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Jordan Algebras in the Algebraic Renaissance:
Finite-Dimensional Jordan Algebras over
Algebraically Closed Fields

The next stage in the history of Jordan algebras was taken over by algebraists.
While the physicists lost interest in the search for an exceptional setting for
quantum mechanics (the philosophical objections to the theory paling in com-
parison to its amazing achievements), the algebraists found unsuspected rela-
tions between, on the one hand, the strange exceptional simple Albert algebra
of dimension 27 and, on the other hand, the five equally strange exceptional
simple Lie groups and algebras of types G2, F4, E6, E7, E8 of dimensions 14,
52, 78, 133, 248. While these had been discovered by Wilhelm Killing and
Elie Cartan in the 1890s, they were known only through their multiplication
tables: there was no concrete representation for them (the way there was for
the four great classes An, Bn, Cn, Dn discovered by Sophus Lie in the 1870s).
During the 1930s Jacobson discovered that the Lie group G2 could be realized
as the automorphism group (and the Lie algebra G2 as the derivation algebra)
of a Cayley algebra, and in the early 1950s Chevalley, Schafer, Freudenthal,
and others discovered that the Lie group F4 could be realized as the automor-
phism group (and the Lie algebra F4 as the derivation algebra) of the Albert
algebra, that the group E6 could be realized as the isotopy group (and the al-
gebra E6 as the structure algebra) of the Albert algebra, and that the algebra
E7 could be realized as the superstructure Lie algebra of the Albert algebra.
[E8 was connected to the Albert algebra in a more complicated manner.]

These unexpected connections between the physicists’ orphan child and
other important areas of mathematics, spurred algebraists to consider Jordan
algebras over more general fields. By the late 1940s the J–vN–W structure
theory had been extended by A.A. Albert, F. and N. Jacobson, and others to
finite-dimensional Jordan algebras over an arbitrary algebraically closed field
of characteristic not 2, with essentially the same cast of characters appearing
in the title roles.
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2.1 Linear Algebras over General Scalars

We begin our algebraic history by recalling the basic categorical concepts
for general nonassociative algebras OVER AN ARBITRARY RING OF
SCALARS Φ. When dealing with Jordan algebras we will have to assume
that 1

2 ∈ Φ, and we will point this out explicitly. An algebra is simultaneously
a ring and a module over a ring of scalars Φ, such that the ring multiplication
interacts correctly with the linear structure.

Linear Algebra Definition. A ring of scalars is a unital commutative
associative ring Φ. A (nonassociative) linear algebra over Φ (or Φ-algebra,
for short) is a Φ-module A equipped with a Φ-bilinear product A × A −→
A (abbreviated by juxtaposition (x, y) 
→ xy). Bilinearity is equivalent to the
condition that the product satisfies the left and right distributive laws

x(y + z) = xy + xz, (y + z)x = yx+ zx,

and that scalars flit in and out of products,

(αx)y = x(αy) = α(xy),

for all elements x, y, z in A. The algebra is unital if there exists a (two-sided)
unit element 1 satisfying 1x = x1 = x for all x.

Notice that we do not require associativity of the product nor existence of
a unit element in A (though we always demand a unit scalar in Φ). Lack of a
unit is easy to repair: we can always enlarge a linear algebra slightly to get a
unital algebra.

Unital Hull Definition. Any linear algebra can be imbedded as an ideal in
its unital hull

Â := Φ1̂ ⊕ A, (α1̂ ⊕ x)(β1̂ ⊕ y) := αβ1̂ ⊕ (αy + βx+ xy).

A is always an ideal in Â since multiplication by the new elements α1̂ are just
scalar multiplications; this means that we can often conveniently formulate
results inside A making use of its unital hull. For example, in an associative
algebra the left ideal Ax + Φx generated by an element x can be written
succinctly as Âx (the left ideal Ax needn’t contain x if A is not already
unital).
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2.2 Categorical Nonsense

We have the usual notions of morphisms, sub-objects, and quotients for linear
algebras.

Morphism Definition. A homomorphism ϕ : A → A
′ is a linear map of

Φ-modules which preserves multiplication,

ϕ(xy) = ϕ(x)ϕ(y);

an anti-homomorphism is a linear map which reverses multiplication,

ϕ(xy) = ϕ(y)ϕ(x).

The kernel Ker(ϕ) := ϕ−1(0′) is the set of elements mapped into 0′ ∈ A
′,

and the image Im(ϕ) := ϕ(A) is the range of the map. An isomorphism is
a bijective homomorphism; we say that A is isomorphic to A

′, or A and
A

′ are isomorphic (written A
∼= A

′), if there is an isomorphism of A onto
A

′. An automorphism is an isomorphism of an algebra with itself. We have
corresponding notions of anti-isomorphism and anti-automorphism for
anti-homomorphisms.

∗-Algebra Definition. An involution is an anti-automorphism of period 2,

ϕ(xy) = ϕ(y)ϕ(x) and ϕ(ϕ(x)) = x.

We will often be concerned with involutions, since they are a rich source of Jor-
dan algebras. The natural notion of morphism in the category of ∗-algebras
(algebras together with a choice of involution) is that of ∗-homomorphism
(A, ∗) → (A′, ∗′), which is a homomorphism ϕ : A → A

′ of algebras which
preserves the involutions, ϕ ◦ ∗ = ∗′ ◦ ϕ (i.e., ϕ(x∗) = ϕ(x)∗′

for all x ∈ A).
One important involution is the standard involution on a quaternion or

octonion algebra.

