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Reminders: convergence of


sequences and series


This first chapter, which is quite elementary, is essentially a survey of the notion 
of convergence of sequences and series. Readers who are very confortable with this 
concept may start reading the next chapter. 
However, although the mathematical objects we discuss are well known in princi­

ple, they have some unexpected properties. We will see in particular that the order 
of summation may be crucial to the evaluation of the series, so that changing the 
order of summation may well change its sum. 
We start this chapter by discussing two physical problems in which a limit process 

is hidden. Each leads to an apparent paradox, which can only be resolved when the 
underlying limit is explicitly brought to light. 

1.1 

The problem of limits in physics 

1.1.a Two paradoxes involving kinetic energy 

First paradox 

Consider a truck with mass m driving at constant speed v = 60 mph on a 
perfectly straight stretch of highway (think of Montana). We assume that, 
friction being negligible, the truck uses no gas to remain at constant speed. 
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On the other hand, to accelerate, it must use (or guzzle) ℓ gallons of gas in 
order to increase its kinetic energy by an amount of 1 joule. This assumption, 
although it is imperfect, is physically acceptable because each gallon of gas 
yields the same amount of energy. 
So, when the driver decides to increase its speed to reach v ′ = 80 mph, the 

quantity of gas required to do so is equal to the difference of kinetic energy, 
namely, it is 

ℓ(Ec 
′ − Ec ) = 

1 
ℓm(v ′2 − v2) = 

1 
ℓm(6 400− 3 600) = 1 400× ℓm. 

2 2 

With ℓ · m = 1 J · mile−2 · h2, say, this amounts to 0.14 gallon. Jolly good. 
10 000 

Now, let us watch the same scene of the truck accelerating, as observed by 
a highway patrolman, initially driving as fast as the truck w = v = 60 mph, 
but with a motorcycle which is unable to go faster. 
The patrolman, having his college physics classes at his fingertips, argues 

as follows: “in my own galilean reference frame, the relative speed of the truck 
was previously v ∗ = 0 and is now v ∗′ = 20 mph. To do this, the amount of 
gas it has guzzled is equal to the difference in kinetic energies: 

1 1 
ℓ(Ec 
∗′ − Ec 

∗ ) = ℓm
�
(v ∗′ )2 − (v ∗ )2

� 
= ℓm(400− 0) = 200× ℓm,

2 2 

or around 0.02 gallons.” 
There is here a clear problem, and one of the two observers must be wrong. 

Indeed, the galilean relativity principle states that all galilean reference frames 
are equivalent, and computing kinetic energy in the patrolman’s reference 
frame is perfectly legitimate. 
How is this paradox resolved? 
We will come to the solution, but first here is another problem. The reader, 

before going on to read the solutions, is earnestly invited to think and try to 
solve the problem by herself. 

Second paradox 

Consider a highly elastic rubber ball in free fall as we first see it. At some 
point, it hits the ground, and we assume that this is an elastic shock. 
Most high-school level books will describe the following argument: “as­

sume that, at the instant t = 0 when the ball hits the ground, the speed of 
the ball is v1 = −10 m·s−1. Since the shock is elastic, there is conservation of 
total energy before and after. Hence the speed of the ball after the rebound is 
v2 = −v1, or simply +10 m·s−1 going up.” 
This looks convincing enough. But it is not so impressive if seen from 

the point of view of an observer who is also moving down at constant speed 
vobs = v1 = −10 m·s−1. For this observer, the speed of the ball before the 
shock is v1 

∗ = v1 − vobs = 0 m·s−1, so it has zero kinetic energy. However, 
after rebounding, the speed of the ball is v2 

∗ = v2 − vobs = 20 m·s−1, and 



The problem of limits in physics 3 

therefore it has nonzero kinetic energy! With the analogue of the reasoning 
above, one should still have found v2 

∗ = v1 ∗ = 0 (should the ball go through 
the ground?) 
So there is something fishy in this argument also. It is important to 

remember that the fact that the right answer is found in the first case does not imply 
that the argument that leads to the answer is itself correct. 
Readers who have solved the first paradox will find no difficulty in this 

second one. 

