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Chapter 7

The Role of Pore Fluids

7.1
Introduction

Almost all rocks are porous to some degree and, under natural conditions, the pores
are likely to contain a fluid phase. This fluid will often be water or carbon dioxide, but
other fluids such as air, gas, oil, or partial rock melt may also be involved. The pres-
ence of the fluid can affect the behaviour of the rock through both chemical and me-
chanical interactions. The chemical effects are particularly important for geological
processes such as metasomatism and metamorphism and they also have some inter-
action with brittle deformation. However, in this chapter we shall concentrate mainly
on the mechanical influence, where it is the pressure of the fluid that is of primary
importance, with implications in both geology and engineering, such as in the behav-
iour of faults (Hickman, Sibson and Bruhn 1995).

The pore structure of rocks has been investigated by a variety of methods, includ-
ing optical microscopy, X-ray tomography, scanning electron microscopy, and in-
ference from physical properties (see Sect. 5.7.2). In general, a bimodal distinction
can be made between pore space that is of more or less equant shape and that
which is of markedly non-equant shape (Walsh and Brace 1966). These classes are
often distinguished as “pores” and “cracks”, respectively, and their combination can
be treated as “double porosity” (Berryman and Wang 1995). However, one can also
distinguish a third class of pore space, which consists of “channels” such as those
along three-grain junctions in equilibrated polycrystalline structures with dihedral
angles between 0° and 60° (Smith 1948; Bulau, Waff and Tyburczy 1979; Hay and Evans
1988). The connectivity of the pore structure is of special relevance for such proper-
ties as permeability and electrical conductivity of fluid-saturated rock (Sect. 5.5) and,
in this connection, it is common to distinguish between “pores” and “throats”, the
latter being of predominating importance in determining the permeability or con-
ductivity.

Many of the ideas about the mechanical role of pore fluid pressure were first de-
veloped in soil mechanics but here they are applied to rocks. Before describing the
experimental findings and allied theoretical studies, it is necessary to consider briefly
the conventions used in describing the stresses when pore fluid pressure is present
and to introduce the effective stress notion which underlies many discussions of pore
pressure effects.
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7.2
The Notion of Effective Stress

It is normally convenient and appropriate initially, for experimental work and for
applications, to treat as independent measurable stress variables the pore fluid pres-
sure and the total macroscopic stress. The total macroscopic stress components are
defined in the conventional way by considering the total forces, including those from
any fluid phases, that act on the faces of an elementary cube. The dimensions of the
cube are, however, chosen to be sufficiently large compared with the pore dimensions
that statistical homogeneity is approximated. This continuum approach has been
clearly set out by Biot (1941), Jaeger and Cook (1979, p. 211), Nur and Byerlee (1971),
Rice and Cleary (1976), Detournay and Cheng (1991) and Wang (2000). The stresses
thus defined are directly measurable.

There are more sophisticated theoretical approaches based on the notion of a
mixture treated as a continuum, in which partial stress and deformation measures
are defined for the individual components, somewhat as for the variables in chemical
thermodynamics of multicomponent systems, but they need not be developed here
(see, e.g., Schiffman 1970; Garg 1971; Morland 1972; Berryman 1995; Coussy 1995). An
alternative theoretical approach is to try to consider the actual stresses within the
solid particles or framework, as in inclusion-based models (for example, Endres 1997;
Berryman 1998). However, the following discussion of experimental work will be in
terms of the pore pressure and the total macroscopic stress as defined above.

The gross mechanical behaviour of a porous solid, such as in consolidation or in
shearing deformation, either elastic or inelastic, depends in general both on the total
macroscopic stress and on the pore pressure. In practice, however, this dependence
can usually be expressed in terms of an effective stress. This is a notional macroscopic
stress, which is derived from the measured total macroscopic stress and the pore
pressure, and which is treated as the only stress variable governing the behaviour in
question. That is, it is the stress that is effective in controlling a particular behaviour.
This view of effective stress is clearly set out by Skempton (1961), Robin (1973) and
Berryman (1992), and is adopted here because of its generality. There is an alterna-
tive, widely used approach in which the convention is adopted of defining the “effec-
tive stress” as 0;; - p&;; where 0}; is the total macroscopic stress and p the pore pressure
(e.g., Lambe and Whitman 1969, p. 241; Jaeger and Cook 1979, p. 219); the stress de-
fined more narrowly in this way is better described as the conventional effective stress
(cf. Garg and Nur 1973).

Experimental observations commonly indicate that, at least for isotropic behav-
iour, the effective stress can be written in the form o;; - opd; where o is a constant
depending on the particular property or situation. The principal effective stress com-
ponents are then o) - ap, 0,- ap, 05— ap where o, 0,, 03 are the principal total
macroscopic stress components.

In the case of the shear strength and consolidation properties of soils, it has been
well established that o can generally be taken to be equal to 1 as a very close approxi-
mation (references are given below). This condition is often referred to as “Terzaghi’s
principle”, or alternatively as the law of effective stress (“conventional effective stress
law” in the terminology adopted here). Terzaghi’s rule represented the first introduc-
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tion of the notion of effective stress in soil mechanics. It is to be noted that it was
introduced on an empirical basis specifically in connection with consolidation and
shear strength of soils; see Skempton (1961) for an account of the evolution of Terzaghi’s
ideas, with reference to his original papers, and of its further verification by Rendulic.