Ideal Definition. A subalgebra B ≤ A of a linear algebra A is a Φ-
submodule closed under multiplication: BB ⊆ B. An ideal B 
 A of A is a
Φ-submodule closed under left and right multiplication by A: AB + BA ⊆ B.
If A has an involution, a ∗-ideal is an ideal invariant under the involution:
B
A and B

∗ ⊆ B. We will always use 0 to denote the zero submodule, while
ordinary 0 will denote the zero scalar, vector, or transformation (context will
decide which is meant).

Quotient Definition. Any ideal B 
A is the kernel of the canonical homo-
morphism π : x 
→ x of A onto the quotient algebra A = A/B (consisting
of all cosets x := [x]B := x+B with the induced operations αx := αx, x+y :=
x+ y, x y := xy). The quotient A/B of a ∗-algebra by a ∗-ideal is again a
∗-algebra under the induced involution x̄∗ := x∗.
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We have the usual tripartite theorem relating homomorphisms and quo-
tients.

Fundamental Theorem of Homomorphisms. For homomorphisms (and
similarly for ∗-homomorphisms) we have:

(I) If ϕ : A→ A′ is a homomorphism, then Ker(ϕ) 
A, Im(ϕ) ≤ A
′, and

A/Ker(ϕ) ∼= Im(ϕ) under the map ϕ(x) := ϕ(x).

(II) There is a 1-to-1 correspondence between the ideals (respectively subal-
gebras) C of the quotient A = A/B and those C of A which contain B, given
by C 
→ π(C) and C 
→ π−1(C); for such ideals C we have A/C ∼= A/C.

(III) If B 
 A, C ≤ A then C/(C ∩ B) ∼= (C + B)/B under the map
ϕ([x]C∩B) = [x]B.

As usual, we have a way of gluing different algebras together as a direct
sum in such a way that the individual pieces don’t interfere with each other.

Direct Sum Definition. The direct sum A1 � · · ·� An of a finite number
of algebras is the Cartesian product A1 × · · · × An under the componentwise
operations

α(x1, . . . , xn) := (αx1, . . . , αxn),
(x1, . . . , xn) + (y1, . . . , yn) := (x1 + y1, . . . , xn + yn),

(x1, . . . , xn)(y1, . . . , yn) := (x1y1, . . . , xnyn).

We will consistently write an algebra direct sum with �, and a mere module
direct sum with ⊕.

In algebras with finiteness conditions we only need to consider finite direct
sums of algebras. Direct sums are the most useful (but rarest) “rigid” decom-
positions, and are the goal of many structure theories. In the wide-open spaces
of the infinite-dimensional world, direct sums (finite or otherwise) do not suf-
fice, and we need to deal with infinite direct products.

Direct Product Definition. The direct product
∏

i∈I Ai of an arbitrary
family of algebraic systems Ai indexed by a set I is the Cartesian product
Xi∈IAi under the componentwise operations. We may think of this as all
“strings” a =

∏
ai or “I-tuples” a = (. . . ai . . . ) of elements, one from each

family member Ai, or more rigorously as all maps a : I → ∪iAi such that
a(i) ∈ Ai for each i, under the pointwise operations.

The direct sum �i∈IAi is the subalgebra of all tuples with only a finite
number of nonzero entries (so they can be represented as a finite sum ai1 +
· · · + ain of elements aj ∈ Aj). For each i ∈ I we have canonical projections
πi of both the direct product and direct sum onto the ith component Ai.1

1 The direct product and sum are often called the product
∏

Ai and coproduct
∐

Ai;
especially in algebraic topology, these appear as “dual” objects. For finite index sets, the
two concepts coincide.
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Infinite direct products are complicated objects, more topological or combi-
natorial than algebraic. They play a crucial role in the “logic” of algebras
through the construction of ultraproducts. Semi-direct product decomposi-
tions are fairly “loose,” but are crucial in the study of radicals.

Subdirect Product Definition. An algebra is a subdirect product A
=∼∏

i∈I Ai of algebras (more often and more inaccurately called a semidirect
sum) if there is (1) a monomorphism ϕ : A →

∏
i∈I Ai such that (2) for each

i ∈ I the canonical projection πi(ϕ(A)) = Ai maps onto all of Ai. By the
Fundamental Theorem, (2) is equivalent to Ai

∼= A/Ki for an ideal Ki 
 A,
and (1) is equivalent to

⋂
I Ki = 0. Thus a semi-direct product decomposition

of A is essentially the same as a “disjoint” family of ideals.

For example, the integers Z are a subdirect product of fields Zp for any infinite
collection of primes p, and even of Zpn for a fixed p but infinitely many n.

In a philosophical sense, an algebra A can be recovered from an ideal B

and its quotient A/B. The basic building blocks are those algebras which
cannot be built up from smaller pieces, i.e., have no smaller ingredients B.

Simple Definition. An algebra is simple if it has no proper ideals and is
not trivial, AA �= 0. Analogously, a ∗-algebra is ∗-simple if it has no proper
∗-ideals and is not trivial. Here a submodule B is proper if it is not zero or
the whole module, B �= 0,A. An algebra is semisimple if it is a finite direct
sum of simple algebras.

2.3 Commutators and Associators

We can reformulate the algebra conditions in terms of the left and right
multiplication operators Lx and Rx by the element x, defined by

Lx(y) := xy =: Ry(x).

Bilinearity of the product just means the map L : x 
→ Lx (or equivalently
the map R : y 
→ Ry) is a linear mapping from the Φ-module A into the
Φ-module EndΦ(A) of Φ-linear transformations on A.

