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Abstract. The history and phenomenology of hadronic parity violation is reviewed and a new model-
independent approach based on effective field theory is developed. Possible future developments are dis-
cussed.
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1 Introduction

The strong parity-conserving nucleon-nucleon interaction
has, of course, been well studied since the beginning of
quantum mechanics. Indeed, the cornerstone of traditional
nuclear physics is the study of the nuclear force and, over
the years, phenomenological forms of the nuclear potential
have become increasingly sophisticated. In the nucleon-
nucleon (NN) system, where data abound, the present
state of the art is indicated, for example, by phenomeno-
logical potentials such as AV18 that are able to fit phase
shifts in the energy region from threshold to 350MeV in
terms of ∼ 40 parameters. Great progress has also been
made in the description of few-nucleon systems [1].

At the same time, in recent years a new technique
—effective field theory (EFT)— has been used in order
to attack this problem using the symmetries of QCD [2].

a e-mail: holstein@physics.umass.edu

In this approach the nuclear interaction is separated into
long- and short-distance components. In its original for-
mulation [3], designed for processes with typical momenta
comparable to the pion mass —Q ∼ mπ— the long-
distance component is described fully quantum mechani-
cally in terms of pion exchange, while the short-distance
piece is described in terms of a small number of phe-
nomenologically determined contact couplings. The result-
ing potential [4,5] is approaching [6,7] the degree of accu-
racy of purely phenomenological potentials. Even higher
precision can be achieved at lower momenta —Q � mπ—
where all interactions can be taken as short-ranged, as has
been demonstrated not only in the NN system [8,9], but
also in the three-nucleon system [10,11]. Precise —∼ 1%—
values have been generated for low-energy, astrophysically
important cross-sections for reactions such as n + p →
d + γ [12] and p + p → d + e+ + νe [13]. However, be-
sides providing reliable values for such quantities, the use
of EFT techniques allows for a realistic estimation of the
size of possible corrections.

Because of the presence of the weak interactions, there
exists, of course, in addition to the parity-conserving
strong force, a parity-violating NN interaction, the study
of which began in 1957 with an experiment by Tan-
ner seeking (but not finding) parity violation in the
19F(p, α)16O reaction [14]. Since that time there have been
numerous additional experiments involving both nucleons
and nuclei as well as considerable theoretical work. How-
ever, despite more than a half century of effort, there re-
main considerable problems in understanding this weak
hadronic PV interaction. The first systematic theoreti-
cal basis for understanding this interaction was a pion
exchange plus local interaction picture posited by Blin-
Stoyle in 1960 [15]. The local interaction piece was de-
veloped into a vector-meson-exchange term by Michel in



1964 [16]. Then in 1980 this approach was developed into
a comprehensive theoretical framework by Desplanques,
Donoghue, and Holstein (DDH) [17]. The latter is the ba-
sis of the analysis of nearly all experimental work which
has been done during the past quarter century.

As will be discussed in more detail below, the goal
of this work has been to measure the phenomenological
weak parity-violating meson-nucleon coupling constants
defined by DDH. However, in spite of a great deal of ef-
fort on this problem there is still no way to describe all
the experimental results in terms of the DDH picture. Of
particular interest is the size of the weak πNN coupling
constant, where there is disagreement as to whether it is
of the same general size or is considerably smaller than the
value (gu)estimated by DDH. In order to sort out whether
the problems in analyzing such experiments are due to the
model-dependent meson exchange picture used by DDH
or on account of some deeper issue, in recent years Zhu
et al. have developed a systematic effective field theory
approach to study of the PV NN interaction, and that is
the subject which is outlined below [18].

Since EFT methods are somewhat unfamiliar to some
physicists, in the next section we contrast the conven-
tional and EFT approach to study of the familiar low-
energy parity-conserving NN interactions, with and with-
out Coulomb effects, and demonstrate via either approach
that near-threshold observables are expressible in terms of
just two phenomenological parameters —the singlet and
triplet S-wave scattering lengths. Then, we show how such
EFT methods can be extended to the PV NN interac-
tion at the cost of introducing five new parameters —the
Danilov coefficients [19]. In sect. 3 we indicate how these
parameters are related to the underlying effective PV NN
Lagrangian and in sect. 4 we describe how they can be
extracted from experiments on light nuclei. (We empha-
size the use of light nuclei in order to ameliorate nuclear-
physics uncertainties.) We conclude our paper with a look
into the future, when such a program is reality, and sug-
gest new directions for work at that time. We close with
a brief recapitulation.

2 Parity-conserving NN scattering

We begin our discussion with a brief look at conventional
scattering theory [20], where in the usual partial-wave ex-
pansion, we can write the scattering amplitude as

f(θ) =
∑

�

(2� + 1)a�(k)P�(cos θ). (1)

Here the partial-wave amplitude a�(k) has the form

a�(k) =
1
k

eiδ(k) sin δ(k) =
1

k cot δ(k) − ik
. (2)

Below we contrast the conventional and EFT approaches
to the analysis of this scattering process. We begin with
the conventional potential model technique.

2.1 Conventional analysis

Working in the potential model picture, one specifies a
potential V (r) describing the interaction of two particles,
taken for simplicity here to be spinless, yielding a general
expression for the scattering phase shift δ�(k)

sin δ�(k) = −k

∫ ∞

0

dr′r′j�(kr′)2mrV (r′)u�,k(r′), (3)

where mr is the reduced mass and

u�,k(r) = r cos δ�(k)j�(kr)

+kr

∫ r

0

dr′r′j�(kr′)n�(kr)u�,k(r′)2mrV (r′)

+kr

∫ ∞

r

dr′r′j�(kr)n�(kr′)u�,k(r′)2mrV (r′) (4)

is the scattering wave function [20]. At very low energies
one can characterize the analytic function k2�+1 cot δ(k)
via the effective range expansion [21]

k2�+1 cot δ�(k) = − 1
a�

+
1
2
re
�k

2 + . . . . (5)

Then, from eq. (3) we can calculate all of the effective
range parameters —e.g., in the case of a weak potential
the scattering length a� is given by

a� =
1

[(2� + 1)!!]2

∫ ∞

0

dr′(r′)2�+22mrV (r′) +O(V 2). (6)

As a specific example of the use of potential methods,
suppose we utilize a simple square well potential to de-
scribe the interaction

V (r) =

{
−V0, r ≤ R,

0, r > R.
(7)

For the S-wave scattering the wave function in the interior
and exterior regions can then be written as

ψ(+)(r) =

{
Nj0(Kr), r ≤ R,

N ′eiδ0(j0(kr) cos δ0 − n0(kr) sin δ0), r > R,

(8)
where j0(kr), n0(kr) are spherical Bessel functions and the
interior, exterior wave numbers are given by k =

√
2mrE,

K =
√

2mr(E + V0), respectively. The connection be-
tween the two forms can be made by matching logarithmic
derivatives at the boundary, yielding

k cot δ�− 1
R

[
1+

1
KRF (KR)

]
with F (x)=cot x− 1

x
.

(9)
Making the effective range expansion —eq. (5)— we can
find expressions for the scattering length, effective range,
and higher moments. Thus, defining K0 =

√
2mrV0

a0 = R

[
1 − tan K0R

K0R

]
,

re
0 = − 1

K0

[
K0R sec2 K0R − tan K0R

(K0R − tan K0R)2

]
, etc. (10)
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Note that for weak potentials —K0R � 1— this expres-
sion for the scattering length agrees with the general re-
sult, eq. (6)

a0 =
∫ ∞

0

dr′r′
22mrV (r′) = −2mr

3
R3V0 + O(V 2

0 ). (11)

The important feature here is that because we have chosen
a specific form of the potential, all terms in the effective
range expansion are predicted. Of course, the forms given
above in the case of weak potentials are modified in the
general case, but the entire system of parameters is deter-
mined to all orders and can be determined numerically.

Our application of this formalism will be to the two-
nucleon system, so that we must also introduce spin de-
grees of freedom. We note then that at very low ener-
gies, where only the scattering length is relevant, we can
write the S-wave scattering matrix in the phenomenolog-
ical form [22]

MPC(k′,k) = mt(k)P1 + ms(k)P0, (12)

where

P1 =
1
4
(3 + σ1 · σ2), P0 =

1
4
(1 − σ1 · σ2)

are spin-triplet, -singlet spin projection operators and

mt(k) � −at

1 + ikat
, ms(k) � −as

1 + ikas
(13)

are the S-wave partial-wave amplitudes in the lowest-order
effective range approximation, keeping only the scattering
lengths at, as. Here the scattering cross-section is found
via

dσ

dΩ
= TrM†M, (14)

so that we reproduce the familiar result

dσs,t

dΩ
=

|as,t|2
1 + k2a2

s,t

. (15)

The corresponding scattering wave functions are then
given by

ψ
(+)
k (r) =

[
eik·r − M

4π

∫
d3r′

eik|r−r′|

|r − r′| U(r′)ψ(+)
k (r)

]
χ

r→∞−−−→
[
eik·r + M(−i∇,k)

eikr

r

]
χ, (16)

where χ is the spin function. In Born approximation then
we can write the scattering wave function in terms of an
effective delta function potential

Ut,s(r) =
4π

M
(atP1 + asP0)δ3(r) (17)

as can be confirmed by substitution into eq. (16). (Strictly
speaking, the use of the Born approximation is not legit-
imate for the case of singular potentials such as we use,

and must be properly defined as in [23].) Of course, be-
fore applying this result we need to enforce the stricture
of unitarity, which requires that

2 Im T = T †T. (18)

In the case of the S-wave partial-wave amplitude mt(k)
this condition reads

Im mt(k) = k|mt(k)|2 (19)

and requires the form

mt(k) =
1
k

eiδt(k) sin δt(k). (20)

Since at zero energy we have

lim
k→0

mt(k) = −at, (21)

it is clear that unitarity can be enforced by modifying this
lowest-order result via

mt(k) =
−at

1 + ikat
, (22)

which is simply the lowest-order effective range result, so
everything seems to hang together.

