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THE GAUSS FUNCTION
1.1 Historical introduction
The series
1+abi a(@a+1)b(d+1)2> a(a+1)(a+2)bb+1)(b+2)23
TN e 2 clc+1)(c+2) ETRI

(1.1.1)

is called the Gauss series or the ordinary hypergeometric series. It is
usually represented by the symbol

oFila,b; c; 2].

The variable is z, and a, b and ¢ are called the parameters of the
function. If either of the quantities @ or b is a negative integer —n, the
series has only a finite number of terms and becomes in fact a

polynomial JF[—n,b; c; 2]
For example, suppose that @ = — 2, then the series becomes
e . =2z (=2)(=1)b(+1)22
oI [—2,b;¢;2] =1+ e 11 ole+1) 2!+0,
. o 20z b(b+1)22
that is 2Fl[—2,b, C, Z] = I—T’{—m, (1.1.2)

since all the later terms are zero.

In his work Arithmetica Infinitorum (1655), the Oxford professor
John Wallis (1616-1703) first used the term ‘hypergeometric’ (from
the Greek dmep, above or beyond) to denote any series which was
beyond the ordinary geometric series

l+x+a2+a3+....
In particular, he studied the series
l+a+ta@+1)+a(ea+1)(a+2)+....

During the next one hundred and fifty years many other mathe-
maticians studied similar series, notably the Swiss L. Euler (1707—
1783)1 who gave amongst many other results, the famous relation

o[ —n,b; ¢; 2] = (1 —2)+2b K [c+mn,c~b; c; 2], (1.1.3)

t Euler (1748). Full details of all references are to be found in the bibliography.
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2 THE GAUSS FUNCTION

In 1770, the Frenchman, A.T.Vandermonde (1735-1796) stated
his theorem, an extension of the binomial theorem, in the form
(c=b)(c=b+1)(c—b+2)...(c—b+n-1)

JJ[—n,b; ;1] = cc+1)(c+2)(c+3)...(c+n—1)

(1.1.4)

but during the next forty years the Gottingen school under C.F.
Hindenberg (1741-1808) wasted much effort on various complicated
extensions of the binomial and multinomial theorems. All this was
changed dramatically, when on 20th January, 1812, C. . Gauss (1777-
1855) delivered his famous thesis ‘Disquisitiones generales circa
seriem infinitam’} before the Royal Society in Gottingen. In it, this
brilliant mathematician defined the modern infinite series of (1.1.1)
above and introduced the notation Fla, b; ¢; 2] for it. He also proved
his famous summation theorem

F'eyNc—a—b
2F1[a: b’ C; 1] = F(C)— a) P(G— b;a

and he gave many relations between two or more of these series. He
showed clearly that he was already regarding ,Fy[a, b; ¢; z]asa function
in four variables, rather than as a series in z, and in a note added
10 February, 1812, he gave a remarkably full discussion of the con-
vergence of such series.

The next major advance was made in 1836 by E. E. Kummer (1810-
93), who first used the term ‘hypergeometric’ for series of the type
(1.1.1) only. He showed that the differential equation

(1.1.5)

2,
z(l—-z)g—ﬁé+{c—(l+a+b)z}g-:;~/—aby= 0, (1.1.6)

is satisfied by the function

2f1la,b; ¢; 2],
and has in all twenty-four solutions in terms of similar Gauss func-
tions.} In 1857§, G. F. B. Riemann (1826-66) extended this theory by
the introduction of his P functions, which in a way, are generalizations
of the Gaussian JFila,b; ¢; 2]

Riemann also discussed the general theory of the transformation of
the variable in a differential equation and this theory was applied to
Kummer’s work by J. Thomae who, in 1879, worked out in detail the
relationships between Kummer’s twenty-four solutions. ||

1t Gauss (1812). 1 Kummer (1836).
§ Riemann (1857). [l Thomae (1879).
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HISTORICAL INTRODUCTION 3
The first integral representation of the Gauss function goes back to
Eulert who showed that

n!
cle+ ) {c+2)...(c+n—1)

oFl—-n,b;¢c; 2] =

xflt—"—l(l—t)c+"‘1(l—tz)—bdt. (1.1.7)
0

The basic idea of representing a function by a contour integral with
gamma functions in the integrand seems to be due to S.Pincherle
(1853-1936) who used contours of a type which stems from Riemann’s
work. This side of the subject was developed extensively by R. Mellin
and E.W.Barnes.i In 1907, Barnes published his contour integral
representations of Kummer’s twenty-four functions, and later, in
1910,§ he proved the integral analogue of Gauss’s theorem

%fl T(a+$) (b +58) D(c—s) [(d —s) ds

_T@+c)Ta+d)T(b+c)T(b+d)
- Fa+bdb+c+d) ’