The product (and the algebra) is commutative if xy = yx for all x, y, and
skew if xy = −yx for all x, y; in terms of operators, commutativity means
that Lx = Rx for all x, and skewness means that Lx = −Rx for all x, so in
either case we can dispense with the right multiplications and work only with
the Lx. In working with the commutative law, it is convenient to introduce
the commutator

[x, y] := xy − yx,

which measures how far two elements are from commuting: x and y commute
iff their commutator is zero. In these terms the commutative law is [x, y] = 0,
so an algebra is commutative iff all commutators vanish.
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The product (and the algebra) is associative if (xy)z = x(yz) for all
x, y, z, in which case we drop all parentheses and write the product as xyz.
We can interpret associativity in three ways as an operator identity, depending
on which of x, y, z we treat as the variable: on z it says that Lxy = LxLy, i.e.,
that L is a homomorphism of A into EndΦ(A); on x it says that RzRy = Ryz,
i.e., that R is an anti-homomorphism; on y it says that RzLx = LxRz, i.e.,
that all left multiplications Lx commute with all right multiplications Rz.2 It
is similarly convenient to introduce the associator

[x, y, z] := (xy)z − x(yz),

which measures how far three elements are from associating: x, y, z associate
iff their associator is zero. In these terms an algebra is associative iff all its
associators vanish, and the Jordan identity becomes [x2, y, x] = 0.

Nonassociativity can never be repaired, it is an incurable illness. Instead,
we can focus on the parts of an algebra which do behave associatively. The
nucleus Nuc(A) of a linear algebra A is the part which “associates” with all
other elements, the elements n which hop blithely over parentheses:

Nuc(A) : (nx)y = n(xy), (xn)y = x(ny), (xy)n = x(yn)

for all x, y in A. In terms of associators, nuclear elements are those which
vanish when put into an associator,

Nuc(A) := {n ∈ A | [n,A,A] = [A, n,A] = [A,A, n] = 0}.

Nuclear elements will play a role in several situations (such as forming nuclear
isotopes, or considering involutions whose hermitian elements are all nuclear).
The associative ring theorist Jerry Martindale offers this advice for proving
theorems about nonassociative algebras: never multiply more than two ele-
ments together at a time. We can extend this secret for success even further:
when multiplying n elements together, make sure that at least n–2 of them
belong to the nucleus!

Another useful general concept is that of the center Cent(A), the set of
elements c which both commute and associate, and therefore act like scalars:

Cent(A) : cx = xc, c(xy) = (cx)y = x(cy),
2 Most algebraists of yore were right-handed, i.e., they wrote their maps on the right: a

linear transformation T on V had values xT, the matrix of T with respect to an ordered
basis was built up row by row, and composition S ◦ T meant first do S and then T . For
them, the natural multiplication was Ry , xRy = xy. Modern algebraists are all raised as left-
handers, writing maps on the left (f(x) instead of xf), as learned in the calculus cradle, and
building matrices column by column. Whichever hand you use, in dealing with modules over
noncommutative rings of scalars it is important to keep the scalars on the opposite side of the
vectors from the operators, so linear maps have either T (xα) = (Tx)α or (αx)T = α(xT ).
Since the dual V ∗ of a left (resp. right) vector space V over a noncommutative division
algebra ∆ is a right (resp. left) vector space over ∆, it is important to be ambidextrous,
writing a linear map as T (x) on V, but its adjoint as (x∗)T ∗ on the dual.
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or in terms of associators and commutators

Cent(A) := {c ∈ Nuc(A) | [c,A] = 0}.

Any unital algebra may be considered as an algebra over its center, which is
a ring of scalars over Φ: we simply replace the original scalars by the center
with scalar multiplication c · x := cx. If A is unital then Φ1 ⊆ Cent(A), and
the original scalar action is preserved in the form αx = (α1) ·x. In most cases
the center forms the “natural” scalars for the algebra; a unital Φ-algebra is
central if its center is precisely Φ1. Central-simple algebras (those which are
central and simple) are crucial building-blocks of a structure theory.

2.4 Lie and Jordan Algebras
In defining Jordan algebras over general scalars, the theory always required
the existence of a scalar 1

2 (ruling out characteristic 2) to make sense of its
basic examples, the special algebras under the Jordan product. Outside this
restriction, the structure theory worked smoothly and uniformly in all char-
acteristics.
Jordan Algebra Definition. If Φ is a commutative associative ring of
scalars containing 1

2 , a Jordan algebra over Φ is a linear algebra J equipped
with a commutative product p(x, y) = x•y which satisfies the Jordan identity.
In terms of commutators and associators these can be expressed as

(JAX1) [x, y] = 0 (Commutative Law).
(JAX2) [x2, y, x] = 0 (Jordan Identity).

The product is usually denoted by x • y rather than by mere juxtaposition.
In operator terms, the axioms can be expressed as saying that left and right
multiplications coincide, and left multiplication by x2 commutes with left
multiplication by x:

(JAX1op) Lx = Rx, (JAX2op) [Lx2 , Lx] = 0.

Lie algebras can be defined over general rings, though in practice patholo-
gies crop up as soon as you leave characteristic 0 for characteristic p (and by
the time you reach characteristic 2 almost nothing remains of the structure
theory).
Lie Algebra Definition. A Lie algebra3 over any ring of scalars Φ is a lin-
ear algebra L equipped with an anti-commutative product, universally denoted
by brackets p(x, y) := [x, y], satisfying the Jacobi identity

(LAX1) [x, y] = −[y, x] (Anti-commutative Law),

(LAX2) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi Identity).
3 “Lee” as in Sophus or Sara or Robert E., not “Lye.”
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We can write these axioms too as illuminating operator identities:

(LAX1op) Lx = −Rx, (LAX2op) L[x,y] = [Lx, Ly],

so that L is a homomorphism L → EndΦ(L)− of Lie algebras (called the
adjoint representation, with the left multiplication map called the adjoint
map Ad(x) := Lx). The use of the bracket for the product conflicts with the
usual notation for the commutator, which would be [x, y] − [y, x] = 2[x, y],
but this shows that there is no point in using commutators in Lie algebras to
measure commutativity: the bracket says it all.

