.

The overall algorithm follows the following steps.

Step 1. Association Rule Mining.

Significant state-action sequences in the state space can be discovered through a
association-rule mining algorithm. We start by defining a minimum-support thresh-
old for finding the frequent state-action sequences. Support represents the number
of occurrences of a state-action sequence from the plan database. Let count(seq) be
the number of times sequence “seq" appears in the database for all customers. Then
the support for sequence “seq" is defined as

sup(seq) = count(seq),

Then, association-rule mining algorithms based on moving windows will generate
a set of state-action subsequences whose supports are no less than a user-defined
minimum support value. For connection purpose, we only retained substrings both
beginning and ending with states, in the form of 〈si,a j,si+1, ...,sn〉.

Step 2: Construct an AND-OR space.

Our first task is to piece together the segments of paths corresponding to the se-
quences to build an abstract AND/OR graph in which we will search for plans. Sup-
pose that 〈s0,a1,s2〉 and 〈s2,a3,s4〉 are two segments from the plan trace database.
Then 〈s0,a1,s2,a3,s4〉 is a new path in the AND/OR graph. Suppose that we wish to
find a plan starting from a state s0, we consider all action sequences in the AND/OR
graph that start from s0 satisfying the length or probability constraints.

18 Qiang Yang

Step 3. Define a heuristic function

We use a function U(s,P) = g(P) + h(s,P) to estimate how “good" a plan is.
Let s be an initial state and P be a plan. Let g(P) be a function that sums up the
cost of each action in the plan. Let h(s,P) be a heuristic function estimating how
promising the plan is for transferring customers initially belonging to state s. In A*
search, this function can be designed by users in different specific applications. In
our work, we estimate h(s,P) in the following manner. We start from an initial state
and follow a plan that leads to several terminal states si, si+1,..., si+ j. For each of
these terminal states, we estimate the state-classification probability p(+|si). Each
state has a probability of 1− p(+|si) to belong to a negative class. The state requires
at least one further action to proceed to transfer the 1− p(+|si) percent who remain
negative, the cost of which is at least the minimum of the costs of all actions in the
action set. We compute a heuristic estimation for all terminal states where the plan
leads. For an intermediate state leading to several states, an expected estimation is
calculated from the heuristic estimation of its successive states weighted by the tran-
sition probability p(sk|si,a j). The process starts from terminal states and propagates
back to the root, until reaching the initial state. Finally, we obtain the estimation of
h(s,P) for the initial state s under the plan P.

Based on the above heuristic estimation methods, we can express the heuristic
function as follows.

h(s,P) = ΣaP(s,a,s′)h(s′,P′) for non terminal states (2.4)
(1−P(+|s))cost(am) for terminal states

where P′ is the subplan after the action a such that P = aP′. In the MPlan algorithm,
we next perform a best-first search based on the cost function in the space of plans
until the termination condition is met.

Step 4. Search Plans using MPlan

In the AND/OR graph, we carry out a procedure MPlan search to perform a
best-first search for plans. We maintain a priority queue Q by starting with a single-
action plan. Plans are sorted in the priority queue in terms of the evaluation function
U(s,P).

In each iteration of the algorithm, we select the plan with the minimum value
of U(s,P) from the queue. We then estimate how promising the plan is. That is,
we compute the expected state-classification probability E(+|s0,P) from back to
front in a similar way as with h(s,P) calculation, starting with the p(+|si) of all
terminal states the plan leads to and propagating back to front, weighted by the
transition probability p(sk|si,a j). We compute E(+|s0,P), the expected value of the
state-classification probability of all terminal states. If this expected value exceeds a
predefined threshold Success_T hreshold pθ , i.e. the probability constraint, we con-
sider the plan to be good enough whereupon the search process terminates. Other-

2 Post-processing Data Mining Models for Actionability 19

wise, one more action is appended to this plan and the new plans are inserted into the
priority queue. E(+|s0,P) is the expected state-classification probability estimating
how “effective" a plan is at transferring customers from state si. Let P = a jP′. The
E() value can be defined in the following recursive way:

E(+|si,P) = ∑ p(sk|si,a j)∗E(+|sk,P′), if si is a non-terminal state (2.5)
E(+|si,{}) = p(+|si), if si is a terminal state

We search for plans from all given initial states that corresponds to negative-class
customers. We find a plan for each initial state. It is possible that in some AND/OR
graphs, we cannot find a plan whose E(+|s0,P) exceeds the Success_T hreshold, ei-
ther because the AND/OR graph is over simplified or because the success threshold
is too high. To avoid search indefinitely, we define a parameter maxlength which
defines the maximum length of a plan, i.e. applying the length constraint. We will
discard a candidate plan which is longer than the maxlength and E(+|s0) value less
than the Success_T hreshold.