Terzaghi’s rule that or=1 also seems to have a wide empirical validity for the inelas-
tic behaviour of rocks (see Sect. 7.4 for experimental studies). However, it should be
borne in mind that it does not have a clear theoretical basis. Values of ¢ that differ from
1 have been reported in various types of porous rock and in joints (see, for example,
Gangi and Carlson 1996; Boitnott and Scholz 1990; Kwon et al. 2001) although Bernabé
(1987) showed that, in the case of permeability of a compact rock, o tended to ap-
proach unity after cycling. For a review of values of & in relation to various properties,
see Sect. 7.3.1. If the solid skeleton can be considered to be a single homogeneous
constituent, then the value of ¢ is predicted to be less than or equal to 1 in relation to
elastic and transport properties (Nur and Byerlee 1971; Walsh 1981; Berryman 1992).
Sometimes ois substantially greater than 1, for example, & = 4 for permeability in Berea
sandstone (Zoback and Byerlee 1975¢). Berryman (1992) showed that if the solid skel-
eton of such a clayey sandstone can be considered to be made up of two or more dis-
tinct constituents, then it is plausible for ¢ to be greater than 1 if the constituent prop-
erties are significantly different. The situation may be more complicated when more
than one fluid is present, as in unsaturated soils and rocks. Even when o =1, there may
be advantages in decomposing the effective stress into hydrostatic and deviatoric com-
ponents (Skempton 1954; Cornet and Fairhurst 1974).

7.3
Elastic Properties of Porous Media

7.3.1
Linear Poroelasticity

Following Biot (1941), reprinted in Tolstoy (1992), linear elastic deformation of a porous

body is conveniently described by
_ 0 =0 0; . O - P
v 2G 3K 3H

(7.1)

where o,,= (0, + 0,, + 033)/3 (see also Jaeger and Cook 1979, pp. 211-214; Rice and
Cleary 1976; Kiimpel 1991; Wang 2000). The quantities € are the macroscopic infini-
tesimal strain components, determined from the displacement of points in the solid
parts of the body, and oj; are the total macroscopic stress components. The elastic
parameters G and K are the macroscopic shear and bulk moduli of the porous rock
in the absence of a pore pressure or, equivalently, the moduli in a saturated sample
determined under drained condition at a constant pore pressure. The additional
parameter H determines the further contribution to the strain that arises when pore
pressure p is introduced. Thus, the macroscopic strain tensor for the porous body is
determined by three material constants, G, K, and H, all of which can be determined
by direct laboratory measurement on the porous body. The coefficient 1/H is not
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considered in classical elasticity theory. It represents the bulk volume change induced
by a pore pressure change while maintaining the applied stress constant. The above
description refers, of course, only to statistically homogeneous and isotropic bodies
with fully connected porosity and adequate permeability for maintaining a drained
condition with uniformity in pore pressure.

The other macroscopic quantity of interest is the change in pore fluid content, ¢,
defined to be the volume of fluid storage per unit bulk volume of the porous material
(Biot 1941; Rice and Cleary 1976; Wang 2000). In response to the macroscopic stress
or pore pressure, the change in fluid content is given by

Om
H

=

(7.2)

RS

where R is a fourth material constant which can be directly measured in the labora-
tory by monitoring the change in fluid storage induced by a pore pressure change
while maintaining the applied stress constant. The storage change arises due to the
concomitant changes in porosity ¢ and fluid volume V. If K; is the bulk modulus of
the fluid, then the storage change is {=A¢ - AV/V where V is the reference bulk
volume and AVy= ApV,/K; (Berryman 1992; Wang 2000).

The elastic behaviour of the porous solid and its fluid content are therefore deter-
mined as functions of the macroscopic stresses and the pore pressure by four mate-
rial constants, G, K, H, and R, treating the porous material statistically as an isotropic
continuum. If the porosity ¢ and the bulk modulus K, of the material forming the
solid parts of the porous body as well as the bulk modulus K; of the fluid are known,
they can be related to the two poroelastic constants by:

(7.3)

— ]‘i—ﬂ+i (7.4)

1 1
_=_+¢ _ | =
R H (Kf K,) K K, K;

These relations are readily derived by considering the behaviour when the macroscopic
stress is a hydrostatic pressure equal to the pore pressure p (Nur and Byerlee 1971; Wang
2000). Here we have assumed that the bulk and pore compressibilities of an unjacketed
sample are equal to that of the solid material forming the skeleton of the porous body.
This widely used assumption is valid if every part of the void space is continuous and
accessible to fluid, the solid phase is homogeneous and isotropic, and the fluid is chemi-
cally inert with respect to the solid phase (Rice and Cleary 1976; Rudnicki 2001).

