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2.8 How to Collect Complete Scattering Patterns

Resorting to Debye (cf. p. 1), “only a continuous scattering pattern can be the funda-
ment of proper reasoning” the general question must be addressed, how a complete
scattering pattern can be collected. The considerations of this section are based on the
assumption that the scattering pattern is recorded by means of a 2D- or 1D-detector.

2.8.1 Isotropic Scattering

The Limits. There are a lot of materials whose scattering pattern does not change
if the sample is deliberately rotated in the X-ray beam. Such materials are called
isotropic. For isotropic materials completeness is only a question of the angular range
in which significant scattering information is gathered. The technical limits are de-
fined by the setup, and the fundamental parameter is the distance R between sample
and detector. The smallest accessible scattering angle is given by the size of the beam
stop (cf. p. 37, Fig. 4.1b) which prevents the detector from being damaged by the di-
rect beam. The highest angle with reasonable data is restricted by the extension of
the detector or, worse, by the signal-to-noise (S/N) ratio of the data. If thin samples
are exposed for short time in a weak beam, there is most probably no significant in-
formation in the outer part of the scattering pattern and quantitative data evaluation
is futile. The problem is less severe if a 2D-detector is used. In this case azimuthal
averaging will increase the S/N-ratio in particular at high scattering angles.

How to Arrange the Setup. In practice, the distance R is long enough, if the
scattering intensity can safely be extrapolated towards zero from the data recorded.
The distance R is short enough, if in the outer part of the scattering pattern, a suf-
ficiently long region with a monotonous background is recorded. One should not
underestimate the need for sufficient recording of background in SAXS and US-
AXS. In order to increase the highest accessible angle, 2D detectors may be placed
in a lateral off-set position with respect to the primary beam.

If there is no possibility to cover the complete range with one detector, there may
be the possibility to use two detectors which are placed in different distances from
the sample. In the worst case the experiment has to be performed several times with
different setups.

2.8.2 Anisotropic Scattering

Anisotropy is frequently observed in soft materials, but the symmetry of anisotropy
is varying. Fibers and films show, in general, less complex anisotropy than ordinary
or photonic crystals.

2.8.2.1 Single Crystal Anisotropy

Complete scattering patterns of samples with a complex “single-crystal” anisotropy
can only be recorded in a texture setup (Chap. 9, Fig. 9.3). The samples must be
rotated in order to scan the required fraction of reciprocal space.
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2.8.2.2 Fiber Symmetry

Definition. Fiber symmetry is uniaxial or cylindrical symmetry. Revolving the
sample about the fiber axis does not change the scattering pattern, but tilting the
sample with respect to the fiber axis does.

USAXS and SAXS. Concerning USAXS and SAXS, the scattering pattern that
is recorded on a 2D detector is complete if the principal axis of the sample is set
normal to the direction of the incident X-ray beam (primary beam). Completeness is
a result of two facts.

1. Fiber symmetry: with the s3 axis in fiber direction the pattern shows rotational

symmetry in the plane (s1,s2), thus I (s) = I
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function of s3 and of the distance from this axis only.

2. The tangent plane approximation is valid: the curvature of the Ewald sphere is
negligible at small scattering angles.

Thus in this favorable case the complete information on nanostructure is recorded in
one 2D image. Mathematically the recorded image is a slice

�I (s)�2 (s1,s3) ≡ I (s12,s3) . (2.53)

It is complete because of fiber symmetry. The 2D Fourier transform of this image
is not related to the searched slice, but to a projection of the correlation function. In
contrast, the sought-after slice in real space
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is the 2D Fourier transform of the projection
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of the complete intensity from the 3D scattering pattern on the slice formed by the
detector plane. Because of completeness it can be computed from the data collected
in one 2D scattering pattern.

WAXS and MAXS. Fiber symmetry means that, even in WAXS and MAXS, the
scattering pattern is completely described by a slice in reciprocal space that contains
the fiber axis. Nevertheless, for 2θ > 9◦ the tangent plane approximation is no longer
valid and the detector plane is mapped on a spherical surface in reciprocal space.

If we keep the sample’s principal axis normal to the primary beam and record a
scattering pattern, we can readily map the measured intensities to the plane that we
need to know (BUERGER (1942) in ALEXANDER [7], p. 58-62). For this purpose
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Figure 2.6. WAXS, 2D-detector and fiber symmetry: unwarping of the detector surface to
map it on the (s1,s3)-slice. Fiber direction is normal to the primary beam. R = 10 cm, λ =
0.154 nm. The warped grid in the sketch is a square grid on the detector (edge length: 3 cm)

we refer to Fig. 2.3 and deduce the out-of-plane component s2, which is readily es-
tablished by application of Pythagoras’ cathetus theorem22. Thereafter we compute
the components s1 and s3 and receive the mapping equations. The result shows a
peculiar deformation (Fig. 2.6). With respect to the slice that contains the complete
information, only the area enclosed by solid lines is recorded on the plane detec-
tor. There are two blind gusset-shaped areas extending from the center upward and
downward along the meridian. Within these areas Bragg peaks may be hidden. Thus
the scattering pattern of fibers collected on the 2D detector is not complete if WAXS
data are recorded.

