
Chapter 2

Q U A N T U M C O M P U T E R SIMULATION

Chapter 1 discussed quantum computing in non-technical terms and
in reference to simple, idealized physical models. In this chapter we
make the underlying mathematics explicit and show how one can sim­
ulate, albeit inefficiently, the behavior of a quantum computer on an
ordinary (classical) digital computer. Such simulation is necessary for
the "fitness evaluation" steps of the methods for automatic quantum
computer programming that will be described later in this book.

1. Bits, Qubits, and Gates
In classical computing the fundamental unit of information is the bit,

which can exist in one of two states (conventionally labeled "0" and
"1"). Bits can be implemented as positions of gears or switches, levels
of charge, or any other conditions of any physical systems that can be
easily and unambiguously classified into one of two states. Computations
consist of sequences of operations, conventionally referred to as "gates,"
that are applied to bits and to collections of bits. The physical medium in
which the bits and the gates are embedded may influence the computer's
size, energy requirements, or "clock rate," but it has no impact on the
fundamental computational power of the computer. Two computers
with the same storage capacity (in bits) and the same set of supported
operations (gates) can be considered equivalent for many purposes.

In quantum computing the fundamental unit of information is the
qubit, which can also exist in one of two "computational basis" states
(conventionally labeled using Paul Dirac's "bra-ket" notation as |0) and
|1)). But unlike the bit, the qubit can also exist in a superposition of
|0) and |1) represented as ao|0) -|- Q:I|1), where ao and ai are complex
numbers such that |Q;OP + IcuP = 1- The alphas here are the arapli-

14 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

tudes described in Chapter 1, and one can square the absolute value
of an alpha to determine the probability that a measurement will re­
veal the corresponding state; for example |a;op is the probability that
measurement of the qubit will find it in the |0) state.

The physical medium underlying a quantum computer, like that un­
derlying a classical computer, is generally not relevant to discussions of
the computer's fundamental computational power. All that is neces­
sary is that the medium supports the units of storage (qubits) and the
relevant operations (quantum gates). A wide variety of proposals has
been developed for implementing qubits and quantum gates, including
schemes based on optics, ion traps, and the manipulation of nuclear spins
in nuclear magnetic resonance devices. All of these schemes present en­
gineering challenges, and many are under active development. We will
not be concerned with the details of any of them in the present book,
because the computational properties in which we are primarily inter­
ested are captured by the abstract view of the quantum computer as a
collection of qubits, on which we operate by means of mathematically
specified quantum gates. Automatic programming techniques similar
to those described later in this book, but built on models of particu­
lar implementation schemes, may be be useful for exploring limits or
opportunities of the corresponding implementations.

In classical computing the representation of an n-bit system is sim­
ply the concatenation of the representations of n 1-bit systems. For
example the state of a 5-bit register might be represented as 10010. In
quantum computing the representation of a multi-qubit system is more
involved, because the individual qubits are not independent of one an­
other. Indeed, qubits in a quantum computer can become "entangled"
with one another, and this entanglement underlies several interesting
quantum algorithms (Jozsa, 1997; Bennett, 1999). The nature of quan­
tum entanglement is a subject with an enormous literature and a rich
history, some of which bears directly on questions about quantum com­
putation. A few suggested entry-points into this literature are (Bell,
1993), (Deutsch, 1997), (Albert, 1992), and many of the essays in (Hey,
1999).

To represent the complete state of a multi-qubit system one must in
general store a complex amplitude for each combination of basis values
(|0) and |1)) over the entire system. So, for example, the state of a
3-qubit register might be represented as ao|000) + Q;I|001) + a2|010) -|-
Q!3|011) + a4|100) + asllOl) + aelHO) + ajlUl), where the squares of
the absolute values of the alphas sum to 1.