This choice of a set of four independent coefficients for characterizing the linear
poroelastic behaviour is not unique. For instance, instead of the two coefficients H
and R one may use two dimensionless numbers introduced by Biot and Willis (1957)
and Skempton (1961). In terms of H and R the Biot-Willis coefficient is given by

K K

. :—:1—— .
m =y K, (7.5)
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and Skempton’s coefficient by

R 1/K-1/K,
B=— = (7.6)
H 1/K-1/K,+p(1/K;-1/K,)

These two parameters are of interest in several “effective stress laws”. While the
Egs. 7.1 and 7.2 express completely the macroscopic linear poroelastic behaviour, they
can be written more simply in terms of effective stresses 0} = 0;;- apd;. The rela-
tions for the bulk strains are then given by

’ ’ ’
0jj —0m0ji O
81']' = +
2G 3K

(7.72)
with o,,= (0y,+ 0,,+ 035)/3 and o given by the Biot-Willis coefficient as defined in Eq. 7.5

K
=0y =1—? (7.7b)

S

This relation was derived by Biot (1957) and by Nur (1969a) and the latter supported
it by experimental results for Westerly granite, thereby confirming earlier suggestions
by Geertsma (1957) and Skempton (1961). In soil mechanics it is commonly observed that
the bulk material is significantly more compressible than the solid grains, so that K;>> K
and therefore o, and the effective stress parameter o can both be taken to be unity.

Similarly the fluid content { can be related to the mean effective stress o], by

O-m
H

¢= (7.8a)

where o in this case is given by the reciprocal of Skempton’s coefficient B as defined
in Eq. 7.6

oLy UK =1K)
B (1/K-1/K,)

(7.8b)

One can isolate that part of the fluid content change that arises from porosity change
by considering an incompressible fluid (with K;— o), which then gives the effective
stress parameter o for porosity change (Robin 1973; Berryman 1992)

0K _ ¢

=1 =
o, K, K,(1/K-1/K)

(7.8¢)

In soil for which the solid material can be considered as incompressible (Kj infi-
nitely large), then the o’s in Egs. 7.8a and 7.8¢ for bulk and pore volume changes can
both be taken to be unity.

Note that the expressions for o in the effective stresses differ in Eq. 7.7b for the bulk
strains, in Eq. 7.8b for fluid content, and in Eq. 7.8¢ for the pore volume. This illustrates
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the statement of Nur and Byerlee (1971) that different elastic processes can be con-
trolled by different “effective stress laws”.

So far, only the open system, in which the pore pressure is an independent variable,
has been considered. For the undrained case, the amount of pore fluid in the body is
fixed (Gassmann 1951; Brown and Korringa 1975) and therefore the change in fluid
content {= o. Under undrained condition, significant pore pressure excess may de-
velop in response to compressive loading. This limiting case is of interest as a reason-
able approximation for certain tectonic deformations, such as the instantaneous re-
sponse of groundwater levels to the static strain field of an earthquake and the hydro-
logic response of a confined aquifer to earth tides (Roeloffs 1996). It can be seen from
Egs. 7.2 and 7.6 that with { = o Skempton’s coefficient gives the ratio between the change
in pore pressure under undrained condition and the change in mean stress, so that
Ap = -BAo,,. In soil mechanics, it is commonly assumed that Skempton’s pore pres-
sure coefficient B =1 for soil saturated with water (Holtz and Kovacs 1981) since the
bulk medium is much more compressible than either the water or the solid grains
(K,> K> K). For such an unconsolidated material the storage coefficient 1/R is, ac-
cording to Eq. 7.4, given by 1/R =1/K + ¢/K;, a definition that is widely adopted in
hydrology (Domenico and Schwartz 1998). Fredrich, Martin and Clayton (1995) ob-
tained values of B close to 1 at effective pressures up to 50 MPa for tuff samples with
porosities of 37% and 40%,. The tuff is similar to soil in that the bulk compressibility
is very high.

7.3.2
Experimental Measurement of Poroelastic Properties

Complete characterization of the behaviour of an isotropic rock requires the inde-
pendent measurement of at least four poroelastic constants in drained or undrained
tests. There is a paucity of such measurements under controlled conditions of pore
and confining pressures (Table 5). However, if two of the drained moduli (K and G)
have been measured, then the values of R and H can be inferred from Eqs. 7.3 and 7.4
if the bulk moduli K; and K; and the porosity ¢ are known. Taking such an approach
Rice and Cleary (1976) compiled and estimated poroelastic constants for 6 rocks, using
the experimental data of Haimson and Fairhurst (1970), Nur and Byerlee (1971),
Rummel (1974) and Zoback and Byerlee (1975¢). Their compiled data are also included
in Table s.