(1.1.8)

1.1.1 The Gauss series and its convergence. Let us write
(@), = al@a+1)(@+2)(@+3)...(a+n—1), (L.1.1.1)

and in particular, (a), = 1, so that, for example (3); =3.4.5.6.7,
= 2520, and (1), = n!. Then
Pla+n)

(@), = T(a) (1.1.1.2)
. 1
and nlgnw(a)n = a)’ (1.1.1.3)
If a is a negative integer —m, then
(@), = (—m), it m>n,
and (@), =0 if m<n,
so that (—3); = (—3)(—2)(—1) = — 6, but (—3), = 0.
In this notation, the Gauss function becomes
Flabioz]= 5 Dnlhat (11.1.4)

n=1 (c)n n!
where a, b, ¢ and z may be real or complex. From this, we see that if
either of the numbers a or b is zero or a negative integer, the function

1 Euler (1748). 1 Barnes (1907a).
§ Barnes (1910).

I-2

© Cambridge University Press www.cambridge.org




Cambridge University Press

978-0-521-09061-2 - Generalized Hypergeometric Functions
Lucy Joan Slater

Excerpt

More information

4 THE GAUSS FUNCTION

reduces to a polynomial, but if ¢ is zero or a negative integer, the
function is not defined, since all but a finite number of the terms of the
series become infinite. Also we have immediately

d
!
Some alternative notations for the Gauss function, which are in

common use, are:
Appell (1926) and Bailey (1935a),

oHila,b; c; z]) = a—cszl[a—I- 1,b+1;¢c+1;2]. (1.1.1.5)

J;[“;f’; z:| = ,Pa,b; c; 2], (1.1.1.6)
F(a,b; ¢c; 2) = JF[a,b; ¢; 2], (1.1.1.7)

Meijer (1953c¢),
®[a, b; c; 2] = ,F[a,b; ¢; 2]/T'(c), (1.1.1.8)

MacRobert (1947), p. 352,
) L'(b)

E@2;a,b;1;c; 1/)——a——

O JJHila,b; c; 2], (1.1.1.9)

Meijer (1941a),

o5 (-

Riemann (1857),

j :IZ) = (ﬁzcl;‘b) Fila,b; c;2,  (1.1.1.10)

1
0 2zt =ohfa,b;¢;2]. (1.1.1.11)
1—-¢c b c—a-b

Let u, = (@), (0)n , then we have
(©a (D)’
1 +n)(c+n) U,y = (@+n) (b+n)u,. (1.1.1.12)
The ratio of the two successive terms u, and u,., of the Gaussian
series is

(a+n)(b+n)__ (L+a/n) (1+bfn)
(c+n)(L+n)"  (1+c/n)(1+1/n)"~
so that as n — o0, the ratio

|t safta] > 2.
Hence, by D’Alembert’s testt, the series is convergent for all values

of 2, real or complex such that |z| < 1, and divergent for all values of
z real or complex, such that |z| > 1.

(1.1.1.13)

+ Bromwich, Infinite Series, (1947), p. 39.
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HISTORICAL INTRODUCTION 5
When |z| = 1,
[t iafutn] = ,{1 +%—b+0(1/n2)}{1—17“+0(1/n2)}

?

b

a+b—-c—
n

={1+ ! oy

< 1+{Rl(a+b—c—1)/n}+O0(1/n?). (1.1.1.14)
Thus, when z =1, by Raabe’s testt, the series is convergent if
Rl(c—~a—b) > 0, and divergent if Rl(c—a—b) < 0.
It is also divergent when Rl (¢ —a —b) = 0, for in this case
1 C

[ iaftin] > 1—— =,
where C is a constant.
When |z| = 1, but z + 1, the series is absolutely convergent when

Rl(c—a—b) > 0, convergent but not absolutely so when
—1 <Rl{c—a—-b) <0,

and divergent when Rl(c—a—b) < —1. If Rl(c—a—b) = — 1, more
delicate tests are needed. In this case, we find that

Rl(@+b—ab+1)
n2

|taftt| = 1— +0(1/n3).  (L.1.1.15)

Hence the series is convergent if Rl(a+b) > Rlab, and divergent if
Rl(a+0b) < Rlab.
For example, the series
1—-3+3~445-84 . =31+,F[2,2;3; —1]}, (1.1.1.16)

is divergent.
We note also that

(@) (B),,
(), !

