Preface

Many-valued logic are gaining increasing importance in various areas such as
mathematics, physics, technology, social sciences, and especially in computer
science.

In the first volume of this book we gave an extensive presentation of the
theoretical foundations of many-valued logics. In this second volume we focus
on automated reasoning and so selected examples of practical applications of
such logics.

In the first chapter we introduce some additional algebraic notions that
were not covered in the preliminaries of Volume 1. The second chapter contains
sequent calculi for finitely valued Post logics where a sequent is defined to be any
finite sequence of formulae (in particular, an empty one). The system considered
here consists of decomposition rules (rules of elimination for logical connectives
and quantifiers) and fundamental sequences as the axioms of the system. A
sequent is deducible iff leaves on its proof tree are labeled by such axioms only.
Of course, the appropriate completeness theorem holds.

The third chapter presents an overview of sequent calculi and there we define
a sequent in n-valued logics to be an n-tuple of sequences of formulae. Once
again, some of the sequences may be empty.

The most famous sequent calculi of the type are those introduced by G. Rous-
seau and Moto Takahashi. Both systems have certain similarities in presenta-
tions but differ in the technicalities. Takahashi’s notion of a sequent is that of
a matrix with n rows. However, in order to make the notation uniform we have
allowed ourselves to change it to an ordered n-tuple of sequences of formulae. It
did not affect Takahashi’s idea. His calculus is closest to the classical Gentzen
calculus for two-valued logics and, similarly, it is a deduction system. A proof
tree is built starting with axiom labelling the leaves and the formula at the
root is the goal. Moreover, apart from rules introducing logical connectives and
quantifiers there are weakening and cut rules. Rousseau’s system is also of the
deduction type and both systems require a partial proof search algorithm. We
conclude Chapter 3 with a brief presentation of Fitting’s calculus for a limited
class of logics in which sequent is just a pair of sets of formulae.
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In Chapters 4 and 5 we discuss the resolution principle for finitely many-va-
lued logics defined through matrices. We also mention some results by Z. Stach-
niak and P. O’Hearn. In Chapter 6 we describe a resolution principle for an
n-valued Post logic. The principle, due to C.G. Morgan, is a generalization of
the classical resolution.

Chapter 7 presents various reasoning systems for classical many-valued logics
and their selected applications in some, often very different areas. Such a wide
range of applications was made possible by the highly abstract and general
presentations of the theory, a feature characteristic to these logics.

Finally, we have decided to devote the last two chapters of the book to pro-
cessing of imprecise and approximate information since it has become a crucial
issue in many areas. In Chapters 8 and 9 we discuss methods of formal presen-
tation and reasoning with imprecise and approximate data, inspired by classical
many-valued logics. In particular, methods based on fuzzy logics are considered
in Chapter 8, where by fuzzy logics we mean many-valued logics with a general-
ized notion of an axiom and a generalized consequence relation, linguistic logics
and reasoning systems with a generalized modus ponens rule. In Chapter 9 we
take a rough set approach to the problem and introduce a logic constructed
from this viewpoint. Most importantly, in both chapters we describe related
applications, usually taken from the field of decision support systems, and give
respective reasoning and control systems, or systems of pattern recognition and
data perception.

We would like to add that the presentation of topics in the last three chap-
ters, however brief, also shows how the classical many-valued logics of Luka-
siewicz and Post have inspired the new systems in use today. Fuzzy set theory
in Chapters 7 through 9 is based exclusively on results of L. Zadeh and authors
who developed his theory further; on the other hand, in our presentation of the
rough set theory — introduced originally by Z. Pawlak — we mention primarily
his results and the research of those who extended the theory, for example,
A. Skowron, R. Stowinski and J. Grzymala-Busse.

We would like to thank the above authors for their consent to present their
results in this book. It must be emphasized that their work has provided the
fundamentals for any current and future research in the area of many-valued
logics.

We are also grateful to R. Héhnle, S. Gerberding and R. Zach: we have
learned a lot from their work and often used their results in the book.

We also thank J. Cytowski, P. Rychlik, M. Srebrny and A. Szalas who have
read the draft and suggested many improvements. Yet another person we have
received many valuable comments from is B. Konikowska who has also helped us
with editing. Moreover, we would like to thank G. Domariska-Zurek for typing
the final version of this book.
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Finally, our sincere thanks go to the editor Dr. Hans Wossner at Springer-
Verlag and the copy-editor J. Andrew Ross. It was their effort and involvement
that led to the publication of the book.

We hope that the two volumes of the monograph will indeed give the reader
an overview of the state of the art in this rapidly developing area, and that the
reader will find the monograph a convenient presentation of both theoretical
foundations of many-valued logics and the vast range of their applications.

