
Chapter 2 

Q U A N T U M C O M P U T E R SIMULATION 

Chapter 1 discussed quantum computing in non-technical terms and 
in reference to simple, idealized physical models. In this chapter we 
make the underlying mathematics explicit and show how one can sim­
ulate, albeit inefficiently, the behavior of a quantum computer on an 
ordinary (classical) digital computer. Such simulation is necessary for 
the "fitness evaluation" steps of the methods for automatic quantum 
computer programming that will be described later in this book. 

1. Bits, Qubits, and Gates 
In classical computing the fundamental unit of information is the bit, 

which can exist in one of two states (conventionally labeled "0" and 
"1"). Bits can be implemented as positions of gears or switches, levels 
of charge, or any other conditions of any physical systems that can be 
easily and unambiguously classified into one of two states. Computations 
consist of sequences of operations, conventionally referred to as "gates," 
that are applied to bits and to collections of bits. The physical medium in 
which the bits and the gates are embedded may influence the computer's 
size, energy requirements, or "clock rate," but it has no impact on the 
fundamental computational power of the computer. Two computers 
with the same storage capacity (in bits) and the same set of supported 
operations (gates) can be considered equivalent for many purposes. 

In quantum computing the fundamental unit of information is the 
qubit, which can also exist in one of two "computational basis" states 
(conventionally labeled using Paul Dirac's "bra-ket" notation as |0) and 
|1)). But unlike the bit, the qubit can also exist in a superposition of 
|0) and |1) represented as ao|0) -|- Q:I|1), where ao and ai are complex 
numbers such that |Q;OP + IcuP = 1- The alphas here are the arapli-
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tudes described in Chapter 1, and one can square the absolute value 
of an alpha to determine the probability that a measurement will re­
veal the corresponding state; for example |a;op is the probability that 
measurement of the qubit will find it in the |0) state. 

The physical medium underlying a quantum computer, like that un­
derlying a classical computer, is generally not relevant to discussions of 
the computer's fundamental computational power. All that is neces­
sary is that the medium supports the units of storage (qubits) and the 
relevant operations (quantum gates). A wide variety of proposals has 
been developed for implementing qubits and quantum gates, including 
schemes based on optics, ion traps, and the manipulation of nuclear spins 
in nuclear magnetic resonance devices. All of these schemes present en­
gineering challenges, and many are under active development. We will 
not be concerned with the details of any of them in the present book, 
because the computational properties in which we are primarily inter­
ested are captured by the abstract view of the quantum computer as a 
collection of qubits, on which we operate by means of mathematically 
specified quantum gates. Automatic programming techniques similar 
to those described later in this book, but built on models of particu­
lar implementation schemes, may be be useful for exploring limits or 
opportunities of the corresponding implementations. 

In classical computing the representation of an n-bit system is sim­
ply the concatenation of the representations of n 1-bit systems. For 
example the state of a 5-bit register might be represented as 10010. In 
quantum computing the representation of a multi-qubit system is more 
involved, because the individual qubits are not independent of one an­
other. Indeed, qubits in a quantum computer can become "entangled" 
with one another, and this entanglement underlies several interesting 
quantum algorithms (Jozsa, 1997; Bennett, 1999). The nature of quan­
tum entanglement is a subject with an enormous literature and a rich 
history, some of which bears directly on questions about quantum com­
putation. A few suggested entry-points into this literature are (Bell, 
1993), (Deutsch, 1997), (Albert, 1992), and many of the essays in (Hey, 
1999). 

To represent the complete state of a multi-qubit system one must in 
general store a complex amplitude for each combination of basis values 
(|0) and |1)) over the entire system. So, for example, the state of a 
3-qubit register might be represented as ao|000) + Q;I|001) + a2|010) -|-
Q!3|011) + a4|100) + asllOl) + aelHO) + ajlUl), where the squares of 
the absolute values of the alphas sum to 1. 

