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From experimental data we would like to visualize the segment length distri-
butions – in order both to gain some imagination of the type71 of the distribution
– and in order to understand the arrangement of the domains in the material. This
visualization is achieved by computation of

• the chord length distribution (CLD) for general isotropic materials (Sect. 8.5.3)

• the interface distribution function (IDF) for 1D projections and the 1D scatter-
ing intensity of materials with a structure built from lamellae (Sect. 8.5.4)

• The multidimensional chord distribution function (CDF) for oriented materials
(in particular useful for the study of materials with uniaxial orientation, i.e.,
fibers) (Sect. 8.5.5)

We notice that the 1D projections are perfect candidates for structure modeling by
1D models: arrange sticks in a row! For this purpose define stick-length distributions
and the law of their arrangement. Fit such models to the measured scattering data
(Sect. 8.7).

8.4.3.3 2D Projections

A well-known device that performs a 2D projection of the scattering pattern is the
Kratky camera. By integrating the intensity along the direction of the focus slit, it
is collapsing the SAXS intensity on the plane that is normal to the slit direction. In
general, 2D projections collapse the measured complete intensity not on a line, but on
a plane. As in the case of the 1D projections, the orientation of this plane can freely
be chosen. The result of such a projection {I}2 (s j,sk) is not a curve as was the case
with the 1D projection, but a 2D scattering pattern. Only in the case of 2D isotropy

(i.e., {I}2

(
s jk
)

with s jk =
√

s2
j + s2

k) the scattering pattern can be represented by a
curve.

Such 2D isotropy is fulfilled in the case which is of the highest practical value.
Here the 2D projection

{I}2 (s12) = 2
∫ ∞

0
I (s12,s3) ds3 (8.58)

describes BONART’s [16] transversal structure of a fiber – the arrangement of domain
cross-sections in the fiber cross-section. Figure 8.18 demonstrates the structure. In
analogy to the 1D projections, chords can be imagined to penetrate the representative
cross-section “in the plane”. They become segmented by the circular domain cross-
sections. Finally the segment length distributions generate {I}2 (s12).

8.5 Visualization of Domain Topology from SAXS Data

After we have discussed the composition parameters of the SAXS of a multiphase
material, we now start with the investigation of the topology. The most simple ac-
cess to the arrangement of domains in the material is the discussion of long period

71Are the distributions Gaussians, Lorentzians, or even more complex?
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Figure 8.18. Transversal structure of a fiber. The topological information on the structure of
a fiber that is related to the 2D projection {I}2 (s12) contains structure information from the
representative cross-sectional plane (r1,r2) of the fiber. Size distribution and arrangement of
the domain cross-sections are revealed

peaks (cf. Sect. 8.2.6). The next level of analysis is visualization of topology. Only
for nearly monodisperse or highly oriented materials we should skip this step and
directly proceed to a modeling of the structure and fitting of the scattering data72. As
we have just learned, topology information is only a part of the information buried
in a SAXS pattern. So before topology can be visualized, the respective information
must be extracted from the scattering pattern.

8.5.1 Extraction of the Topological Information

For the scattering of an isotropic material we already know the result of the sepa-
ration and a method to obtain it: the result is the scattering of the ideal multiphase
system as sketched on p. 123 in Fig. 8.9. A way to obtain the result is the classical
Porod-law analysis (Sect. 8.3.2).

The fundamental problem of the classical method is the fact that there is no
viable73 procedure to extend it to the scattering of anisotropic materials. Moreover,
the required manual processing is cumbersome, slow and may yield biased results.

The Interference Function. The function sketched in Fig. 8.9 can be under-
stood as spIid (s), the intensity of the ideal multiphase system multiplied by a power

72The background for this advice is explained in the discussion of Fig. 8.35, p. 162.
73Conceded – we can successively project anisotropic data to different directions, carry out the manual

procedure for each direction, and, finally recombine the curves. But even if we replace the manual
procedure by an automated one, the combination of curves turns out to be not contiguous: There is no
smooth surface anymore.
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p of the modulus of the scattering vector. In the example p = 4 compensates the
decay of the Porod law. The scattering intensity of the ideal multiphase system is
readily obtained by dividing the result of the Porod-law analysis by sp. Iid (s) is the
starting point for nanostructure visualization by means of the correlation function
(cf. Sect. 8.5.2). By a small modification we obtain a well-behaved function

G1 (s) = spIid (s)−Ap, (8.59)

as it is vanishing in the limit

lim
s→∞

G1 (s) = 0.

Equation (8.59) defines the 1D interference function of a layer stack material. G1 (s)
is one-dimensional, because p has been chosen in such a way that it extinguishes
the decay of the Porod law. Its application is restricted to a layer system, because
misorientation has been extinguished by LORENTZ correction. If the intensity were
isotropic but the scattering entities were no layer stacks, one would first project
the isotropic intensity on a line and then proceed with a Porod analysis based on
p = 2. For the computation of multidimensional anisotropic interference functions
one would choose p = 2 in any case, and misorientation would be kept in the state
as it is found. If one did not intend to keep the state of misorientation, one would
first desmear the anisotropic scattering data from the orientation distribution of the
scattering entities (Sect. 9.7).

The addressed types of interference functions are the starting point for the eval-
uations described in Sects. 8.5.3-8.5.5.

Automated Extraction of Interference Functions. For the classical syn-
thetic polymer materials it is, in general, possible to strip the interference func-
tion from the scattering data by an algorithm that does not require user interven-
tion. Quantitative information on the non-topological parameters is lost (STRIBECK

[26,153]). The method is particularly useful if extensive data sets from time-resolved
experiments of nanostructure evolution must be processed. Background ideas and
references are presented in the sequel.