Quantum gates can be formalized as matrices, with the apphcation of
a gate to a quantum computer state implemented as the multiplication

Quantum Computer Simulation 15

of the gate's matrix times a column vector containing the state's ampH-
tudes. What sense does this make? Let us first look at a classical version
of this idea. Consider a 2-bit classical register. Such a register can be
in one of four possible states, namely 00, 01, 10, or 11. Suppose, for
reasons that will seem perverse until we generalize to the quantum case,
that we wish to represent the state of this register not using the two bits
themselves, but rather by recording individually the "amplitudes" for
each of the four possible states. Since the register is classical it cannot
be in a superposition — it will always be in one particular state. The
amplitude corresponding to the actual state of the register will be 1, and
all of the other amplitudes will be 0. We will write the amplitudes in the
form of a column vector in binary order; that is, the number on top will
be the amplitude for the 00 state, the next one will be the amplitude for
the 01 state, and so on. So the four possible states of this 2-bit classical
register will be represented as:

• 1 •

0
0
0

7

• 0 "

1
0
0

7

• 0 "

0
1
0

)

" 0 "
0
0
1

What classical operations can be performed on such a register? Al­
though they can be built in various ways from Boolean primitives, all
allowable operations have the effect (if they have any effect at all) of
changing the state of the register from one of these four states to an­
other. And any such operation can be represented as a matrix, con­
sisting only of Os and Is, which, when applied to a state vector (via
matrix-vector multiplication), produces another valid state vector. For
example, consider the following matrix:

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

This matrix will have no effect when applied to 00 or 01, but it will
transform 10 into 11 and 11 into 10. That is, it will act as a "NOT"
operation on the right-most bit if and only if the left-most bit is 1.
For this reason this is often called a "controlled NOT" or "CNOT" gate.
All permissible transformations of the 2-bit register can be represented
similarly, using 4 x 4 matrices containing only Os and Is. Not all such
matrices are permissible — only those that are guaranteed to produce
valid classical state vectors (containing one 1 and the rest Os) when
applied to valid classical state vectors.

16 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

Quantum computation can be viewed, mathematically, as a general­
ization of this classical matrix model. The first generalization is that
the amplitudes in the state vectors are no longer required to be 0 or
1. Each amplitude can be any complex number, as long as the squares
of the absolute values of the amplitudes sum to 1.̂ Similarly, the set
of permissible operations (matrices) is expanded to include any matrix
that meets the condition of unitarity, which can be expressed (in one
formulation) as the requirement that:

U^U = UU^ = 1

Here U is the matrix in question, U^ is the Hermitean adjoint of U
(obtained by taking the complex conjugate of each element of U and
transposing the result), and / is the identity matrix. The multiplication
of a vector of amplitudes by any unitary matrix will always preserve the
"summing to one" constraint described above. Although there are in­
finitely many such unitary matrices, a small finite set suffices for quan­
tum computational universality in the same sense that the NAND gate
suffices for classical computation (Barenco et al., 1995).

In this book we use a selection of quantum gates similar to that used
elsewhere in the quantum computing literature. We use the CNOT gate
described above, along with the simpler 1-bit Quantum NOT or QNOT gate
with the matrix:

QNOT 0 1
1 0

We also use a family of 1-qubit "rotations" parameterized by an angle
with matrices of the form:

Ue =
cos{9) sin(6l)

- sin(6i) cosle)

Another 1-qubit gate, called Square Root of NOT or SRN provides a
good example of the non-classical power of quantum gates. We use a
version of SRN with the following matrix (which is also equivalent to

A /

SRN^^^ 1 - 1
1 1

^Squaring does not obviate the taking of the absolute value, because some amplitudes will
be complex and have negative squares.

Quantum Computer Simulation 17

When applied to a qubit that is in either the |0) or the |1) state,
it leaves the qubit in an equal superposition of |0) and |1) — that is,
it appears to randomize the value of the qubit, since a measurement
after the application of the gate will produce 0 or 1, each with 50%
probability. But this is not simple randomization, as the qubit's history
can still influence its future behavior. A second apphcation of SRN to the
qubit will leave it, deterministically, in the opposite of the state in which
it started — that is, measurement will produce 0 if the intial state was
11), or 1 if the initial state was |0).^ So two applications of SRN produce
the effect of QNOT, which is why SRN has the name that it does.