Quantum gates can be formalized as matrices, with the apphcation of 
a gate to a quantum computer state implemented as the multiplication 
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of the gate's matrix times a column vector containing the state's ampH-
tudes. What sense does this make? Let us first look at a classical version 
of this idea. Consider a 2-bit classical register. Such a register can be 
in one of four possible states, namely 00, 01, 10, or 11. Suppose, for 
reasons that will seem perverse until we generalize to the quantum case, 
that we wish to represent the state of this register not using the two bits 
themselves, but rather by recording individually the "amplitudes" for 
each of the four possible states. Since the register is classical it cannot 
be in a superposition — it will always be in one particular state. The 
amplitude corresponding to the actual state of the register will be 1, and 
all of the other amplitudes will be 0. We will write the amplitudes in the 
form of a column vector in binary order; that is, the number on top will 
be the amplitude for the 00 state, the next one will be the amplitude for 
the 01 state, and so on. So the four possible states of this 2-bit classical 
register will be represented as: 
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What classical operations can be performed on such a register? Al­
though they can be built in various ways from Boolean primitives, all 
allowable operations have the effect (if they have any effect at all) of 
changing the state of the register from one of these four states to an­
other. And any such operation can be represented as a matrix, con­
sisting only of Os and Is, which, when applied to a state vector (via 
matrix-vector multiplication), produces another valid state vector. For 
example, consider the following matrix: 

1 0 0 0 
0 1 0 0 
0 0 0 1 
0 0 1 0 

This matrix will have no effect when applied to 00 or 01, but it will 
transform 10 into 11 and 11 into 10. That is, it will act as a "NOT" 
operation on the right-most bit if and only if the left-most bit is 1. 
For this reason this is often called a "controlled NOT" or "CNOT" gate. 
All permissible transformations of the 2-bit register can be represented 
similarly, using 4 x 4 matrices containing only Os and Is. Not all such 
matrices are permissible — only those that are guaranteed to produce 
valid classical state vectors (containing one 1 and the rest Os) when 
applied to valid classical state vectors. 
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Quantum computation can be viewed, mathematically, as a general­
ization of this classical matrix model. The first generalization is that 
the amplitudes in the state vectors are no longer required to be 0 or 
1. Each amplitude can be any complex number, as long as the squares 
of the absolute values of the amplitudes sum to 1.̂  Similarly, the set 
of permissible operations (matrices) is expanded to include any matrix 
that meets the condition of unitarity, which can be expressed (in one 
formulation) as the requirement that: 

U^U = UU^ = 1 

Here U is the matrix in question, U^ is the Hermitean adjoint of U 
(obtained by taking the complex conjugate of each element of U and 
transposing the result), and / is the identity matrix. The multiplication 
of a vector of amplitudes by any unitary matrix will always preserve the 
"summing to one" constraint described above. Although there are in­
finitely many such unitary matrices, a small finite set suffices for quan­
tum computational universality in the same sense that the NAND gate 
suffices for classical computation (Barenco et al., 1995). 

In this book we use a selection of quantum gates similar to that used 
elsewhere in the quantum computing literature. We use the CNOT gate 
described above, along with the simpler 1-bit Quantum NOT or QNOT gate 
with the matrix: 

QNOT 0 1 
1 0 

We also use a family of 1-qubit "rotations" parameterized by an angle 
with matrices of the form: 

Ue = 
cos{9) sin(6l) 

- sin(6i) cosle) 

Another 1-qubit gate, called Square Root of NOT or SRN provides a 
good example of the non-classical power of quantum gates. We use a 
version of SRN with the following matrix (which is also equivalent to 

A / 

SRN^^^ 1 - 1 
1 1 

^Squaring does not obviate the taking of the absolute value, because some amplitudes will 
be complex and have negative squares. 
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When applied to a qubit that is in either the |0) or the |1) state, 
it leaves the qubit in an equal superposition of |0) and |1) — that is, 
it appears to randomize the value of the qubit, since a measurement 
after the application of the gate will produce 0 or 1, each with 50% 
probability. But this is not simple randomization, as the qubit's history 
can still influence its future behavior. A second apphcation of SRN to the 
qubit will leave it, deterministically, in the opposite of the state in which 
it started — that is, measurement will produce 0 if the intial state was 
11), or 1 if the initial state was |0).^ So two applications of SRN produce 
the effect of QNOT, which is why SRN has the name that it does. 