Berryman (1992) pointed out that the Biot-Willis coefficient is bounded by the
porosity and unity, so that ¢ < ¢, < 1. While the experimental data in Table 5 fall within
these bounds, the coefficient ¢, seems not to be systematically related to the porosity ¢.
This is not surprising since the bulk constants G and K themselves cannot, in general,
be expressed in terms of the porosity and the elastic constants of the solid material
because they also depend on the shape of the pores; (cf. Walsh 1965a,b; Warren 1973;
Zimmerman 1991). In Fig. 54a we compile data on the Biot-Willis coefficient as a func-
tion of the conventional effective pressure for a granite, marble, limestone and sand-
stone. We calculated the o, values from the bulk moduli data of Mesri, Adachi and
Ullrich (1976) using Eq. 7.5. The recent data of Lockner and Beeler (2003b) for Berea
sandstone at higher effective pressures are also included. At relatively low effective
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pressures the bulk modulus K is very small due to the presence of numerous open
cracks and pores, and consequently the values of o, are close to unity. At elevated
pressures crack closure results in appreciable decrease of the Biot-Willis coefficient.
Skempton’s coefficient B is expected to fall between o and 1, and the laboratory
data compiled in Table 5 are within this range. The B values seem not to be system-
atically correlated with porosity. We compile in Fig. 54b the data of Mesri, Adachi and
Ullrich (1976) on Skempton’s coefficient of water-saturated samples as a function of
the conventional effective stress, as well as the data of Lockner and Stanchits (2002)
for Berea sandstone at higher effective pressures. B values close to 1 were measured at
low effective pressures, but they fall to values between 0.33 and 0.69 at effective pres-
sures of 10 MPa or so. Similar behaviour was observed in saturated dolomite and sand-
stone (Berge, Wang and Bonner 1993; Fredrich, Martin and Clayton 1995; Green and
Wang 1986). The rapid decrease of B with increasing effective pressure can again be
attributed to the increase of the bulk modulus K induced by crack closure.
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In the case of an anisotropic porous body, the scalar coefficients ¢, and B are
replaced by a second rank tensor (cf. Brown and Korringa 1975; Carroll 1979). Cheng
(1997) presented explicit relations for these tensor coefficients. In undrained triaxial
compression experiments on two sandstones, Lockner and Stanchits (2002) observed
that stress-induced anisotropy can be so significant that both the Biot-Willis and
Skempton’s coefficients cannot be approximated as scalar quantities. Their data show
that in Berea sandstone Skempton’s coefficient for the undrained response to an in-
crease in the axial stress can be as much as four times that for corresponding re-
sponse to the transverse stress. Such a poroelastic response to deviatoric stresses seems
to arise from the anisotropic stiffening from crack closure.

The simple theory of the elastic deformation of porous solids given above serves
to illustrate in principle the approach to the inclusion of pore pressure effects in
terms of effective stress. Similar considerations can be extended to the influence of
pore pressure on the velocities of elastic wave propagation; see Banthia, King and
Fatt (1965) and Todd and Simmons (1972) for some observations and for references
to theory. However, this type of theory is limited to small strains, beyond which
non-linear effects soon become important; for introduction to the non-linear aspects,
see Walsh (1971a), Biot (1973), Garg and Nur (1973) and Guéguen, Dormieux and Buo-
téca (2004).

7.4
Brittle Failure - Experimental

7.4.1
Drained Tests

There have been many experimental studies on the influence of pore pressure on brittle
fracture in rocks because of its importance in fields such as tectonics, seismology and
geotechnical engineering. The experimental work has normally focused on situations
in which the fluid-containing pores are interconnected, so that the pore fluid pres-
sure can be changed or controlled by introducing or removing some fluid. This is
done by connecting the specimen to an external pressure source (see Chapt. 2). Most
of the work on rocks has been done with the external pressure source connected con-
tinuously to the pore system of the rock, with the aim of maintaining constancy of
pore pressure; this is the arrangement known in soil mechanics as the “drained test”.
The alternative arrangement (“undrained test”), in which the specimen is isolated
from any external fluid systems during the test, has been used less often. The undrained
condition implies that, in the absence of hydration/dehydration reactions or other
internal fluid consumption/generation, the amount of fluid in the specimen is held
constant during the test but the pore fluid pressure will tend to change (see further
under Sect. 7.4.2).

Experimental details covering such aspects as saturation of specimens, control of
pore pressure, and measurement of the amount of fluid moving in or out of pores
during testing have been given by Robinson (1959), Heard (1960), Handin et al. (1963),
Murrell (1965), Donath (1966), Neff (1966), Lane (1970), Heck (1972) and Chiu, Johnston
and Donald (1983). The pore fluid used has normally been water except when the
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chemical activity of water was to be avoided or when the influence of different vis-
cosities was to be tested. Pre-saturation of the specimen by evacuating the air while
the specimen is immersed in the fluid helps to minimize complications from incom-
plete saturation (e.g., Neff 1966; Heck 1972; Rutter 1972b). However, there remains the
frequent problem of attaining equilibrium in pore pressure through the sample when
the permeability is low. Connecting the pore pressure pumping system to both ends
of the specimen is sometimes done to alleviate this problem (Robinson 1959; Murrell
1965; Neff 1966; Heck 1972).

