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Abstract We discuss resent developments in the problem of description of
finite rank Toeplitz operators in different Bergman spaces and give some
applications.

1 Introduction

Toeplitz operators arise in many fields of Analysis and have been an object of
active study for many years. Quite a lot of questions can be asked about these
operators, and these questions depend on the field where Toeplitz operators
are applied.

The classical Toeplitz operator Tf in the Hardy space H2(S1) is defined as

Tfu = Pfu, (1.1)

for u ∈ H2(S1), where f is a bounded function on S1 (the weight func-
tion) and P is the Riesz projection, the orthogonal projection P : L2(S1) →
H2(S1). Such operators are often called Riesz–Toeplitz or Hardy–Toeplitz op-
erators (cf. [15], for more details). More generally, for a Hilbert space H of
functions and a closed subspace L ⊂ H, the Toeplitz operator Tf in L acts
as in (1.1), where P is the projection P : H → L. In particular, in the case
where H is the space L2(Ω, ρ) for some domain Ω ⊂ Cd and some measure ρ

Grigori Rozenblum
Department of Mathematics, Chalmers University of Technology and Department of Math-
ematics, University of Gothenburg, S-412 96, Gothenburg, Sweden
e-mail: grigori@math.chalmers.se

331



332 G. Rozenblum

and L is the Bergman space B2 = B2(Ω, ρ) of analytical functions in H, such
an operator is called Bergman–Toeplitz ; we denote it by Tf .

Among many interesting properties of Riesz–Toeplitz operators, we men-
tion the following cut-off one. If f is a bounded function and the operator
Tf is compact, then f should be zero. For many other classes of operators
a similar cut-off on some level is also observed. The natural question arises,
whether there is a kind of cut-off property for Bergman–Toeplitz operators.
Quite long ago it became a common knowledge that at least direct analogy
does not take place. In [13], the conditions were found on the function f in
the unit disk Ω = D guaranteeing that the operator Tf in B2(D, λ) with
Lebesgue measure λ belongs to the Schatten class Sp. So, the natural ques-
tion came up: probably, it is on the finite rank level that the cut-off takes
place. In other words, if a Bergman–Toeplitz operator has finite rank it should
be zero.

It was known long ago that the Schatten class behavior of Tf is deter-
mined by the rate of convergence to zero at the boundary of the function
f . Therefore, the finite rank (FR) hypothesis deals with functions f with
compact support not touching the boundary of Ω. In this setting, the FR
hypothesis is equivalent to the one for Toeplitz operators on the Bargmann
(Fock, Segal) space consisting of analytical functions in C, square summable
with a Gaussian weight. A proof of the FR hypothesis appeared in the same
paper [13], about twenty lines long. Unfortunately, there was an unrepairable
fault in the proof, so the FR remained unsettled.

It was only in 2007 that the proof of the FR hypothesis was finally found,
even in a more general form. The Bergman projection P : L2 → B can be
extended to an operator from the space of distributions D′(Ω) to B2(Ω,λ).
Let µ be a regular complex Borel measure with compact support in Ω. With
µ we associate the Toeplitz operator Tµ : u 7→ Puµ in B2(Ω, λ).

In [14], the following result was established.

Theorem 1.1. Suppose that the Toeplitz operator Tµ in B2(Ω, λ), Ω ⊂ C
has finite rank r. Then the measure µ is the sum of r point masses,

µ =
r∑
1

Ckδzj , zj ∈ Ω. (1.2)

The publication of the proof of Theorem 1.1 induced an activity around
it. In two years to follow several papers appeared, where the FR theorem was
generalized in different directions, and interesting applications were found in
Analysis and Mathematical Physics.

In this paper, we aim for collecting and systematizing the existing results
on the finite rank problem and their applications. We also present several
new theorems generalizing and extending these results.

In a more vague setting, the problem discussed in the paper can be under-
stood in the following way: is it possible that the contribution of the positive
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part of a real measure µ and the contribution of the negative part of µ “eat
up” each other, so that the resulting Toeplitz operator becomes “trivial.” In
this form, the relation arises with the results by Maz’ya and Verbitsky (cf.,
in particular, [16, 17], where the phenomenon of the mutual compensation
of positive and negative parts of the weight for embedding of Sobolev spaces
was studied in detail).

2 Problem Setting

Let Ω be a domain in Rd or Cd. We suppose that a measure ρ is defined
on Ω, jointly absolutely continuous with Lebesgue measure. Suppose that
L is a closed subspace in H = L2(Ω, ρ), consisting of smooth functions,
L ⊂ C∞(Ω). In this case, the orthogonal projection P : L → H is an integral
operator with smooth kernel,

Pu(x) =
∫

P (x, y)u(y)dρ(x). (2.1)

We call P the Bergman projection and P (x, y) the Bergman kernel (corre-
sponding to the subspace L).