2.5 The Three Basic Examples Revisited

The creation of the plus and minus algebras A
+, A

− makes sense for arbi-
trary linear algebras, and these produce Jordan and Lie algebras when A is
associative. These are the first (and most important) examples of Jordan and
Lie algebras.

Full Example. If A is any linear algebra with product xy over a ring of
scalars Φ containing 1

2 , the plus algebra A
+ denotes the linear Φ-algebra with

commutative “Jordan product”

A
+ : x • y := 1

2 (xy + yx).

If A is an associative Φ-algebra, then A
+ is a Jordan Φ-algebra.

Just as everyone should show, once and only once in his or her life, that ev-
ery associative algebra A gives rise to a Lie algebra A

− by verifying directly
the anti-commutativity and Jacobi identity for the commutator product, so
should everyone show that A also gives rise to a Jordan algebra A

+ by verify-
ing directly the commutativity and Jordan identity for the anti-commutator
product.

The previous notions of speciality and exceptionality also make sense in
general.

Special Definition. A Jordan algebra is special if it can be imbedded in
an algebra A

+ for A associative (i.e., if it is isomorphic to a subalgebra of
some A

+), otherwise it is exceptional. We usually think of special algebras
as living inside associative algebras.

As before, the most important examples of special Jordan or Lie subalge-
bras are the algebras of hermitian or skew elements of an associative algebra
with involution.

Hermitian Example. If a linear algebra A has an involution ∗, then H(A, ∗)
denotes the hermitian elements x∗ = x. It is easy to see that if A is an
associative Φ-algebra with involution, then H(A, ∗) is a Jordan Φ-subalgebra
of A

+.
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The third basic example of a special Jordan algebra is a spin factor, which
has no natural Lie analogue.

Spin Factor Example. We define a linear Φ-algebra structure JSpinn(Φ)
on Φ1⊕Φn over an arbitrary ring of scalars Φ by having 1 act as unit element
and defining the product of vectors v,w ∈ Φn to be the scalar multiple of 1
given by the dot product 〈v,w〉 (for column vectors this is v trw),

v • w := 〈v,w〉1,

so the global expression for the product is

(α1 ⊕ v) • (β1 ⊕ w) :=
(
αβ + 〈v,w〉

)
1 ⊕

(
αw + βv

)
.

Spin factors over general scalars are Jordan algebras just as they were over
the reals, by symmetry of the dot product and the fact that Lx2 is a linear
combination of Lx, 1J, and again they can be imbedded in hermitian 2n × 2n

matrices over Φ.

2.6 Jordan Matrix Algebras with Associative
Coordinates

An important special case of a Hermitian Jordan algebra H(A, ∗) is that
where the linear algebra A = Mn(D) is the algebra of n × n matrices over
a coordinate algebra (D,−) (a unital linear algebra with involution d 
→ d̄).
These are especially useful since one can give an explicit “multiplication table”
for hermitian matrices in terms of the coordinates of the matrices, and the
properties of H closely reflect those of D.

Hermitian Matrix Example. For an arbitrary linear ∗-algebra D with in-
volution , the conjugate transpose mapping X∗ := X

tr (
X := (xij)

)
is an

involution on the linear algebra Mn(D) of all n × n matrices with entries
from D under the usual matrix product XY . The Φ-module Hn(D,−) of all
hermitian matrices X∗ = X with respect to this involution is closed under the
Jordan product X • Y = 1

2 (XY + Y X).4

Using the multiplication table one can show why the exceptional Jordan
matrix algebras in the Jordan–von Neumann–Wigner Theorem stop at n =
3: in order to produce a Jordan matrix algebra, the coordinates must be
alternative if n = 3 and associative if n ≥ 4.5

4 If we used a single symbol D = (D,−) for a ∗-algebra, the hermitian example would
take the form Hn(D). Though this notation more clearly reveals that Hn is a functor from
the categories of associative ∗-algebras to Jordan algebras, we will almost always include
the involution in the notation. The one exception is for composition algebras with their
standard involution: we write Hn(C) when C is R, C, H, K, or an octonion algebra O.

5 In fact, any “respectable” Jordan algebras of “degree” 4 or more (whether or not they
have the specific form of matrix algebras) must be special.
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Associative Coordinates Theorem. If the hermitian matrix algebra
Hn(D,−) for n ≥ 4 and 1

2 ∈ Φ is a Jordan algebra under the product
X •Y = 1

2 (XY +Y X), then D must be associative and Hn(D,−) is a special
Jordan algebra.

2.7 Jordan Matrix Algebras with Alternative
Coordinates

When n = 3 we can even allow D to be slightly nonassociative: the coordinate
algebra must be alternative.

Alternative Algebra Definition. A linear algebra D is alternative if it
satisfies the Left and Right Alternative Laws

(AltAX1) x2y = x(xy) (Left Alternative Law),

(AltAX2) yx2 = (yx)x (Right Alternative Law)

for all x, y in D. An alternative algebra is automatically flexible,

(AltAX3) (xy)x = x(yx) (Flexible Law).