For the case of nucleon-nucleon interactions, one finds1

as
0 = −23.715 ± 0.015 fm, rs

0 = 2.73 ± 0.03 fm,

at
0 = 5.423 ± 0.005 fm, rt

0 = 1.73 ± 0.02 fm, (23)

for scattering in the spin-singlet (S = 0) and spin-triplet
(S = 1) channels, respectively. The existence of a bound
state with energy E = −γ2/2mr is indicated by the pres-
ence of a pole along the positive-imaginary k-axis —i.e.
γ > 0 under the analytic continuation k → iγ—

1
a0

+
1
2
r0γ

2 − γ = 0. (24)

We see from eq. (23) that there exists no bound state in
the np spin-singlet channel, but in the spin-triplet system
there exists a solution

κ =
1 −

√
1 − 2rt

0
at
0

rt
0

= 45.7MeV, i.e. EB = −2.23MeV

(25)
corresponding to the deuteron.

2.2 Coulomb effects

When Coulomb interactions are included, the analysis be-
comes more challenging but remains straightforward. Sup-
pose first that only same charge (e.g., proton-proton) scat-
tering is considered and that we describe the interaction
in terms of a potential of the form

V (r) =

{
U(r), r < R,
α
r , r > R,

(26)

1 Note that the large scattering lengths found here show that
this is certainly not a weak potential situation.
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i.e. an attractive component —U(r)— at short distances,
in order to mimic the strong interaction, and the repul-
sive Coulomb potential —α/r— at large distance, where
α � 1/137 is the fine-structure constant. The analysis of
scattering then proceeds as above but with the replace-
ment of the exterior spherical Bessel functions j0, n0 by
the corresponding Coulomb wave functions F+

0 , G+
0

j0(kr) → F+
0 (r), n0(kr) → G+

0 (r), (27)

whose explicit form can be found in ref. [24]. For our pur-
poses we require only the form of these functions in the
limit kr � 1:

F+
0 (r) kr�1−−−−→ C(η+(k))

(
1 +

r

2aB
+ . . .

)

G+
0 (r) kr�1−−−−→ − 1

C(η+(k))

{
1
kr

+ 2η+(k)
[
h(η+(k)) + 2γE − 1 + ln

r

aB

]
+ . . .

}
.

(28)

Here γE = 0.577215 . . . is Euler’s constant,

C2(η+(k)) =
2πη+(k)

exp(2πη+(k)) − 1
≡ Ks (29)

is the usual Coulombic enhancement factor, aB = 1/mrα
is the Bohr radius, η+(k) = 1/kaB , and

h(η+(k))=Re H(iη+(k))

=η2
+(k)

∞∑
n=1

1
n(n2+η2

+(k))
−ln η+(k)−γE , (30)

where H(x) is the analytic function,

H(x) = ψ(x) +
1
2x

− ln(x). (31)

Equating interior and exterior logarithmic derivatives as
before, we find now

KF (KR) =
cos δ0F

+
0

′
(R) − sin δ0G

+
0

′
(R)

cos δ0F
+
0 (R) − sin δ0G

+
0 (R)

=
k cot δ0Ks

1
2aB

− 1
R2

k cot δ0Ks + 1
R + 1

aB
[h(η+(k)) − ln aB

R + 2γE − 1]
.

(32)

Since R ∼ 1 fm � aB ∼ 50 fm, eq. (32) can be written in
the form

k cot δ0Ks +
1

aB

[
h(η+(k)) − ln

aB

R
+ 2γE − 1

]
� − 1

a0
. (33)

The scattering length aC in the presence of the Coulomb
interaction is conventionally defined as [25]

k cot δ0Ks +
1

aB
h(η+(k)) = − 1

aC
+ . . . , (34)

so that we have the relation

− 1
a0

= − 1
aC

− 1
aB

(
ln

aB

R
+ 1 − 2γE

)
(35)

between the experimental scattering length —aC— and
that which would exist in the absence of the Coulomb
interaction —a0.

As an aside, we note that a0 is not itself an observable
since the Coulomb interaction cannot be turned off. How-
ever, we can imagine a “gedanken scattering” in which
there exists no Coulomb repulsion. In this case isotopic
spin invariance requires the equality of the S-wave pp
and nn scattering lengths —app

0 = ann
0 — yielding the

prediction

− 1
ann
0

= − 1
app

C

− αMN

(
ln

1
αMNR

+ 1 − 2γE

)
. (36)

While this is a model-dependent result, Jackson and Blatt
have shown, by treating the interior Coulomb interac-
tion perturbatively, that a version of this result with
1 − 2γE → 0.824 − 2γE is approximately valid for a wide
range of strong-interaction potentials [24] and the correc-
tion indicated in eq. (36) is essential in restoring agree-
ment between the widely discrepant —ann

0 = −18.8 fm vs.
app

C = −7.82 fm— values obtained experimentally.
Returning to the problem at hand, the experimental

scattering amplitude can then be written as

f+
C (k) =

e2iσ0Ks

− 1
aC

− 1
aB

h(η+(k)) − ikKs

=
e2iσ0Ks

− 1
aC

− 1
aB

H(iη+(k))
, (37)

where σ0 = arg Γ (1 − iη+(k)) is the S-wave Coulomb
phase.

The above analysis is standard and can be found in
many quantum mechanics texts [20]. In the next section
we reanalyze the NN system using the ideas of effective
field theory.

2.3 Effective field theory analysis

Identical results may be obtained using a parallel effec-
tive field theory (EFT) analysis and in many ways the
derivation is clearer and more intuitive [26]2. The basic
idea here is that since we are only interested in interac-
tions at very low energy, a scattering length description
is quite adequate and it is unnecessary to identify a spe-
cific form for the potential —everything can be done in
terms of observables. From eq. (11) we see that, at least
for weak potentials, the scattering length has a natural
representation in terms of the momentum space potential
Ṽ (p = 0):

a0 =
mr

2π

∫
d3rV (r) =

mr

2π
Ṽ (p = 0) (38)

2 Two interesting didactic introductions to EFT methods can
be found in refs. [27] and [28].
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Fig. 1. The multiple scattering series.

and it is thus natural to perform our analysis using a sim-
ple contact interation. First, consider the situation that
we have two particles A, B interacting only via a local
strong interaction, so that the effective Lagrangian can be
written as

L =
B∑

i=A

Ψ †
i

(
i
∂

∂t
+

∇2

2mi

)
Ψi−C0Ψ

†
AΨAΨ †

BΨB + . . . . (39)

The T -matrix is then given in terms of the multiple scat-
tering series shown in fig. 1

Tfi(k) = − 2π

mr
f(k) = C0 + C2

0G0(k) + C3
0G2

0(k) + . . .

=
C0

1 − C0G0(k)
, (40)

where G0(k) is the amplitude for particles A, B to travel
from zero separation to zero separation —i.e., the propa-
gator DF (k; r′ = 0, r = 0)—

G0(k) = lim
r′,r→0

∫
d3s

(2π)3
eis·r′

e−is·r

k2

2mr
− s2

2mr
+ iε

=
∫

d3s

(2π)3
2mr

k2 − s2 + iε
(41)

(Equivalently Tfi(k) satisfies a Lippman-Schwinger equa-
tion

Tfi(k) = C0 + C0G0(k)Tfi(k), (42)

whose solution is given in eq. (40).)
The complication here is that the function G0(k) is

divergent and must be defined via some sort of regular-
ization scheme. There are a number of ways by which to
accomplish this, but perhaps the simplest is to use a cutoff
regularization with kmax = μ, which simply eliminates the
high-momentum components of the wave function com-
pletely. Then

G0(k) = −mr

2π

(
2μ

π
+ ik

)
(43)

(Other regularization schemes are similar. For example,
one could subtract at an unphysical momentum point, as
proposed by Gegelia [29]

G0(k)=
∫

d3s

(2π)3

(
2mr

k2−s2+iε
+

2mr

Λ2+s2

)
=−mr

2π
(Λ + ik),

(44)
which has been shown by Mehen and Stewart [30] to be
equivalent to the power divergence subtraction scheme

= + + +    ⋅ ⋅ ⋅

Fig. 2. The Coulomb-corrected bubble.

proposed by Kaplan, Savage and Wise [26].) In any case,
the would-be linear divergence is canceled by the intro-
duction of a counterterm, which accounts for the omitted
high-energy component of the theory and modifies C0 to
C0(μ). (That C0(μ) should be a function of the cutoff is
clear because by varying the cutoff energy we are varying
the amount of higher-energy physics which we are includ-
ing in our effective description.) The scattering amplitude
then becomes

f(k) = −mr

2π

(
1

1
C0(μ) − G0(k)

)
=

1
− 2π

mrC0(μ) −
2μ
π − ik

.

(45)
Comparing with eq. (2) we identify the scattering length
as

− 1
a0

= − 2π

mrC0(μ)
− 2μ

π
. (46)

Of course, since a0 is a physical observable, it must be
cutoff-independent —the μ-dependence of 1/C0(μ) is pre-
cisely canceled by the cutoff dependence in the Green’s
function.

2.4 Coulomb effects in EFT

More interesting (and challenging) is the case where we re-
store the Coulomb interaction between the particles. The
derivatives in eq. (39) then become covariant and the bub-
ble sum is evaluated with static photon exchanges between
each of the lines —each bubble is replaced by one involv-
ing a sum of zero, one, two, etc. Coulomb interactions, as
shown in fig. 2.