It is worth to be noted that not only the position of the pixels, but also their
area is modified by the unwarping. Correction of WAXS images thus requires both
a translation and a magnification of the intensity proportional to the inverse of the
area enclosed by the respective vertices. After the advent of digital computers it
became possible to carry out the cumbersome calculus automatically23, as proposed
by FRASER24 et al. [35].

The solution to access the invisible areas is readily copied from texture analysis:
tilt the sample by ψ and receive 1 data point on the meridian that corresponds to
s3 = (2/λ )sinψ . The result of the mapping is shown in Fig. 2.7. Thus by recording a
series of images taken at different tilt angles of the fiber the blind area can be covered
to a sufficient extent. Finally, the remnant blind spots may be covered by means of

22(−2s2/λ = s2 in the right triangle under THALES’ circle whose leg is indicated by a dashed line). The
use of the cathetus theorem was suggested by my daughter Agnes.

23A corresponding program was presented by RICHARD HILMER (DuPont Inc., Wilmington, USA) at a
CCP13 workshop in 1997. The program is property of DuPont.

24B. HSIAO and scientists of his group have started to call the algorithm “Fraser correction”
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Figure 2.7. WAXS, 2D-detector and fiber symmetry: unwarping of the detector surface to map
it on the (s1,s3)-slice. Fiber direction is tilted by ψ = −30◦ with respect to the primary beam.
R = 10 cm, λ = 0.154 nm. On the detector the apparent warped grid is a square grid (edge
length: 3 cm)

2D extrapolation procedures, e.g., the algorithm based on radial basis functions [36]
which is implemented in pv-wave R© [37].

2.9 Application of Digital Image Processing (DI)

2.9.1 DI and the Analysis of Scattering Patterns

In 1994, when the bottleneck of scattering data analysis was still the poor perfor-
mance of detectors, RUDOLPH & LANDES were already spotting the bottleneck of
our days:

“Having 2D detection that operates in the cycle time of key experiments
means we are then potentially limited by image processing. In other
words, as soon as we begin using 2D-detectors to measure patterns, we
are forced to use image analysis methods to extract information from
the images. With the rapid development of fast detectors, image analysis
becomes key to our effective use of this technology.”( [38], p. 26)

The source code of a set of DI procedures for the processing of scattering pat-
terns written for pv-wave is available on the worldwide web (www.chemie.uni-
hamburg.de/tmc/stribeck/dl/).
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2.9.2 A Scattering Pattern Is a Matrix of Numbers, Not a Photo

Digital image processing starts after we have managed to read the raw scattering
image. Each scattering pattern recorded by the detector is a matrix filled with positive
integer numbers – the counts in each cell (pixel) of the detector.

For publication such matrices are frequently converted into photos and stored in
photo formats (JPEG, GIF, PNG). Such photo files are good for visualization, but no
longer good for data evaluation. TIFF is a special case: 8- and 24-bit TIFF files are
photos, 16-bit TIFF format is a common storage format for raw scattering patterns25,
but it is not convenient for data evaluation.

Keep your precious raw data. Do not send JPEG- of GIF-encoded color images
around for the purpose of “data” evaluation.

2.9.3 How to Utilize DI

The novice at a synchrotron facility should use the pre-evaluation options offered
locally at the facility or should resort to the program FIT2D [39]. At least pre-
evaluation operations like masking of blind areas, background correction, align-
ment. . . can be performed this way.

The real business of scattering image processing is more difficult. Because there
does not exist a “point-and-click” program, the scientist must write the respective
algorithms himself. In order to simplify the work, a dedicated programming system
for DI should be chosen. The commercial systems IDL [40] and pv-wave [37] offer
the key features of DI. Before choosing IDL check if it is now possible to easily write
algorithms that work on matrices of varying size. Moreover, a library function for
multidimensional extrapolation of data like the radial basis function [36] algorithm of
pv-wave (RADBE) is essential. If the license fees are a problem, the free ImageJ [41]
may be a solution that avoids to start from level-zero programming.