The final 1-qubit gate that we routinely employ is the HADAMARD gate, 
with the following matrix: 

^ - A 
1 1 
1 - 1 

This gate is similar to SRN except that it acts more like a "square root 
of identity." It is useful for creating and "decoding" superpositions in a 
variety of quantum algorithms. 

It is sometimes helpful to use a fully-parameterized 1-qubit gate, 
which can act as any other 1-qubit gate if its parameters are set ap­
propriately. One form for this "generalized rotation," which we call U2, 
is as follows: 

U2 = 
0 

0 
cos(0) 
sin(6l) cos(^) 

—iip 

0 
0 0 

0 

Other useful 2-qubit gates include the Controlled Phase gates, with 
matrices of the form: 

CPHASE= 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 e*° 

Finally, the SWAP gate, which simply swaps the states of two qubits. 
is often handy: 

SWAP = 

1 0 0 0 
0 0 1 0 
0 1 0 0 
0 0 0 1 

^Actually, the matrix for two consecutive applications of SRN is [ : meaning that 

two applications of SRN to |1) will produce —10), although the change in sign has no effect on 
measurements. Six applications would be required to obtain |0). 
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Specific problems may call for the use of additional gates. For exam­
ple, many problems are phrased with respect to a "black box" or "ora­
cle" gate, of which we are asked to determine some property. Grover's 
database search problem is of this sort; we are given a multi-qubit gate 
that encodes a database, and we are asked to determine which input will 
produce a "yes" output (which the oracle usually indicates by flipping 
— QNOTing — a specified qubit). 

2. Gate-Level Simulation 
There are many approaches to quantum computer simulation. At 

one extreme one can attempt to simulate, as realistically as possible, 
the exact interactions involved in a particular physical device, including 
noise and other effects of imprecision in the design of the physical com­
ponents. For example, Kevin Obenland and Alvin Despain simulated 
a quantum computer that manipulates trapped ions by means of laser 
pulses, modeling imperfections in the laser apparatus as deviations in 
the angles of rotations (Obenland and Despain, 1998). Alternatively, 
one could simulate the quantum computer at a higher level of abstrac­
tion, ignoring implementation details and working only with "perfect" 
unitary matrices. 

If one wishes to simulate the execution of arbitrary sequences of quan­
tum gates then one necessarily faces exponential space and time costs 
whether one works at the implementation level or at a more abstract 
level. That is, if the number of qubits in the system is A ,̂ then the space 
and time requirements for simulation will both scale approximately as 
2^ . 

In order to evolve quantum algorithms, as described in Chapter 7, we 
must indeed be able to simulate the execution of arbitrary sequences of 
quantum gates. But since our focus is on the theoretical power of quan­
tum computing, and not on the strengths or weaknesses of any particular 
implementation, we can conduct our simulations with straightforward 
matrix mathematics. We will explicitly maintain full vectors of complex 
amplitudes, upon which we will explicitly conduct large matrix multi­
plications. We will pay exponential costs for this form of simulation but 
the simulation techniques will be conceptually simple. 

The exponential costs associated with simulation will limit the range 
of problems to which our automatic programming techniques can be 
applied. We will generally seek applications that involve only small 
quantum systems or that produce algorithms that can be "scaled" to 
various sizes by hand after they have been discovered automatically. 
Fortunately, there do seem to be many problems for which the simulation 
costs are not prohibitive. 
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Simulation shortcuts are possible if one knows in advance that the 
algorithm being simulated obeys certain constraints — that is, that cer­
tain amphtudes will always be zero, or that certain amplitudes will have 
values that can be quickly re-derived (so that one needn't always store 
them all explicitly), or that certain types of entangled states will never 
be produced. Such constraints, combined with clever encoding schemes, 
can lead to substantial improvements in simulation speed for many al­
gorithms, although exponential costs will still be incurred in the worst 
case (Viamontes et al., 2002; Viamontes et al., 2003; Udrescu-Milosav, 
2003). These types of advanced simulation techniques are not discussed 
further in this book, but they could certainly be incorporated into the 
automatic quantum computer programming framework described here, 
and one would expect their incorporation to increase the reach of the 
technology. 