2.2.5 Summary

We have evaluated the MPlan algorithm using several datasets, and compared to
a variety of algorithms. One evaluation was done with the IBM Synthetic Generator
(http://www.almaden.ibm.com/software/quest/Resources
/datasets/syndata.html) to generate a Customer data set with two classes (positive
and negative) and nine attributes. The attributes include both numerical values and
discrete values. In this data set, the positive class has 30,000 records representing
successful customers and the negative class corresponds to 70,000 representing un-
successful customers. Those 70,000 negative records are treated as starting points
for plan trace generation. For the plan traces, the 70,000 negative-class records are
treated as an initially failed customer. A trace is then generated for the customer,
transforming the customer through intermediate states to a final state. We defined
four types of action, each of which has a cost and associated impact on attribute
transitions. The total utility of plans is TU , which is TU = ∑s∈S U(s,Ps), where Ps
is the plan found starting from a state s, and S is the set of all initial states in the test
data set.400 states serve as the initial states. The total utility is calculated on these
states in the test data set.

For comparison, we implemented the QPlan algorithm in [12] which uses Q-
learning to get an optimal policy and then extracts the unconditional plans from the
state space. This algorithm is known as QPlan. Q-learning is carried out in the way
called batch reinforcement learning [10], because we are processing a very large
amount of data accumulated from past transaction history. The traces consisting of
sequences of states and actions in plan database are training data for Q-learning.
Q-learning tries to estimate the value function Q(s,a) by value iteration. The major

20 Qiang Yang

computational complexity of QPlan is on Q-learning, which is carried out once
before the extraction phase starts.

Figure 2.3 shows the relative utility of different algorithms versus plan lengths.
OptPlan has the maximal utility by exhaustive search; thus its plan’s utility is at
100%. MPlan comes next, with about 80% of the optimal solution. QPlan have less
than 70% of the optimal solution.

Fig. 2.3 Relative utility plan lengths

In this section, we explored data mining for planning . Our approach combines
both classification and planning in order to build an state space in which high utility
plans are obtained. The solution plans transform groups of customers from a set of
initial states to positive class states.

2.3 Extracting Actions from Decision Trees

2.3.1 Overview

In the section above, we have considered how to construct a state space from
association rules. From the state space we can then build a plan. In this section, we
consider how to build a decision tree first, from which we can extract actions to im-
proving the current standing of individuals (a more detailed description can be found
in [16]). Such examples often occur in customer relationship management (CRM)
industry, which is experiencing more and more competitions in recent years. The
battle is over their most valuable customers. An increasing number of customers
are switching from one service provider to another. This phenomenon is called cus-
tomer “attrition" , which is a major problem for these companies to stay profitable.

2 Post-processing Data Mining Models for Actionability 21

It would thus be beneficial if we could convert a valuable customer from a likely
attrition state to a loyal state. To this end, we exploit decision tree algorithms.

Decision-tree learning algorithms, such as ID3 or C4.5 [11], are among the most
popular predictive methods for classification. In CRM applications, a decision tree
can be built from a set of examples (customers) described by a set of features in-
cluding customer personal information (such as name, sex, birthday, etc.), financial
information (such as yearly income), family information (such as life style, number
of children), and so on. We assume that a decision tree has already been generated.

To generate actions from a decision tree, our first step is to consider how to
extract actions when there is no restriction on the number of actions to produce.
In the training data, some values under the class attribute are more desirable than
others. For example, in the banking application, the loyal status of a customer “stay”
is more desirable than “not stay”. For each of the test data instance, which is a
customer under our consideration, we wish to decide what sequences of actions to
perform in order to transform this customer from “not stay" to “stay" classes. This
set of actions can be extracted from the decision trees.