Concerning the notions on the deviations of the real structure from an ideal mul-
tiphase topology, a survey shows that all models are resulting in slowly varying back-
grounds of the scattering pattern. On the other hand, noise originating from counting
statistics is displaying high-frequency deviations of the measured signal from the
smooth shape of the scattering. If we are investigating polydisperse soft materials,
the observed reflections are broad, i.e., they do not contain high spatial frequencies.
Under these conditions the extraction of the topological information can be consid-
ered a problem of signal processing. The power spectrum of the measured SAXS
data shows three distinct bands: backgrounds are in the low spatial frequencies, in
the high spatial frequencies there is only noise (because of lacking long-range or-
der) – and the spatial frequency band of polydisperse topology is in between. Thus
background can be removed from the scattering pattern by spatial frequency filtering



8.5 Visualization of Domain Topology from SAXS Data 141

Figure 8.19. Extraction of the scattering of an ideal two-phase structure from the raw scatter-
ing data of an isotropic UHMWPE material by means of spatial frequency filtering

returning an interference function G f (s) ≈ mG(s) with m < 1 being an unknown
factor that describes some loss in the filter, and G(s) the true interference function.

We observe that this method works for data of any dimensionality. Figure 8.19
demonstrates the extraction of the interference function for the case of an isotropic
ultra-high molecular-weight polyethylene material. From the raw data (filled circles)
a constant fluctuation background estimate74 cFl is subtracted in order to ease the
task of the filter. The background obtained by low-pass filtering is the dashed line.
After subtraction of the background and multiplication by the “Cosine-bell function”
(Hanning filter) [26, 153, 154] the interference function (solid line) is received75.

It is clear that this procedure can be iterated. Iteration successively improves the
“balance” of the interference function – and theory says that

∫
G(s) ds = 0 should

be perfectly balanced if the domain surfaces (e.g., the surfaces of the crystalline
lamellae) are smooth. Thus we can interpret iterative spatial frequency filtering as a
method to remove the effect of a rough phase boundary. Inevitably this goes along
with the extinction of the scattering effect of small domains (e.g., small crystallites).
Therefore, removing roughness by iterative spatial frequency filtering is only a last
resort for those few materials with very rough [155] domain boundary.

74See p. 118, Fig. 8.8 and the corresponding comparison of soft matter and metals: Subtract 90% of the
intensity minimum.

75Assistance of how to choose and to write the low pass filter, the use of the Hanning filter, etc., can be
found in textbooks of digital image processing or in the “Reference Guide” of pv-wave. A command
(#FILTINT) to carry out spatial frequency filtering of scattering curves is part of my program TOPAS.
If fiber patterns shall be evaluated, a pv-wave procedure sf_interfer does the main job. Both examples
are available as source codes (cf. p. 29).
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8.5.2 1D Correlation Function Analysis

The easiest way to get some impression of the structure behind our scattering data
without resorting to models is the computation and interpretation of a correlation
function. We will mainly discuss the 1D correlation function, γ1 (r3), because any
slice of an anisotropic correlation function is a one-dimensional correlation func-
tion. Moreover, γ1 (r3), is readily describing the topology of certain frequent struc-
tural entities (stacks made from layers and microfibrils). There is an advantage of the
correlation function analysis as compared to “long period interpretation”. The anal-
ysis of the correlation function permits to determine the average domain thicknesses
(for example the thicknesses of crystalline and amorphous layers). The principal
disadvantage of the correlation function is the fact that polydispersity is not prop-
erly reflected in the correlation function [2]. This means that the statistics of domain
thickness variation is very difficult to study from a correlation function. In particular,
for the latter purpose it is more appropriate to carry out an analysis of the IDF or of
the CDF.

1D Structural Entities. In materials science, structural entities which can satis-
factorily be represented by layer stacks are ubiquitous. In the field of polymers they
have been known for a long time [156]. Similar is the microfibrillar [157] structure.
Compared to the microfibrils, the layer stacks are distinguished by the large lateral
extension of their constituting domains. Both entities share the property that their
two-phase structure is predominantly described by a 1D density function, Δρ (r3),
which is varying along the principal axis, r3, of the structural entity.

1D Intensity. As already mentioned (cf. p. 126 and Fig. 8.12), the isotropic scat-
tering of a layer-stack structure is easily “desmeared” from the random orientation
of its entities by LORENTZ correction (Eq. 8.44). For materials with microfibril-
lar structure this is more difficult. Fortunately microfibrils are, in general, found in
highly oriented fiber materials where they are oriented in fiber direction. In this case
the one-dimensional intensity in fiber direction,

I1 (s3) = 2π
∫ ∞

0
s12 I (s12,s3) ds12,

can directly be interpreted as the 1D intensity of the microfibrils along their principal
axis. By projecting we loose the information on the thickness of the microfibrillar
strands and on possible lateral correlations among them.

Warning. For isotropic materials the 1D projection {I}1 and the
LORENTZ correction yield different 1D intensities. Both are related by

I1 (s) = 2πs2 I (s) = −s
d
ds

[{I}1 (s)] . (8.60)

Model functions for the 1D intensity have early been developed [128, 158] and fit-
ted to scattering data. The classical model-free structure visualization goes back to
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Figure 8.20. Generation of a 1D correlation function, γ1 (x), by autocorrelation of the 1D
electron density, Δρ (y) for a two-phase topology. Each value of γ1 (x) is proportional to the
overlap integral (total shaded area) of the density and its displaced ghost

VONK [159, 160] and describes the structure by the 1D correlation function γ1 (r3)
in physical space.

Computation of a 1D Correlation Function. Each one-dimensional correla-
tion function, �γ�1 (x) or γ1 (x) (with x = r3)

�γ�1 (x) =
2
k

∫ ∞

0
{I}1 (s) cos(2πxs) ds (8.61)

γ1 (x) =
2
k

∫ ∞

0
I1 (s) cos(2πxs) ds (8.62)

=
4π
k

∫ ∞

0
s2 I (s) cos(2πxs) ds (8.63)

is computed from its 1D intensity, {I}1 (s) or I1 (s), by a one-dimensional Fourier
transform. Equation (8.63) is valid76 for the isotropic scattering of a lamellar multi-
phase system.

Numerically the correlation function is easily computed, after either a classical
POROD-law analysis has been carried out (Sect. 8.3.2), or the interference function
has been obtained by spatial frequency filtering (p. 140). For the purpose of extend-
ing the integral we may write an adapted Fourier-transformation algorithm which
explicitly utilizes the analytical continuation according to POROD’s law, or we may
use the continuation for the generation of additional grid points and employ the dis-
crete fast Fourier transformation (DFFT) algorithm [154, 161].