Paradoxes resolved 

Kinetic energy is of course not the same in every reference frame. But this 
is not so much the kinetic energy we are interested in; rather, we want the 
difference before and after the event described. 
Let’s go back to elementary mechanics. What happens, in two distinct 

reference frames, to a system of N solid bodies with initial speed vi (i = ′ 1, . . . , N ) and final speed vi after some shock? 
In the first reference frame, the difference of kinetic energy is given by 

N

ΔEc = 
∑ 
mi(v 

′ 
i 
2 − v 2 i ). 

i=1 

In a second reference frame, with relative speed w with respect to the first, 
the difference is equal to 

N
′ ΔEc 

∗ = 
∑ 
mi
�
(vi − w)2 − (v i − w)2

� 

i=1 

N
  
N

′ 
! 

= 
∑ 
mi(v 

′ 
i 
2 − vi 

2)− 2w · 
∑ 
mi(v i − vi) = ΔEc − 2w · ΔP , 

i=1 i=1 

(we use ∗ as exponents for any physical quantity expressed in the new reference 
frame), so that ΔEc 

∗ = ΔEc as long as the total momentum is preserved during 
the shock, in other words if ΔP = 0. 
In the case of the truck and the patrolman, we did not really take the 

momentum into account. In fact, the truck can accelerate because it “pushes 
back” the whole earth behind it! 
So, let us take up the computation with a terrestrial mass M , which is 

large but not infinite. We will take the limit [M →∞] at the very end of the 
computation, and more precisely, we will let [M/m →∞]. 
At the beginning of the “experiment,” in the terrestrial reference frame, the 

speed of the truck is v. At the end of the experiment, the speed is v ′ . Earth, 
on the other hand, has original speed V = 0, and if one remains in the same 
galilean reference frame, final speed V ′ = m (v− v ′ ) (because of conservation 

M
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of total momentum).1 The kinetic energy of the system at the beginning is 
then 1m v2 and at the end it is 1m v ′2 + 1MV ′2. So, the difference is given 

′2 − v 2) + (v − v ′ )2 ′2 − v 2)
h
1+O

� m �i 
. 

2 2 2
by 

1 1 m2 1 
ΔEc = m(v = m(v 

2 2 M 2 M 
This is the amount of gas involved! So we see that, up to negligible terms, the 
first argument gives the right answer, namely, 0.14 gallons. 
We now come back to the patrolman’s frame, moving with speed w with 

respect to the terrestrial frame. The initial speed of the truck is v ∗ = v − w, 
and the final speed is v ′∗ = v ′ − w. The Earth has initial speed V ∗ = − w 
and final speed V ′∗ = − w + m ′ (v − v ′ ). The difference is now: 

M 
1 1′∗2 − vΔE∗ = m
� 
v ∗2� + M�V ′∗2 − V ∗2

�
c 2 2 

= 
1 
m(v ′ − w)2 − 

1 
m(v − w)2 + 

1 
M
h m 
(v − v ′ )− w

i2 − 
1 
M w 2 

2 2 2 M 2 
1 1 1 m2 

= m v ′2 − m v 2 + m(v − v ′ ) · w + (v − v ′ )2 − m(v − v ′ ) · w,
2 2 2 M

ΔE∗ = ΔE .c c

Hence the difference of kinetic energy is preserved, as we expected. So even 
in this other reference frame, a correct computation shows that the quantity 
of gas involved is the same as before. 
The patrolman’s mistake was to forget the positive term −m(v − v ′ ) · w, 

corresponding to the difference of kinetic energy of the Earth in its galilean 
frame. This term does not tend to 0 as [M/m →∞] ! 
From the point of view of the patrolman’s frame, 0.02 gallons are needed to 

accelerate the truck, and the remaining 0.12 gallons are needed to accelerate the Earth! 
We can summarize this as a table, where T is the truck and E is the Earth. 