We first consider the case of unlimited resources where the case serves to intro-
duce our computational problem in an intuitive manner. Once we build a decision
tree we can consider how to “move” a customer into other leaves with higher prob-
abilities of being in the desired status. The probability gain can then be converted
into an expected gross profit. However, moving a customer from one leaf to an-
other means some attribute values of the customer must be changed. This change,
in which an attribute A’s value is transformed from v1 to v2, corresponds to an ac-
tion. These actions incur costs. The cost of all changeable attributes are defined in
a cost matrix by a domain expert. The leaf-node search algorithm searches
all leaves in the tree so that for every leaf node, a best destination leaf node is found
to move the customer to. The collection of moves are required to maximize the net
profit, which equals the gross profit minus the cost of the corresponding actions.

For continuous attributes, such as interest rates that can be varied within a certain
range, the numerical ranges can be discretized first using a number of techniques for
feature transformation. For example, the entropy based discretization method can be
used when the class values are known [7]. Then, we can build a cost matrix for each
attribute using the discretized ranges as the index values.

Based on a domain-specific cost matrix for actions, we define the net profit of an
action to be as follows.

PNet = PE ×Pgain −∑
i

COSTi (2.6)

where PNet denotes the net profit, PE denotes the total profit of the customer in the
desired status, Pgain denotes the probability gain, and COSTi denotes the cost of each
action involved.

22 Qiang Yang

2.3.2 Generating Actions from Decision Trees

The overall process of the algorithm can be briefly described in the following
four steps:

1. Import customer data with data collection, data cleaning, data pre-processing,
and so on.

2. Build customer profiles using an improved decision-tree learning algorithm [11]
from the training data. In this case, a decision tree is built from the training data
to predict if a customer is in the desired status or not. One improvement in the
decision tree building is to use the area under the curve (AUC) of the ROC
curve [4] to evaluate probability estimation (instead of the accuracy). Another
improvement is to use Laplace Correction to avoid extreme probability values.

3. Search for optimal actions for each customer. This is a critical step in which
actions are generated. We consider this step in detail below.

4. Produce reports for domain experts to review the actions and selectively deploy
the actions.

The following leaf-node search algorithm for searching the best actions is
the simplest of a series of algorithms that we have designed. It assumes that there
is an unlimited number of actions that can be taken to convert a test instance to a
specified class:

Algorithm leaf-node search

1. For each customer x, do
2. Let S be the source leaf node in which x falls into;
3. Let D be a destination leaf node for x the maximum net profit PNet ;
4. Output (S,D,PNet);

Fig. 2.4 An example of action generation from a decision tree

2 Post-processing Data Mining Models for Actionability 23

To illustrate, consider an example shown in Figure 2.4, which represents an
overly simplified, hypothetical decision tree as the customer profile of loyal cus-
tomers built from a bank. The tree has five leaf nodes (A, B, C, D, and E), each
with a probability of customers’ being loyal. The probability of attritors is simply
1 minus this probability. Consider a customer Jack who’s record states that the Ser-
vice = Low (service level is low), Sex = M (male), and Rate=L (mortgage rate is
low). The customer is classified by the decision tree. It can be seen that Jack falls
into the leaf node B, which predicts that Jack will have only 20% chance of being
loyal (or Jack will have 80% chance to churn in the future). The algorithm will now
search through all other leaves (A, C, D, E) in the decision tree to see if Jack can be
“replaced” into a best leaf with the highest net profit.

Consider leaf A. It does have a higher probability of being loyal (90%), but the
cost of action would be very high (Jack should be changed to female), so the net
profit is a negative infinity. Now consider leaf node C. It has a lower probability of
being loyal, so the net profit must be negative, and we can safely skip it.

Notice that in the above example, the actions suggested for a customer-status
change imply only correlations rather than causality between customer features and
status.

2.3.3 The Limited Resources Case

Our previous case considered each leaf node of the decision tree to be a separate
customer group. For each such customer group, we were free to design actions to
act on it in order to increase the net profit. However, in practice, a company may be
limited in its resources. For example, a mutual fund company may have a limited
number k (say three) of account managers, each manager can take care of only
one customer group. Thus, when such limitations exist, it is a difficult problem to
optimally merge all leave nodes into k segments, such that each segment can be
assigned to an account manager. To each segment, the responsible manager can
several apply actions to increase the overall profit.