Figure 8.20 demonstrates the generation of γ1 (x) by displacement of the 1D elec-
tron density77, Δρ (y), with respect to its ghost, Δρ (y + x), along the stack axis y.
The direction x in the sketch is identical to the direction of the stack normal, r3, in
Fig. 8.12 on p. 126. The sketch depicts a displacement x that is still so small that each
domain is only correlated to itself (shaded areas). At such a position x we are still in

76The presented result is different from the radial correlation function γ (r) =
4π

∫
s2 I (s)(sin (2πrs)/2πrs) ds, which is computed from the isotropic scattering intensity by

means of the three-dimensional Fourier transform.
77For the sake of simplified presentation here, it is assumed that there are only few scattering entities in a

sea of matrix material, and the average 〈ρ〉V ≈ ρ1 is close to the density of the matrix phase
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Figure 8.21. Features of a 1D correlation function, γ1 (x/L̄) for perfect and disordered topolo-
gies. L̄ is the number-average distance of the domains from each other (i.e., long period).
Dotted: Perfect lattice. Dashed and solid lines: Paracrystalline stacks with increasing disor-
der. a = −vl1/

(
1−vl1

)
with 0 < vl1 ≤ 0.5 is a measure of the linear volume “crystallinity” in

the material, which is either vl1 or 1−vl1

the region of linear decay of the correlation function, i.e., in the so-called “autocorre-
lation triangle”. The typical shape of such a correlation function for topologies with
varying amount of disorder is sketched in Fig. 8.21. Obviously, the autocorrelation
triangle of the ideal lattice (dotted curve) is not preserved in paracrystalline stacks
of higher polydispersity. Thus, a simple linear extrapolation (“linear regression au-
tocorrelation triangle”, LRAT [162]) will only yield reliable information concerning
the properties of the idealized lattice from the real data, if the polydispersity remains
rather low.

Analysis of the 1D Correlation Function. Several publications describe the
search for a simple graphical analysis [22,159,162–164] of the 1D correlation func-
tion by means of a geometrical construction. It is the drawback of all such methods
that polydispersity and heterogeneity are not considered. The methods are derived
from the general generation principle of correlation functions (Fig. 8.20), resulting
in equations (cf. Eqs. (8.23), (8.70) and (8.64)) for the first off-origin maximum, the
depth of the first minimum or the initial slope γ ′id (0) of ideal correlation functions.
For the simplified case of a lamellar system we obtain

γ1,id (x) = 1− 1
�p1

|x|+ . . . (8.64)

with �p1 being the average chord length of the one-dimensional ideal two-phase
topology with

1
�p1

=
1

d̄1
+

1

d̄2
, (8.65)



8.5 Visualization of Domain Topology from SAXS Data 145

d̄1 the average layer thickness of the first of the two kinds78 of lamellae, and d̄2 re-
lated to the second kind of layers. L̄ = d̄1 + d̄2 is called the average79 long period.
Without loss of generality we may restrict further discussion to linear crystallini-
ties80

vl =
d̄1

L̄
(8.66)

with vl ≤ 0.5. The crystallinity is called “linear” in order to distinguish it from the
overall volume crystallinity in the sample, because vl does not account for the pres-
ence of extended domains (of matrix material) outside the scattering entities. From
Eqs. (8.64) and (8.65) we obtain for the zero of the initial slope of the ideal correla-
tion function

x0 =
d̄1d̄2

d̄1 + d̄2

= vl (1− vl) L̄. (8.67)

Figure 8.21 shows model functions both for ideal and realistic cases. The dotted
curve demonstrates the case of the ideal and infinitely extended 1D lattice. Here
every time the ghost is displaced by an integer multiple of the lattice constant (x/L =
1, 2, 3, . . .), the correlation returns to the ideal value 1. For the 1D lattice not only x0,
but also the valley depths

γ1,min = a = − vl

1− vl
(8.68)

are related to the composition81, vl (1− vl), of the material (see also p. 133, Fig. 8.15).
The common graphical evaluation methods try to transfer these features of the ideal
correlation function of an ideal lattice to real correlation functions of polydisperse
soft matter that are computed from experimental data. The valley-depth method has
first been devised by VONK [159]: whenever a flat minimum is found in a real cor-
relation function, the distortion is weak and the linear crystallinity can significantly
be determined from the properly normalized correlation function by application of
Eq. (8.68).

In practice, the observed distortion is frequently strong. Thus, the correlation-
function minimum is not flat. This is demonstrated in most of the dashed and
solid curves in Fig. 8.21. They show model correlation functions of the paracrys-
talline stacking model with varying amount of disorder. Computation82 is based on
Eq. (8.104), p. 180.

78For instance the “amorphous”, “hard”, “crystalline”, . . .
79Speaking of averages and denoting symbols by an overbar already means a generalization for distorted

structures which will be discussed later.
80Again, “crystallinity” may be replaced by “hard phase fraction”, “soft phase fraction”, or whatever

designation applies better to the material that is studied.
81Conceded – Eq. (8.68) violates Babinet’s theorem. Nevertheless, it is valid for v1 ≤ 0.5 and can easily

be remembered, whereas the correct equation is somewhat more involved.
82It is convenient to set AP1 = 1, L̄ = d̄1 + d̄2 = 1. Rounding errors are suppressed by replacing the

intensity by 1/s2 (POROD’s law) for big arguments (s > 8). A smooth phase transition zone (in all

the example curves: dz = 0.1) is considered by multiplication with exp
(
−(2πsdz/3)2

)
. From this

one-dimensional scattering intensity the correlation function is obtained by Fourier transformation.
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Figure 8.21 shows functions of the distorted topologies that are not pointed at
the origin, and γ1 (0) < 1. The reason is that the presented model is not an ideal
two-phase system, because it considers smooth transitions of the electron density
between the “crystalline” and the “amorphous” layers.

In practice, even a more severe damping of the correlation function close
to the origin is frequently accepted in order to compute the correlation
function with little effort of evaluation [159]: POROD’s law is not eval-
uated (cf. p. 124, Fig. 8.11), and thus the Fourier integral cannot be
extended to infinity. Instead, the position smin in the scattering curve is
determined at which the SAXS intensity is lowest. This level is sub-
tracted, and the integral is only extended up to smin.

The case of low distortion is shown in the dashed-dotted-dotted curve from Fig. 8.21.
The first minimum still reaches the ideal valley depth. Therefore it is still possible to
determine the linear composition of the material from Eq. (8.68).