—~0asn—>00,if0 <Rl (1+¢c—a—-b) < 1. (1.1.1.17)

1.2 The Gauss equation
The differential equation
z(l—z)d—;y—+{c—(1+a+b)z}g—?z/—aby=0, (1.2.1)
is called the Gauss equation or the hypergeometric equation. In the
region |z| < 1, one solution is
1 = oBila,b; c; 2]. (1.2.2)

1 Bromwich (1947), p. 40.
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6 THE GAUSS FUNCTION

This can be verified by direct differentiation of the series (1.1.1), and
substitution in the above differential equation. But an alternative
form of writing this equation is

d/ d d d
d—jé(ZEz+C—1)y=(Za—z+a) (Z’(i—z+b)y, (123)

and this leads to an elegant proof, for

(zdiz+a)y= § (@) 0), (n+a)z™

2 (o), n!
Hence (z d% + a) (z (% + b) Y= éog)—%)lz(%wl 2",
Similarly, (z -(% to 1) y = él EZ)):_(%; .
Hence %(z%+c—l)y = nzl%%’—;nzn—l,
-z (a)?g)ln(z)!n+l -

The Gauss equation can be rewritten

d?y c 1+a+b)dy ab
z(1

dz? —z)— 1-2 az—_z(l—z)

y=0, (1.2.4)

from which 0 and 1 are seen to be regular singularities. If we write 1/z
for 2, we find that infinity is also a regular singularity of the Gauss
equation.t

d .
In the notation of operators, where A = 23, the Gauss equation

can also be written
AA+c—1Dy =2(A+a)(A+b)y. (1.2.5)

1.2.1 The connexion with Riemann’s equation. We shall now
show that any equation of the general form

dy (3 4,\dy (3 B Y _
& (21 z—zv) & " (z‘x z—zy) (2—2) (z—2) (2—25)
(1.2.1.1)

where A, and B, are constants, can be reduced to a Gauss equation,

provided that A4, + A,+ A; = 2, to ensure that the ‘point at infinity’

H

+ Whittaker & Watson (1947), § 10.3.
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THE GAUSS EQUATION 7

is an ordinary point of the equation. We shall also exhibit the inter-
connexions between several well-known differential equations, as
incidental to the proof given here.

First we note that in the equation (1.2.1.1) every point, including
infinity, is an ordinary point of the equation, except the points z = z,,
z=zandz = z3. Soletuswrite 6 = z,— 25, ¢ = z;—z; and ¢ = 2, — 2,,
where 6+ ¢+ = 0. The indicial equation, formed for expansion
about z = 2, is

( 1)+A1p+ ¢w

with roots « and «' say. Then we can write
Aj=1-a—a and B, =—¢yaa’.

Similarly, by considering the indicial equations formed for expansions
about z = 2, and z = z,, respectively, we can write

Ay =1-p—F, By=—-y0pf,
and Ag=1-y—v', By=-0¢yy,
where, since 4, + 4,+ A; = 2, we must have
ata'+Bf+p +y+y =1
The given equation then becomes Riemann’s equation

@+(l~a—a’+l—ﬂ—ﬂ’ l—y-— 'y)dy

2 —
dz z—z z2—2, z—zg Jdz

={ ! o BE v } O¢vy
(2—2)0 (—2)d (2—23)¥)(z—2)(2—23) (2—25)"
(1.2.1.2)

This equation is also known as Papperitz’s equation.t Its solution is
usually written in terms of Riemann’s P function as

1 % %
u=Pia g v =z, (1.2.1.3)
al ﬂl yl

or, in terms of the Gauss function, as
U= (2—21)% (2—2p) 7277 (2 —2,)"
(2—29) (23— 23)
(z—2,) (23— 2y)
(1.2.1.4)

><2F1|:a+/9+%06+ﬂ'+7; l+a—a';

T Papperitz (1885).
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8 THE GAUSS FUNCTION

Twenty-four solutions of Riemann’s equation can be written down
immediately, simply by interchanging the triads (zy, @, &'), (25,8, 8)
and (2;,7,7'), in a cyclic order.

If, in (1.2.1.2) we write t = {(z —2,) 0}/{(z —2;) (— $)}, and divide by
(¢ + 0)2/(0%0*)?), the equation (1.2.1.2) becomes

d?y (A, As\dy (ad ﬂ) Yy
@+<T+t_—1)a“(7“ﬁ/” S e

(1.2.1.5)
If further we write y = t*(t— 1) ¥, (1.2.1.5) reduces to
d2Y dY
t(t—1)W+{t(2+a—-a'+‘y—'}/’)—(l +oc—oa')}€t—

+{@+y)A—a'=y)+4A}Y =0. (1.2.1.6)
Finally, if we write a +b for 1 + o —a’+7y—7’, ab for