This limited-resource problem can be formulated as a precise computational
problem. Consider a decision tree DT with a number of source leaf nodes that corre-
spond to customer segments to be converted and a number of candidate destination
leaf nodes, which correspond to the segments we wish customers to fall in.

A solution is a set of k targetted nodes {Gi, i = 1,2, . . . ,k}, where each node
corresponds to a ‘goal’ that consists of a set of source leaf nodes Si j and one des-
ignation leaf node Di, denoted as: ({Si j, j = 1,2, . . . , |Gi|} → Di), where Si j and Di
are leaf nodes from the decision tree DT . The goal node is meant to transform cus-
tomers that belong to the source nodes S to the destination node D via a number of
attribute-value changing actions. Our aim is to find a solution with the maximal net
profit.

In order to change the classification result of a customer x from S to D, one may
need to apply more than one attribute-value changing action. An action A is defined

24 Qiang Yang

as a change to an attribute value for an attribute Attr. Suppose that for a customer
x, the attribute Attr has an original value u. To change its value to v, an action is
needed. This action A is denoted as A = {Attr,u → v}.

To achieve a goal of changing a customer x from a leaf node S to a destina-
tion node D, a set of actions that contains more than one action may be needed.
Specifically, consider the path between the root node and D in the tree DT . Let
{(Attri = vi), i = 1,2, . . . ,ND} be set of attribute-values along this path. For x, let
the corresponding attribute-values be {(Attri = ui), i = 1,2, ...ND}. Then, the ac-
tions of the form can be generated: ASet = {(Attri,ui → vi), i = 1,2, . . . ,ND}, where
we remove all null actions where ui is identical to vi (thus no change in value is
needed for an Attri). This action set ASet can be used for achieving the goal S → D.

The net profit of converting one customer x from a leaf node S to a destination
node D is defined as follows. Consider a set of actions ASet for achieving the goal
S → D. For each action Attri,u → v in ASet, there is a cost as defined in the cost
matrix: C(Attri,u,v). Let the sum of the cost for all of ASet be Ctotal,S→D(x).

The BSP problem is to find best k groups of source leaf nodes {Groupi, i =
1,2, . . . ,k} and their corresponding goals and associated action sets to maximize the
total net profit for a given test dataset Ctest .

The BSP problem is essentially a maximum coverage problem [9], which aims at
finding k sets such that the total weight of elements covered is maximized , where the
weight of each element is the same for all the sets. A special case of the BSP problem
is equivalent to the maximum coverage problem with unit costs. Thus, we know
that the BSP problem is NP-Complete. Our aim will then be to find approximation
solutions to the BSP problem.

To solve the BSP problem, one needs to examine every combination of k action
sets, the computational complexity is O(nk), which is exponential in the value of k.
To avoid the exponential worst-case complexity, we have also developed a greedy
algorithm which can reduce the computational cost and guarantee the quality of the
solution at the same time.

Initially, our greedy search based algorithm Greedy-BSP starts with an empty
result set C = /0. The algorithm then compares all the column sums that corresponds
to converting all leaf nodes S1 to S4 to each destination leaf node Di in turn. It found
that ASet2 = (→ D2) has the current maximum profit of 3 units. Thus, the resultant
action set C is assigned to {ASet2}.

Next, Greedy-BSP considers how to expand the customer groups by one. To
do this, it considers which additional column will increase the total net profit to
a highest value, if we can include one more column. In [16], we present a large
number of experiments to show that the greedy search algorithm performs close to
the optimal result.

2 Post-processing Data Mining Models for Actionability 25

2.4 Learning Relational Action Models from Frequent Action

Sequences

2.4.1 Overview

Above we have considered how to postprocess traditional models that are ob-
tained from data mining in order to generate actions. In this section, we will give an
overview on how take a data mining model and postprocess it into a action model
that can be executed for plan generation. These actions can be used by robots, soft-
ware agents and process management software for many advanced applications. A
more detailed discussion can be found in [15].