Let us discuss the first off-origin maximum of γ1 (x/L̄). For the ideal lattice and
weakly distorted materials the maximum is found at the position of the number-
average long period, L̄, i.e. at x/L̄ = 1. This is not the case for structures that are
distorted more severely. Thus a long period, L̄app, determined from the position of the
first maximum in γ1 (x) is only an apparent one, and it is always overestimated [130].
An overestimation of 20% (L̄app ≈ 1.2 L̄) is not unusual.

The First-Zero Method of Correlation Function Analysis. For the pur-
pose of a practical graphical evaluation of the linear crystallinity, Eq. (8.67) can be
applied to a renormalized correlation function γ1 (x/L̄app). The method which has
been proposed by Goderis et al. [162] is based on the implicit assumption that the
first zero, x0, of the real correlation function is shifted by the same factor as is the
position of its first maximum, L̄app.

The idea is already described in the first paper of VONK and KORTLEVE ([159],
p. 22) as a method to retrieve fit parameters. In their second paper ([160], p. 128) the
authors state that inaccurate values are returned, if the found linear crystallinity is
between 0.35 and 0.65.

The general inferiority of geometrical construction methods [162, 163] as com-
pared to more involved methods which consider polydispersity has first been demon-
strated by SANTA CRUZ et al. [130], and later in many model calculations by CRIST

[165–167]. Nevertheless, in particular the first-zero method is frequently used. Thus,
it appears important to assess its advantages as well as its limits. Validation can be
carried out by graphical evaluation of model correlation functions [130, 165].

If the statistical model of a paracrystalline stack is assumed, it turns out that
the renormalization attenuates the influence of polydispersity on the position of the
first zero. In general, the first-zero method is more reliable than the valley-depth
method, although it is not perfect. Even the first-zero method is overestimating the
value of vl . The deviation is smaller than 0.05, if the found crystallinity is smaller
than 0.35. If bigger crystallinities are found, the significance of the determination is
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Figure 8.22. Testing the first-zero method for the determination of the linear crystallinity,
vl , from the linear correlation function, γ1

(
x/L̄app

)
with L̄app being the position of the first

maximum in γ1 (x) (not shown here - but cf. Fig. 8.21). Model tested: Paracrystalline stacking
statistics with Gaussian thickness distributions. The interval of forbidden zeroes is shown. An
additional horizontal non-linear axis permits to determine the linear crystallinity directly. A
corresponding vertical axis shows the variation of the classical “valley-depth method”

rapidly breaking down, and an individual demonstration of the error of determina-
tion becomes essential. In practice, insignificance can no longer be overlooked, if
Eq. (8.69) applied to measured data does not return real solutions (“forbidden ze-
roes” in Fig. 8.22).

If the initial part of the correlation function exhibits significant deviations from a
straight line, the proposers of the first-zero method recommend to carry out a linear
regression (LRAT) [162] on the autocorrelation triangle. The problem of doing so
is demonstrated in Fig. 8.21 and its discussion. Moreover, if the initial part of the
correlation function does not only show a monotonous decay but discrete features,
this is a strong indication of a topology that is not only polydisperse, but also hetero-
geneous83. In this case, a graphical correlation function analysis of isotropic data is
of little significance anyway, and the study of uniaxially oriented material is recom-
mended. Analysis may be performed by means of the CDF method (cf. Sect 8.5.5). If
a low-noise scattering curve from isotropic material is at hand, it may be possible to
separate components of a heterogeneous nanostructure by means of the IDF method
(cf. Sect. 8.5.4) combined with model fits.

The first-zero method starts from the ideal lattice and Eq. (8.67). For the purpose
of evaluation of scattering curves from polydisperse soft matter the ideal long period,
L̄, is replaced by L̄app, i.e. the validity of γ1 (vl (1− vl) L̄app) = 0 is assumed. Because
of the fact that the zero of a function is determined, not even a normalization of γ1 (x)
is required [162]. Figure 8.22 displays the model data of Fig. 8.21 after the method-
inherent renormalization x → x/L̄app. Comparison with Fig. 8.21 shows that now

83No infinitely extended layers, several components with different topology (e.g. primary and secondary
lamellar stacks)
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the zeroes of the correlation functions with varying polydispersity are found close
to the correct value x0/L̄app = 0.21 = 0.3(1−0.3). Vice versa, a good estimate for
the linear crystallinity is obtained from the pair of roots which solve the quadratic
relation x0

L̄app
= vlc (1− vlc). (8.69)

If other statistical models of polydispersity should prove more appropriate than the
paracrystalline stack, validations of the first-zero method may be carried out in anal-
ogy to the one presented here.

For anisotropic scattering patterns and the multidimensional case VONK ( [168]
and [22], p. 302) has proposed to utilize a multidimensional correlation function. It
is not frequently applied.

8.5.3 Isotropic Chord Length Distributions (CLD)

The isotropic chord length distribution (CLD) is of limited practical value if soft
matter with only short-range order is studied. Nevertheless, the related notions have
been fruitful for the development of new methods for topology visualization from
SAXS data.

Related Notions. Not only the 1D correlation function, but also the general 3D
correlation function starts with a linear decay, and its series expansion

γ (r) = 1− |r|
�p

+ . . . . (8.70)

was already given by POROD [18]. �p is the average chord length that has already
been introduced on p. 112 in Eq. (8.23). Starting from this relation MÉRING and
TCHOUBAR [118, 141, 169, 170] have derived that even the distributions of the in-
dividual segment lengths can be visualized by evaluation of an isotropic scattering
pattern. They make use of the derivation theorem (p. 23, Eq. 2.39) applied to delib-
erate slicing directions of the structure and apply it twice. The two derivatives are
distributed on each of the factors of the autocorrelation, Δρ∗2 (r), and an ideal edge
enhancement is accomplished. The result shows that the second radial derivative of
the radial correlation function

γ ′′ (r) =
1
�p

(−2δ (r)+ g(r)+ g(−r)) (8.71)

is formed by two images of a chord length distribution (CLD), g(r) and a δ -
distribution at the origin (Fig. 8.23). The CLD is made from an infinite series of seg-
ment distributions that starts with the homo-segment distributions, �1 (r) and �2 (r),
for the domains of phase 1 and 2, respectively84, followed by the di-segment distri-
butions of the long periods, −2�12 (r), and further out by the multi-segment distri-
butions which describe the long-range arrangement of the particles in the material.