In terms of associators or operators these identities may be expressed as

[x, x, y] = [y, x, x] = [x, y, x] = 0, or

Lx2 = (Lx)2, Rx2 = (Rx)2, LxRx = RxLx.

From the associator conditions we see that alternativity is equivalent to the
associator [x, y, z] being an alternating multilinear function of its arguments
(in the sense that it vanishes if any two of its variables are equal). Perhaps
it would be better to call the algebras alternating instead of alternative. No-
tice that the nuclearity conditions can be written in terms of associators as
[n, x, y] = [x, n, y] = [x, y, n] = 0, so by alternation nuclearity reduces to
[n, x, y] = 0 in alternative algebras.

It is not hard to see that for a matrix algebra H3(D,−) to be a Jordan
algebra it is necessary that the coordinate algebra D be alternative and that
the diagonal coordinates, the hermitian elements H(D,−), lie in the nucleus.
The converse is true, but painful to prove. Note that in the octonions the
hermitian elements do even better: they are scalars lying in Φ1.

Alternative Coordinates Theorem. The hermitian matrix algebra H3(D,−)
over Φ containing 1

2 is a Jordan algebra iff the ∗-algebra D is alternative with
nuclear involution, i.e., its hermitian elements are contained in the nucleus,

[H(D,−),D,D] = 0.
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2.8 The n-Squares Problem

Historically, the first nonassociative algebra, the Cayley numbers (progenitor
of the theory of alternative algebras), arose in the context of the number-
theoretic problem of quadratic forms permitting composition. We will show
how this number-theoretic question can be transformed into one concerning
certain algebraic systems, the composition algebras, and then how a precise
description of these algebras leads to precisely one nonassociative coordinate
algebra suitable for constructing Jordan algebras, the 8-dimensional octonion
algebra with scalar involution.

It was known to Diophantus that sums of two squares could be composed,
i.e., that the product of two such terms could be written as another sum of
two squares: (x2

0 + x2
1)(y

2
0 + y2

1) = (x0y0 − x1y1)2 + (x0y1 + x1y0)2. Indian
mathematicians were aware that this could be generalized to other “binary”
(two-variable) quadratic forms, yielding a “two-square formula”

(x2
0 + λx2

1)(y
2
0 + λy2

1) = (x0y0 − λx1y1)2 + λ(x0y1 + x1y0)2 = z2
0 + λz2

1 .

In 1748 Euler used an extension of this to “quaternary” (4-variable) quadratic
forms x2

0 + x2
1 + x2

2 + x2
3, and in 1770 Lagrange used a general “4-square

formula”:
(x2

0 + λx2
1 + µx2

2 + λµx2
3) × (y2

0 + λy2
1 + µy2

2 + λµy2
3)

= z2
0 + λz2

1 + µz2
2 + λµz2

3

for zi defined by
z0 := x0y0 − λx1y1 − µx2y2 − λµx3y3,
z1 := x0y1 + x1y0 + µx2y3 − µx3y2,
z2 := x0y2 − λx1y3 + x2y0 + λx3y1,
z3 := x0y3 + x1y2 − x2y1 + x3y0.

In 1845 an “8-square formula” was discovered by Cayley; J.T. Graves
claimed to have discovered this earlier, and in fact C.F. Degan had already
noted a more general formula in 1818:

(x2
0 + λx2

1 + µx2
2 + λµx2

3 + νx2
4 + λνx2

5 + µνx2
6 + λµνx2

7)
× (y2

0 + λy2
1 + µy2

2 + λµy2
3 + νy2

4 + λνy2
5 + µνy2

6 + λµνy2
7)

= (z2
0 + λz2

1 + µz2
2 + λµz2

3 + νz2
4 + λνz2

5 + µνz2
6 + λµνz2

7)

for zi defined by
z0 := x0y0 − λx1y1 − µx2y2 − λµx3y3 − νx4y4 − λνx5y5 − µνx6y6 − λµνx7y7,
z1 := x0y1 + x1y0 + µx2y3 − µx3y2 + νx4y5 − νx5y4 − µνx6y7 + µνx7y6,
z2 := x0y2 − λx1y3 + x2y0 + λx3y1 + νx4y6 + λνx5y7 − νx6y4 − λνx7y5,
z3 := x0y3 + x1y2 − x2y1 + x3y0 + νx4y7 − νx5y6 + νx6y5 − νx7y4,
z4 := x0y4 − λx1y5 − µx2y6 − λµx3y7 + x4y0 + λx5y1 + µx6y2 + λµx7y3,
z5 := x0y5 + x1y4 − µx2y7 + µx3y6 − x4y1 + x5y0 − µx6y3 + µx7y2,
z6 := x0y6 + λx1y7 + x2y4 − λx3y5 − x4y2 + λx5y3 + x6y0 − λx7y1,
z7 := x0y7 − x1y6 + x2y5 + x3y4 − x4y3 − x5y2 + x6y1 + x7y0.
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This is clearly not the sort of formula you stumble upon during a casual
mathematical stroll. Indeed, this is too cumbersome to tackle directly, with
its mysterious distribution of plus and minus signs and assorted scalars.