To understand how actions are used, we can recall that automatic planning sys-
tems can take formal definitions of actions, an initial state and a goal state descrip-
tion as input, and produce plans for execution. In the past, the task of building action
models has been done manually. In the past, various approaches have been explored
to learn action models from examples. In this section, we describe our approach
in automatically acquiring action models from recorded user plans. Our system is
known as ARMS , which stands for Action-Relation Modelling System ; a more de-
tailed description is given in [15]. The input to the ARMS system is a collection of
observed traces. Our algorithm applies frequent itemset mining algorithm to these
traces to find out the collection of frequent action-sets. These actions sets are then
taken as the input to another modeling system known as weighted MAX-SAT, which
can generate relational actions.

Consider an example input and output of our algorithm in the Depot problem
domain from an AI Planning competition [2, 3]. As part of the input, we are given
relations such as (clear ?x:surface) to denote that ?x is clear on top and that ?x is of
type “surface", relation (at ?x:locatable ?y:place) to denote that a locatable object ?x
is located at a place ?y . We are also given a set of plan examples consisting of action
names along with their parameter list, such as drive(?x:truck ?y:place ?z:place),
and then lift(?x:hoist ?y:crate ?z:surface ?p:place). We call the pair consisting of an
action name and the associated parameter list an action signature; an example of
an action signature is drive(?x:truck ?y:place ?z:place). Our objective is to learn an
action model for each action signature, such that the relations in the preconditions
and postconditions are fully specified.

A complete description of the example is shown in Table 2.3, which lists the
actions to be learned, and Table 2.4, which displays the training examples. From the
examples in Table 2.4, we wish to learn the preconditions, add and delete lists of
all actions. Once an action is given with the three lists, we say that it has a complete
action model. Our goal is to learn an action model for every action in a problem
domain in order to “explain" all training examples successfully. An example output

26 Qiang Yang

from our learning algorithms for the load(?x ?y ?z ?p) action signature is:
action load(?x:hoist ?y:crate ?z:truck ?p:place)
pre: (at ?x ?p), (at ?z ?p), (lifting ?x ?y)
del: (lifting ?x ?y)
add: (at ?y ?p), (in ?y ?z), (available ?x), (clear ?y)

Table 2.3 Input Domain Description for Depot Planning Domain

domain Depot
types place locatable - object

depot distributor - place
truck hoist surface - locatable
pallet crate - surface

relations (at ?x:locatable ?y:place)
(on ?x:crate ?y:surface)
(in ?x:crate ?y:truck)
(lifting ?x:hoist ?y:crate)
(available ?x:hoist)
(clear ?x:surface)

actions drive(?x:truck ?y:place ?z:place)
lift(?x:hoist ?y:crate ?z:surface ?p:place)
drop(?x:hoist ?y:crate ?z:surface ?p:place)
load(?x:hoist ?y:crate ?z:truck ?p:place)
unload(?x:hoist ?y:crate ?z:truck ?p:place)

As part of the input, we need sequences of example plans that have been executed
in the past, as shown in Table 2.4. Our job is to formally describe actions such as
lift such that automatic planners can use them to generate plans. These training plan
examples can be obtained through monitoring devices such as sensors and cameras,
or through a sequence of recorded commands through a computer system such as
UNIX domains. These action models can then be revised using interactive systems
such as GIPO.

2.4.2 ARMS Algorithm: From Association Rules to Actions

To build action models, ARMS proceeds in two phases. Phase one of the al-
gorithm applies association rule mining algorithms to find the frequent action sets
from plans that share a common set of parameters. In addition, ARMS finds some
frequent relation-action pairs with the help of the initial state and the goal state.
These relation-action pairs give us an initial guess on the preconditions, add lists
and delete lists of actions in this subset. These action subsets and pairs are used to
obtain a set of constraints that must hold in order to make the plans correct.

In phase two, ARMS takes the frequent item sets as input, and transforms them
into constraints in the form of a weighted MAX-SAT representation [6]. It then
solves it using a weighted MAX-SAT solver and produces action models as a result.