There is a considerable body of experimental work showing that to a fairly good
approximation Terzaghi’s effective stress rule governs the shear failure of a wide vari-
ety of rocks, including sandstone, limestone, dolomite, shale, and siltstone (Robinson
1959; Serdengecti and Boozer 1961; Handin et al. 1963; Murrell 1965; Dunn, LaFountain
and Jackson 1973; Byerlee 1975; Gowd and Rummel 1977; Dropek, Johnson and Walsh
1978; Schmitt and Zoback 1989). An example is given in Fig. 55a. That is, in general, the
differential stress for shear failure of a particular rock is approximately the same at the
same “effective confining pressure” when the latter is taken to be the total confining
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pressure minus the pore pressure (o= 1). However, apparent exceptions have been noted.
Heard (1960) found that the differential stress for brittle failure in Solnhofen limestone
increased with total confining pressure even though the conventional effective pres-
sure was held constant. Robinson’s (1959) results for Indiana limestone showed a simi-
lar trend, as did also the results of Handin et al. (1963) for Hasmark dolomite, a shale,
and a siltstone (but only with water in the latter case, not with kerosene). Thus, it was
concluded by Handin et al. (1963) that “the important mechanical properties - ultimate
strength and ductility - are functions of the [conventional] effective stresses, provided
that (a) the interstitial fluid is inert relative to the mineral constituents of the rock so
that pore pressure effects are purely mechanical, (b) the permeability is sufficient to
allow pervasion of the fluid and furthermore to permit the interstitial fluid to flow in
or out of the rock during the deformation so that the pore pressure remains constant
and uniform throughout (the test is “drained”), and (c) the rock is a sandlike aggregate
with connected pore space, the configuration of which insures that the pore (“neu-
tral”) pressure is transmitted fully throughout the solid phase.”

The conclusion of Handin et al. (1963) about the role of permeability has been con-
firmed by detailed work on low permeability rocks at slow strain rates by Brace and
Martin (1968); see also Brace (1969b) and Martin (1980). They compared fracture
strengths at zero pore pressure and 156 MPa confining pressure with those at 156 MPa
pore pressure and 312 MPa confining pressure - the conventional effective pressure
in both cases being 156 MPa. Several igneous rocks of 0.7% or less porosity and a
sandstone of 2.6% porosity were tested. The porosities were measured at pressure,
presumably by fluid take-up, so as to ensure comparable conditions of crack closure.
Typical results for Westerly granite (porosity 0.7%) are given in Fig. 55b, showing that
when the strain rate is reduced to 107 s7! Terzaghi’s effective stress rule is clearly
obeyed; this strain rate is called the “critical strain rate”. The apparent departures
from Terzaghi’s rule at higher strain rates were found to be independent of the chemi-
cal nature of the fluids (water and acetone) provided the viscosities were similar. The
influence of viscosity is illustrated in tests on the sandstone, for which the critical
strain rate is 10 s™! when water is used as pore fluid and 1077 s™! when a silicone fluid
of nearly three orders of magnitude greater viscosity is used; this relative change in
critical strain rate is, therefore, consistent with the predicted relative change in the
rate at which pressure equilibration with an external source could be established. The
failures, single major faults with subsidiary small fractures in all cases, had the same
appearance regardless of pore pressure conditions.

In a similar study of Solnhofen limestone near its brittle-ductile transition, Rutter
(1972a) found a critical strain rate of 107® s7! for the apparent validity of Terzaghi’s
effective stress rule when water is the pore fluid; the porosity, measured by saturating
with water at atmospheric pressure, was 5.3%. In a study of Nevada Test Site tuff,
Christensen, Green and Jones (1973) found a critical strain rate of 107> s7%. It is to be
noted, however, that, as emphasized by Ladanyi (1970), the behaviour above the criti-
cal strain rate in these observations need not represent a real failure of Terzaghi’s
effective stress rule within the specimens; it may be entirely due to the actual pore
pressures being different from the fluid pressure applied and measured at the surface
of the specimen, this disequilibrium being accentuated by any concurrent dilatancy
(cf. Gowd and Rummel 1977).
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In the case of specimens without jackets to exclude the confining pressure fluid,
the specimen is potentially subject to a pore fluid pressure equal to the confining
pressure and the conventional effective pressure equal to zero, provided there is suf-
ficient permeability for the penetration of the fluid to establish the pressure in the
pores. Thus, in triaxial tests on specimens without jackets, brittleness tends to persist
to higher confining pressures, and fracture strengths or flow stresses tend to be lower,
than when jackets are used (Griggs 1936; Goguel 1948; Handin 1953; Bredthauer 1957;
Heard 1960). However, only in specimens of high permeability is the strength of
unjacketed specimens equal to or near that found in atmospheric pressure tests, in
accord with Terzaghi’s rule; the sandstone tested at 500 MPa confining pressure by
Handin et al. (1963) is an example. More usually, and especially when using fairly
viscous confining pressure fluids, such as kerosene at the higher pressures, the strengths
of unjacketed specimens show intermediate values and tend to increase appreciably
as the confining pressure increases, indicating that some effective confining pressure
is being established; Solnhofen limestone (Griggs 1936) and Muddy Shale (Handin
et al. 1963) are examples. Also, in such cases, the strength of unjacketed specimens is
likely to appear anomalously sensitive to strain rate because of the time dependence
of penetration of the fluid (Jaeger 1963).