(a+y) (=o' =y )+ B4

and ¢ for 14+a—a', (1.2.1.6) reduces to the ordinary Gauss equation
(1.2.1). Thus we see that, in general, for any equation with three
ordinary singularities at 2, 2, and 23, these singularities can be trans-
formed into the three singularities of the Gauss equation simply by

writing z for {(z—2;) (23— 22)} [{(2 — 22) (23 — 21)}-

1.3 Kummer’s twenty-four solutions

Let us assume that y=293 u,2" (1.3.1)

n=0

(where u, # 0) is any solution of the Gauss equation (1.2.1). Then, by
direct differentiation of this series, we find that

ugg(g+c—1)29"1+ ¥ {u, (g +n+1)
n=0

x(@+n+e)—u(g+n+a)(g+n+b)}zatr=0. (1.3.2)
Hence we must have as the indicial equation

glg+c—1) =0, (1.3.3)
and in general

(g+n+o)(g+n+)u,, =(@g+nt+a)(g+n+d)u, (1.3.4)
The root ¢ = 0 of the indicial equation (1.3.3) leads to the solution
¥, = [0, b; ¢; 2],
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KUMMER’S TWENTY-FOUR SOLUTIONS 9

provided that ¢ isnot zero nor a negative integer, and therootg = 1 —¢,
gives a second solution in which

(I1+n)(2—c+n)uyy =(@+l1—c+n)(b+1—c+n)u, (1.3.5)
This solution is
Yo =21 [1+a—c,1+b—c¢; 2—c; 2], (1.3.6)

provided that ¢ is not a positive integer > 2. Hence one complete
solution of the Gauss equation (1.2.1) is

y = A, Fja,b; c; 2]+ B2, F[1+a—c,1+b—c¢c; 2—c¢; 2], (1.3.7)

for |z| < 1, and for ¢ not an integer, where 4 and B are constants.

When ¢ = 1, the two solutions are equivalent, and we have to follow
the usual Frobenius processt in order to find that a second solution
is now

Y2 = o[, b; 1; z]logz+ X

AL
n=1 3g

=0

wlinaot], s
1.3.

When ¢ = 0, or a negative integer, the second solution (1.3.6) is still
valid but the first solution has to be replaced by

yp =21 [l+a—c,1+b—c; 2—¢; z]logz

STe (@0 Cron] L,
i 89{(c+g)n(1+g)n}]g=l_cz' (1:3.9)

When ¢ is a positive integer > 2, the first solution is still valid but
the second solution has to be replaced by

~ o &[0 [a+g)n(b+9), n
Y2 = oFi[a,b; ¢; 2]logz + Z 3g{(0+g)n (1 +g)nﬂg=oz )
(1.3.10)

Ifa or bis anegative integer, as we have already seen, our first solution
reduces to a polynomial in 2z, and if 1+a—c or 1 +b—c is a negative
integer, the second solution reduces to a polynomial in z.

When we are dealing with solutions of this type, it is useful to

remember that if i) (“_‘*'g)n(b_*ﬂ)n
" (c+9)n(1+9),’

t Whittaker & Watson (1947), § 10.3.
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10 THE GAUSS FUNCTION

then
L g 1 1
@) g I T R T g retn—1 gratn—1 g+btn—1

- n—1(9 39{ n-1(@)}  (1.3.11)

(see Copson, Functions of a complex variable (1950), p. 248).
Next let us substitute (1—z)*w for y in the Gauss equation. It
becomes

2 d
z(l—z)%+{c—(a+b+l+2k)z}£

1-2

. [k(lc— 1)z—kfe—(a+b+ 1)2}_ab] w=0. (1L3.12)

This equation is also of hypergeometric type if 1—z divides
exactly into k(k—1)z—k{c—(a+b+1)z2}, that is, if either k = 0, or
k =c—a—b. When k = 0, the two solutions (1.2.2) and (1.3.6) are
given, but when ¥ =c—a—b, then two new golutions are given,
valid in the region|z| < 1. These are

Yy = (1—2) b, Fc—a,c—b; c; 2] (1.3.13)
and Yy =211 —2)"% 0, F[l~a,1-b; 2—c; z]. (1.3.14)
Since the Gauss equation is of order two, it can have only two

linearly independent solutions. Hence there must exist constants 4
and B such that

(1—2)-2b,Flc—a,c—b;c; 2]
= A ,F[a,b; ¢; 2]+ B¢ ,i[1+a—c,1+b—c; 2—c; 2].
Now the left-hand side of this equation can be expanded in integral
powers of z, but z1-¢ cannot, since ¢ is not an integer, by hypothesis.

Hence B = 0. If however we put z = 0, we find that we must have
A = 1. Hence y, = ys, that is

oFila,b; ¢; 2] = (L—2)¢% P, Flc—a,c~b; c; z].  (1.3.15)

This is the result usually known as Euler’s identity. In a similar way
we can show that y, = y,, that is

JFl+a—c,1+b—c; 2—c; 2] = (1—2)%b,F[1-a,1-b; 2—c; z].
(1.3.16)
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