84Shape and size of the domains make these distributions.
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Figure 8.23. The chord length distributions g(r) and g(−r) found in the 2nd derivative γ ′′ (r)
of the radial correlation function. The example shows g(r) of a suspension of 10 wt.-% of
silica (reproduced from a handout of DENISE TCHOUBAR)

Figure 8.24. Demonstration of the edge-enhancement principle built into the chord length
distribution. (a) Two-phase structure intersected by a straight line. (b) The density along the
line. (c) The derivative of the density is a sequence of δ -functions which are marking the
positions of the domain edges

In the sketch taken from a handout of TCHOUBAR the distributions �1 (r) and �2 (r)
are separated extraordinarily well.

The relation between structure and the chord distributions is readily established
from considerations of topological density functions along a straight line travers-
ing the material (Fig. 8.24). In Fig. 8.24a the respective sequence of chords is indi-
cated. Figure 8.24b is a sketch of the corresponding density function, ρ (x). Its first
derivative, ρ ′ (x) (Fig. 8.24c), is nothing but a sequence of δ -functions put at the
positions of the domain edges. Thus the edges are enhanced, and the autocorrelation
−ρ ′ (x)� ρ ′ (−x) = gp (x) is the partial CLD for the chosen special path through the
topology.

For a general, isotropic and condensed multiphase material with short-range or-
der, the CLD offers the best possible model-free visualization of the nanostructure.
Nevertheless, the image does not show many details because of the inherent solid-
angle average.
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8.5.4 1D Interface Distribution Functions (IDF)

Opportunities and Limits. If we intend to obtain a clearer look on nanostruc-
ture than the one the CLD is able to offer, we can try to get rid of the orientation
smearing – either by considering materials with a special topology (layer stacks), or
by studying anisotropic materials.

If the scattering entities in our material are stacks of layers with infinite lateral
extension, Eq. (8.47) is applicable. This means that we can continue to investigate
isotropic materials, and nevertheless unwrap the 1D intensity of the layer stack.
To this function RULAND applies the edge-enhancement principle of MÉRING and
TCHOUBAR (cf. Sect. 8.5.3) and receives the interface distribution function (IDF),
g1 (x). Ruland discusses isotropic [66] and anisotropic [67] lamellar topologies.

For a layer-stack material like polyethylene or other semicrystalline polymers the
IDF presents clear hints on the shape of the layer thickness distributions, the range
of order, and the complexity of the stacking topology. Based on these findings in-
appropriate models for the arrangement of the layers can be excluded. Finally the
remaining suitable models can be formulated and tested by trying to fit the experi-
mental data.

As pointed out by STRIBECK [139, 171] g1 (x) is, as well, suitable for the study
of oriented microfibrillar structures and, generally, for the study of 1D slices in delib-
erately chosen directions of the correlation function. This follows from the Fourier-
slice theorem and its impact on structure determination in anisotropic materials, as
discussed in a fundamental paper by BONART [16].

In practical application to common isotropic polymer materials the IDF fre-
quently exhibits very broad distributions of domain thicknesses. At the same time
fits of the IDF curve to the well-known models for the arrangement of domains (cf.
Sect. 8.7) are not satisfactory, indicating that the existing nanostructure is more com-
plex. In this case one may either fit a more complex model85 on the expense of
significance, or one may switch to the study of anisotropic materials and display
their nanostructure in a multidimensional representation, the multidimensional CDF.
Complex domain topology is more clearly displayed in the CDF than in the IDF. The
CDF method is presented in Sect. 8.5.5.

Definition. The interface distribution function

g1 (x) = −
(

d ρ1 (x)
dx

)�2

= −k γ ′′1 (x) (8.72)

is proportional to the 2nd derivative of the related 1D correlation function, γ1 (r) (cf.
Sect. 8.5.2).

Computation. g1 (x) is computed from any 1D scattering intensity, e.g. I1 (s3)

85A more complex model can be constructed from two components or a special sequence of (thick and
thin) layers.
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Figure 8.25. The features of a primitive interface distribution function, g1 (x). The IDF is
built from domain thickness distributions, ha (x) and hc (x), followed by the distribution of
long periods, hL (x), and higher multi-thickness distributions

g1 (x) = −F1

(
4πs2

3 I1 (s3)− lim
s3→∞

4πs2
3 I1 (s3)

)
(8.73)

= −F1 (G1 (s3)) (8.74)

by 1D Fourier transform. It is permitted to replace I1 (s3) by any86 1D projection
{I}1 (si) of a deliberate scattering pattern. The function which is subjected to the
Fourier transform is identified as a 1D interference function, G1 (s3) (cf. page 140,
Eq. 8.59).

Interpretation. Similar to the CLD, g(r) (constructed from a series of segment
distributions), the IDF, g1 (x) is a series of thickness distributions, hi (x). While the
CLD lumps together all the segments that penetrate a domain in any deliberate direc-
tion, the IDF is more selective. Here a specific direction is chosen. Two examples: x
is the coordinate in the direction of the principal axis of the scattering entities; r3 is
the coordinate in fiber direction.

Thus, in the special case of a layer stack morphology, g1 (x) is a series of thick-
ness distributions (cf. Fig. 8.25). The series starts from the thickness distributions of
“amorphous” and “crystalline” layers, ha (x) and hc (x), respectively. It is continued
by the distributions of aggregates of adjacent layers, the first being an aggregate of
one amorphous and one crystalline layer. The corresponding di-thickness distribu-
tion, hL (x) = hac (x)+hca (x) = 2hac (x) shows up with negative sign and represents
the long periods. Thereafter we have the tri-thickness distributions haca (x), hcac (x),
and the following multi-thickness distributions.

Let us consider the other example. In an anisotropic material we select the fiber
axis, r3, project the intensity on this direction and compute an IDF. Then the meaning
of the thickness distributions is quite similar as in the aforementioned example. Let
us identify the first thickness distribution, hh (r3), by a distribution of hard-domain
thicknesses. Then the next thickness distribution, hs (r3), is the thickness distribution

86That is, the direction of the projection may be chosen deliberately.
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of the soft material in between, and the long period distribution is hL (r3) = hhs (r3)+
hsr (r3) = 2hhs (r3).