Initial 
speed 

Final 
speed 

Ec init. Ec final ΔEc 

T 

E 

v 

0 

v ′ 

m 
M 
(v − v ′ ) 

1 
2 
m v2 

0 

1 
2 
m v ′2 

1 
2 
m2 

M 
(v − v ′ )2 

m 

2
(v ′2 − v2) 

+ 
m2 

2M
(v − v ′ )2 

T∗ 

E∗ 

v− w 

− w 

v ′ − w 

m 
M 
(v − v ′ )− w 

1 
2 
m(v− w)2 

1 
2 
M w2 

1 
2 
m(v ′ − w)2 

M 
2 

� 
m 
M 
(v− v ′ )− w

�2 

m 

2
(v ′2 − v2) 

+ 
m2 

2M
(v − v ′ )2 

1 Note that the terrestrial reference frame is then not galilean, since the Earth started “mov­
ing” under the truck’s impulsion. 
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(Illustration c© Craig Thompson 2001) 

Fig. 1.1 — Romeo, Juliet, and the boat on a lake. 

The second paradox is resolved in the same manner: the Earth’s rebound 
energy must be taken into account after the shock with the ball. 
The interested reader will find another paradox, relating to optics, in Exer­

cise 1.3 on page 43. 

1.1.b Romeo, Juliet, and viscous fluids 

Here is an example in mechanics where a function f (x) is defined on [0,+∞[, 
but limx→0+ f (x) 6= f (0). 
Let us think of a summer afternoon, which Romeo and Juliet have dedi­

cated to a pleasant boat outing on a beautiful lake. They are sitting on each 
side of their small boat, immobile over the waters. Since the atmosphere is 
conducive to charming murmurs, Romeo decides to go sit by Juliet. 
Denote by M the mass of the boat and Juliet together, m that of Romeo, 

and L the length of the walk from one side of the boat to the other (see 
Figures 1.1 and 1.2). 
Two cases may be considered: one where the friction of the boat on the 

lake is negligible (a perfect fluid), and one where it is given by the formula 
f = −ηv, where f is the force exerted by the lake on the boat, v the speed of 
the boat on the water, and η a viscosity coefficient. We consider the problem 
only on the horizontal axis, so it is one-dimensional. 
We want to compute how far the boat moves 

1. in the case η = 0; 

2. in the case η 6= 0. 
Let ℓ be this distance. 
The first case is very easy. Since no force is exerted in the horizontal plane 

on the system “boat + Romeo + Juliet,” the center of gravity of this system 
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(Illustration c© Craig Thompson 2001) 

Fig. 1.2 — Romeo moved closer. 

does not move during the experiment. Since Romeo travels the distance L 
relative to the boat, it is easy to deduce that the boat must cover, in the 
opposite direction, the distance 

m 
ℓ = L . 
m + M 

In the second case, let x(t) denote the positive of the boat and y(t) that 
of Romeo, relative to the Earth, not to the boat. The equation of movement 
for the center of gravity of the system is 

M ẍ +m ÿ = −η ẋ . 
We now integrate on both sides between t = 0 (before Romeo starts moving) 
and t = +∞. Because of the friction, we know that as [t → +∞], the speed 
of the boat goes to 0 (hence also the speed of Romeo, since he will have been 
long immobile with respect to the boat). Hence we have 

+∞ 
(M ẋ +m ẏ)

��� = 0 = −η�x(+∞)− x(0)
� 

0 

or ηℓ = 0. Since η =6 0, we have ℓ = 0, whichever way Romeo moved to the 
other side. In partcular, if we take the limit when η → 0, hoping to obtain 
the nonviscous case, we have: 

lim ℓ(η) = 0 hence lim ℓ(η) 6 ℓ(0).= 
η→0 η→0 
η>0 η>0 
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V (x) 

V0 

x 

Fig. 1.3 — Potential wall V (x) = V0 H (x). 