Let F be a distribution, compactly supported in Ω, F ∈ E ′(Ω). We denote
by 〈F, φ〉 the action of the distribution F on the function φ ∈ E . Then one
can define the Toeplitz operator in L with weight F :

(TF u)(x) = 〈F, P (x, ·)u(·)〉. (2.2)

Formula (2.2) can be also understood in the following way. The operator P
considered as an operator P : H → L has an adjoint, P ′ : L′ → H, so PP ′

is the extension of P to the operator L′ → L, in particular, P extends as an
operator from E ′(Ω) to L. In this setting, Fu ∈ E ′(Ω) for u ∈ E(Ω) and the
Toeplitz operator has the form

TF u = PFu, (2.3)

consistently with the traditional definition of Toeplitz operators.
It is more convenient to use the description of the Toeplitz operator by

means of the sesquilinear form. For u, v ∈ L, we have

(TF u, v) = (PFu, v) = 〈σFu,Pv〉 = 〈σF, uv〉, (2.4)

where σ is the Radon–Nikodym derivative of ρ with respect to the Lebesgue
measure. In particular, if F is a regular Borel complex measure F = µ, the
corresponding Toeplitz operator acts as
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Tµu(x) =
∫

Ω

P (x, y)u(x)dµ(x), (2.5)

and the quadratic form is

(TF u, v) =
∫

Ω

uvσdµ(x).

Finally, when F is a bounded function, formula (2.4) takes the form

(TF u, v) =
∫

Ω

uvF (x)dρ(x). (2.6)

Classical examples of Bergman spaces and corresponding Toeplitz opera-
tors are produced by solutions of elliptic equations and systems.

Example 2.1. Let Ω be a bounded domain in C, ρ = λ the Lebesgue
measure, and L = B2(Ω) the space of L2 functions analytical in Ω. This is
the classical Bergman space.

Example 2.2. Let Ω be a bounded pseudoconvex domain in Cd, d > 1, with
Lebesgue measure ρ, and let the space L consist of L2 functions analytical in
Ω. This is also a classical Bergman space. Here, and in Example 2.1, measures
different from the Lebesgue one are also considered, especially when Ω is a
ball or a (poly)disk.

Example 2.3. For a bounded domain Ω ⊂ Rd, we set L to be the space
of L2 solutions of the equation Lu = 0, where L is an elliptic differential
operator with constant coefficients. In particular, if L is the Laplacian, the
space L is called the harmonic Bergman space.

Example 2.4. If Ω is a bounded domain in Rd with even d = 2m, and
Rd is identified with Cm with variables zj = (xj , yj), j = 1, . . . ,m, the
Bergman space of functions which are harmonic with respect to each pair
(xj , yj) is called m-harmonic Bergman space; if on the other hand, the space
of functions u(z) such that uζ(ξ1, ξ2) = u(ζ(ξ1+iξ2)) is harmonic as a function
of variables ξ1, ξ2 for any ζ ∈ Cm\{0}, is called pluriharmonic Bergman space.

Example 2.5. Let Ω be the whole of Cm = Rd, with the Gaussian mea-
sure dρ = exp(−|z|2/2)dλ. The subspace L ⊂ L2(Cm, ρ) of entire analytical
functions in Cm is called Fock or Segal–Bargmann space.

The study of Toeplitz operators in many cases is based upon the consid-
eration of associated infinite matrices.

Let Σ1 = {fj(x), x ∈ Ω}, Σ2 = {gj(x), x ∈ Ω} be two infinite systems of
functions in L. With these systems and a distribution F ∈ E ′(Ω) we associate
the matrix
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A = A(F ) = A(F,Σ1, Σ2, Ω, ρ) = (TF fj , gk)j,k=1,... = (〈σF, fjgk〉). (2.7)

So, the matrix A is the matrix of the sesquilinear form of the operator TF on
the systems Σ1, Σ2. We formulate the obvious but important statement.

Proposition 2.6. Suppose that the Toeplitz operator TF has finite rank r.
Then the matrix A also has finite rank; moreover, rank(A) 6 r.

The use of matrices of the form (2.7) enables one to perform important
reductions. In particular, since the domain Ω does not enter explicitly into
the matrix, the rank of this matrix does not depend on the domain Ω, as long
as one can chose the systems Σ1, Σ2 dense simultaneously in the Bergman
spaces in different domains. Thus, in particular, the FR problems for the
analytical Bergman spaces in bounded domains and for the Fock space are
equivalent (cf. the discussion in [21].)