As we proceed from distribution to distribution within the series of thickness dis-
tributions, we observe that the functions are growing broader and broader. Moreover,
their sign is alternating87, and in a material with short-range order the IDF is already
vanishing for relatively small values of x, r3 or another chosen direction.

This observation is expected from theory, as the observed thickness distributions
are exactly the functions by which one-dimensional short-range order is theoreti-
cally described in early literature models (ZERNIKE and PRINS [116]; J. J. HER-
MANS [128]). From the transformed experimental data we can determine, whether
the principal thickness distributions are symmetrical or asymmetrical, whether they
should be modeled by Gaussians, gamma distributions, truncated exponentials, or
other analytical functions. Finally only a model that describes the arrangement of
domains is missing – i.e., how the higher thickness distributions are computed from
two principal thickness distributions (cf. Sect. 8.7). Experimental data are fitted by
means of such models. Unsuitable models are sorted out by insufficient quality of the
fit. Fit quality is assessed by means of the tools of nonlinear regression (Chap. 11).

Warning. g1 (0) ≥ 0 must hold. If in an experimentally determined
curve g(0) or g1 (0) becomes strongly negative, there is a shortcoming
in the pre-evaluation of the data. Probably the error originates from in-
correct absorption correction or from errors in a manual evaluation of
the Porod region. If a manual “deconvolution” of g1 (x) is carried out,
the areas of the peaks must conform to a zero-sum rule (cf. p. 158),
and the centers of gravity of the peaks must conform to the obvious law
of addition (e.g., d̄c + d̄a = L̄ for the average crystalline thickness, the
amorphous thickness and the long period). These constraints are not eas-
ily maintained manually, but can be programmed into a model function
with little effort. Thus the constraints aggravate a manual evaluation of
the IDF, but assist the deconvolution if methods of nonlinear regression
are applied: even for rather diffuse IDFs unique deconvolutions can be
found, if the type of the thickness distributions and the statistical model
(Sect. 8.7) of domain arrangement is known. If distribution type and sta-
tistical model are varied, the results of the fits are discriminated by the
quality of the match.

8.5.5 Anisotropic Chord Distribution Functions (CDF)

8.5.5.1 Definition

The anisotropic multidimensional chord distribution (CDF) is an advancement of
the IDF which is adapted to the study of highly anisotropic materials. CLD, IDF,
and CDF are all based on the edge-enhancement principle devised by MÉRING and

87A negative long-period peak is always accompanied by two positive satellite peaks with each half the
area (simplified zero-sum rule). Remember the alternating signs of the δ -functions in Fig. 8.24 and
have a look at p. 158.
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Figure 8.26. A particle–ghost autocorrelation of gradient vectors is generating the CDF. The
vectors are emanating in normal direction from the surfaces of the particle and its ghost. The
ghost is displaced by the vector r. The dashed arrow points at the position r′, at which a
contribution to the CDF is generated. It originates from the scalar product of the two gradient
vectors drawn in bold

TCHOUBAR. For the application to anisotropic scattering patterns STRIBECK [26]
has extended this principle to a space of deliberate dimensionality. Available tech-
nology constricts its practical use to the scattering of materials with fiber symmetry,
and the fiber-symmetrical CDF

z(r12,r3) = (∇ρ (r12,r3))
�2 = k Δγ (r12,r3) (8.75)

is closely related to VONK’s multidimensional correlation function , γ (r12,r3) ( [168]
and [22], p. 302). One could think of synthesizing the CDF from a complete set of
IDFs according to RULAND [66], but a viable algorithm for this path has not yet been
found.

In space the 1D derivative d/dx is replaced by the gradient ∇, as is the second
derivative d2/dx2 by the Laplacian Δ [26]. In analogy to the particle-ghost construc-
tion of the correlation function (cf. Figs. 2.4 and 8.24) the construction of the CDF
can readily be demonstrated (Fig. 8.26). In a multiphase material the gradient field
∇ρ (r) is vanishing almost everywhere. Exceptions are the domain surfaces. They
are densely populated with gradient vectors, the lengths of which are proportional to
the heights of the density jumps.

8.5.5.2 Computation of the CDF for Materials with Fiber Symmetry

CDFs are computed from scattering data which are anisotropic and complete in re-
ciprocal space. Thus the minimum requirement is a 2D SAXS pattern of a material
with fiber symmetry taken in normal transmission geometry (cf. p. 37, Fig. 4.1).
Required pre-evaluation of the image is described in Chap. 7.
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Figure 8.27. Steps preceding the computation of a CDF with fiber symmetry from recorded
raw data: The image is projected on the fiber plane, the equivalent of the Laplacian in real
space is applied, the background is determined by low-pass filtering. After background sub-
traction the interference function is received

Transformation of the Pre-evaluated Image. The image I (s12,s3) is pro-
jected on the representative plane (s1,s3) of the fiber scattering88

{I}2 (s1,s3) = 2
∫ ∞

0
I

(√
s2

1 + s2
2,s3

)
ds2. (8.76)

By means of this procedure our problem is not only reduced from three to two di-
mensions, but also is the statistical noise in the scattering data considerably reduced.
Multiplication by −4πs2 is equivalent to the 2D Laplacian89 in physical space. It
is applied for the purpose of edge enhancement. Thereafter the 2D background is
eliminated by spatial frequency filtering, and an interference function G(s12,s3) is
finally received. The process is demonstrated in Fig. 8.27. 2D Fourier transform of
the interference function

z(r12,r3) = −F2 (G(s12,s3)) (8.77)

finally yields the CDF, z(r12,r3).

8.5.5.3 Relation Between a CDF and IDFs

Every radial, 1D slice through the center of a CDF

88The reason for this projection is that we are interested in the study of slices γ (r1,r3) =
1
k F2 ({I}2 (s1,s3)) in real space. So we must project in reciprocal space in order to reduce the fiber-
symmetrical problem from three to two dimensions.