2 Post-processing Data Mining Models for Actionability 27

Table 2.4 Three plan traces as part of the training examples

Plan1 Plan2 Plan3
Initial I1 I2 I3
Step1 lift(h1 c0 p1 ds0), lift(h1 c1 c0 ds0) lift(h2 c1 c0 ds0)

drive(t0 dp0 ds0)
State (lifting h1 c1)
Step2 load(h1 c0 t0 ds0) load(h1 c1 t0 ds0) load(h2 c1 t1 ds0)
Step3 drive(t0 ds0 dp0) lift(h1 c0 p1 ds0) lift(h2 c0 p2 ds0),

drive(t1 ds0 dp1)
State (available h1)
Step4 unload(h0 c0 t0 dp0) load(h1 c0 t0 ds0) unload(h1 c1 t1 dp1),

load(h2 c0 t0 ds0)
State (lifting h0 c0)
Step5 drop (h0 c0 p0 dp0) drive(t0 ds0 dp0) drop(h1 c1 p1 dp1),

drive(t0 ds0 dp0)
Step6 unload(h0 c1 t0 dp0) unload(h0 c0 t0 dp0)
Step7 drop(h0 c1 p0 dp0) drop(h0 c0 p0 dp0)
Step8 unload(h0 c0 t0 dp0)
Step9 drop(h0 c0 c1 dp0)
Goal (on c0 p0) (on c1 p0) (on c0 p0)

(on c0 c1) (on c1 p1)

I1 : (at p0 dp0), (clear p0), (available h0), (at h0 dp0), (at t0 dp0), (at p1 ds0), (clear c0), (on c0
p1), (available h1), (at h1 ds0)
I2 : (at p0 dp0), (clear p0), (available h0), (at h0 dp0), (at t0 ds0), (at p1 ds0), (clear c1), (on c1
c0), (on c0 p1), (available h1), (at h1 ds0)
I3 : (at p0 dp0), (clear p0), (available h0), (at h0 dp0), (at p1 dp1), (clear p1), (available h1), (at h1
dp1), (at p2 ds0), (clear c1), (on c1 c0), (on c0 p2), (available h2), (at h2 ds0), (at t0 ds0), (at t1
ds0)

The process iterates until all actions are modeled. While the action models that
ARMS learns are deterministic in nature, in the future we will extend this framework
to learning probabilistic action models to handle uncertainty. Additional constraints
are added to allow partial observations to be made between actions, prove the formal
properties of the system. In [15], ARMS was tested successfully on all STRIPS
planning domains from a recent AI Planning Competition based on training action
sequences.

The algorithm starts by initializing the plans by replacing the actual parameters of
the actions by variables of the same types. This ensures that we learn action models
for the schemata rather than for the individual instantiated actions. Subsequently,
the algorithm iteratively builds a weighted MAX-SAT representation and solves
it. In each iteration, a few more actions are explained and are removed from the
incomplete action set Λ . The learned action models in the middle of the program
help reduce the number of clauses in the SAT problem. ARMS terminates when all
action schemata in the example plans are learned.

Below, we explain the major steps of the algorithm in detail.

28 Qiang Yang

Step 1: Initialize Plans and Variables

A plan example consists of a sequence of action instances. We convert all such
plans by substituting all occurrences of an instantiated object in every action in-
stance with the variables of the same type. If the object has multiple types, we gener-
ate a clause to represent each possible type for the object. For example, if an object o
has two types Block and Table, the clause becomes: {(?o = Block) or (?o = Table)}.
We then extract from the example plans all sets of actions that are connected to each
other; two actions a1 and a2 are said to be connected if their parameter-type list has
non-empty intersection. The parameter mapping {?x1 =?x2, . . .} is called a connec-
tor.

Step 2: Build Action and Plan Constraints

A weighted MAX-SAT problem consists of a set of clauses representing their
conjunction, where each clause is associated with a weight value representing
the priority in satisfying the constraint. Given a weighted MAX-SAT problem, a
weighted MAX-SAT solver finds a solution by maximizing the sum of the weight
values associated with the satisfied clauses.

In the ARMS system, we have four kinds of constraints to satisfy, representing
three types of clauses. They are action, information and plan and relation constraints.

Action constraints are imposed on individual actions. These constraints are de-
rived from the general axioms of correct action representations. A relation r is said
to be relevant to an action a if they are the same parameter type. Let prei,addi and
deli represent ai’s precondition list, add-list and delete list.