The net result in the case of same charge scattering
is the replacement of the free propagator by its Coulomb
analog

G0(k) → G+
C(k) = lim

r′,r→0

∫
d3s

(2π)3
ψ+

s (r′)ψ+
s

∗(r)
k2

2mr
− s2

2mr
+ iε

=
∫

d3s

(2π)3
2mrKs

k2 − s2 + iε
, (47)

where

ψ+
s (r) = C(η+(s))eiσ0eis·r

1F1(−iη+(s), 1, isr − is · r)
(48)

is the outgoing Coulomb wave function for repulsive
Coulomb scattering [31]. Also in the initial and final states
the influence of static photon exchanges must be included
to all orders, which produces the factor Ks exp(2iσ0).
Thus, the repulsive Coulomb scattering amplitude be-
comes

f+
C (k) = −mr

2π

C0Ks exp 2iσ0

1 − C0G
+
C(k)

. (49)

39Hadronic parity violation and effective field theory



The momentum integration in eq. (47) can be performed
as before using cutoff regularization, yielding [32]

G+
C(k) = −mr

2π

{
2μ

π
+

1
aB

[
H(iη+(k)) − ln

μaB

π
− ζ

]}
,

(50)
where ζ = ln 2π − γ. We have then

f+
C (k) =

Kse
2iσ0

− 2π
mrC0(μ) −

2μ
π − 1

aB
[H(iη+(k)) − ln μaB

π − ζ]

=
Kse

2iσ0

− 1
a0

− 1
aB

[
h(η+(k))−ln μaB

π −ζ
]
− ikKs

. (51)

Comparing with eq. (37) we identify the Coulomb scatter-
ing length as

− 1
aC

= − 1
a0

+
1

aB

(
ln

μaB

π
+ ζ

)
(52)

which matches nicely with eq. (35) if a reasonable cutoff
μ ∼ mπ ∼ 1/R is employed. The scattering amplitude
then has the simple form

f+
C (k) =

Kse
2iσ0

− 1
aC

− 1
aB

H(iη+(k))
(53)

in agreement with eq. (37).
The important lesson here is that at very low energy,

where we can completely characterize the amplitude in
terms of the scattering length, we see that only two pa-
rameters are required in order to completely describe NN
scattering —the spin-singlet and triplet scattering lengths.
The effective range parameters in these channels provide a
way to estimate the size of possible corrections to this scat-
tering length approximation. It is not necessary to make
any assumptions about the detailed shape of the potential
—we can write everything in terms of observables.

Our next goal then is to emulate this discussion in the
case of the parity-violating NN potential, a task which
we take up in the following section.

2.5 Parity-violating NN interaction: potential model
description

Until recently the standard method by which to treat the
parity-violating NN interaction was by use of potential
theory. The basic idea is that in the same way in which the
low-energy parity-conserving NN interaction can be de-
scribed quite satisfactorily in terms of a simple light meson
exchange picture, we can represent the parity-violating
NN interaction in a parallel fashion, wherein one of the
parity-conserving NNM vertices is replaced by its parity-
violating analog —cf. fig. 3. This is the method pioneered
by Blin-Stoyle and by Michel and then followed by DDH
in their seminal 1980 paper. Of course, this approach is
model dependent and generates a specific form for the po-
tential, but in the days before effective field theory this
was the standard way to proceed.

Fig. 3. Parity-violating NN potential generated by meson
exchange. Here the symbol “X” indicates a parity-violating
vertex.

More specifically, we represent the (parity-conserving)
strong coupling of the nucleon to the light vector and pseu-
doscalar mesons via the effective Lagrangian

Hst = igπNN N̄γ5τ · πN+gρN̄

(
γμ+i

χρ

2mN
σμνkν

)
τ · ρμN

+gωN̄

(
γμ + i

χω

2mN
σμνkν

)
ωμN, (54)

whose values are determined from strong-interaction stud-
ies. Typical —though not universally accepted [33]— val-
ues are g2

πNN/4π � 13.5 and g2
ρ/4π = 1

9g2
ω/4π � 0.67

and, with the use of vector dominance to connect with
the electromagnetic interaction, χρ = κp − κn = 3.7 and
χω = κp + κn = −0.12. For the parity-violating couplings
we can write a general phenomenological interaction of the
form [17]

Hwk = i
f1

π√
2
N̄(τ × π)zN

+N̄

(
h0

ρτ · ρμ + h1
ρρ

μ
z +

h2
ρ

2
√

6
(3τzρ

μ
z − τ · ρμ)

)
γμγ5N

+N̄
(
h0

ωωμ+h1
ωτzω

μ
)
γμγ5N−h

′1
ρ N̄(τ×ρμ)z

σμνkν

2mN
γ5N,

(55)

where here we have used the stricture from Barton’s the-
orem that any CP-conserving parity-violating coupling to
neutral pseudoscalar mesons such as π0, η0 must van-
ish [34]. We see then that there exist, in this model,
seven unknown weak couplings f1

π , h
(0)
ρ , h

(1)
ρ , h

(2)
ρ , h

(0)
ω ,

h
(1)
ω , h

(1)′

ρ . However, quark model calculations suggest that
h

(1)′

ρ is quite small [35], so this term is generally omitted,
leaving parity-violating observables described in terms of
just six phenomenological constants —fπ, h

(0)
ρ , h

(1)
ρ , h

(2)
ρ ,

h
(0)
ω , h

(1)
ω

3. In their paper DDH attempted to evaluate
these basic PV couplings using basic quark-model and
SU(6)-symmetry techniques, but they encountered sig-
nificant theoretical challenges and uncertainties. For this
reason their results were presented in terms of an allow-
able range for each, accompanied by a “best value” rep-
resenting their reasonable guess for each coupling. These

3 Another way to view the neglect of the h
′1
ρ coupling is that

it represents simply a short-range correction to the size of the
charged-pion exchange coupling.
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Table 1. Weak NNM couplings as calculated in refs. [17,36,37]. All numbers are quoted in units of the “sum rule” value
gπ = 3.8 · 10−8.

DDH [17] DDH [17] DZ [36] FCDH [37]

Coupling Reasonable range “Best” value

fπ 0 → 30 +12 +3 +7

h0
ρ 30 → −81 −30 −22 −10

h1
ρ −1 → 0 −0.5 +1 −1

h2
ρ −20 → −29 −25 −18 −18

h0
ω 15 → −27 −5 −10 −13

h1
ω −5 → −2 −3 −6 −6

ranges and “best values” are listed in table 1, together
with predictions generated by subsequent groups [36,37].
(This list is not comprehensive, merely representative, and
many other estimates have been provided. For example,
Kaiser and Meissner utilized a chiral soliton approach to
calculate these numbers [38], while Hwang and Wen em-
ployed the method of QCD sum rules to yield values for
the DDH couplings [39].)”

Before making contact with experimental results, how-
ever, it is necessary to convert the NNM couplings gen-
erated above into an effective parity-violating NN po-
tential. Inserting the strong and weak couplings, defined
above into the meson exchange diagrams shown in fig. 1
and transforming to coordinate space, one finds the DDH
parity-violating NN potential

V PV
DDH(r)= i

f1
πgπNN√

2

(
τ1×τ2

2

)
z

(σ1+σ2)·
[
p1−p2

2mN
, wπ(r)

]

−gρ

(
h0

ρτ1 · τ2 + h1
ρ

(
τ1 + τ2

2

)
z

+ h2
ρ

(3τz
1 τz

2 − τ1 · τ2)
2
√

6

)

×
(

(σ1 − σ2) ·
{

p1 − p2

2mN
, wρ(r)

}

+ i(1 + χV )σ1 × σ2 ·
[
p1 − p2

2mN
, wρ(r)

])

−gω

(
h0

ω + h1
ω

(
τ1 + τ2

2

)
z

)

×
(

(σ1 − σ2) ·
{

p1 − p2

2mN
, wω(r)

}

+ i(1 + χS)σ1×σ2 ·
[
p1−p2

2mN
, wω(r)

])
−

(
gωh1

ω−gρh
1
ρ

)
×

(
τ1 − τ2

2

)
z

(σ1 + σ2) ·
{

p1 − p2

2mN
, wρ(r)

}

−gρh
1′

ρ i

(
τ1 × τ2

2

)
z

(σ1 + σ2) ·
[
p1−p2

2mN
, wρ(r)

]
, (56)

where wi(r) = exp(−mir)/4πr is the usual Yukawa form,
r = |x1 − x2| is the separation between the two nucle-
ons, and pi = −i∇i. We observe from eq. (56) that the
unknown weak couplings f1

π , hI
V always occur multiplied

by their strong-interaction counterparts gπNN , gV , gV χV

so that the lack of precise knowledge of these strong cou-

plings alluded to above does not really damage the use of
the DDH potential for phenomenological purposes.

It is useful to note at this point that the DDH model
is the parity-violating analog of the conventional potential
approach to scattering and postulates a complete form of
the effective parity-violating NN potential —both magni-
tude and shape— so that in principle even high-energy ob-
servables are predicted. (In reality, of course, high-energy
forms should include meson exchanges from heavier sys-
tems such as the axial mesons.) It is also important to
point out that each of the vector-meson–mediated pieces
of the potential consists of both a convective (anticommu-
tator) and magnetic (commutator) component, with the
relative strength of these two couplings determined from
vector dominance in terms of the anomalous magnetic mo-
ments of the nucleons, as outlined above.

Essentially all experimental results involving hadronic
parity violation have been analyzed using V PV

DDH(r) for the
past quarter century. There have been a number of previ-
ous reviews of this field, beginning with the 1985 Annual
Reviews of Nuclear and Particle Science article by Adel-
berger and Haxton [40], continuing with the 1995 review
by Holstein and Haeberli appearing in the book Symme-
tries and Fundamental Interactions in Nuclei [41], and in
2006 the field was again surveyed by Page and Ramsey-
Musolf in Annual Reviews [42]. Because each of these pa-
pers comprehensively examines the experimental situation
in a fashion far deeper than possible in the present article,
we defer to them for details of the various experiments and
merely report here the conclusions, which are that, despite
half a century of experimental and theoretical work, at
present there appear to exist significant discrepancies be-
tween the values extracted for the various DDH couplings
from different experiments.

The problem can be seen in a number of ways, but
perhaps the most straightforward is to note that analysis
of experiments on the asymmetry in longitudinally po-
larized pα scattering [43] and the photon asymmetry in
the decay of the polarized first excited state of 19F [44]
are consistent with each other and (within errors) with
values about half of the best guess DDH numbers. The
analysis depends predominantly on the long-range pion
coupling f1

π and on the effective isoscalar vector meson
coupling h0

ρ + 0.7h0
ω and is often presented in terms of a

two-dimensional plot —cf. fig. 4. However, at least four
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Fig. 4. Experimental limits on weak couplings.

experiments seeking the circular polarization of photons
emitted in the decay of the 1.081MeV excited state of
18F have failed to see any signal [45], which seems to in-
dicate that the pion coupling f1

π is considerably smaller
than its DDH best guess value. One might be tempted
to attribute this inconsistency to nuclear uncertainties,
but the theoretical analysis of this mode is buttressed by
comparison with the two-body contributions to the analog
beta decay of 18Ne [46] as well as by a very recent cold
neutron experiment which measured the triton asymme-
try in the reaction 6Li(n, α)3H [47]. An additional issue
is that recent measurements of the anapole moment of
133Cs from atomic parity violation experiments [48] ap-
pear to be consistent with a size for f1

π in agreement with
the DDH “best value”. This situation is summarized in
fig. 4, which clearly indicates difficulties with the present
DDH analysis of the PV NN interaction. These discrep-
ancies possibly suggest a problem with the underlying
model-dependent theoretical framework itself, and it is for
this reason that a new approach, based on effective field
theory, has been developed. This technique is discussed
below.