89Conceded – there is the alternative to apply a 3D Laplacian, but the corresponding procedure turns out
not to be as stable as the 2D Laplacian when applied to experimental data.
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�z�1

(
rψ,ϕ

)
= g1

(
rψ,ϕ

)

is an IDF by definition. In the equation the slicing direction is indicated by a polar
and an azimuthal angle, ψ and ϕ , respectively. Of particular practical interest for the
study of fibers is the cut of the CDF along the fiber axis,

�z�1 (r3) = z(0,r3) = g1 (r3) ,

which describes the longitudinal structure of the material (cf. Sect. 8.4.3.2). In anal-
ogous manner the transversal structure (cf. Sect. 8.4.3.3) of the fiber is described by
the slice

�z�2 (r12) = z(0,r12) = g2 (r12)

of the CDF. A typical CDF of a highly oriented semicrystalline polymer material
is shown in Fig. 8.28. Viewed from the top the domain peaks are visible, whereas
viewing a CDF from the bottom shows the long periods peaking out.

8.5.5.4 How to Interpret a CDF

A CDF is interpreted in the same way as a CLD or an IDF. All these functions exhibit
the probability distributions of domain size and arrangement. Clearer than a CLD is
the IDF, because it does not contain an orientation average but exhibits the topology
in a selected direction. Clearer than an IDF is the CDF, because it visualizes the
nanodomain topology in space, i.e., in more than one direction.

Uncorrelated Particles: Only Positive CDF Peaks. Let us consider the sim-
ple example of identical, highly oriented cylinders which are randomly distributed in
the material. Figure 8.29 demonstrates the scheme for the construction of the CDF
assuming that the cylinder axis is parallel to the fiber axis. Two strong peaks on the
meridian with almost triangular shape are characteristic for the cylinder. The signal
height at a position r (i.e., at the position of the “glass rod” on the front peak in
the sketch) is proportional to the area of contact between the cylinder and its dis-
placed ghost. The basis length of the triangle is twice the diameter of the cylinder.
The thickness of the triangle in meridional direction reflects the polydispersity of
cylinder heights in the material. In addition, two weak diameter peaks are observed
crossing the equator of the CDF. They are formed as the ghost is passing along the
side of the particle.

The results of these considerations are readily extended from cylinders to lamel-
lae: in the latter case the strong triangular peaks are wider, but closer to each other.

Arrangement of Particles and the Corresponding Peaks. If a CDF shows
only positive peaks, the particles in the material are distributed at random90. There is
no arrangement. Growing correlations are indicated by one or more triplets of peaks

90The reverse is only true for particles whose shape is convex, i.e., if the particles do not contain holes or
indentations.
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Figure 8.28. Demonstration of a CDF. Data recorded during non-isothermal oriented crystal-
lization of polyethylene at 117◦C. Surface plots show the same CDF: (a) Linear scale viewed
from the top. (b) Linear scale viewed from the bottom. (c) Viewed from the top, logarithmic
scale. Indicated are the determination of the most probable layer thickness, lt , and of the max-
imum layer extension, le. (d) Viewed from the bottom, logarithmic scale. The IDF in fiber
direction is indicated by a light line in (a) and (b) (Source: [56])

which do not change the integral of the CDF [172]. Let us demonstrate this general
zero-sum game of growing correlation in one dimension by consideration of the IDF
(Fig. 8.30). For every particle added to the structural entity, three additional peaks
are observed. Their integral is zero91.

From a practical point of view the sign of a peak in CLD, IDF, or CDF is de-
scribed by the character of surface contact between particle and ghost92: if they con-
tact each other in the normal way, the peak is positive; it is negative if they penetrate
each other at the considered surface. Thus, positive peaks describe the size of par-

91I came across the zero-sum rule of correlation when I started to program models for structure fitting.
Structure models which violate the zero-sum rule cannot be fitted to experimental data. Their conver-
gence is poor.

92Up to now we have only discussed the correlation of a particle with its own ghost. In general, arrange-
ment means that correlations between a particle and ghosts of other particles from the same phase are
not extinguished by random annihilation.
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Figure 8.29. A particle-ghost displacement-principle governs the relation between structure
and CDF. The height of the CDF signal is proportional to the area of contact between the
particle and its ghost. A bold arrow in the base plane indicates the meridian (fiber direction)

ticles or super-particles. Negative peaks describe the space that is controlled by a
particle or a super-particle from the structural entity. If the topology is addressed as
a lattice, negative peaks show up at every repeat of the lattice constant (long period).
If no long periods are detected, the structure describes an ensemble of uncorrelated
particles. Every CDF analysis starts from such considerations.

8.5.5.5 Semi-quantitative CDF Analysis. An Example

The Material of the Example. Poly(ether ester) (PEE) materials are thermo-
plastic elastomers. Fibers made from this class of multiblock copolymers are com-
mercially available as Sympatex R©. Axle sleeves for automotive applications or gas-
kets are traded as Arnitel R© or Hytrel R©. Polyether blocks form the soft phase (ma-
trix). The polyester forms the hard domains which provide physical cross-linking of
the chains. This nanostructure is the reason for the rubbery nature of the material.

Synopsis of Experiment and Results. The material is irradiated during
straining and relaxation. The example shows that a nanostructure which is hard to
interpret from a series of scattering patterns may clearly reveal its complex domain
structure after transformation to the CDF. Different structural entities are identified
which respond each in a different way on mechanical load. The shape of the basic
particles is identified (cylinders). The arrangement of the cylinders is determined.
Thus the semi-quantitative analysis of the CDF provides the information necessary
for the selection and definition of a suitable complex model which is required for a
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Figure 8.30. From particles to complex scattering entities in the IDF, the CDF or the CLD by
growing correlation: An ensemble of uncorrelated particles exhibits only one homo-segment
distribution (e.g., hc (x) representing crystallites). As next-neighbor correlations are growing,
three segment distributions are added. The integral of this triplet is zero. Growing range of
correlation adds further triplets

Figure 8.31. Fiber scattering of PEE 1000/43: (a) at an elongation ε = 0.88; (b) during re-
laxation from ε = 0.88. The fiber direction is indicated by a double-arrow. Visualized region:
−0.15nm-1 ≤ s12, s3 ≤ 0.15nm-1. ε = (l − l0)/l0, with l0 and l defined by the initial and the
actual distance between two fiducial marks on the sample

complete quantitative analysis93. Even without a complete analysis mechanisms of
structure evolution can be detected, if SAXS measurements are carried out in situ
during processing by application of load (thermal, mechanical, . . . ).