Warsaw, July 2003 Leonard Bolc
Piotr Borowik



Introduction:
The History of Automated Reasoning

The history of automated reasoning goes back to the 17th century, when
Descartes proved that algebraic methods can provide solutions to problems of
Greek geometry. This implied a certain mechanization of mathematics, of which
Descartes was fully aware. In [Descartes 1637] he wrote:

...all the problems of classic geometry can be constructed with the aid
of not more than the four pictures I have described. I believe this is the
issue that the ancient have overlooked, for otherwise they would not
put so much effort in writing so many books, where the presentation of
theorems proves that they knew no method for proving everything...

As can be noticed, at that time already the idea of a method for proving all
the theorems of mathematics was alive. Today we know that this was nothing
but a dream. This chapter is, in fact, a description of the process of humanity’s
attempts to make automation of reasoning a reality. In this case, automation
means the existence of an algorithm providing solution of problems without the
intervention of human inventiveness and intelligence. The dream of a clear and
direct mechanization of reasoning was first made explicit in Leibniz’s works in
the 17th century. Leibniz was charmed by the idea of Lullus to design a method
for reducing all notions to some root notions which would constitute the basic
alphabet. The set of all true propositions would then be composed of mechanical
combinations of the root notions. In the course of his research on the language
and methods of proof, Leibniz introduced two new notions: calculus ratiocinator
and lingua characteristica. The first, calculus ratiocinator, denoted a deductive
calculus which would allow logical conclusions to be drawn by transforming its
expressions. Lingua characteristica was intended to be a universal language,
that is, a language adequate for all the domains of human knowledge. These
two notions determined the directions of further research in this area. In spite
of having worked out many technical details, Leibniz was not able to arrive at
far-reaching conclusions; even the great restrictions he imposed on the language
were of little help. From our point of view, Leibniz developed a fragment of
the theory of Boolean algebras with one binary operation only. The operation
was sometimes interpreted as meet, other times as join. Leibniz’s achievement
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consisted in treating logic as an abstract language with many possible inter-
pretations, which is evidenced, for example, by his different interpretations of
the binary operation symbol in the calculus. He also noticed the possibility of
basing deduction on an axiom system. Unfortunately, most of Leibniz’s work
was not published until the 20th century and thus had very little influence on
his contemporaries. In the 18th and the 19th century, several authors, including
Segner, Lambert, Ploucquet, Holland, De Castillon, and Gergonne, undertook
the investigation of similar problems, but none of them attained anything new
with respect to the accomplishments of Leibniz.

Only in the middle of the 19th century was the calculus ratiocinator, in the
sense of Leibniz, formed by Boole ([Boole 1847]). Boole noticed that operations
on sets could be treated as an abstract system based on a set of axioms and,
moreover, that the operations have an interpretation in logic, if logical values are
substituted for the symbols. This idea was then used by Jevons, an economist
and logician, to devise the first machine for the verification of Boole’s identities
in 1869 ([Kneale 1962]). The machine can be considered the first device ever
produced for automated reasoning.

Ten years later, Frege developed the predicate calculus. At that time the
present form of logical propositions was shaped: predicates with a finite number
of arguments, linked by Boolean logical connectives and quantifiers. Frege’s
language was also the first example of a fully formalized artificial language. The
form he suggested is still reflected in today’s programming languages. Moreover,
Frege introduced the rule of detachment or modus ponens, due to which he was
able to describe the deduction process in the language of logic. Frege considered
himself a follower of Leibniz. His logic was a development of the idea of lingua
characteristica, a part of which was the calculus ratiocinator, i.e., a scheme for
proving theorems, based on axioms and inference rules. However, Frege’s work
remained virtually unknown and was not understood, perhaps because it was
quite ahead of its time ([van Heijenoort 1967]). The symbols he used were hardly
intuitive and differed greatly from those used by contemporary mathematicians.

Some years later, Peano constructed his own formalized system of logic, to
which we owe the present shape of the language of logic. But Peano took a
step backwards with respect to Frege’s approach. Unlike Frege, Peano did not
use formal inference rules and consequently the entire deduction process was
described in natural language.

Peano was aware of the great significance his work had for science. Never-
theless, he was severely criticized by Poincaré. Poincaré’s attacks were highly
emotional. Even if he clearly realized the importance of Peano’s results, he
could not agree with the project of transforming mathematical reasoning into
a mechanical procedure. In his opinion, this would bring the destruction of the
beauty of mathematics. Poincaré considered absurd the idea of ignoring cre-
ative features of mathematical thought. Similar opposition was aroused by the
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use of infinity in mathematics. Gauss considered inadmissible the introduction
of the notion of infinity into the language of mathematics. Brouwer went even
farther (in his critique of Cantor), initiating a new doctrine, called intuitionism.
The doctrine rejected all non-constructive methods in mathematics. Brouwer
postulated that proofs of existence be based on the explicit indication of the
object whose existence is to be proved. Intuitionism was a very strong move-
ment within mathematics at that time. Almost all mathematicians, even those
who criticized it, fell under its influence. Even today, after the majority have ac-
cepted non-constructive proofs, mathematicians attempt to find a constructive
one whenever possible.