While most of the above examples of the effects of pore fluid pressure have in-
volved triaxial compression tests, there have also been observations confirming the
approximate validity of Terzaghi’s effective pressure principle in extension tests, es-
pecially in Bridgman pinching-off tests in which the conventional effective pressure
is zero if the specimen is unjacketed (Jaeger 1963; Jaeger and Cook 1963; Schmitt and
Zoback 1989; Bruno and Nakagawa 1991). However, this conclusion is again depen-
dent on there being adequate permeability for establishing pore pressure equilibrium
throughout the specimen (Schmitt and Zoback 1992).

7.4.2
Undrained Tests

Pore pressure effects can be substantially modified by changes in porosity during an
experiment. These changes may involve dilatation or compaction, either during ap-
plication of confining pressure or during deformation under differential stress (see
Chapt. 6), and they are likely to be accompanied by significant changes in permeabil-
ity. If the permeability is adequate and the specimen is continuously connected to the
pore fluid reservoir (“drained” test), the only effect may be movement of fluid into or
out of the specimen; such an effect has been widely observed (Robinson 1959; Handin
et al. 1963; Rutter 1972b), and it has sometimes been monitored to give a measure of
change in porosity (Read and Meredith 1989; Chiu, Johnston and Donald 1983; Zhang,
Cox and Paterson 1994; Zhang, Paterson and Cox 1994; Read et al. 1995; Bernabé and
Brace 1990; Wong 1990a). On the other hand, if the specimen is saturated and then
isolated from the reservoir (“undrained” test), changes in pore pressure will be in-
duced by changes in porosity accompanying deformation, as shown by Neff (1966),
Aldrich (1969), Heck (1972), (also in Lane 1970), Dropek, Johnson and Walsh (1978),
and Green and Wang (1986); see Fig. 56 and previous discussions in Sect. 7.3.1. Similar
changes have been inferred by Ismail and Murrell (1976) to explain the behaviour in
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undrained tests of rocks of various porosities when water was added in excess of that
needed for initial saturation.

Induced changes in pore pressure similar to those in “undrained” tests can also be
expected in nominally “drained” tests when the permeability is inadequate for the
maintenance of equilibrium between the pressure in the pores and in the reservoir,
that is, when the strain rate is above the critical strain rate defined by Brace and Martin
(1968) and mentioned in Sect. 7.4.1. An increase in porosity can then lead to a de-
crease in the actual pore pressure within the specimen, so that greater differential
stress is needed for deformation than when constancy of actual pore pressure can be
maintained. This effect, known as “dilatancy hardening”, has been discussed by Brace
and Martin (1968) and depicted by them as in Fig. 57; see also Rutter (1972a), Ismail
and Murrell (1976), Chiu, Johnston and Donald (1983), and Schmitt and Zoback (1992).
The effect is similar to the effect in granular media discussed by Reynolds (1885; 1887)
and Mead (1925), and it can be expected to affect sliding on fault surfaces or cataclastic
deformation whenever permeability is low in relation to the strain rate and dilatation
accompanies the deformation. Its relevance to seismicity has been discussed by Frank
(1965, 1966) and it is an important aspect of the models for the mechanism of earth-
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quakes of Nur (1972), and Scholz, Sykes and Aggarwal (1973), which have figured in
discussions on earthquake predictions (for example, Mogi 1977; Sibson 1981; Crampin,
Evans and Atkinson 1984).

7.4.3
Chemical Effects

An active role of the interstitial fluid through chemical or other processes indepen-
dent of the applied pore pressure has often been observed. The apparent exception to
Terzaghi’s rule for siltstone with water as pore fluid, observed by Handin et al. (1963)
and noted above, was attributed to the swelling of montmorillonite clays, which greatly
reduces the permeability. However, it has been widely observed, especially in quartz-
rich rocks but also in limestone, that water, including even that adsorbed from a hu-
mid atmosphere, has a specific weakening effect relative to behaviour after careful
drying (Hirschwald 1912, pp. 192-196; Jaeger 1943; Terzaghi 1945; Price 1960; Serdengecti
and Boozer 1961; Colback and Wiid 1965; Murrell 1965; Aldrich 1969; Podnieks, Cham-
berlain and Thill 1972; Rutter 1972b; Christensen, Green and Jones 1973; McCarter and
Willson 1973; Parate 1973; Atkins and Peng 1974; van Eeckhout 1976; Seto et al. 1997).
Alkaline solutions have also been observed to lower the fracture stress of both quartzite
and quartz crystals (Griggs and Bell 1938; Fairbairn 1950), and aluminium and ferric
iron-bearing solutions have a similar or even more marked effect which can be ratio-
nalized in terms of zeta-potentials (Swolfs 1972). Such observations call to mind the
Rehbinder effect (Rehbinder, Schreiner and Zhigach 1948). Thus, Boozer, Hiller and
Serdengecti (1963) observed weakening effects with a number of surface-active lig-
uids on both sandstone and limestone, independently of any pore pressure effect; for
example, oleic acid and water weakened both rocks, whereas n-hexadecane produced
no effect. Robinson (1967) confirmed and extended the observations of Boozer et al.
but pointed out that the additional weakening by solutions or organic chemicals over
that due to water alone applied only to the yielding, not to brittle strength. Colback
and Wiid (1965) also reported observations on uniaxial strength of quartzitic sand-
stone in a number of liquids, which show a correlation between the degree of weak-
ening and the surface tension of the liquid (see also Vutukuri 1974, for limestone).
However, as seen from the relative effects with oleic acid and water, such a correlation
does not apply in the results of Boozer, Hiller and Serdengecti (1963), who make the
more likely suggestion that it is the surface energy of the mineral when wetted with
the fluid that is important (see also van Eeckhout 1976; Baud, Zhu and Wong 2000).
On the other hand, studies of the influence of water on crack propagation in quartz
(Charles 1959; Scholz 1968c¢; Martin 1972) suggest a specific chemical role for water in
silicate rocks in assisting to break Si-O bonds (see also Swolfs 1972). These effects can
be viewed as examples of crack propagation controlled by stress corrosion; see re-
views by Anderson and grew (1977), Atkinson and Meredith (1987b) and Costin (1987).