Figure 8.31 shows central sections of two original SAXS patterns of PEE 1000/4394

in strained and relaxed state. In the strained state (Fig. 8.31a) a “6-point-diagram”
is detected. During relaxation (Fig. 8.31b) a well-separated “4-point-diagram” is ob-
served. Interpretation of the patterns is restricted to description and speculation.

93In 3D a quantitative analysis still appears to be hopelessly laborious because of the complexity of
the problem. On the other hand, a 1D quantitative analysis of only the longitudinal structure can be
mastered (cf. Sect. 8.7).

94PEE’s are commonly characterized by two numbers (e.g., 1500/50). The first number reports the
minimum quantization of the polyether blocks (meaning “the polyether blocks are multiples of
1500 g/mol”), the second number indicates the mass fraction of the polyester hard phase (e.g., 50 wt.-%
of polyester).
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Figure 8.32. PEE 1000/43 at ε = 0.88. CDF z(r). The domain peaks are pointing upwards:
(h) cylinder-height peaks; (d) cylinder-diameter peaks; (c) inter-domain correlation peaks.
Displayed region: |r12, r3| ≤40 nm

In an original paper [173] the longitudinal structure has been studied quantita-
tively as a function of elongation. In a follow-up study [174] the 3D CDF has been
computed and analyzed. Figure 8.32 shows the 3D CDF with fiber symmetry com-
puted from the scattering pattern in Fig. 8.31. The straining direction r3 is indicated
by the long arrow in the basic plane. The observer is facing the domain peaks. Close
to the origin the strong peaks on the meridian (h) mark the correlation between oppo-
site faces of the basic domains. Two equatorial peaks (d) indicate the diameter of the
domains. Because the height-to-diameter ratio is greater than 1, the basic domains
can be approximated by cylinders. Four correlation peaks (c) are observed in an
oblique angle with respect to the fiber axis. They indicate arrangement of domains.
Their position shows that the closest neighbors of a cylinder are not found in strain-
ing direction, which would be indicative of a microfibrillar arrangement. Instead, the
cylinders form a cluster with 3D short-range correlation. Such structural entities have
been called a macrolattice by WILKE [175, 176]. The discussed peaks carry positive
sign, because they describe chords that reach from the front face of a cylinder to the
back face of a neighboring domain. The corresponding long periods show up as in-
dentations observed at a shorter distance from the center, as they are measured “from
front to front” of the domains. They are more easily observed after the CDF has been
turned upside-down (Fig. 8.33). Obviously the long periods in fiber direction (a) are
less pronounced than the long periods in oblique direction (b). Moreover, the CDF
shows that the topology does not contain long-ranging correlations among domains.
In fiber direction there is a long period of 25 nm (a), but already the size of the
domain behind it can no longer be determined. On the other hand, the arrangement
of domains in oblique direction (b) shows better correlation: here not only the long
period, but also the size of the cylinder behind it can be determined (Fig. 8.32, (c)).
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Figure 8.33. CDF −z(r) of PEE 1000/43 at ε = 0.88. The long-period peaks are pointing
upward: (a) long period to the next neighbor in straining direction; (b) stronger long period to
the closest neighbor (in oblique direction)

During the beamtime another scattering pattern has been exposed after unloading
the material. The respective CDF is shown in Fig. 8.34. Compared with the data
from the strained state, the positions of the oblique long periods do not move (b).
This finding indicates that the central cylinders are surrounded by domains which
are rigidly coupled to them. In the scattering pattern such a structural entity is not
easily discriminated from the 4-point diagram of a stack of inclined lamellae. In this
respect the CDF is much clearer.

How should such rigid domain coupling work? In principle domains
can only be rigidly coupled by a bridge of hard-phase material which
has a different density. We know that the polyester hard-phase is semi-
crystalline. So the observation is indicative for a structure in which
the hard domains are subdivided into crystalline and amorphous zones.
Thus a quantitative model of the structure would probably require to
consider a third phase (three-phase system).

Finally we can compare the nanostructure in fiber direction after unloading with
the nanostructure observed under mechanical load. The most striking variation is
related to the strong long period (a), which is relaxing to half the value found in the
elongated state. In addition to the strong long period, only in the unloaded material
another long period is found (a′), for which even the 2nd order is visible. Thus the
corresponding structural entities are built from domains with already a considerable
range of correlation which are arranged along the straining direction. This is just
the topological definition of a microfibril [157]. As the material becomes strained,
the softer matter between the domains is elongated by different amounts and the
longitudinal correlation gets lost. Thus the semi-quantitative analysis of the CDF
returns a detailed view on the nanostructure evolution under load. More examples of
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Figure 8.34. −z(r) for PEE 1000/43 recorded during relaxation of the material from a first
elongation to ε = 0.88. (a) strongest long-period in straining direction (13 nm) (dashed arrows
with white head indicate the old positions of these peaks under strain); (a′): the best-correlated
long-period in fiber direction (17 nm), because it shows a 2nd order; (b) oblique long period
that is immovable in the straining experiment

the CDF method can be found in a growing number of original studies [56, 57, 177–
186].

8.6 Biopolymers: Isotropic Scattering of Identical
Uncorrelated Particles

Overview. Considerable research activities in the fields of isotropic SAXS and
small-angle neutron scattering (SANS) are devoted to the investigation of ensembles
of uncorrelated but identical or almost identical complex particles. Frequently these
particles are studied in solution. Samples for such investigations must be supplied in
a solution in which the particles do not aggregate.

The majority of the research is focused on colloidal and biological materials.
In several textbooks [86, 101, 136, 187] the related methods are elaborated. Recent
developments are considered in a review of SVERGUN and KOCH [188].

Classical Analysis. The classical analytical methods are even applicable for
polydisperse samples and rest on the CLD (Sect. 8.5.3) and on VONK’s [189] dis-
tance distribution function (DDF) ( [189–191]; [101] p. 168)

p(r) = r2 γ (r) . (8.78)

Figure 8.35 shows for homogeneous identical spheres the radial correlation function
(GUINIER and FOURNET [65] p. 12-19; LETCHER and SCHMIDT [192])