A critique of intuitionism was carried out by Hilbert, who introduced the no-
tion of metamathematics, a theory intended to prove the consistency of mathe-
matics. Although an opponent of intuitionism, Hilbert included the requirement
of constructive proofs in metamathematics. In fact, his intention was to present
a constructive proof of the consistency of classical mathematics. Post went even
farther by rejecting altogether the restrictions of intuitionism and constructing
his own metamathematical program ([Post 1921]).

A key role in the history of automated reasoning must be attributed to
Skolem, who investigated the notion of satisfiability in the predicate calculus.
In 1928 Skolem formulated the notion known today as the Herbrand universe
and introduced function symbols which made possible the elimination of exis-
tential quantifiers in logic formulae ([Skolem 1928, van Heijenoort 1967]). His
proof method, based on the notion of a Herbrand universe, became a pattern
for proof procedures. However, in his proofs Skolem used the axiom of choice,
which made the method inadmissible for Hilbert.

In the same year a very significant publication appeared: [Hilbert, Acker-
mann 1928]. Its authors expressed some fundamental ideas lying at the foun-
dations of automated reasoning. Two main problems were considered: the com-
pleteness of the axiom system presented in the book and the Entscheidungsprob-
lem, i.e., the problem of finding an algorithm deciding the satisfiability of propo-
sitions in the predicate calculus. The first of these problems was solved by Godel
in 1930 ([Godel 1930]). Godel proved the completeness of the predicate calculus
of Hilbert and Ackermann. In the next year he proved the existence of unde-
cidable propositions in every formal system which contained the Peano arith-
metic of natural numbers. There was yet another important result in Godel’s
work: there is no consistent formal system powerful enough to prove its own
consistency ([Godel 1931]). Thus Hilbert’s dream of proving the consistency of
mathematics faded away.

A few years later Kleene and, independently, Mostowski introduced a hier-
archy of notions defined in arithmetic. The hierarchy had infinitely many levels,
the first of which contained decidable notions, the two next contained partially
decidable notions and their complements, and all the subsequent levels notions
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of increasing complexity. In the following years many new negative results ap-
peared, showing more and more new mathematical theories to be undecidable.
At the same time intensive research was being done on decidable theories. In this
context, the names of mathematicians like Ackermann, Langford, Presburger,
Tarski, and Rabin must be quoted.

In 1930 another important work, [Herbrand 1930], appeared which deter-
mined a working scheme for inference systems valid to this day. The scheme
uses the fact that the proof of a theorem can be reduced to the question of
the existence of a model for the axiom system extended by the negation of the
theorem. The reasoning then consists in reducing a formula to a certain normal
form and eliminating the existential quantifiers by Skolemization. Next, a Her-
brand universe is defined for the set of formulae obtained at the previous stage.
Herbrand’s theorem states that a set of formulae has no model if and only if
there exists a non-satisfiable set obtained from a finite subset by substituting
elements of the Herbrand universe for variables. This result implies an impor-
tant simplification of deduction, for it reduces it to the consideration of a very
concrete structure and of finite subsets of formulae without free variables.

The next significant step in the development of automated reasoning tech-
niques was made in 1934, when Gentzen ([Gentzen 1934]) and, independently,
Jaskowski ([Jaskowski 1934]) defined the sequential calculus, also known as nat-
ural deduction. In the hitherto applied reasoning methods the property to be
proved being the final conclusion, in the natural deduction method it becomes
the starting point. The process of proof consists in decomposing the formula
into simpler ones until axioms are reached. Thus the burden of inference is
transferred from the axioms to inference rules.

Further success in the area of logical foundations of mathematics was due
to the works of Turing and Church. They proved, independently, the undecida-
bility of the set of tautologies of first-order logic, that is to say, that there is no
algorithm yielding “yes” when a formula is a tautology, and “no” in the oppo-
site case. The two have attained the result in a different way. Turing used the
notion of an abstract computing machine, today known as “Turing machine”.
He reduced the problem of deciding whether a given statement is a tautology to
the halting problem, which is undecidable ([Turing 1937]). On the other hand,
Church applied the lambda calculus invented by himself. In the proof, he also
used the fact that the Hilbert—Ackermann axiom system for the predicate cal-
culus was complete ([Church 1936, Davis 1965]). Thus, the set of tautologies of
the classical first-order predicate logic is not decidable. Later Godel improved
the theorem by showing that this set is partially decidable ([G&del 1931]), i.e.,
there exists an algorithm that yields “yes” for a formula which is a tautology,
while in the case of a non-tautology it either yields “no” or enters a loop.