The final 1-qubit gate that we routinely employ is the HADAMARD gate,
with the following matrix:

^ - A
1 1
1 - 1

This gate is similar to SRN except that it acts more like a "square root
of identity." It is useful for creating and "decoding" superpositions in a
variety of quantum algorithms.

It is sometimes helpful to use a fully-parameterized 1-qubit gate,
which can act as any other 1-qubit gate if its parameters are set ap­
propriately. One form for this "generalized rotation," which we call U2,
is as follows:

U2 =
0

0
cos(0)
sin(6l) cos(^)

—iip

0
0 0

0

Other useful 2-qubit gates include the Controlled Phase gates, with
matrices of the form:

CPHASE=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e*°

Finally, the SWAP gate, which simply swaps the states of two qubits.
is often handy:

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

^Actually, the matrix for two consecutive applications of SRN is [: meaning that

two applications of SRN to |1) will produce —10), although the change in sign has no effect on
measurements. Six applications would be required to obtain |0).

18 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

Specific problems may call for the use of additional gates. For exam­
ple, many problems are phrased with respect to a "black box" or "ora­
cle" gate, of which we are asked to determine some property. Grover's
database search problem is of this sort; we are given a multi-qubit gate
that encodes a database, and we are asked to determine which input will
produce a "yes" output (which the oracle usually indicates by flipping
— QNOTing — a specified qubit).

2. Gate-Level Simulation
There are many approaches to quantum computer simulation. At

one extreme one can attempt to simulate, as realistically as possible,
the exact interactions involved in a particular physical device, including
noise and other effects of imprecision in the design of the physical com­
ponents. For example, Kevin Obenland and Alvin Despain simulated
a quantum computer that manipulates trapped ions by means of laser
pulses, modeling imperfections in the laser apparatus as deviations in
the angles of rotations (Obenland and Despain, 1998). Alternatively,
one could simulate the quantum computer at a higher level of abstrac­
tion, ignoring implementation details and working only with "perfect"
unitary matrices.

If one wishes to simulate the execution of arbitrary sequences of quan­
tum gates then one necessarily faces exponential space and time costs
whether one works at the implementation level or at a more abstract
level. That is, if the number of qubits in the system is A ,̂ then the space
and time requirements for simulation will both scale approximately as
2^ .

In order to evolve quantum algorithms, as described in Chapter 7, we
must indeed be able to simulate the execution of arbitrary sequences of
quantum gates. But since our focus is on the theoretical power of quan­
tum computing, and not on the strengths or weaknesses of any particular
implementation, we can conduct our simulations with straightforward
matrix mathematics. We will explicitly maintain full vectors of complex
amplitudes, upon which we will explicitly conduct large matrix multi­
plications. We will pay exponential costs for this form of simulation but
the simulation techniques will be conceptually simple.

The exponential costs associated with simulation will limit the range
of problems to which our automatic programming techniques can be
applied. We will generally seek applications that involve only small
quantum systems or that produce algorithms that can be "scaled" to
various sizes by hand after they have been discovered automatically.
Fortunately, there do seem to be many problems for which the simulation
costs are not prohibitive.

Quantum Computer Simulation 19

Simulation shortcuts are possible if one knows in advance that the
algorithm being simulated obeys certain constraints — that is, that cer­
tain amphtudes will always be zero, or that certain amplitudes will have
values that can be quickly re-derived (so that one needn't always store
them all explicitly), or that certain types of entangled states will never
be produced. Such constraints, combined with clever encoding schemes,
can lead to substantial improvements in simulation speed for many al­
gorithms, although exponential costs will still be incurred in the worst
case (Viamontes et al., 2002; Viamontes et al., 2003; Udrescu-Milosav,
2003). These types of advanced simulation techniques are not discussed
further in this book, but they could certainly be incorporated into the
automatic quantum computer programming framework described here,
and one would expect their incorporation to increase the reach of the
technology.