2.6 Parity-violating NN interaction: EFT description

As described above, there presently exist inconsistencies
within the DDH analysis of ΔS = 0 hadronic parity-
violating experiments. The origin of this problem is un-
clear, but could certainly be associated with the fact that
the extraction of the basic weak couplings requires knowl-
edge of the spatial average of the associated weak parity-
violating potential weighted by imperfectly known nuclear
wave functions. For this reason and for basic understand-
ing of such processes, the analysis of such experiments
has been recently reformulated in terms of an effective
field-theoretic parity-violating NN potential, which puts
the analysis of these systems into a more rigorous model-
independent form. The basic idea here is that there are
a number of scales at play in the manifestations of the
hadronic weak interaction. There is the momentum trans-
fer Q which is generally much smaller than the chiral
scale Λχ � 4πFπ but can be smaller than or compara-
ble to the inverse nucleon size 1/R ∼ mπ. First, sup-
pose that Q � mπ � Λχ. In order to formulate the
EFT discussion in parallel to that used in the analysis

of the parity-conserving interaction, we begin by writing
down the lowest-order (one-derivative) short-range (SR)
form of the PV NN potential V PV

1,SR(r), as given by Zhu
et al. [18]4,

V PV
1,SR(r)=

2
Λ3

χ

{[
C1+C2

τz
1 +τz

2

2

]
(σ1−σ2)·{−i∇, fm(r)}

+
[
C̃1 + C̃2

τz
1 + τz

2

2

]
i(σ1 × σ2) · [−i∇, fm(r)]

+[C2 − C4]
τz
1 − τz

2

2
(σ1 + σ2) · {−i∇, fm(r)}

+
[
C3τ1 · τ2 + C4

τz
1 + τz

2

2
+ IabC5τ

a
1 τ b

2

]
×(σ1 − σ2) · {−i∇, fm(r)}

+
[
C̃3τ1 · τ2 + C̃4

τz
1 + τz

2

2
+ IabC̃5τ

a
1 τ b

2

]
×i(σ1 × σ2) · [−i∇, fm(r)]

+C̃6i(τ1×τ2)z(σ1+σ2)·[−i∇, fm(r)]
}

, (57)

which is the PV analog of the contact PC interaction
eq. (39), the derivative form in eq. (57) being required
by the stricture of parity violation. Here

Iab =

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠ , (58)

and fm(r) is a function which

i) is strongly peaked, with width ∼ 1/m about r = 0,
and

ii) approaches δ(3)(r) in the zero width —m → ∞—
limit.

A convenient (though not unique) form, for example, is
the Yukawa-like function

fm(r) =
m2

4πr
exp(−mr), (59)

where m is a mass chosen to reproduce the appropriate
short-range effects. (Actually, for the purpose of carrying
out actual calculations, one could just as easily use the
momentum space form of V PV

SR , thereby avoiding the use
of fm(r) altogether.)

The matching of the DDH model to the coefficients Ci,
C̃i in eq. (57) can be done by writing the Yukawa functions
wi(r) in terms of their Fourier transforms

wi(r) =
∫

d3Q

(2π)3
eiQ·r

m2
i + Q2

. (60)

4 Note that below, as suggested by Liu [49], we have used
the symbol C̃6 rather than C6 as used by Zhu et al. [18] since
it multiplies a commutator rather than an anticommutator.
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Working in the limit in which Q2 � mi2 with i = π, ρ, ω
we can make the replacement m2

i + Q2 −→ m2
i , whereby

the Yukawa function is replaced by a delta function,

wi(r) −→
1

m2
i

δ3(r).

In the Zhu et al. formalism this delta function is repre-
sented by fm(r). We observe then that the same set of
spin-space and isospin structures appear in both V PV

eff and
the vector-meson exchange terms in V PV

DDH , though the re-
lationship between the various coefficients in V PV

eff is more
general. In particular, the DDH model is tantamount to
assuming

C̃1

C1
=

C̃2

C2
= 1 + χω � 0.88, (61)

C̃3

C3
=

C̃4

C4
=

C̃5

C5
= 1 + χρ � 4.7, (62)

and taking m ∼ mρ, mω for C1, . . . , C5 but m ∼ mπ for
C̃6, assumptions which may not be physically realistic.
Nevertheless, if this ansatz is posited, the EFT and DDH
results coincide provided the identifications

CDDH
1 =−

Λ3
χ

2mNm2
ω

gωh0
ω

best guess−−−−−−→ 2.3 × 10−6,

CDDH
2 =−

Λ3
χ

2mNm2
ω

gωh1
ω

best guess−−−−−−→ 1.4 × 10−6,

CDDH
3 =−

Λ3
χ

2mNm2
ρ

gρh
0
ρ

best guess−−−−−−→ 4.6 × 10−6,

CDDH
4 =−

Λ3
χ

2mNm2
ρ

gρh
1
ρ

best guess−−−−−−→ 0.1 × 10−6,

CDDH
5 =

Λ3
χ

4
√

6mNm2
ρ

gρh
2
ρ

best guess−−−−−−→ −0.8 × 10−6,

C̃DDH
6 � C̃π

6 =
Λ3

χ

2
√

2mNm2
π

gπNNf1
π

best guess−−−−−−→ 180 × 10−6,

(63)

are made [18] and only the S-P mixing terms in the DDH
form are retained. (Note that for use below we have quoted
the “best value” numbers for these parameters.)

This form of the effective theory is generally termed
the “pionless” picture because, since Q � mπ, the pion
does not appear as an explicit degree of freedom.

Of course, the “pionless” approximation breaks down
at energies of order m2

π/MN ∼ 20MeV and must be re-
placed by a somewhat more complex theory which does
contain an explicit pion. In this “pionful” theory, which
should work until energies of order the pion mass, we
have Q2 � m2

π, but we still have Q2 � m2
ρ m2

ω so that

the matching of the DDH picture to the effective the-
ory given above is unchanged for the coefficients Ci, C̃i

i = 1, 2, . . . , 5. However, in the case of C̃6, which is associ-
ated with pion exchange, the replacement of this piece by
an effective short-range interaction is no longer justified.
Instead the last line of eq. (57) —i.e. the term involving
C̃6 must be removed and replaced by four additional types
of terms:

i) a long-range one-pion exchange potential, which is two
orders lower in chiral counting than the corresponding
short-range (vector-meson exchange) terms:

V−1,LR(r) =
1

Λ3
χ

C̃π
6 i(τ1 × τ2)z(σ1 + σ2) · [−i∇, fπ(r)],

(64)
where C̃π

6 is defined in eq. (63).
ii) a medium-range interaction which arises from the ef-

fects of two-pion exchange

V1,MR(r) =
C̃2π

2

Λ3
χ

{
(τ1 + τ2)zi(σ1 × σ2) · yL

2π(r)

− 3
4k

(τ1 × τ2)z(σ1 + σ2)

×
[(

1 − 1
3g2

A

)
yL

2π(r) − 1
3
yH

2π(r)
] }

, (65)

where

C̃2π
2 = −4

√
2πg3

Af1
π (66)

and the functions yH,R
2π (r) are defined via

yH,L
2π (r) = [−i∇,H, L(r)] (67)

with H, L(r) being the Fourier transform of the func-
tions

L(q) =

√
4m2

π + q2

|q| log

(√
4m2

π + q|2 + |q
2mπ

)
,

H(q) =
4m2

π

4m2
π + q2

L(q), (68)

respectively. (Note that these terms include only the
nonanalytic pieces of the full two-pion exchange ampli-
tude, since it is only these pieces which yield medium-
range effects. Any analytic component of the two-pion
exchange amplitude generates a short-distance contri-
bution, which is subsumed into the phenomenological
coefficients of the contact terms already written down.)

iii) a long-range component generated from one-loop cor-
rections to the leading vertices, which is two orders
higher in the counting than the leading pion-exchange

43Hadronic parity violation and effective field theory



potential:

V1,LR(p1,p
′
1,p2,p

′
2) =

gAh1
π

ΛχF 2
π

1
2
(τ1 × τ2)z

×
[
σ1 · p′

1 × p1σ2 · q
q2 + m2

π

+ (1 ↔ 2)
]

+i
gAf1

π√
2m2

NFπ

1
2
(τ1 × τ2)z

1
q2 + m2

π

×
{

1
4
[(p2

1 − p
′2
1 )σ1 · (p′

1 + p1) − (1 ↔ 2)]

−1
8
[(p2

1 + p
′2
1 )σ1 · q + (1 ↔ 2)]

+
1
4
[σ · p1

1q · p1 + σ · p1q · p′
1 + (1 ↔ 2)]

}
, (69)

where qi = p′
i − pi.

iv) a PV “Kroll-Ruderman”-like NNπγ coupling C̃π that
leads to a new independent current operator:

J(x1,x2)=
√

2gAC̃πm2
π

Λ2
χFπ

e−iq·x1τ+
1 τ−

2 σ1×qσ2 ·r̂Hπ(r)

+(1 ↔ 2), (70)

where

Hπ(r) =
e−mπr

mπr

(
1 +

1
mπr

)
. (71)

In this pionful theory the parameter m which character-
izes nonpionic pieces of the potential (which is of order
mπ in the pionless theory) should presumably assume a
value of order m ∼ mρ ∼ mω, since the pionic degrees of
freedom are included explicitly in the potentials i), ii), iii),
iv) described above.

It is interesting to note here that the “best guess” pa-
rameter C̃π

6 is at least an order of magnitude larger than
any of its short-distance (vector-meson–dominated) coun-
terparts or than the medium-range “best guess” values,
as might be suspected from its lower order in the chiral
counting scheme.