Conclusion: The limit of a viscous fluid to a perfect fluid is singular. It is not 
possible to formally take the limit when the viscosity tends to zero to obtain 
the situation for a perfect fluid. In particular, it is easier to model flows of 
nonviscous perfect fluids by “real” fluids which have large viscosity, because of 
turbulence phenomena which are more likely to intervene in fluids with small 
viscosity. The interested reader can look, for instance, at the book by Guyon, 
Hulin, and Petit [44]. 

Remark 1.1 The exact form f = −ηv of the friction term is crucial in this argument. If the 
force involves additional (nonlinear) terms, the result is completely different. Hence, if you try 
to perform this experiment in practice, it will probably not be conclusive, and the boat is not 
likely to come back to the same exact spot at the end. 

1.1.c Potential wall in quantum mechanics 

In this next physical example, there will again be a situation where we have a 
limit lim f (x) =6 f (0); however, the singularity arises here in fact because of 

x→0 
a second variable, and the true problem is that we have a double limit which 
does not commute: lim lim f (x , y) 6= lim lim f (x , y). 

x→0 y→0 y→0 x→0 
The problem considered is that of a quantum particle arriving at a poten­

tial wall. We look at a one-dimensional setting, with a potential of the type 
V (x) = V0 H (x), where H is the Heaviside function, that is, H (x) = 0 if 
x < 0 and H (x) = 1 if x > 0. The graph of this potential is represented in 
Figure 1.3. 
A particle arrives from x = −∞ in an energy state E > V0; part of it is 

transmitted beyond the potential wall, and part of it is reflected back. We are 
interested in the reflection coefficient of this wave. 
The incoming wave may be expressed, for negative values of x , as the sum 

of a progressive wave moving in the direction of increasing x and a reflected 
wave. For positive values of x , we have a transmitted wave in the direction 
of increasing x , but no component in the other direction. According to the 
Schrödinger equation, the wave function can therefore be written in the form 

ϕ(x , t) = ψ(x) f (t), 



p 
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x 

V (x) 

V0 

a 

Fig. 1.4 — “Smoothed” potential V (x) = V0/(1+ e
−x/a), with a > 0. 

where 

def 


eikx + B e−ikx if x < 0, with k = 2mE ,

h}
ψ(x) = 

 p  ik′ x def 2m(

h}
E−V0)A e if x > 0, with k′ = . 

The function f (t) is only a time-related phase factor and plays no role in 
what follows. The reflection coefficient of the wave is given by the ratio of the 
currents associated to ψ and is given by R = 1− k 

′ |A|2 (see [20, 58]). There 
k 

remains to find the value of A . To find it, it suffices to write the equation 
expressing the continuity of ψ and ψ ′ at x = 0, Since ψ(0+) = ψ(0−), we 
have 1+ B = A . And since ψ ′ (0+) = ψ ′ (0−), we have k(1− B) = k ′ A , and 
we deduce that A = 2k/(k + k′ ). The reflection coefficient is therefore equal 
to 

k′ �
k − k′ � �p 

E − 
p
E − V0

�2 
R = 1− 

k 
|A|2 = 

k + k′ 
= p 

E +
p
E − V0 

. (1.1) 

Here comes the surprise: this expression (1.1) is independant of h}. In particu­
lar, the limit as [h}→ 0] (which defines the “classical limit”) yields a nonzero 
reflection coefficient, although we know that in classical mechanics a particle 
with energy E does not reflect against a potential wall with value V0 < E !2 

So, displaying explicitly the dependency of R on h}, we have: 

lim R( } 6 0 = R(0).h) = 
h}→0 
h}=6 0 

In fact, we have gone a bit too fast. We take into account the physical 
aspects of this story: the “classical limit” is certainly not the same as brutally 
writing “h} → 0.” Since Planck’s constant is, as the name indicates, just a 
constant, this makes no sense. To take the limit h} → 0 means that one 
arranges for the quantum dimensions of the system to be much smaller than 
all other dimensions. Here the quantum dimension is determined by the de 