2.9 Forms Permitting Composition

A more concise and conceptual approach is needed. If we interpret the vari-
ables as coordinates of a vector x = (x0, . . . , x7) in an 8-dimensional vector
space, then the expression x2

0 +λx2
1 +µx2

2 +λµx2
3 +νx2

4 +λνx2
5 +µνx2

6 +λµνx2
7

defines a quadratic norm form N(x) on this space. The 8-square formula as-
serts that this quadratic form permits (or admits) composition in the sense
that N(x)N(y) = N(z), where the “composite” z = (z0, . . . , z7) is automati-
cally a bilinear function of x and y (i.e., each of its coordinates zi is a bilinear
function of the xj and yk). We may think of z = x·y as some sort of “product”
of x and y. This product is linear in x and y, but it need not be commutative
or associative. Thus the existence of an n-squares formula is equivalent to the
existence of an n-dimensional algebra with product x · y and distinguished
basis e0, . . . , en−1 such that N(x) = N(x0e0 + · · · + xn−1en−1) =

∑n
i=0 λix

2
i

permits composition N(x)N(y) = N(x · y) (in the classical case all λi = 1,
and this is a “pure” sum of squares). The element e0 = (1, 0, . . . , 0) (having
x0 = 1, all other xi = 0) acts as unit element: e0 · y = y, x · e0 = x. When
the quadratic form is anisotropic (N(x) = 0 =⇒ x = 0) the algebra is a
“division algebra”: it has no divisors of zero, x, y �= 0 =⇒ x · y �= 0, so in the
finite-dimensional case the injectivity of left and right multiplications makes
them bijections.

The algebra behind the 2-square formula is just the complex numbers C :
z = x01+x1i with basis 1, i over the reals, where 1 acts as identity and i2 = −1
and N(z) = x2

0 + x2
1 = zz is the ordinary norm squared (where z = x01− x1i

is the ordinary complex conjugate). This interpretation was well known to
Gauss. The 4-squares formula led Hamilton to the quaternions H consisting
of all x = x01 + x1i + x2j + x3k, where the formula for x · y means that the
basis elements 1, i, j, k satisfy the now-familiar rules

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Clearly, this algebra is no longer commutative. Again N(x) = xx is the ordi-
nary norm squared (where x = x01−x1i−x2j−x3k is the ordinary quaternion
conjugate).

Clifford and Hamilton invented 8-dimensional algebras (biquaternions),
which were merely the direct sum H � H of two quaternion algebras. Be-
cause of the presence of zero divisors, these algebras were of minor in-
terest. Cayley was the first to use the 8-square formula to create an 8-
dimensional division algebra K of octonions or Cayley numbers. By 1847 he
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recognized that this algebra was not commutative or associative, with basis
e0, . . . , e7 = 1, i, j, k, �, i�, j�, k� with multiplication table

e0ei = eie0 = ei, e2i = −1, eiej = −ejei = ek

for ijk = 123, 145, 624, 653, 725, 734, 176.

A subsequent flood of (false!!) higher-dimensional algebras carried names such
as quadrinions, quines, pluquaternions, nonions, tettarions, plutonions. Ire-
land especially seemed a factory for such counterfeit division algebras. In
1878 Frobenius showed that the only associative division algebras over the
reals (permitting composition or not) are R,C,H of dimensions 1, 2, 4. In
1898 Hurwitz proved via group representations that the only quadratic forms
permitting composition over the reals are the standard ones of dimension 1,
2, 4, 8; A.A. Albert later gave an algebra-theoretic proof over a general field
of scalars (with an addition by Irving Kaplansky to include characteristic
2 and non-unital algebras). Only recently was it established that the only
finite-dimensional real nonassociative division algebras have dimensions 1, 2,
4, 8; the algebras themselves were not classified, and the proof was topological
rather than algebraic.

2.10 Composition Algebras

The most important alternative algebras with nuclear involutions are the com-
position algebras. A composition algebra is a unital algebra having a non-
degenerate quadratic norm form N which permits composition,

Q(1) = 1, Q(xy) = Q(x)Q(y).

In general, a quadratic form Q on a Φ-module V is nondegenerate if all
nonzero elements in the module contribute to the values of the form. The
slackers (the set of elements which contribute nothing) are gathered in the
radical

Rad(Q) := {z ∈ V | Q(z) = Q(z, V ) = 0},

so nondegeneracy means that Rad(Q) = 0.6

Even better than nondegeneracy is anisotropy. A vector x is isotropic if it
has “zero weight” Q(x) = 0, and anisotropic if Q(x) �= 0. A form is isotropic
if it has nonzero isotropic vectors, and anisotropic if it has none:

Q anisotropic iff Q(x) = 0 ⇐⇒ x = 0.

For example, the positive definite norm form Q(x) = x · x on any Euclidean
space is anisotropic. Clearly, any anisotropic form is nondegenerate.

6 Since Q(z) = 1
2Q(z, z), when 1

2 ∈ Φ the radical of the quadratic form reduces to
the usual radical Rad(Q(·, ·)) := {z ∈ V | Q(z, V ) = 0} of the associated bilinear form
Q(·, ·) (the vectors which are “orthogonal to everybody”). But in characteristic 2 there is
an important difference between the radical of the quadratic form and the “bilinear radical”
of its associated bilinear form.
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2.11 The Cayley–Dickson Construction and Process

The famous Hurwitz Theorem of 1898 states that over the real numbers com-
position algebras can exist only in dimensions 1, 2, 4, and 8. In 1958 Nathan
Jacobson gave a beautiful “bootstrap” method, showing clearly how all com-
position algebras are generated internally, by repeated “doubling” (of the
module, the multiplication, the involution, and the norm) starting from any
composition subalgebra. As its name suggests, the Cayley–Dickson doubling
process is due to A.A. Albert.