3 Theorem of Luecking. Extensions in Dimension 1

In this section, we present the original proof given by Luecking in [14], and
give extensions in several directions.

Theorem 3.1. Let Ω ⊂ C be a bounded domain, with Lebesgue measure.
Suppose that for some regular complex Borel measure µ, absolutely continuous
with respect to the Lebesgue measure, with compact support in Ω, the Toeplitz
operator Tµ in the Bergman space of analytical functions has finite rank r.
Then µ = 0.

We formulate and prove here Luecking’s theorem only in the case of an
absolutely continuous measure; the case of more singular measures will be
taken care of later, as a part of the general distributional setting. In the
proof, which follows [14], we separate a lemma that will be used further on.

Lemma 3.2. Let φ be a linear functional on polynomials in z, z. Denote by
A(φ) the matrix with elements φ(zjzk). Then the following are equivalent:

1) the matrix A(φ) has finite rank not greater than r,

2) for any collections of nonnegative integers J = {j0, . . . , jr} and K =
{k0, . . . , kr}

φ⊗N
(∏

i∈(0,r) zji

i det zi
kl

)
= 0, (3.1)

where N = r + 1.

Proof. Since passing to linear combinations of rows and columns does not in-
crease the rank of the matrix, it follows that for any polynomials fj(z), gk(z),
with j, k = 0, . . . , r, the determinant Det (φ(fjgk)) vanishes.
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The determinant is linear in each column and φ is a linear functional, so
we can write

φ




f0(z)×

∣∣∣∣∣∣∣∣∣∣

g0(z) µ(f1g0) . . . φ(frg0)
g1(z) φ(f1g1) . . . φ(frg1)

...
...

. . .
...

gr(z) φ(f1gr) . . . φ(frgr)

∣∣∣∣∣∣∣∣∣∣




= 0.

We introduce the variable z0 in place of z above and use φ0 for φ acting in
the variable z0. We repeat this process in each column (using the variable zj

in column j and the notation φj for φ acting in zj) to obtain

φ0

(
φ1

(
. . . φr

(∏r
k=0 fk(zk) det

(
gj(zk)

))
. . .

))
= 0. (3.2)

We now specialize to the case where each fi = zji , gi = zki and arrive at
(3.1), thus proving the implication 1 ⇒ 2. The converse implication follows
by going along the above reasoning in the opposite direction. ut
Proof of Theorem 3.1. We identify C and R2 with co-ordinates z = x + iy.
Consider the functional φ(f) = φµ(f) =

∫
f(z)dµ(z). Write Z for the N -

tuple (z0, z1, . . . , zr) and VJ(Z) for the determinant det
(
z

kj

i

)
. By Lemma

3.2,
φ⊗N

(
ZKVJ(Z)

)
= 0. (3.3)

Taking finite sums of equations (3.3), we get for any polynomial P (Z) in
N variables:

φ⊗N
(
P (Z)VJ (Z)

)
= 0. (3.4)

By taking linear combinations of antisymmetric polynomials VJ(Z) one can
obtain any antisymmetric polynomial Q(Z) (cf. [14]) for details). Thus,

φ⊗N
(
P (Z)Q(Z)

)
= 0 (3.5)

for any polynomial P (Z) and any antisymmetric polynomial Q(Z). In its
turn, the polynomial Q(Z) is divisible by the lowest degree antisymmet-
ric polynomial, the Vandermonde polynomial V (Z) =

∏
06j6k6r(zj − zk),

Q(Z) = Q1(Z)V (Z) with a symmetric polynomial Q1(Z). We write (3.5) for
Q of this form and P having the form P (Z) = P1(Z)V (Z). So we arrive at

φ⊗N
(
P1(Z)Q1(Z)|V (Z)|2

)
= 0 for all symmetric P1 and Q1. (3.6)

It is clear that finite sums of products of the form P1(Z)Q1(Z) (with P1

and Q1 symmetric) form an algebra A of functions on C which contains
the constants and is closed under conjugation. It does not separate points
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because each element is constant on sets of points that are permutations of
one another. Therefore, we define an equivalence relation ∼ on CN : Z1 ∼ Z2

if and only if Z2 = π(Z1) for some permutation π. Let Z = (z0, . . . , zr),
and let W = (w0, . . . , wr). If Z 6∼ W then the polynomials p(t) =

∏
(t− zj)

and q(t) =
∏

(t − wj) have different zeros (or the same zeros with different
orders). This implies that the coefficient of some power of t in p(t) differs from
the corresponding coefficient in q(t). Thus, there is an elementary symmetric
function that differs at Z and W . Consequently, A separates equivalence
classes.