2 The particle goes through the obstacle with probability 1. 
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Broglie wavelength of the particle, that is, λ = h}/p . What are the other 
lengths in this problem? Well, there are none! At least, the way we phrased it: 
because in fact, expressing the potential by means of the Heaviside function is 
rather cavalier. In reality, the potential must be continuous. We can replace it 
by an infinitely differentiable potential such as V (x) = V0/(1+e

−x/a), which 
increases, roughly speaking, on an interval of size a > 0 (see Figure 1.4). In 
the limit where a → 0, the discontinuous Heaviside potential reappears. 
Computing the reflection coefficient with this potential is done similarly, 

but of course the computations are more involved. We refer the reader to [58, 
chapter 25]. At the end of the day, the reflection coefficient is found to 
depend not only on h}, but also on a, and is given by 

�
sinh aπ(k − k ′ )

�2 
R(h}, a) = . 

sinh aπ(k + k′ ) 

(h} appears in the definition of k = 
p 
2mE/h} and k ′ = 

p
2m(E − V0)/h}.) 

We then see clearly that for fixed nonzero a, the de Broglie wavelength of the 
particle may become infinitely small compared to a, and this defines the 
correct classical limit. Mathematically, we have 

∀a 6 0 lim R( } = 0 classical limit = h, a)
h}→0 
h}=6 0 

On the other hand, if we keep h} fixed and let a to to 0, we are converging 
to the Heaviside potential and we find that 

�
k − k′ 

�2 
∀h} 6= 0 lim R(h}, a) = = R(h}, 0). 

a→0 k + k′ 
a 6=0 

So the two limits [h}→ 0] and [a → 0] cannot be taken in an arbitrary order: 
�
k − k′ �2 

lim lim R(h}, a) = but lim lim R(h}, a) = 0. 
h}→0 a→0 k + k′ a→0 h}→0 
h}=0 6 a=0 h=06 a=0 6 }6

To speak of R(0, 0) has a priori no physical sense. 

1.1.d Semi-infinite filter behaving as waveguide 

We consider the cicuit AB , 

2C C C C 

A 

B 

L L L 

made up of a cascading sequence of “T” cells (2C , L, 2C ),
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A 

B 

2C 

L 

2C 

(the capacitors of two successive cells in series are equivalent with one capacitor 
with capacitance C ). We want to know the total impedance of this circuit. 
First, consider instead a circuit made with a finite sequence of n elementary 

cells, and let Zn denote its impedance. Kirchhoff’s laws imply the following 
recurrence relation between the values of Z :n

1 
iLω + Zn 

Zn+1 = 
1 
+ 2iCω , (1.2)

2iCω 1 
iLω + + Z

2iCω n 

where ω is the angular frequency. In particular, note that if Zn is purely 
imaginary, then so is Zn+1. Since Z1 is purely imaginary, it follows that 

Z ∈ iR for all n ∈ N.n 

We don’t know if the sequence (Zn)n∈N converges. But one thing is cer­
tain: if this sequence (Zn)n∈N converges to some limit, this must be purely 
imaginary (the only possible real limit is zero). 
Now, we compute the impedance of the infinite circuit, noting that this 

circuit AB is strictly equivalent to the following: 

2C 2C 

A 

B 

L Z 

Hence we obtain an equation involving Z :


1

iLω 

� 
+ Z

� 

1 2iCωZ = + . (1.3)
2iCω 1 

iLω + + Z 
2iCω 

Some computations yield a second-degree equation, with solutions given by 

1 1 
Z2 = · 

�
L− 

� 
. 