Cayley–Dickson Definition. The Cayley–Dickson Construction builds
a new ∗-algebra out of an old one together with a choice of scalar. If A is a
unital linear algebra with involution a 
→ ā whose norms satisfy aā = n(a)1 for
scalars n(a) ∈ Φ, and µ is an invertible scalar in Φ, then the Cayley–Dickson
algebra

KD(A, µ) = A ⊕ Am

is obtained by doubling the module A(adjoining a formal copy Am) and defin-
ing a product, scalar involution, and norm by the Cayley–Dickson Recipe:

(a⊕ bm)(c⊕ dm) = (ac+ µd̄b) ⊕ (da+ bc̄)m,
(a⊕ bm)∗ = ā⊕−bm,
N(a⊕ bm) = n(a) − µn(b).

The Cayley–Dickson Process consists of iterating the Cayley–Dickson
Construction over and over again. Over a field Φ the Process iterates the
Construction starting from the 1-dimensional A0 = Φ (the scalars) with triv-
ial involution and nondegenerate norm N(α) = α2 to get a 2-dimensional
commutative binarion algebra A1 = KD(A0, µ1) = Φ ⊕ Φi (i2 = µ11) with
nontrivial involution,7 then a 4-dimensional noncommutative quaternion al-
gebra A2 = KD(A1, µ2) = A1⊕A1j (j2 = µ21), and finally an 8-dimensional
nonassociative octonion algebra A3 = KD(A2, µ3) = A2 ⊕A2� (�2 = µ31),
all with nondegenerate norms.

Thus octonion algebras are obtained by gluing two copies of a quaternion
algebra together by the Cayley–Dickson Recipe. If the Cayley–Dickson dou-
bling process is carried beyond dimension 8, the resulting algebras no longer
permit composition and are no longer alternative (so cannot be used in con-
structing Jordan matrix algebras). Jacobson’s Bootstrap Theorem shows that
over a field Φ the algebras with involution obtained from the Cayley–Dickson
Process are precisely the composition algebras with standard involution over Φ:
every composition algebra arises by this construction. If we take A0 = Φ = R

7 In characteristic 2, starting from Φ the construction produces larger and larger al-
gebras with trivial involution and possibly degenerate norm; to get out of the rut, one
must construct by hand the binarion algebra A1 := Φ1 + Φv where v [≈ 1

2 (1 + i)] has
v2 := v − ν1, v∗ = 1− v, with nondegenerate norm N(α + βv) := α2 + αβ + νβ2.



2.12 Split Composition Algebras 65

the reals and µ1 = µ2 = µ3 = −1 in the Cayley–Dickson Process, then A1 is
the complex numbers C, A2 is Hamilton’s quaternions H (the Hamiltonions),
and A3 is Cayley’s octonions K (the Caylions, Cayley numbers, or Cayley
algebra), precisely as in the Jordan–von Neumann–Wigner Theorem.

Notice that we are adopting the convention that the dimension 4 composi-
tion algebras will all be called (generalized) quaternion algebras (as is standard
in noncommutative ring theory) and denoted by Q; by analogy, the dimension
8 composition algebras will be called (generalized) octonion algebras, and de-
noted by O (even though this looks dangerously like zero), and the dimension
2 composition algebras will all be called binarion algebras and denoted by B.
In the alternative literature the octonion algebras are called Cayley algebras,
but we will reserve the term Cayley for the unique 8-dimensional real division
algebra K (the Cayley algebra), just as Hamilton’s quaternions are the unique
4-dimensional real division algebra H. There is no generally accepted term for
the 2-dimensional composition algebras, but that won’t stop us from calling
them binarions. If the 1-dimensional scalars insist on having a high-falutin’
name too, we can call them unarions.

Notice that a composition algebra C consists of a unital algebra plus a
choice of norm form N, and therefore always carries a standard involution
x̄ = N(x, 1)1 − x. Thus a composition algebra is always a ∗-algebra (and the
∗ determines the norm, N(x)1 = xx̄).

2.12 Split Composition Algebras

We will often be concerned with split unarions, binarions, quaternions, and
octonions. Over an algebraically closed field the composition algebras are all
“split.” This is an imprecise metaphysical term, meaning roughly that the
system is “completely isotropic,” as far removed from an “anisotropic” or
“division system” as possible, as well as being defined in some simple way
over the integers.8 Each category separately must decide on its own defi-
nition of “split.” For example, in the theory of finite-dimensional associa-
tive algebras we define a split simple algebra over Φ to be a matrix algebra
Mn(Φ) coordinatized by the ground field. The theory of central-simple al-
gebras shows that every simple algebra Mn(∆) coordinatized by a division
algebra ∆ becomes split in some scalar extension, because of the amazing fact
that finite-dimensional division algebras ∆ can be split (turned into Mr(Ω))
by tensoring with a splitting field Ω; in particular, every division algebra has
square dimension dimΦ(∆) = r2 over its center! In the theory of quadratic
forms, a “split” form would have “maximal Witt index,” represented relative
to a suitable basis by the matrix consisting of hyperbolic planes ( 0 1

1 0 ) down
the diagonal, with an additional 1 × 1 matrix (1) if the dimension is odd,
Q(

∑n
i=1(α2i−1x2i−1 ⊕ α2ix2i) + αx2n+1) =

∑n
i=1 α2i−1α2i + α2

2n+1.
8 This has no relation to “split” exact sequences 0 → A → B → C → 0, which have to

do with the middle term “splitting” as a semi-direct sum B ∼= A⊕ C.
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The split composition algebras over an arbitrary ring of scalars (not just
a field) are defined as follows.