We give the quotient space CN/∼ the standard quotient space topology.
If K is any compact set in CN that is invariant with respect to ∼, then
K/∼ is compact and Hausdorff. Also, any symmetric continuous function on
CN induces a continuous function on CN/∼ (and conversely). Thus, we can
apply the Stone–Weierstrass theorem (on K/∼) to conclude that A is dense
in the space of continuous symmetric functions, in the topology of uniform
convergence on any compact set. Therefore, for any continuous symmetric
function f(Z) ∫

CN

f(Z)|V (Z)|2 dµ⊗N (Z) = 0. (3.7)

If f is an arbitrary continuous function, the above integral will be the same
as the corresponding integral with the symmetrization of f replacing f . This
is because the function |V (Z)|2 and the product measure µ⊗N are both in-
variant under permutations of the coordinates. We conclude that this integral
vanishes for any continuous f and so the measure |V (Z)|2 dµ⊗N (Z) must be
zero. Thus, µ⊗N is supported on the set where V vanishes, i.e., on the set
of Lebesgue measure zero. Since µ⊗N is absolutely continuous, it must be
zero. ut

The initial setting of Theorem 3.1 dealt with arbitrary measures, as it is
explained in the Introduction. A more advanced result was obtained in [2],
where Luecking’s theorem was carried over to distributions.

Theorem 3.3. Suppose that F ∈ E ′(Ω) is a distribution with compact sup-
port in Ω ⊂ C and the Toeplitz operator TF has finite rank r. Then the
distribution F is a finite combination of δ-distributions at some points in Ω
and their derivatives,

F =
∑

j6r

Ljδ(z − zj), (3.8)

Lj being differential operators.

We start with some observations about distributions in E ′(C). For such a
distribution we denote by psupp F the complement of the unbounded com-
ponent of the complement of supp F .

Lemma 3.4. Let F ∈ E ′(C). Then the following two statements are equiva-
lent:
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a) there exists a distribution G ∈ E ′(C) such that ∂G
∂z = F ; moreover,

supp G ⊂ psuppF,
b) F is orthogonal to all polynomials of z variable, i.e., 〈F, zk〉 = 0 for all

k ∈ Z+.

Proof. The implication a) =⇒ b) follows from the relation

〈F, zk〉 =
〈∂G

∂z
, zk

〉
=

〈
G,

∂zk

∂z

〉
= 0. (3.9)

We prove that b) =⇒ a). Put G := F ∗ 1
πz ∈ S ′(C), the convolution being

well-defined because F has compact support. Since 1
πz is the fundamental

solution of the Cauchy–Riemann operator ∂
∂z , we have ∂G

∂z = F (cf., for
example, [10, Theorem 1.2.2]). By the ellipticity of the Cauchy–Riemann
operator, singsupp G ⊂ singsupp F ⊂ supp F , in particular, this means that
G is a smooth function outside psupp F ; moreover, G is analytic outside
psuppF (by singsupp F we denote the singular support of the distribution F
(cf., for example, [10], the largest open set where the distribution coincides
with a smooth function). Additionally,

G(z) = 〈F,
1

π(z − w)
〉 = π−1

∞∑

k=0

z−k−1〈F,wk〉 = 0

if |z| > R and R is sufficiently large. By analyticity this implies G(z) = 0 for
all z outside psuppF . ut
Proof of Theorem 3.3. The distribution F , as any distribution with compact
support, is of finite order, therefore it belongs to some Sobolev space, F ∈ Hs

for certain s ∈ R1. If s > 0, F is a function and must be zero by Luecking’s
theorem. So, suppose that s < 0.

Consider the first r + 1 columns in the matrix A(F ), i.e.,

akl = (TF zk, zl) = 〈σF, zkzl〉, l = 0, . . . r; k = 0, . . . . (3.10)

Since the rank of the matrix A(F ) is not greater than r, the columns are
linearly dependent, in other words, there exist coefficients c0, . . . , cr such
that

∑r
l=0 aklcl = 0 for any k > 0. This relation can be written as

〈F, zkh1(z)〉 = 〈h1(z)F, zk〉 = 0, h1(z) =
r∑

k=0

clz
l. (3.11)

Therefore, the distribution h1(z)F ∈ Hs satisfies the conditions of Lemma
3.4 and hence there exists a compactly supported distribution F (1) such that
∂F (1)

∂z = h1F . By the ellipticity of the Cauchy–Riemann operator, the distri-
bution F (1) is less singular than F , F (1) ∈ Hs+1. At the same time,
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