C 4Cω2


We must therefore distinguish two cases:
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1 • If ω < ωc = , we have Z2 < 0 and hence Z is purely imaginary of 
2
p
LC 

the form r 
1 L 

Z = ±i − . 
4C 2ω2 C 

Remark 1.2 Mathematically, there is nothing more that can be said, and in particular there 
remains an uncertainty concerning the “sign” of Z . 
However, this can also be determined by a physical argument: let ω tend to 0 (continuous 

regime). Then we have 
i 

Z (ω) ∼ ± , 
ω→0+ 2Cω 

the modulus of which tends to infinity. This was to be expected: the equivalent circuit is 
open, and the first capacitor “cuts” the circuit. Physically, it is then natural to expect that, the 
first coil acting as a plain wire, the first capacitor will be dominant. Then 

i 
Z (ω) ∼ − 

ω→0+ 2Cω 

(corresponding to the behavior of a single capacitor). 
Thus the physically acceptable solution of the equation (1.3) is 

r 
1 L 

Z = −i − . 
4C 2ω2 C 

1 • If ω > ωc = , then Z2 > 0 and Z is therefore real: 
2
p
LC 

r 
L 1 

Z = ± − . 
C 4C 2ω2

Remark 1.3 Here also the sign of Z can be determined by physical arguments. The real part 
of an impedance (the “resistive part”) is always non-negative in the case of a passive component, 
since it accounts for the dissipation of energy by the Joule effect. Only active components 
(such as operational amplifiers) can have negative resistance. Thus, the physically acceptable 
solution of equation (1.3) is r 

L 1 
Z = + − . 

C 4C 2ω2 

In this last case, there seems to be a paradox since Z cannot be the limit 
as n → +∞ of (Zn)n∈N. Let’s look at this more closely. 
From the mathematical point of view, Equation (1.3) expresses nothing but the 

fact that Z is a “fixed point” for the induction relation (1.2). In other words, 
this is the equation we would have obtained from (1.2), by continuity, if we 
had known that the sequence (Zn)n∈N converges to a limit Z . However, there 
is no reason for the sequence (Zn)n∈N to converge. 

Remark 1.4 From the physical point of view, the behavior of this infinite chain is rather sur­
prising. How does resistive behavior arise from purely inductive or capacitative components? 
Where does energy dissipate? And where does it go? 
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In fact, there is no dissipation of energy in the sense of the Joule effect, but energy does 
disappear from the point of view of an operator “holding points A and B .” More precisely, 
one can show that there is a flow of energy propagating from cell to cell. So at the beginning 
of the circuit, it looks like there is an “energy well” with fixed power consumption. Still, no 
energy disappears: an infinite chain can consume energy without accumulating it anywhere.3 

In the regime considered, this infinite chain corresponds to a waveguide. 

We conclude this first section with a list of other physical situations where 
the problem of noncommuting limits arises: 

•	 taking the “classical” (nonquantum) limit, as we have seen, is by no 
means a trivial matter; in addition, it may be in conflict with a “non­
relativistic” limit (see, e.g., [6]), or with a “low temperature” limit; 

•	 in plasma thermodynamics, the limit of infinite volume (V →∞) and 
the nonrelativistic limit (c → ∞) are incompatible with the thermo­
dynamic limit, since a characteristic time of return to equilibrium is 
V 1/3/c ; 

•	 in the classical theory of the electron, it is often reproached that such 
a classical electron, with zero naked mass, rotates too fast at the level of 
the equator (200 times the speed of light) for its magnetic moment and 
renormalized mass to conform to experimental data. A more careful 
calculation by Lorentz himself4 gave about 10 times the speed of light 
at the equateur. But in fact, the limit [m → 0+] requires care, and if 
done correctly, it imposes a limit [v/c → 1−] to maintain a constant 
renormalized mass [7]; 

•	 another interesting example is an “infinite universe” limit and a “diluted 
universe” limit [56]. 