3 Danilov parameters

The discussion in the previous section might make it ap-
pear that the low-energy analysis of the PV NN interac-
tion must involve the determination of ten parameters5
—a daunting task indeed. However, this assumption is
misleading. In fact, it is easy to see that at the very lowest
energies there can be only five phenomenological constants
involved. This is because at threshold energies, we can ne-
glect all but S-P -wave mixing, in which case there exist
only five independent phenomenological amplitudes:

i) dt(k) representing 3S1-1P1 mixing with ΔI = 0;

5 There appear to exist eleven terms —Ci, C̃i, i = 1, . . . , 5
plus C̃6. However, C̃2 and C̃4 appear only in the combination
C̃2 + C̃4.

ii) d0,1,2
s (k) representing 1S0-3P0 mixing with ΔI = 0, 1, 2

respectively;
iii) ct(k) representing 3S1-3P1 mixing with ΔI = 1.

These five independent transition amplitudes are the PV
analogs of the two (singlet and triplet) S-wave amplitudes
ms(k), mt(k) involved in the PC case.

Following Danilov [19], the low-energy parity-violating
scattering matrix in the presence of parity violation can
be written then as6

MPV (k′,k) = ct(k)(σ1 + σ2) · (k′ + k)
1
2
(τ1 − τ2)z

+(σ1 − σ2) · (k′ + k)

×
(

P0d
0
s(k)+

1
2
(τ1+τ2)zd

1
s(k)+

3τ1zτ2z−τ1 · τ2

2
√

6
d2

s(k)
)

+dt(k)(σ1 − σ2) · (k′ + k)P1. (72)

Note that under spatial inversion —σ → σ, k,k′ →
−k,−k′— each of these pieces is P -odd, while under time
reversal —σ → −σ, k,k′ → −k′,−k— each term is T -
even. At very low energies the coefficients in the T -matrix
become real and we can define [22]

lim
k→0

ct(k), ds(k), dt(k) ≡ ρtat, λ
i
sas, λtat. (73)

The motivation for inclusion of the S-wave scattering
lengths at, as will be described presently. The five real
numbers (Danilov parameters) ρt, λi

s, λt then completely
characterize the lowest-energy parity-violating interaction
and can in principle be determined experimentally, as we
shall discuss below7. Alternatively, instead of a total iso-
topic spin representation, we can write things in terms of
the equivalent notation

λpp
s = λ0

s + λ1
s +

1√
6
λ2

s,

λnp
s = λ0

s −
2√
6
λ2

s,

λnn
s = λ0

s − λ1
s +

1√
6
λ2

s. (74)

In Born approximation we can represent this interac-
tion in terms of a simple effective NN potential. Integrat-
ing by parts, we have∫

d3r′
eik|r−r′|

|r − r′| {−i∇, δ3(r′)}eik·r′
= (−i∇ + k)

eikr

r
(75)

which represents the parity-violating contribution to the
scattering wave function in terms of an S-wave admix-
ture to the scattering P -wave state —∼ σ · keikr/r—

6 An alternative low-energy form based on the Bethe-
Goldstone equation has been given by Desplanques and Mis-
simer [50].

7 Note that there exists no singlet analog to the spin-triplet
constant ct since the combination σ1 + σ2 is proportional to
the total spin operator and vanishes when operating on a spin-
singlet state.
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plus a P -wave admixture to the scattering S-state
—∼ −iσ · ∇eikr/r. We observe then that the parity-
violating component of the scattering wave function can
be described via the effective potential

U(r) =
4π

M

[
λtat(σ1 − σ2) · {−i∇, δ3(r)}P1

+ρtat(σ1 + σ2) · {−i∇, δ3(r)}1
2
(τ1 − τ2)z

+(σ1 − σ2) · {−i∇, δ3(r)}as

×
(

P0λ
0
s+

1
2
(τ1+τ2)zλ

1
s+

3τ1zτ2z−τ1 ·τ2

2
√

6
λ2

s

) ]
,

(76)

which is the PV analog of eq. (17).
Before application of this effective potential we must

worry about the stricture of unitarity, which we have seen
can be enforced in effective field theory language by using
a Lippman-Schwinger solution. However, things become
more interesting in the case of the parity-violating tran-
sitions, for which the requirement of unitarity reads, e.g.,
for the case of scattering in the 3S1-1P1 channel

Im dt(k) = k[m∗
t (k)dt(k) + d∗t (k)mp(k)], (77)

where mp(k) is the 1P1 analog of mt(k). Equation (77) is
satisfied by the solution

dt(k) = |dt(k)|ei(δ3S1
(k)+δ1P1

(k)) (78)

i.e., the phase of the parity-violating transition amplitude
should be the sum of the strong-interaction phases in the
incoming and outgoing channels [51]. At very low energies
we can neglect the P -wave phase and can write, following
Danilov, the (approximately) unitarized forms

ct(k) � ρtmt(k), di
s(k) � λi

sms(k), dt(k) � λtmt(k).
(79)

Since at threshold mt(k),ms(k) → at, as, the threshold
values of the parity-violating amplitudes become

ct(0) = ρtat, di
s(0) � λi

sas, dt(0) � λtat (80)

and it is for this reason that the empirical S-P mixing
parameters are defined by multiplying Danilov parameters
by the relevant S-wave scattering lengths.

This result is also easily seen in the language of EFT,
wherein the full transition matrix must include the weak
amplitude to lowest order accompanied by rescattering in
both incoming and outgoing channels to all orders in the
strong interaction. If we represent the lowest-order weak
contact interaction as

T0tp(k) = D0tp(μ)(σ1 − σ2) · (k + k′), (81)

then the full amplitude is given by

Ttp(k) =
D0tp(μ)

(1 − C0t(μ)G0(k))(1 − C0p(μ)G1(k))
×(σ1 − σ2) · (k + k′), (82)

where we have introduced a lowest-order contact term
C0p which describes the 1P1-wave nn interaction. Since
the phase of the combination 1 − C0(μ)G0(k) is simply
the negative of the strong-interaction phase the unitarity
stricture is clear, and we can define the physical transition
amplitude Atp via

Atp ≡ (1 + ikat)(1 + ik3ap)

× D0tp(μ)
(1 − C0t(μ)G0(k))(1 − C0p(μ)G1(k))

. (83)

Making the identification λt = −mN

4π Atp and noting that

1
1 + ikat

= cos δt(k)eiδt(k)

the Danilov parameter λt is seen to be identical to the
R-matrix element defined by Miller and Driscoll [51].

The “mystery” of how ten contact terms —Ci, C̃i—
can be related to only five Danilov parameters can be
solved by noting that the matrix elements of the commu-
tator and anticommutator are identical in the zero-range
(contact interaction) approximation —ZRA— in which
m → ∞8

lim
m→∞

〈P |[−i∇, fm(r)]|S〉 = lim
m→∞

〈P |{−i∇, fm(r)}|S〉.
(84)

In this limit the contribution of the various operators char-
acterized by Ci C̃i to observables can only occur in five
different combinations, which may be found by use of the
identity

σ1 − σ2 = − i

2
(σ1 × σ2)(1 + σ1 · σ2). (85)

Thus for the 1S0-3P0 parameters d0,1,2
s (k), we have σ1 −

σ2 = iσ1 × σ2 and we find that Ci and C̃i appear in the
combination Ci + C̃i —i.e., in the ZRA, the dependence
in the different channels upon the EFT parameters Ci, C̃i

must be

i) 1S0 → 3P0 pp: C1 + C2 + C3 + C4 − 2C5 + (Ci → C̃i),
ii) 1S0 → 3P0 nn: C1 −C2 + C3 −C4 − 2C5 + (Ci → C̃i),
iii) 1S0 → 3P0 pn: C1 + C3 + 4C5 + (Ci → C̃i).

On the other hand, in the case of the 3S1 parameter dt we
have σ1 − σ2 = −iσ1 × σ2 and so that Ci and C̃i appear
in the combination Ci − C̃i —i.e., in the ZRA,

iv) 3S1 → 3P1 pn: C1 − 3C3 − (Ci → C̃i).

Finally, in the case of the 3S1 parameter ct(k), we exploit
the isotopic spin analog of eq. (85):

τ1 − τ2 = − i

2
(τ1 × τ2)(1 + τ1 · τ2), (86)

so that, in the ZRA, the dependence must be

v) 3S1 → 1P1 pn: C̃6 + 1
2 (C2 − C4).

8 This is clear since a gradient operator acting on an S-state
wave function yields a term linear in r, which vanishes at the
origin.
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An alternate way to understand the feature that there
can be only five independent low-energy observables has
recently been presented by Girlanda [52]. Using the feature
that in the nonrelativisitic limit the twelve forms given in
the definition of the EFT potential eq. (57) can be replaced
by the twelve relativistic operators

O1 = ψ̄γμψψ̄γμγ5ψ,

Õ1 = ψ̄γμγ5ψ∂ν(ψ̄σμνψ),
O2 = ψ̄γμψψ̄τ3γμγ5ψ,

Õ2 = ψ̄γμγ5ψ∂ν(ψ̄τ3σμνψ),
O3 = ψ̄τaγμψψ̄τaγμγ5ψ,

Õ3 = ψ̄τaγμγ5ψ∂ν(ψ̄τaσμνψ),
O4 = ψ̄τ3γ

μψψ̄γμγ5ψ,

Õ4 = ψ̄τ3γ
μγ5ψ∂ν(ψ̄σμνψ),

O5 = Iabψ̄τaγμψψ̄τbγμγ5ψ,

Õ5 = Iabψ̄τaγμγ5ψ∂ν(ψ̄τbσμνψ),
O6 = iεab3ψ̄τaγμψψ̄τbγμγ5ψ,

Õ6 = iεab3ψ̄τaγμγ5ψ∂ν(ψ̄τbσμνψ), (87)

then, with the use of Fierz transformations and the free
particle equation of motion, one finds the six conditions

O3 = O1,

O2 −O4 = 2O6,

Õ3 + 3Õ1 = 2mN (O1 + O3),

Õ2 + Õ4 = mN (O2 + O4),

Õ2 − Õ4 = −2mNO6 − Õ6,

Õ5 = O5. (88)

Finally, using the feature that the operators O6 and Õ6

have the same form in the lowest-order nonrelativisitic
expansion, we find an effective (pionless) potential

VEFT =
2μ2

Λ3
χ

[ (
C1+ (C2+C4)

(
τ1+τ2

2

)
z

+C5Iabτ1aτ2b

)
×(σ1 − σ2) · {p1 − p2, fμ(r)}
+iC̃1(σ1 × σ2) · [p1 − p2, fμ(r)]

+iC6εab3τ1aτ2b[p1 − p2, fμ(r)]
]

(89)

expressed in terms of just five independent constants, as
required. Of course, the use of the free particle equation
of motion means that binding effects are omitted in this
reduction. Binding effects arise in terms higher order in
the chiral expansion, so this omission is consistent with
the use of the LO form of the effective potential, as done in
our analysis. The Girlanda and Zhu et al. forms are then
completely equivalent and one can choose to use either
form as the low-energy parity-violating potential. In this
article, we shall continue to use the conventional analysis
of Zhu et al., since it can be connected straightforwardly
to the DDH picture, within which nearly all experimental
results have been presented.