To perform the full matrix mathematics described in the previous
section we must generally expand the compact matrices that characterize
the gates to the appropriate size for the complete quantum system being
simulated. For example, if we wish to apply a QNOT gate to the right­
most qubit of a 3-qubit system then it is not enough to multiply two
amplitudes by the 2 x 2 matrix that characterizes QNOT. Rather, one
must do something that affects all amplitudes in the system, effectively
multiplying it by the following 8 x 8 matrix:

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

In this case the expansion of the 2 x 2 matrix to produce the 8 x 8
appears relatively straightforward, but the process is more confusing
when one must expand a multi-qubit gate, particularly when the qubits
to which it is being applied are not adjacent in the chosen representation.
For example if one wishes to apply a CNOT gate in a 3-qubit system, using
the right-most qubit as the "control" input and the left-most qubit as
the "target" (the one that is flipped when the control qubit is 1), then
one must effectively use the following 8 x 8 matrix:

20 AUTOMATIC QUANTUM COMPUTER PROGRAMMING

1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0

How does one construct the needed matrix expansion? First, note
that one needn't necessarily construct the matrix (the "tensor product")
explicitly. In many cases it will suffice to perform an operation which
has the same effect as multiplication by the expanded matrix, but which
uses only the compact representation of the gate. We call this "implicit
matrix expansion."

In other cases one does want the explicit representation of the ex­
panded gate, for example because one wants to multiply several ex­
panded gates with one another for storage and later re-application. The
choice between implicit and explict matrix expansion presents a trade-off
between space requirements and flexibility. With implicit matrix expan­
sion one must store the matrices only in their compact forms, which can
be a considerable savings. For example, a 1-qubit gate in its compact
form can be represented with only 4 complex numbers, whereas the ex-
phcit expansion of this gate for a 10-qubit system consists of 1,048, 576
complex numbers. On the other hand, the expanded forms may be con­
venient for certain purposes both in the evolution and in the analysis
of quantum algorithms. An ideal simulator will therefore provide both
options and allow the user to switch among them according to need.

An algorithm for explicit matrix expansion is provided in Figure 2.1,
and an algorithm for applying an implicitly expanded gate is provided
in Figure 2.2. Source code for these algorithms is included in the distri­
butions of QGAME, a quantum computer programming language and
simulation system described in the following chapter; the code for ap­
plying an implicitly expanded gate is included in the minimal version of
QGAME in the Appendix of this book.

A variety of other approaches to quantum computer simulation exist,
some of which are based on alternative conceptualizations of quantum
computers (for example, on "quantum Turing machines" or "Feynman
computers"). Source code for other simulators can be found in other
texts (for example, Williams and Clearwater, 1998) and via internet
searches.

Quantum Computer Simulation 21

To expand gate matrix G (explicitly) for application
to an n-qubit system:

• Create a 2" x 2" matrix M.

• Let Q be the set of qubit indices to which the operator is
being applied, and Q' be the set of the remaining qubit
indices.

• Mij = 0 if i and j differ from one another, in their bi­
nary representations, in any of the positions referenced by
indices in Q'.

• Otherwise concatenate bits from the binary representation
of i, in the positions referenced by the indices in Q (in
numerical order), to produce i*. Similarly, concatenate
bits from the binary representation of j , in the positions
referenced by the indices in Q (in numerical order), to
produce j * . Then set Mij = Gi*j*.

• Return M.

Figure 2.1. An algorithm for explicit matrix expansion.

22 A UTOMATIC QUANTUM COMPUTER PROGRAMMING

To apply gate matrix G (expanded implicitly) to an
n-qubit system:

• Let Q be the set of qubit indices to which the operator is
being appHed, and Q' be the set of the remaining qubit
indices.

• For each combination C of 0 and 1 for the set of qubit
indices in Q':

— Extract the column A of ampHtudes that results from
holding C constant and varying all qubit indices in Q.

- A' = GxA.

~ Install A' in place of A in the array of amplitudes.

Figure 2.2. An algorithm for applying an implicitly expanded gate.