2.9.4 Concepts of DI that Ease the Analysis of Scattering Images

2.9.4.1 The Paradigm: Arithmetics with Matrices

In IDL and pv-wave a number, a vector, or a matrix can be handled in the same way.
If s is a scattering image, b the parasitic background, and a the actual absorption
factor of the sample, then a background correction26 is carried out writing

wave> sc=s-a*b

This is not only simple27, but computes much faster than the common concept of
usual programming languages using two encapsulated loops.

2516-bit-TIFF can be viewed and “processed” by image processing programs (photoshop, gimp,. . . ) the
program discards the lower 8 bits in order to make the file an ordinary photo. Ergo: (1) Never overwrite
your precious raw data by saving them from a program that was not made for scattering data analysis,
(2) What you see in a photo processor is only a fraction of the scattering data.

26The example is valid for the most simple case: SAXS or USAXS in normal-transmission geometry.
27The same line of code evaluates curves, images or data structures of higher dimensionality (imagine

time as an additional coordinate)
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If we know that behind the beam stop the intensity is always 50 counts or less,
we can discriminate the valid area of our image by defining a ROI mask (i.e., a shape
function) (cf. p. 17) by simply writing

wave> m=s gt 50

which means: generate a matrix m of the same size as s. If a certain pixel in s is
greater than (gt) 50, then set the respective pixel in m to 1 (in the logical meaning of
“true”; white color; good data). The other pixels are set to 0 (in the boolean meaning
of “false”; black color; invalid data).

The result will exhibit the next problem: even some of the valid pixels have not
received enough photons to surmount the “blind”-level. The solution for this problem
is application of the “closing” operator described at the end of this chapter.

2.9.4.2 Submatrix Ranking Operators

Submatrix ranking operators are belonging to the class of image-space operators
(HABERÄCKER [42]) in contrast to Fourier-space operators.

Practical Problems that are Solved by the Operations. Consider you have
defined a mask and it turns out that pixels close to the edges of the blind areas did
not receive the true intensity due to a penumbra effect. How do you peel off the
penumbra region easily?

Consider you have forgotten to switch on “multi-read”28 with your CCD detector
and the raw data are full of cosmic-ray spikes. How do you remove them without
spoiling the image?

Definition: Submatrix. We choose a deliberate pixel from our scattering image.
The pixel and its neighboring pixels are the submatrix. For the example we choose a
submatrix size of 3 × 3 elements. There is scattering intensity in each pixel, e.g.

53 68 47
57 67 52
57 64 43

.

Definition: Ranking. Now let us rank these values by sorting them in increasing
order

43 47 52 53 57 57 64 67 68 .

2.9.4.3 Primitive Operators: Erode, Median, and Dilate

Based on the ranked list DI defines three primitive submatrix ranking operators. They
determine, which value is put in the center of the submatrix:

28cf. Sect. 4.2.5.2



32 2 General Background

erode: Take the leftmost (smallest) value from the list (i.e. 43),

median: Take the value from the center of the list (i.e. 57),

dilate: Take the rightmost (biggest) value from the list (i.e. 68).

Erode applied to a mask peels off a layer from every “white” island in the mask.
Dilate does (almost) the inverse: if erode has not managed to delete a white island
completely, it is almost restored. The median operator reduces noise in the image
without broadening the peaks. The operator is frequently addressed “median filter”.

In practice, the abovementioned penumbra problem is solved by eroding the
mask. Choose the size of the submatrix according to the width of the penumbra
or try out by peeling-off thin layers repetitively. Then multiply the scattering image
by the eroded mask and thus mark the penumbra region as “invalid”.

In similar manner, spikes in the image from cosmic rays are extinguished by
simple application of the median filter with a small submatrix size (3 or 5).

2.9.4.4 Combined Operators: Opening & Closing

Particularly useful are two operators that are combined from two primitive submatrix
ranking operators.

Opening (also: ouverture) is erosion followed by dilation. The ouverture re-
moves tiny “white” islands in the matrix if their area is smaller than half the
area of the chosen submatrix.

Closing (also: fermeture) is dilation followed by erosion. The operator closes
isolated “black holes”.

Thus in order to fill small black holes in a mask, the closing operator will do auto-
matically what otherwise would have to be done by hand29.

From their definition the DI operators are easily implemented. Nevertheless, this
implementation work is unnecessary if IDL or pv-wave are used, where the respec-
tive operators are simply picked from the rich library.

In fact, digital image processing systems have much more to offer – in image
space, where the alignment and centering of scattering images is carried out with
ease, but also in Fourier space where the predefined library functions are easily
adapted to the needs of scattering pattern analysis on the fundament of scattering
theory. Respective information is collected from textbooks on the field of DI and
from the manuals of IDL or pv-wave.

29Probably by painting with the “mouse”