The effect of higher-order terms, which are omitted in
our lowest-order expansion, can be gauged by the use of
finite-range and realistic nucleon wave functions, whereby
the simple dependences of Danilov parameters on Zhu
coefficients expounded above are modified. For example,
Desplanques and Benayoun quote the approximate re-
sults [53]

λpp
s = −Kp

[
B6(C1 + C2 + C3 + C4 − 2C5 + (Ci → C̃i))

+ B7(C1 + C2 + C3 + C4 − 2C5 − (Ci → C̃i))
]
,

λnn
s = −Kp

[
B6(C1 − C2 + C3 − C4 − 2C5 + (Ci → C̃i))

+ B7(C1 − C2 + C3 − C4 − 2C5 − (Ci → C̃i))
]
,

λnp
s = −Kp

[
B6(C1 + C3 + 4C5 + (Ci → C̃i))

+ B7(C1 + C3 + 4C5 − (Ci → C̃i))
]
,

λt = −Kp

[
B4(C1 − 3C3 + (Ci → C̃i))

+ B5(C1 − 3C3 − (Ci → C̃i))
]
,

ρt = −Kp

[
B2

(
1
2
(C2 − C4) + C̃6

)

+ B3

(
1
2
(C2 − C4) − C̃6

)]
, (90)

where Kp = 2Λ9
χ/m4

Nm6
ρ and the Reid soft core potential

values for the Bi are found to be

Bi = [−0.0043, 0.0005,−0.0009,−0.0022,−0.0067, 0.0003]
for i = 2, 3, . . . , 7.

We see then that the size of the finite-range corrections to
the lowest-order results are given by

|B3/B2| = 0.12, |B7/B6| = 0.04

and
|B4/B5| = 0.41.

The first two ratios are rather small and suggest that zero
range is a reasonable first approximation. In the case of
the ratio |B4/B5| there are sizable corrections to the zero-
range result as a consequence of important tensor force
contributions.

Alternatively, for example, in a “hybrid” pionless the-
ory which uses the pionless potential but with AV18 wave
functions, choosing m ∼ mπ Liu has evaluated these cobi-
nations and finds [49]

Bi = [0.0014, 0.0008, 0.0005, 0.0008, 0.0023, 0.0003]
for i = 2, 3, . . . , 7,

which are somewhat different from the estimates of Des-
planques and Beneyoun and indicate some of the uncer-
tainties associated with such analyses.

In any case we see that NLO and higher-order cor-
rections can be of order 25% or so, which is suggestive
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of omitted terms in the LO chiral expansion of order nu-
clear binding energy or Fermi momentum —∼ 250MeV—
over the usual chiral expansion parameter Λχ ∼ 4πFπ ∼
1GeV. An important goal of future analyses should be to
include such effects by proceeding beyond the simple LO
analysis given herein.

We now address the form in which to present pre-
dictions of the theory. As emphasized above, in the past
most experimental numbers are interpreted in terms of the
DDH parameters f1

π , hi
ρ,ω. However, in an effective field-

theoretic framework one wants to express predictions in
terms of the parameters of the theory —in our case Ci C̃i.
However, because these ten constants must appear only
in the combinations given above in analysis of threshold
processes, it is more convenient to represent all predic-
tions in terms of the five Danilov parameters, which have a
rather direct connection to observables. Before presenting
these predictions, however, we first show how these five pa-
rameters can be (approximately) analytically connected to
the underlying low-energy constants. As an example, con-
sider the parameter λt. Since the associated interaction is
short-ranged, we can use this feature in order to simplify
the analysis. For example, we can determine the shift in
the deuteron wave function associated with parity viola-
tion by demanding orthogonality with the 3S1 scattering
state, which yields, using the simple asymptotic form of
the bound-state wave function [54,55]

ψd(r) = [1 + ρt(σp + σn) · −i∇ + λt(σp − σn) · −i∇]

×
√

γ

2π

1
r
e−γr , (91)

where E = −γ2/M = −2.23MeV is the deuteron binding
energy. Now the shift generated by V PV (r) is found to
be [54,55]

δψd(r) �
∫

d3r′G(r, r′)V PV (r′)ψd(r′)

= −mN

4π

∫
d3r′

e−γ|r−r′|

|r − r′| V PV (r′)ψd(r′)

� mN

4π
∇

(
e−γr

r

)
·
∫

d3r′r′V PV (r′)ψd(r′), (92)

where the last step is permitted by the short range of
V PV (r′). Comparing eqs. (92) and (91) yields then the
identification√

γ

2π
λtχt≡ i

mN

16π
ξ†0

∫
d3r′(σ1−σ2)·r′V PV (r′)ψd(r′)χtξ0,

(93)
where we have included the normalized isoscalar wave
function ξ0 since the potential involves τ1, τ2. When oper-
ating on such an isosinglet np state the PV potential can
be written as

V PV (r′) =
2

Λ3
χ

[(C1 − 3C3)(σ1 − σ2)

· (−i∇fm(r) + 2fm(r) · −i∇)

+(C̃1 − 3C̃3)(σ1 × σ2) · ∇fm(r)], (94)

whereby eq. (93) becomes√
γ

2π
λtχt �

2mN

16πΛ3
χ

4π

3
(σ1 − σ2)2χt

∫ ∞

0

drr3

×
[
−2(3C3 − C1)fm(r)

dψd(r)
dr

+ (3C̃3 − 3C3 − C̃1 + C1)
dfm(r)

dr
ψd(r)

]
=√

γ

2π
· 4χt

1
12

4mNm3

4πΛ3
χ

Kc

(γ + m)2
, (95)

where

Kc = 2m(6C3 − 3C̃3 − 2C1 + C̃1)

+ γ(15C3 − 3C̃3 − 5C1 + C̃1), (96)

or

λt � −mNm3

3πΛ3
χ

Kc

(γ + m)2
. (97)

Performing the indicated integration and using m ∼ mρ

we find the result

λt � −0.020(−2C1 + C̃1) + 0.060(−2C3 + C̃3). (98)

However, this is clearly an overestimate because it was
obtained i) using the asymptotic form of the wave func-
tion and ii) omits short-range correlation effects. In order
to deal approximately with the short-distance properties
of the deuteron wave function, we modify the exponen-
tial form to become constant inside the deuteron radius
R [54,55] √

γ

2π

1
r
e−γr → N

{
1
Re−γR, r ≤ R,

1
r e−γr, r > R,

(99)

where

N =
√

γ

2π

exp γR√
1 + 2

3γR

is the modified normalization factor and we use R =
1.6 fm. As to the short-range (Jastrow) correlation, we
multiply the wave function by the simple phenomenologi-
cal form [56]

φ(r) = 1 − ce−dr2
, with c = 0.6, d = 3 fm−2. (100)

With these modifications we determine the much more
reasonable values for the Danilov parameter λt

λt = [0.003(−2C3 + C̃3)− 0.002(−2C1 + C̃1)]m−1
N . (101)

In this way approximate analytic forms can also be found
for the remaining Danilov parameters [57].

However, it is obviously preferable to use estimates
obtained using the best available wave functions. In this
way Liu determines that [49]

λt =[0.0045(−2.23C3+C̃3) − 0.0015(−2.23C1+C̃1)]m−1
N .

(102)
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The similarity with the approximate analytic expression is
obvious —the discrepancy with the coefficients involving
C3, C̃3 is again due to effects from the tensor interaction—
and the other coefficients are found in this way to be

λpp
s = 0.0043[(C1 + C2 + C3 + C4 − 2C5)

+1.27(Ci → C̃i)]m−1
N ,

λnn
s = 0.0046[(C1 − C2 + C3 − C4 − 2C5)

+1.22(Ci → C̃i)]m−1
N ,

λnp
s = 0.0047[(C1 + C3 + 4C5) + 1.24(Ci → C̃i)]m−1

N

ρt = 0.0031[C̃6 + 0.60(C2 − C4)]m−1
N . (103)

A connection between the underlying EFT Lagrangian
and the empirical Danilov parameters has thus been es-
tablished.

In the next section we shall describe how the results of
various low-energy experiments can be expressed in terms
of the Danilov parameters. In the design of such exper-
iments, it is obviously useful to have at hand numerical
values for the size of these quantities and the use of the
DDH estimates for Ci, C̃i provides a reasonable way to
provide such numbers. Of course, the completely consis-
tent and correct way to accomplish this is to use a pionful
theory, with one- and two-pion exchange pieces described
in terms of f1

π and the remaining terms written in terms
of short-distance quantities Ci, C̃i. However, for the rea-
sonable and simple estimates needed below we shall in-
stead employ approximate values for the Danilov parame-
ters which include the effects of heavy meson exchange for
λt, λ0,1,2

s and pion exchange for the parameter ρt, yielding

DDHλpp
s = 2.3 × 10−7m−1

N ,
DDHλnn

s = 2.1 × 10−7m−1
N ,

DDHλnp
s = 0.8 × 10−7m−1

N ,
DDHλt = 0.6 × 10−7m−1

N ,
DDHρt = 5.6 × 10−7m−1

N . (104)

These numbers, of course, should not be treated as being
in any sense precise. However, they are useful in estimating
the possible size of experimental effects, as will be seen
below.