Another result of Gédel which is significant from the point of view of au-
tomated reasoning is the proof of the theorem stating that every partially de-
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cidable problem can be reduced to the problem of deciding whether a given
statement is a tautology of classical logic. This entails important restrictions on
new inference systems, for instance, in non-classical logics. It turns out that we
cannot go beyond some fixed limits.

And this is actually the end of the early period in the history of automated
reasoning. It is closely related to the history of new discoveries in the foundations
of mathematics and logic. To make machines ”think”, the man had to analyse his
own way of reasoning as well as its emanations, such as mathematics. Only after
having overcome some difficulties in defining the process of deduction and its
language precisely was it possible to initiate deduction simulation on computers.
The rapid development of computer techniques and their accessibility greatly
contributed to the process.

The first deductive programs began to appear. One of them was the so-
called "logic machine” of Newell, Shaw and Simon. This was a program meant
to prove theorems of the first-order predicate calculus; it was based on the
Hilbert-Ackermann axiom system. The historical significance of the program
consisted mainly in the fact that structures typical to most future applications
were applied here for the first time. It has shown the direction that would be
followed by subsequent proof programs.

In 1960 the first deductive systems based on theoretical results of Her-
brand ([Herbrand 1930]) appeared. These systems were introduced in the papers
[Gilmore 1960, Prawitz, Voghera 1960, Davis, Putnam 1960, Wang 1960a].

All these applications intended to imitate human thinking. This was tren-
chantly emphasized by Minsky ([Minsky 1961, Feigenbaum, Feldman 1963]):

It seems to be clear that a program for the solution of real mathe-
matical problems must be a combination of both Wang’s mathematical
refinement and the heuristic refinement of Newell, Shaw, and Simon.

In the 1960s the “geometric machine” of Gelernter appeared. It was able to
prove geometric theorems. Among others, it proved the equality of angles at the
base of an isosceles triangle. Simultaneously, Wang ([Wang 1960, 1960a, 1963])
announced a program capable of proving all the theorems of Whitehead and
Russell’s Principia Mathematica.

And so we have reached the year 1965, when Robinson made his resolution
principle known ([Robinson 1965]). To this day the principle plays the main role
in automated theorem proving (see Section 4.3). It brought forth an avalanche of
new inference systems, theoretical investigation, generalizations of the original
principle. Most modern proof programs use the resolution principle, often as the
only rule. The resolution method requires the conjunctive form of a formula;
this is one of the constraints to be obeyed when extending the method to non-
classical logics. Many variants of the resolution method have appeared since
then. Most changes are intended to restrict the search tree. Modern algorithms
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based on the resolution principle hardly remind the classic principle. There is
even a version which can do without the conjunctive form ([Murray 1982]).

Another successful method is that of analytic tableaux. It originated in the
semantic tableau method of Beth from the 1950s. The connection or link path
method is relatively new. It was suggested by Bibel ([Bibel 1987]) and, unlike
the resolution principle, it uses the disjunctive form of a formula. It also provides
direct proofs, i.e., verifies the property of a formula of being true rather than
the non-satisfiability of its negation, as is the case in resolution methods.

Analogously, many automated reasoning systems are based on the natural
deduction method (see, e.g., [Constable et al. 1986, Gordon et al. 1986]). The
great advantage of this technique relies on the fact that the proofs produced
by the method are readable by humans. The method has found many serious
applications in software design (cf. [Shankar et al. 1993]).

Clearly, the first automated reasoning systems were adapted to classical
logic. Even if most systems are still addressed to this logic, soon systems for
non-classical logic began to appear, in particular, for many-valued logics. One
of the first works in this direction was [Morgan 1976].

The extension of the scope of applications for the resolution principle turned
out to be relatively easy for some logics. After Morgan, new systems appeared,
among them [Orfowska 1978, Schmitt 1986]. However, they referred to a rather
narrow class of many-valued logics. In the case of many-valued logics, the lack
of an adequate normal form for formulae required by the resolution method
may cause serious problems. They have been overcome to a great extent in
[Stachniak, O’Hearn 1990]. This seems to be the most general approach to au-
tomated reasoning based on resolution in many-valued logics. The system is
applicable to all finitely-valued logics.

It turned out recently that the method of analytic tableaux can be very
well adapted to many-valued logics. The first to produce such adaptations were
Surma ([Surma 1984]) and Suchon ([Suchori 1974]). Later the idea was devel-
oped by Carnielli ([Carnielli 1991]) and Héhnle ([Hahnle 1990]).

And here is where history ends and the present day begins. We are witness-
ing a rapid development of automated reasoning and the emergence of many
programs which find applications in various areas, like artificial intelligence,
computer science, electronics, and medicine. The significant increase in com-
puter power available today has made this possible.