1.2 

Sequences 

1.2.a Sequences in a normed vector space 

We consider in this section a normed vector space (E , ‖·‖) and sequences of 
elements of E .5 

3 This is the principle of Hilbert’s infinite hotel.

4 Pointed out by Sin-Itiro Tomonaga [91].

5 We recall the basic definitions concerning normed vector spaces in Appendix A.
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DEFINITION 1.5 (Convergence of a sequence) Let (E , ‖·‖) be a normed vec­
tor space and (un)n∈N a sequence of elements of E , and let ℓ ∈ E . The 
sequence (un)n∈N converges to ℓ if, for any ǫ > 0, there exists an index 
starting from which un is at most at distance ǫ from ℓ: 

∀ǫ > 0 ∃N ∈ N ∀n ∈ N n ¾ N =⇒ ‖un − ℓ‖ < ǫ. 

Then ℓ is called the limit of the sequence (u )n∈������, and this is denotedn 

ℓ = lim u or u −−−→ ℓ. 
n→∞ n n n→∞ 

DEFINITION 1.6 A sequence (u )n∈N of real numbers converges to +∞ (resp.n
to −∞) if, for any M ∈ R, there exists an index N , starting from which all 
elements of the sequence are larger than M : 

∀M ∈ R ∃N ∈ N ∀n ∈ N n ¾ N =⇒ un > M (resp. un < M ). 

In the case of a complex-valued sequence, a type of convergence to infinity, 
in modulus, still exists: 

DEFINITION 1.7 A sequence (zn)n∈N of complex numbers converges to in­
finity if, for any M ∈ R, there exists an index N , starting from which all 
elements of the sequence have modulus larger than M : 

∀M ∈ R ∃N ∈ N ∀n ∈ N n ¾ N =⇒ |z | > M .n

Remark 1.8 There is only “one direction to infinity” in C. We will see a geometric interpreta­
tion of this fact in Section 5.4 on page 146. 

Remark 1.9 The strict inequalities ‖u − ℓ‖ < ǫ (or |u | > M ) in the definitions above (which,n n
in more abstract language, amount to an emphasis on open subsets) may be replaced by 
‖un − ℓ‖ ¶ ǫ, which are sometimes easier to handle. Because ǫ > 0 is arbitrary, this gives 
an equivalent definition of convergence. 

1.2.b Cauchy sequences 

It is often important to show that a sequence converges, without explicitly 
knowing the limit. Since the definition of convergence depends on the limit ℓ, 
it is not conveninent for this purpose.6 In this case, the most common tool 
is the Cauchy criterion, which depends on the convergence “of elements of the 
sequence with respect to each other”: 

6 As an exemple: how should one prove that the sequence (un)n∈N, with 
n
(−1)p+1 un = 

∑ 
4 , 

p=1 
p

converges? Probably not by guessing that the limit is 7π4/720. 
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DEFINITION 1.10 (Cauchy criterion) A sequence (un)n∈N in a normed vector 
space is a Cauchy sequence, or satisfies the Cauchy criterion, if 

∀ǫ > 0 ∃N ∈ N ∀p , q ∈ N q > p ¾ N =⇒ 


up − uq



 < ǫ 

or, equivalently, if 

∀ǫ > 0 ∃N ∈ N ∀p , k ∈ N p ¾ N =⇒ 


up+k − up



 < ǫ. 

A common technique used to prove that a sequence (un)n∈N is a Cauchy 
sequence is therefore to find a sequence (αp )p∈N of real numbers such that 

lim αp = 0 and ∀p , k ∈ N 


up+k − up



 ¶ αp . p→∞ 

PROPOSITION 1.11 Any convergent sequence is a Cauchy sequence. 

This is a trivial consequence of the definitions. But we are of course 
interested in the converse. Starting from the Caucy criterion, we want to be 
able to conclude that a sequence converges — without, in particular, requiring 
the limit to be known beforehand. However, that is not always possible: 
there exist normed vector spaces E and Cauchy sequences in E which do not 
converge. 