4 Experimental program

Having developed a connection of the five Danilov param-
eters with the underlying effective Lagrangian, our next
task is to develop a program whereby experimental val-
ues of these quantities can be reliably determined. Since
we desire to generate definitive values for these constants,
we certainly do not wish to introduce nuclear-physics un-
certainties into the analysis. Thus we shall require only
experiments involving systems with A ≤ 4, for which nu-
clear wave functions are well determined. We recognize
that, by imposing this requirement we eliminate the op-
portunity to enhance experimental signals via the careful

choice of near-degenerate opposite parity levels that has
permitted experiments in 18F [45], 19F [44], 21Ne [58] with
precision of parts in 100000 or even in 10000 to provide
useful input into the parity-violating interaction puzzle.
As a consequence, the experimental signals we need to
analyze will be a part in 10000000 or even smaller! Never-
theless, we consider this a price worth paying in order to
have confidence in the interpretation of the experimental
signals.

Since there is a need to determine five parameters, we
clearly require a minimum of five independent measure-
ments. To the extent that all experiments are performed
at threshold, the analysis can only involve five indepen-
dent combinations of EFT parameters. We elect to present
our predictions in terms of the five Danilov coefficients,
because of their phenomenological signifcance, but this
choice is somewhat arbitrary and there is no implication
that this representation is superior to other possibilities.
(Of course, if we stray above threshold, additional terms
can come in.) As discussed above, we do not possess at
this time a modern first principles theoretical analysis of
each of the experimental possibilities. Hence, in the dis-
cussion below we present approximate existing estimates
within the simple pionless theory, with an effective con-
tact potential in terms of the Danilov coefficients. A fully
consistent pionless calculation would then evaluate corre-
sponding diagrams generated within this framework. How-
ever, this does not exist at this time, so that in order to
match onto experiment we shall have to use results from
a variety of different calculational schemes. Providing a
rigorous theoretical analysis of each experiment within the
same rigorous calculational framework should be a prior-
ity for future work. With these caveats, we shall consider
five such possible reactions in turn:

i) pp scattering asymmetry: the first and simplest such
reaction has already been performed and involves the
asymmetry in the scattering cross-section for longitu-
dinally polarized protons on an unpolarized proton tar-
get. The experimental signal is the difference in the
right- and left-handed total scattering cross-sections
divided by their sum

Ah =
σ+ − σ−
σ+ + σ−

.

Results are available from a Bonn experiment at
lab energy 13.6GeV and from a PSI experiment at
45MeV9:

Ah(13.6MeV) = −(0.93 ± 0.20 ± 0.05) × 10−7 [60],
Ah(45MeV) = −(1.57 ± 0.23) × 10−7 [61]. (106)

9 Note that there also exists a Los Alamos measurement at
15 MeV

Ah(15 MeV) = −(1.7 ± 0.8) × 10−7 [59] (105)

which is quite consistent with the asymmetry measured at
13.6 MeV. However, because of its superior precision, we shall
use only the Bonn result.
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The feature that the PSI number is about 60% greater
than its Bonn analog is consistent with the feature that
the asymmetry should depend roughly linearly on the
proton momentum which depends on energy as

kPSI

kBonn
∼

√
45

13.6
= 1.8. (107)

Thus these two experiments should not be considered
as yielding independent numbers.

The connection with the Danilov parameters can
be found by calculating the helicity-correlated cross-
sections which, since the initial state must be in a spin-
singlet, must have the form [57]

σ± =
∫

dΩ
1
2

TrM(k′,k)
1
2
(1 + σ2 · k̂)

·1
4
(1 − σ1 · σ2)M†(k′,k) =

|ms(k)|2 ± 4k Re m∗
s(k)dnn

s (k) + O(d2
s). (108)

Defining the asymmetry via the sum and difference
of such helicity cross sections and neglecting the tiny
P -wave scattering, we have then

Ah(Ethreshold) =
σ+ − σ−
σ+ + σ−

= −8k Re m∗
s(k)dnn

s (k)
2|ms(k)|2 = −4kλpp

s .

(109)

Thus the threshold helicity-correlated pp scattering
asymmetry provides a direct measure of the parity-
violating parameter λpp

s .
Of course, the actual experiments are performed

not at threshold but rather at the finite laboratory en-
ergies quoted above. Converting to momentum we find
that the corresponding numbers are 160MeV/c and
290MeV/c respectively, so that the simple threshold
relation above must be modified and the relation of
the asymmetry to the Danilov parameter λpp

s becomes
somewhat more complex [49]:

Ah(13.6MeV) = −0.449mNλpp
s ,

(110)
Ah(45MeV) = −0.795mNλpp

s .

We see that the dominant dependence is on the
Danilov parameter λpp

s , with corrections relatively
small at 45MeV and tiny at 13.6MeV. However, the
momentum involved in the 45MeV experiment cer-
tainly gives one pause and a recent careful EFT anal-
ysis by Phillips et al. suggests that the agreement
between the simple momentum-scaled experimental
numbers may be fortuitous, as NLO corrections are
expected to be significant [62].

It should be noted for completeness that there
exist additional measurements of the pp asymmetry
at 221.3MeV and at 800MeV performed at TRIUMF
and LANL, respectively. In the case of the former, the

energy was carefully selected in order that S-P parity
mixing effects vanish, leaving sensitivity to P -D mix-
ing and allowing separation of the DDH parameters
involving isoscalar rho exchange and omega exchange.
A precise number [63]

Ah(221.3MeV) = (0.83 ± 0.29 ± 0.17) × 10−7 (111)

was obtained. However, P -D mixing is beyond the
scope of our parity-violating EFT and would have to
be accounted for by inclusion of a an entirely new set
of phenomenological parameters. Nevertheless Carlson
et al. have reported being able to fit both the low- and
higher-energy data within the DDH scheme [64]. The
800MeV result [65]

Ah(800MeV) = (2.4 ± 1.1) × 10−7 (112)

is positive, as expected from the feature that the S-P
and P -D interference terms both contribute positively
above 220MeV, but again a detailed analysis requires
input which is well beyond the scope of our low-energy
EFT methods.

Considering only the low-energy results then, we
find from the above measurements the result

λpp
s � (2.0 ± 0.3) × 10−7m−1

N (113)

which is the only really solid experimental measure-
ment of a Danilov parameter which exists at present.
Note that this limit is quite consistent with the DDH
“best value” estimate

DDHλpp
s = 2.3 × 10−7m−1

N . (114)

ii) pα scattering asymmetry: a second experiment which
is relevant to this program is a 45MeV proton helic-
ity asymmetry experiment on a 4He target, which was
performed at PSI, yielding [43]

Ah(45MeV) = −(3.3 ± 0.9) × 10−7. (115)

The problem here is that we do not yet have a pre-
cise theoretical prediction in terms of Danilov param-
eters. There does exist, however, a Desplanques and
Missimer calculation [50]

Ah(45MeV) = −
[
0.48

(
λpp

s +
1
2
λpn

s

)

+1.07
(

ρt +
1
2
λt

)]
mN (116)

which provides a constraint

0.48λpn
s + 2.14

(
ρt +

1
2
λt

)
= (4.6 ± 2.0) × 10−7m−1

N

(117)
quite consistent with the DDH “best value” estimate

0.48DDHλpn
s +2.14

(
DDHρt+

1
2

DDHλt

)
=4.8×10−7m−1

N .

(118)
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However, what is needed here is a definitive theo-
retical analysis. (Of course, the rather deep 28MeV
binding energy of 4He might give one pause as to
whether a calculation in terms of simply the thresh-
old (Danilov) parameters is adequate. On the other
hand, a recent paper is successful in explaining a cor-
relation between the triton and alpha binding energies
in various pionless theories [66], so this issue invites
further study.)

An additional source of information is provided by ex-
periments involving the radiative capture of neutrons on
a proton target

n + p → d + γ

for which a solid theoretical analysis is available. There
exist two independent parity-violating observables in this
reaction:

iii) Asymmetry in np capture: one possible measurement
involves the photon asymmetry in the case of polarized
neutron capture, for which one finds [49]

Aγ = −0.093mNρt. (119)

On the experimental side, there exist already two re-
sults, one from an old Grenoble measurement and one
from a new LANSCE experiment:

Aγ = (0.6 ± 2.1) × 10−7 [67],

Aγ = (−1.1 ± 2.0 ± 0.2) × 10−7 [68].
(120)

While these two numbers are in good agreement and
are of impressive precision, considerable improvement
is still called for. That is because the dominant piece
of the Danilov parameter ρt comes from one-pion ex-
change and therefore depends upon the PV pion emis-
sion amplitude f1

π . Using the DDH “best value” for this
number, the corresponding experimental prediction for
Aγ is

DDHAth
γ = −5 × 10−8 (121)

which is a full order of magnitude smaller than the lev-
els probed by the existing experiments! For this reason,
the LANSCE experiment has been disassembled and
moved to the new fundamental neutron physics beam-
line at SNS, where the associated increased intensity
should allow a measurement at the level of a few parts
per billion. In fact this experiment is the commission-
ing experiment for this beamline and should commence
later this year.

The theoretical prediction is in good agree-
ment with previous calculations —cf. [69]— and de-
pends predominantly on the parity-violating pion cou-
pling f1

π . Thus measurement of the np → dγ asymme-
try with the hoped for precision should finally resolve
the burning question of whether this long-range cou-
pling is of the order or considerably smaller than its
DDH prediction.

iv) Circular polarization in np capture: an independent
probe of parity violation in radiative neutron capture

is provided by the possibility of measuring the circular
polarization of the outgoing photon resulting from the
capture of unpolarized neutrons, for which the predic-
tion in terms of Danilov parameters is [49]

Pγ = −0.161mNλnp
s + 0.670mNλt. (122)

This is an old idea and the first attempt to measure
this parameter was done in 1972 by Lobashov et al.
who reported a value

Pγ = −(1.3 ± 0.45) × 10−6 [70]. (123)

It was later realized that this experiment was contam-
inated by polarized bremsstrahlung photons from fis-
sion products in the reactor and the number was sub-
sequently revised downward to

Pγ = (1.8 ± 1.8) × 10−7 [71]. (124)

Again, however, despite its impressive precision, a con-
siderably improved measurement is needed, since use
of eq. (122) with DDH “best values” for the Danilov
parameters yields a prediction

DDHP th
γ = 2.7 × 10−8 (125)

considerably below the current experimental precision.
Improvement of the existing limit will be challenging,
however, because of the relatively low efficiencies of
circular polarization detectors, and it may be advan-
tageous to use the time-reversed reaction

γ + d → n + p

for which the asymmetry using circularly polarized
photons is equal, using detailed balance, to the circular
polarization in the radiative capture reaction. Never-
theless, either experiment will be extraordinarily diffi-
cult since the theoretical expectation is so small.