Split Definition. The split composition algebras over a scalar ring Φ are
defined to be those ∗-algebras of dimension 2n−1, n = 1, 2, 3, 4, isomorphic to
the following models:

Split Unarions U(Φ) := Φ, the scalars Φ with trivial involution ᾱ := α
and norm N(α) := α2;

Split Binarions B(Φ) = Φ�Φ, a direct sum of scalars with the standard
(exchange) involution (α, β) 
→ (β, α) and norm N(α, β) := αβ;

Split Quaternions Q(Φ) with standard involution, i.e., the algebra
M2(Φ) of 2 × 2 matrices with symplectic involution a =

(
β −γ

−δ α

)
for

a =
( α γ

δ β

)
and norm N(a) := det(a);

Split Octonions O(Φ) = Q(Φ) ⊕ Q(Φ)� with standard involution
a⊕ b� = a− b� and norm N(a⊕ b�) := det(a) − det(b).

There is (up to isomorphism) a unique split composition algebra of given
dimension over a given Φ, and the constructions Φ 
→ U(Φ), B(Φ),Q(Φ), O(Φ)
are functors from the category of scalar rings to the category of composition
algebras.

Notice that over the reals these split composition algebras are at the op-
posite extreme from the division algebras R,C,H,K occurring in the J–vN–W
classification. They are obtained from the Cayley–Dickson process by choos-
ing all the ingredients to be µi = 1 instead of µi = −1. It is an important
fact that composition algebras over a field are either division algebras or split:
as soon as the quadratic norm form is the least bit isotropic (some nonzero
element has norm zero) then it is split as a quadratic form, and the algebra
has proper idempotents and splits entirely:

N anisotropic ⇐⇒ KD division, N isotropic ⇐⇒ KD split.

This dichotomy for composition algebras, of being entirely anisotropic (divi-
sion algebra) or entirely isotropic (split), does not hold for quadratic forms
in general, or for other algebraic systems. In Jordan algebras there is a tri-
chotomy: an algebra can be anisotropic (“division algebra”), reduced (has
nonzero idempotents but coordinate ring a division algebra), or split (nonzero
idempotents and coordinate ring the ground field). The split Albert alge-
bra Alb(Φ) over Φ is the 27-dimensional Jordan algebra of 3 × 3 hermitian
matrices over the split octonion algebra (with standard involution),

Alb(Φ) := H3(O(Φ)) (split Albert).
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As we will see in the next section, over an algebraically closed field this is the
only exceptional Jordan algebra. But over general fields we can have reduced
Albert algebras H3(O) for non-split octonion algebras, and (as first shown
by Albert) we can even have Albert division algebras (though these can’t be
represented in the form of 3 × 3 matrices, which would always have a non-
invertible idempotent E11).

2.13 Classification

We now return from our long digression on general linear algebras, and con-
sider the development of Jordan theory during the Algebraic Renaissance,
whose crowning achievement was the classification of simple Jordan alge-
bras over an arbitrary algebraically closed field Φ (of characteristic not 2,
of course!). As in the J–vN–W Theorem, the classification of simple Jor-
dan algebras proceeds according to “degree,” where the degree is the max-
imal number of supplementary orthogonal idempotents (analogous to the
matrix units Eii). From another point of view, the degree is the degree of
the generic minimum polynomial of the algebra, the “generic” polynomial
mx(λ) = λn − m1(x)λn−1 + · · · + (−1)nmn(x) (mi : J → Φ homogeneous
of degree i) of minimal degree satisfied by all x, mx(x) = 0. Degree 1 al-
gebras are just the 1-dimensional Φ+; the degree 2 algebras are the JSpinn;
the degree n algebras for n ≥ 3 are all Jordan matrix algebras Hn(C) where
the coordinate ∗-algebras C are precisely the split composition algebras over
Φ with their standard involutions. This leads immediately to the basic clas-
sification of finite-dimensional Jordan algebras over an algebraically closed
field.
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Renaissance Structure Theorem. Consider finite-dimensional Jordan al-
gebras J over an algebraically closed field Φ of characteristic �= 2.

• The radical of J is the maximal nilpotent ideal, and the quotient J/Rad(J)
is semisimple.

• An algebra is semisimple iff it is a finite direct sum of simple ideals.
In this case, the algebra has a unit element, and its simple decomposition is
unique: the simple summands are precisely the minimal ideals.

• Every simple algebra is automatically central-simple over Φ.
• An algebra is simple iff it is isomorphic to exactly one of :

Ground Field Φ+ of degree 1,
Spin Factor JSpinn(Φ) of degree 2, for n ≥ 2,
Hermitian Matrices Hn(C(Φ)) of degree n ≥ 3 coordinatized by a split
composition algebra C(Φ) (Split Unarion, Split Binarion, Split Quater-

nion, or Split Octonion Matrices):
Hn(Φ) for Φ the ground field,
Hn(B(Φ)) ∼= Mn(Φ)+ for B(Φ) the split binarions,
Hn(Q(Φ)) for Q(Φ) the split quaternions,
Alb(Φ) = H3(O(Φ)) for O(Φ) the split octonions.

Once more, the only exceptional algebra in the list is the 27-dimensional split
Albert algebra. Note that the 1-dimensional algebra JSpin0 is the same as
the ground field; the 2-dimensional JSpin1 ∼= B(Φ) is not simple when Φ is
algebraically closed, so only JSpinn for n ≥ 2 contribute new simple algebras.

We are beginning to isolate the Albert algebras conceptually; even though
the split Albert algebra and the real Albert algebra discovered by Jordan, von
Neumann, and Wigner appear to fit into the family of Jordan matrix algebras,
we will see in the next chapter that their non-reduced forms really come via
a completely different construction out of a cubic form.