Step 3: Build and Solve a Weighted MAX-SAT Problem

In solving a weighted MAX-SAT problem in Step 3, each clause is associated
with a weight value between zero and one. The higher the weight, the higher the
priority in satisfying the clause. ARMS assigns weights to the three types of con-
straints in the weighted MAX-SAT problem described above. For example, every
action constraint receives a constant weight WA(a) for an action a. The weight for
action constraints is set to be higher than the weight of information constraints.

2.4.3 Summary of ARMS

In this section, we have considered how to obtain action models from a set of plan
examples. Our method is to first apply association rule mining algorithm on the plan
traces to obtain the frequent action sequences. We then convert these frequent action
sequences into constraints that are fed into a MAXSAT solver. The solution can

2 Post-processing Data Mining Models for Actionability 29

then be converted to action models. These action models can be used by automatic
planners to generate new plans.

2.5 Conclusions and Future Work

Most data mining algorithms and tools produce only statistical models in their
outputs. In this paper, we present a new framework to take these results as input and
produce a set of actions or action models that can bring about the desired changes.
We have shown how to use the result of association rule mining to build a state
space graph, based on which we then performed automatic planning for generating
marketing plans. From decision trees, we have explored how to extract action sets to
maximize the utility of the end states. For association rule mining, we have consid-
ered how to construct constraints in a weighted MAX-SAT representation in order
to determine the relational representation of action models.

In our future work, we will research on other methods for actionable data mining,
to generate collections of useful actions that a decision maker can apply in order to
generated the needed changes.

Acknowledgement

We thank the support of Hong Kong RGC 621307.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proceedings of
20th International Conference on Very Large Data Bases(VLDB’94), pages 487–499. Morgan
Kaufmann, September 1994.

2. Maria Fox and Derek Long. PDDL2.1: An extension to pddl for expressing temporal planning
domains. Journal of Artificial Intelligence Research, 20:61–124, 2003.

3. Malik Ghallab, Adele Howe, Craig Knoblock, Drew McDermott, Ashwin Ram, Manuela
Veloso, Dan Weld, and David Wilkins. PDDL—the planning domain definition language,
1998.

4. Jin Huang and Charles X. Ling. Using auc and accuracy in evaluating learning algorithms.
IEEE Trans. Knowl. Data Eng, 17(3):299–310, 2005.

5. L. Kaelbling, M. Littman, and A. Moore. Reinforcement learning: A survey. Journal of
Artificial Intelligence Research, 4:237–285, 1996.

6. Henry Kautz and Bart Selman. Pushing the envelope: Planning, propositional logic, and
stochastic search. In Proceedings of the Thirteenth National Conference on Artificial Intelli-
gence (AAAI 1996), pages 1194–1201, Portland, Oregon USA, 1996.

7. Ron Kohavi and Mehran Sahami. Error-based and entropy-based discretization of continuous
features. In Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining, pages 114–119, Portland, Oregon USA, 1996.

30 Qiang Yang

8. D. Mladenic and M. Grobelnik. Feature selection for unbalanced class distribution and naive
bayes. In Proceedings of ICML 1999., 1999.

9. M.R.Garey and D.S. Johnson. Computers and Intractability: A guide to the Theory of NPCom-
pleteness. 1979.

10. E. Pednault, N. Abe, and B. Zadrozny. Sequential cost-sensitive decision making with re-
inforcement learning. In Proceedings of the Eighth International Conference on Knowledge
Discovery and Data Mining (KDD’02), 2002.

11. J.Ross Quinlan. C4.5 Programs for machine learning. Morgan Kaufmann, 1993.
12. R. Sun and C. Sessions. Learning plans without a priori knowledge. Adaptive Behavior,

8(3/4):225–253, 2001.
13. R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge,

MA, 1998.
14. Qiang Yang and Hong Cheng. Planning for marketing campaigns. In International Conference

on Automated Planning and Scheduling (ICAPS 2003), pages 174–184, 2003.
15. Qiang Yang, Kangheng Wu, and Yunfei Jiang. Learning action models from plan examples

using weighted max-sat. Artif. Intell., 171(2-3):107–143, 2007.
16. Qiang Yang, Jie Yin, Charles Ling, and Rong Pan. Extracting actionable knowledge from

decision trees. IEEE Trans. on Knowl. and Data Eng., 19(1):43–56, 2007.