Note that the predicted value depends only on
the short-distance–dominated Danilov parameters λnp

s

and λt and is independent of the PV pion coupling.
Nevertheless the predicted DDH value is in reasonable
agreement with previous estimates —cf. [69].

v) As a fifth experiment in this program, one can utilize
neutron spin rotation when passing through a parahy-
drogen target, for which the rotation rate is predicted
to be [49]

dφnp

dz
= [2.500λnp

s − 0.571λt + 1.412ρt]mN rad/m.

(126)
The use of the DDH “best value” numbers then pre-
dicts the small number

DDH

(
dφnp

dz

)th

= 9.6 × 10−7 rad/m. (127)

but a planned experiment at SNS anticipates a preci-
sion at the level of 2.7 × 10−7 rad/m and will provide
an important data point. However, such experiments
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are very challenging, since one must shield the system
from external magnetic fields, for which Faraday ro-
tation in the Earth’s magnetic field yields a rotation
considerably larger than those being sought due to the
weak interactions.

The theoretical prediction here is of the same
rough size and sign as that given in [72] and [49] but
differs in sign from an earlier prediction —[73].

We see then that in principle there do indeed exist
a complete set of independent low-energy measurements
which could be utilized in order to determine the five
Danilov parameters. However, since each of the experi-
ments is so challenging it is certainly advisable to overde-
termine these quantities by performing additional parity-
violating experiments in A < 4 systems. There are a num-
ber of possibilities here.

a) Neutron spin rotation on 4He: this is an experiment
which is already underway at NIST. As in the case of
pα scattering the use of 4He and its ∼ 28MeV binding
energy means that the use of EFT methods may be
a bit of a stretch. Also, a definitive calculation of the
rotation angle has not been performed. Nevertheless
an estimate

dφnα

dz
=[0.60λnp

s +1.34λt−2.68ρt+1.2λnn
s ] mN rad/m

(128)
is available [50]. The use of the DDH estimates for the
Danilov parameters yields then

DDH

(
dφnα

dz

)th

= −11.7 × 10−7 rad/m,

which is larger than and of opposite sign compared
to the corresponding np number quoted above. There
exists an experimental number for this quantity from
a University of Washington Thesis [74](

dφnα

dz

)exp

= (8 ± 14) × 10−7. (129)

However, it is clear that the precision of this measure-
ment is not high enough to place significant limits on
the Danilov parameters.

b) Radiative nd capture —n + d → t + γ— is being con-
sidered at SNS as a possible followup experiment to the
radiative np capture. Again a definitive calculation of
the photon asymmetry has not yet been performed.
However, an estimate

An
γ = [1.35ρt +0.58λnn

s +1.15λt +0.50λpn
s ]mN (130)

has been given [53]. Using the DDH “best value” esti-
mates, this yields an effect

DDHAnth
γ = 9.9 × 10−7 (131)

much larger than the corresponding np value. How-
ever, the existing experimental number [75]

An exp
γ = (4.2 ± 3.8) × 10−6 (132)

will have to be improved by nearly an order of magni-
tude in order to say something meaningful.

Another possibility is to measure the photon
asymmetry following the capture of an unpolarized
neutron by a polarized deuteron, for which one
finds [53]

Ad
γ = −[3.56ρt+0.24λnn

s +1.39λt+0.71λpn
s ]mN (133)

yielding an even larger signal using the DDH “best
value” estimates

DDHAd th
γ = 2.2 × 10−6. (134)

However, a high-polarization deuterium target would
be required.

Finally, one can imagine measuring the circular
polarization of the photon following the capture of an
unpolarized neutron, for which an estimate

Pγ = −[2.73ρt+0.57λnn
s +1.56λt+0.73λpn

s ]mN (135)

has been given [53]. Using the DDH “best value” num-
bers we find an estimate

DDHP th
γ = −1.8 × 10−6 (136)

again much larger than its corresponding np → dγ
value. However, the efficient detection of circular po-
larization represents a challenge, and the reverse reac-
tion γ + t → n + d is associated with significant safety
issues because of the need for a tritium target and is
probably not a serious consideration.

c) pd scattering, for which at 15MeV has the longitudinal
asymmetry [50]

Apd
L = −[0.21ρt + 0.07λpp

s − 0.13λt − 0.04λpn
s ]mN .

(137)
This calculated value is based on the Desplanques-
Missimer/Bethe-Goldstone estimate, and should be
updated with a modern three-body calculation. How-
ever, the use of the DDH “best values” indicates an
effect of the size

DDHAth
L = −1.3 × 10−7. (138)

This experiment has been performed both at LANL at
15MeV [76] and at PSI at 45MeV [77]. However, the
measured asymmetry is available only over a limited
range of angles. Also the experiments do not distin-
guish elastic and breakup events. Thus, a detailed the-
oretical analysis would be required in order to extract
information from the existing numbers.

d) Another possibility being considered is neutron spin
rotation on deuterium, although experimentally this
presents a number of challenges. However, a new pre-
cision theoretical estimate is available [78]:

1
ρ

dφ

dz
= 2

m3
π

Λ3
χ

[270C̃6 + 3.6C1 − 0.1C̃1 − 0.5(C2 + C4)]

(139)
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in terms of the effective potential developed by
Girlanda —eq. (89). Using a liquid-deuterium density
of 0.4 × 1023 atoms/cm3 one finds a “best value” pre-
dicted size of about 5× 10−6 rad/m which is about an
order of magnitude larger than the corresponding np
number and thus should be seriously considered as a
possible source of information provided the experimen-
tal challenges can be overcome.

e) An additional followup experiment at SNS is a mea-
surement of the proton asymmetry in the capture of
polarized neutrons by 3He —n3He → pt. An esti-
mate by M. Viviani has been provided within the DDH
model [79]:

Ap = −0.18f1
π − 0.14h0

ρ + 0.27h1
ρ + 0.0012h2

ρ

−0.13h0
ω + 0.05h1

ω

and use of best values yields the estimate Abest value
p =

1 × 10−7, which involves a considerable cancellation
between f1

π and h0
ρ couplings. R&D is now taking place

at LANSCE for such an experiment, to begin in 2011.

The completion of the five core experiments supple-
mented by one or more of the additional possibilities out-
lined above would (at last!) provide a solid base of empir-
ically determined PV parameters.

5 Future initiatives

At the present time, we have results for only two of the five
necessary experimental results. Therefore it is unknown
whether implementation of EFT methods will be able to
resolve the inconsistencies which exist in the current DDH
analysis of hadronic PV experiments. However, through
successful completion and analysis of a set of experiments
such as those described above, we can anticipate obtaining
a consistent set of Danilov parameters at some point is
the (near?) future. An obvious question is: what happens
next? To some extent the answer to this question depends
on whether the results of the experimental program are in
some sense surprising in that they are strongly discrepant
with the DDH analysis. Let us suppose that this is not
the case. Then a number of obvious steps are suggested:

i) Firstly, it will be interesting to determine if the values
of the parameters C̃i/Ci differ from their vector dom-
inance values suggested via single-meson exchange.
This will not be easy to do, however, in that in order to
make this determination one will have to go above the
threshold region in order to separate matrix elements
involving the commutator —[−i∇, fm(r)]— from
those involving the anticommutator —{−i∇, fm(r)}.
This analysis must be done carefully so that P -D mix-
ing effects are appropriately included.

ii) Another interesting topic is the size of the PV coupling
f1

π , for which the present DDH-based analysis indi-
cates a value considerably smaller than the DDH best
estimate from analysis of experiments involving 18F

but a value considerably larger than the DDH best es-
timate from analysis of experiments involving 133Cs. It
is always possible that the value determined from the
Danilov analysis will agree with neither, but if the new
number is consistent with either of the present values,
something important will be learned about nuclear
effects from the analysis of the “losing” experiment.

iii) Once a fully consistent set of values is obtained for
the low-energy constants Ci, C̃i it will be important
to see if the numbers obtained experimentally can
be predicted from purely theoretical considerations.
At the simplest level one can compare with the DDH
expectations. However, because of the uncertainties
inherent in the DDH numbers, this may be a chal-
lenge. More fundamental should be an attempt to
calculate such couplings via lattice methods. Because
these are two-nucleon matrix elements involving both
the strong and weak interactions this will not be a
simple calculation but is a necessary ingredient to any
real understanding of hadronic parity violation. Some
of the challenges associated with any such calculation
have recently been discussed by Beane and Savage in
the context of a lattice calculation of the pion-nucleon
coupling constant [80].

6 Conclusions

The field of hadronic parity violation began in 1957 with
the experiment by Tanner looking for the PV 19F(p, α)16O
reaction. More than fifty years (and many experiments)
later we still do not have a comprehensive understand-
ing of the PV NN interaction. Since 1980 nearly all such
experiments have been analyzed within the DDH (single-
meson exchange) picture, but it has been difficult to re-
solve the issue of a small PV pionic coupling f1

π indicated
by measurements of the circular polarization of the pho-
ton emitted in the decay of the 1.089MeV level of 18F
with that indicated by the 133Cs anapole moment mea-
surement, as well as others. In order to resolve these issues
and to remove nuclear-physics uncertainties from the anal-
ysis, an effective field theory approach to the subject to-
gether with an experimental program utilizing only A ≤ 4
systems have been developed. Both the theoretical and
experimental programs were described above.

However, significant challenges remain. On the theo-
retical side it is important to develop state-of-the-art cal-
culations which relate empirical results to the underlying
theoretical basis. This is especially important for those ex-
periments involving 4He targets. Experimentally, the price
that is paid for use of light nuclear systems is the loss of
the possibility of nuclear enhancement, meaning that ex-
periments must be done to a precision of a part in 108

or better. Nevertheless, this can and must be achieved in
order to bring understanding to this field. The use of effec-
tive field-theoretic methods means that at some point in
the near future we will be able to converge on a consistent
set of empirical parameters —the Danilov coefficients—
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which can characterize the low-energy PV NN interac-
tion. Once this is accomplished the focus can shift to the
use of these numbers to understand the previous nuclear
experiments and to the theoretical prediction of such num-
bers from fundamental theory —QCD. Only then can we
say that, after more than a half century of effort, the prob-
lem of hadronic parity violation is finally solved.
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