The effects of adsorbed moisture can also be treated from a point of view com-
monly adopted in soil mechanics for unsaturated soils. In clay soils, there are impor-
tant variations in strength with variations in moisture content when no free water is
present. Relative to the saturated condition, reduction in water content gives a strength-
ening which has been variously dealt with in terms of notions of suction, soil mois-
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ture tension, pressure deficiency, negative pore pressure, etc., introduced into effec-
tive stress theory; see, e.g., papers in British National Society (1961) or Lambe (1969).
This approach has not been applied much in rock mechanics but it could be relevant
in fine grained rocks, especially in argillaceous rocks. Thus, Chenevert (1970) treated
the strength of argillaceous shales in terms of an adsorptive pore pressure, defined as
(RT/v) In(p/p,), where p and p, are the vapour pressures of water in equilibrium with
the rock and with free water, respectively, v is the specific volume of water, R is the gas
constant and T the absolute temperature; the relative humidity of the atmosphere in
equilibrium with the rock is taken as the measure of p/p, (see also Schmitt, Forsans
and Santarelli 1994). The adsorptive pore pressure, which is negative, that is, of the
same sign as tensile stress, is then used in the same way at the pore pressure in a satu-
rated rock to derive conventional effective stresses (for relation to swelling in shales,
see Huang, Aughenbaugh and Rockaway 1986). Chenevert found that the compressibil-
ity, swelling and strength of several shales exposed to atmospheres of various relative
humidities behaved as if controlled by effective stresses obtained in this way, and the
same correlation was shown to apply to the quartzitic shale and quartzitic sandstone
of Colback and Wiid (1965), mentioned above. The strength of granular materials con-
taining amounts of water below the level of saturation is also of concern in the tech-
nology of such materials and has been discussed in terms of “capillary bonds” between
grains (cf. Carr 1967; Frank 1971, 1972, and other references given by them).

7.5
Brittle Failure - Theory of Pore Pressure Effects

The theory of the influence of pore pressure on brittle failure has encountered a
number of difficulties. In particular, discussion of the theoretical basis of the domi-
nant role of the conventional effective stress has been marked by a good deal of con-
troversy and some confusion. Fundamentally, the theoretical problem is to relate the
stresses and attendant failure phenomena on the microscopic scale (scale of the pores)
to the macroscopic stress state and the macroscopic failure.

In theoretical discussion, it is important to keep clearly in mind the various ways
in which stresses are defined (cf. Sect. 7.2). Firstly, there are the total macroscopic
stresses, involving the totality of forces, in both solid and fluid parts, acting across a
hypothetical macroscopically plane surface, the area of which is taken to include both
the solid material and the pore space intersected by the surface. Secondly, there are
local stresses, based on the forces acting on local parts of this hypothetical surface
lying entirely within a uniform region (either solid material or pore space). Finally,
there are quantities which can be described as partial macroscopic stresses, defined
by considering the forces acting on only those parts of the surface that intersect either
solid or fluid but dividing the measure of the forces by the total area of the macro-
scopic surface.

It is also important to consider brittle failure specifically since it is already evident
from the previous sections on elastic deformation and on the experimental study of
brittle failure that there is no simple universal definition of “effective stress” which
permits a uniform treatment of all phenomena affected by pore fluid pressure. Thus,
the discussion of so-called buoyancy forces and their role in sliding friction on sur-
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faces between separate bodies, which dominated much of the paper and subsequent
discussion of Hubbert and Ruby (1959), is not necessarily directly relevant in under-
standing the role of the conventional effective stress in brittle failure of initially intact
rock. It should also be noted (cf. Moore 1961) that mathematically the particular de-
composition of the total stress into a “neutral stress” p and a conventional effective
stress has no special uniqueness. Emphasis has sometimes been put on the “neutral”
character of the pore pressure, which is said to give a uniform hydrostatic reference
state through the whole of the material if the pressure is transmitted to all the pores,
but this concept is useful only as long as either infinitesimal elastic deformation alone
is involved or elastic deformation is entirely neglected.