To perform the full matrix mathematics described in the previous 
section we must generally expand the compact matrices that characterize 
the gates to the appropriate size for the complete quantum system being 
simulated. For example, if we wish to apply a QNOT gate to the right­
most qubit of a 3-qubit system then it is not enough to multiply two 
amplitudes by the 2 x 2 matrix that characterizes QNOT. Rather, one 
must do something that affects all amplitudes in the system, effectively 
multiplying it by the following 8 x 8 matrix: 

0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 

In this case the expansion of the 2 x 2 matrix to produce the 8 x 8 
appears relatively straightforward, but the process is more confusing 
when one must expand a multi-qubit gate, particularly when the qubits 
to which it is being applied are not adjacent in the chosen representation. 
For example if one wishes to apply a CNOT gate in a 3-qubit system, using 
the right-most qubit as the "control" input and the left-most qubit as 
the "target" (the one that is flipped when the control qubit is 1), then 
one must effectively use the following 8 x 8 matrix: 
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1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 1 0 0 0 
0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 
0 0 0 1 0 0 0 0 

How does one construct the needed matrix expansion? First, note 
that one needn't necessarily construct the matrix (the "tensor product") 
explicitly. In many cases it will suffice to perform an operation which 
has the same effect as multiplication by the expanded matrix, but which 
uses only the compact representation of the gate. We call this "implicit 
matrix expansion." 

In other cases one does want the explicit representation of the ex­
panded gate, for example because one wants to multiply several ex­
panded gates with one another for storage and later re-application. The 
choice between implicit and explict matrix expansion presents a trade-off 
between space requirements and flexibility. With implicit matrix expan­
sion one must store the matrices only in their compact forms, which can 
be a considerable savings. For example, a 1-qubit gate in its compact 
form can be represented with only 4 complex numbers, whereas the ex-
phcit expansion of this gate for a 10-qubit system consists of 1,048, 576 
complex numbers. On the other hand, the expanded forms may be con­
venient for certain purposes both in the evolution and in the analysis 
of quantum algorithms. An ideal simulator will therefore provide both 
options and allow the user to switch among them according to need. 

An algorithm for explicit matrix expansion is provided in Figure 2.1, 
and an algorithm for applying an implicitly expanded gate is provided 
in Figure 2.2. Source code for these algorithms is included in the distri­
butions of QGAME, a quantum computer programming language and 
simulation system described in the following chapter; the code for ap­
plying an implicitly expanded gate is included in the minimal version of 
QGAME in the Appendix of this book. 

A variety of other approaches to quantum computer simulation exist, 
some of which are based on alternative conceptualizations of quantum 
computers (for example, on "quantum Turing machines" or "Feynman 
computers"). Source code for other simulators can be found in other 
texts (for example, Williams and Clearwater, 1998) and via internet 
searches. 
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To expand gate matrix G (explicitly) for application 
to an n-qubit system: 

• Create a 2" x 2" matrix M. 

• Let Q be the set of qubit indices to which the operator is 
being applied, and Q' be the set of the remaining qubit 
indices. 

• Mij = 0 if i and j differ from one another, in their bi­
nary representations, in any of the positions referenced by 
indices in Q'. 

• Otherwise concatenate bits from the binary representation 
of i, in the positions referenced by the indices in Q (in 
numerical order), to produce i*. Similarly, concatenate 
bits from the binary representation of j , in the positions 
referenced by the indices in Q (in numerical order), to 
produce j * . Then set Mij = Gi*j*. 

• Return M. 

Figure 2.1. An algorithm for explicit matrix expansion. 
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To apply gate matrix G (expanded implicitly) to an 
n-qubit system: 

• Let Q be the set of qubit indices to which the operator is 
being appHed, and Q' be the set of the remaining qubit 
indices. 

• For each combination C of 0 and 1 for the set of qubit 
indices in Q': 

— Extract the column A of ampHtudes that results from 
holding C constant and varying all qubit indices in Q. 

- A' = GxA. 

~ Install A' in place of A in the array of amplitudes. 

Figure 2.2. An algorithm for applying an implicitly expanded gate. 