A common approach to rationalizing the apparent role of the conventional effective
stresses in brittle failure has been to consider some sort of average value of the local
stresses in the solid parts of the specimen. Considering the stress components on a
potential plane of failure, it is readily shown (e.g., Skempton 1961; Jaeger and Cook
1979, p. 222) that the total normal stress component ¢ can be written as

o=p+(-f)(o,-p) (7.9)

where o is the average value of the local normal stress in the solid parts intersected
by the macroscopic element of area upon which the stress ois calculated, fis the frac-
tion of this area occupied by the pore space, and p is the pore pressure. The quantity f
is generally taken to be equal to the porosity and is often called the “boundary poros-
ity” (e.g., Robinson and Holland 1970). Equation 7.9 can be re-written as

(1-flo,=0-fp (7.10)

The quantity (1-f)o; is equal to the total normal force transmitted through the
solid parts divided by the total area; that is, it is a partial stress. By a similar consid-
eration to that leading to Eq. 7.9, the total shear stress 7 can be written as

1-Hr,=7 (7.11)

where 7 is the average value of the local shear stress in the solid parts intersected.

If it is now assumed that shear failure will occur on the surface under consider-
ation when the average stresses in the solid parts satisfy a Coulomb condition similar
to that applying to the same material with no pores, then

T,= Ty + Ogtan @

where 7, and tan ¢ are the cohesion and coefficient of internal friction of the solid
material itself, or closely related parameters. Substituting from Egs. 7.10 and 7.11 gives

T=(1- )1+ (o-fp)tan ¢ (7.12)

Therefore, o - fp appears in the Coulomb condition for the porous specimen in-
stead of o, that is, the “effective” shear stress is still 7. This or similar arguments (Terzaghi
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1945; Skempton 1961) have thus led to the prediction that brittle failure should be gov-
erned by effective stresses oj;= 0;;—~ apd;; where o= f, the “boundary porosity”.

However, the observed behaviour generally corresponds to az=1, even in rocks of
low porosity, so that if the porosity is taken as the measure of f the above prediction is
not obeyed (see also Robin 1973). To reconcile this discrepancy, it has become custom-
ary in soil mechanics to view the potential failure surface as a wavy surface following
only in an approximate way the plane surface considered in the definition of the stresses
in the above argument (e.g., Lambe and Whitman 1969, p. 242). It is then said that,
since such a wavy surface can lie almost entirely within pore space by going around the
grains, its boundary porosity f is close to unity. A similar view can be applied to rock
but it leads to the conclusion that “the voids must consist of very narrow but continu-
ous slits” (Terzaghi 1945, p. 786).

Such an explanation of how the conventional effective stresses (¢ = 1) apply to brittle
failure is not very satisfying for rocks. Its deficiency probably lies mainly in treating
the stresses within the solid parts as uniform, that is, in taking into account only the
average value of the local stresses, and in neglecting to consider the local and propa-
gating nature of a brittle failure. The latter point has been raised by Laubscher (1960)
who suggests that during the approach to failure there is a changing microscopic ge-
ometry involving the development of a series of local fractures, so that the effective
boundary porosity of a potential fracture surface increases during this development
and approaches unity just before the macroscopic movement on the fracture surface
begins. The analysis of such a situation is most simply approached through the Griffith
model for brittle fracture.

The Griffith model has been described in Chapt. 4. It takes into account the actual
stress state around an ellipsoid-shaped crack, assuming elastic behaviour prior to the
local failure whereby the crack is extended, and it postulates that the crack will extend
when the extra work of creating new crack surface can be provided from elastic strain
energy available. If the crack contains a fluid under pressure, the theory shows that
the failure condition remains of the same form provided conventional effective stresses
0;j— pJ;; are used instead of the total stresses oy, this applies in both the two-dimen-
sional model (Murrell 1964; Jaeger 1969, p. 169; Jaeger and Cook 1979, p. 279) and the
three-dimensional (Murrell and Digby 1970). Thus, Griffith theory predicts o= 1,and,
insofar as it is applicable, gives justification for the use of the conventional effective
stresses in predicting brittle failure. Of course, as discussed in Chapt. 4, Griffith theory
is only strictly relevant to the initiation of fracture, but similar considerations pre-
sumably apply at each stage of the propagation of the fracture and it seems plausible
that the macroscopic failure of a brittle porous material with pore pressure should
similarly be governed by the conventional effective stresses (o= 1).

Indeed this is the approach usually adopted to incorporate pore pressure effects
into the various micromechanical models of brittle failure discussed in Chapt. 6. Un-
derlying the fracture mechanics treatment is the usual presumption that the pore fluid
is always in hydrostatic equilibrium. However, in a crack growing sufficiently rapidly,
viscous drag may prevent continuous fluid penetration to the crack tip, a situation
discussed by Abé, Mura, and Keer (1976) in the context of hydraulic fracturing, which
represents another aspect of the critical strain rate (Sect. 7.4.1). Atkinson and Cook
(1993) have modelled such a situation microdynamically.