Example 1.12 Consider the set of rational numbers Q. With the absolute value, it is a normed 
Q-vector space. Consider then the sequence 

u0 = 3 u1 = 3.1 u2 = 3.14 u3 = 3.141 u4 = 3.1415 u5 = 3.14159 · · · 
(you can guess the rest7...). This is a sequence of rationals, which is a Cauchy sequence (the 
distance between up and up+k is at most 10

− p ). However, it does not converge in Q, since its 
limit (in R!) is π, which is a notoriously irrational number. 
The space Q is not “nice” in the sense that it leaves a lot of room for Cauchy sequences to 

exist without converging in Q. The mathematical terminology is that Q is not complete. 

DEFINITION 1.13 (Complete vector space) A normed vector space (E , ‖·‖) is 
complete if all Cauchy sequences in E are convergent. 

THEOREM 1.14 The spaces R and C, and more generally all finite-dimensional real 
or complete normed vector spaces, are complete. 

Proof 
First case: It is first very simple to show that a Cauchy sequence (un)n∈N of real num­

bers is bounded. Hence, according to the Bolzano-Weierstrass theorem (Theorem A.41, 
page 581), it has a convergent subsequence. But any Cauchy sequence which has a 
convergent subsequence is itself convergent (its limit being that of the subsequence), 
see Exercise 1.6 on page 43. Hence any Cauchy sequence in R is convergent. 

Second case: Considering C as a normed real vector space of dimension 2, we can 
suppose that the base field is R. 

7 This is simply un = 10
−n · ⌊10nπ⌋ where ⌊·⌋ is the integral part function. 

http:accordingtotheBolzano-Weierstrasstheorem(TheoremA.41
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Consider a basis B = (b1, . . . , bd ) of the vector space E . Then we deduce that E is 
complete from the case of the real numbers and the following two facts: (1) a sequence 
(xn)n∈N of vectors, with coordinates (xn

1, . . . , xn
d ) in B, converges in E if and only if 

each coordinate sequence (xkn)n∈N; and (2), if a sequence is a Cauchy sequence, then 
each coordinate is a Cauchy sequence. 

Both facts can be checked immediately when the norm of E is defined by ‖ x‖ = 
max|xk |, and other norms reduce to this case since all norms are equivalent on E . 

Example 1.15 The space L2 of square integrable functions (in the sense of Lebesgue), with the 
def 

norm ‖ f ‖2 L2 = 
∫
R 
| f |2, is complete (see Chapter 9). This infinite-dimensional space is used 

very frequently in quantum mechanics. 

Counterexample 1.16 Let E = K[X ] be the space of polynomials with coefficients in K (and 
arbitrary degree). Let P ∈ E be a polynomial, written as P = 

∑
αnX

n , and define its norm by 

‖P ‖ def = max |αi |. Then the normed vector space (E ,‖·‖) is not complete (see Exercise 1.7 on 
page 43). i∈N 

Here is an important example of the use of the Cauchy criterion: the fixed 
point theorem. 

1.2.c The fixed point theorem 

We are looking for solutions to an equation of the type 

f (x) = x , 

where f : E → E is an application defined on a normed vector space E , with 
values in E . Any element of E that satisfies this equation is called a fixed 
point of f . 

DEFINITION 1.17 (Contraction) Let E be a normed vector space, U a subset 
of E . A map f : U → E is a contraction if there exists a real number 
ρ ∈ [0, 1[ such that 



 f ( y)− f (x)


 ¶ ρ ‖ y − x‖ for all x , y ∈ U . In particular, 

f is continuous on U . 

THEOREM 1.18 (Banach fixed point theorem) Let E be a complete normed vec­
tor space, U a non-empty closed subset of E , and f : U → U a contraction. Then f 
has a unique fixed point. 

Proof. Chose an arbitrary u0 ∈ U , and define a sequence (un)n∈N for n ¾ 0 by 
induction by un+1 = f (un). Using the definition of contraction, an easy induction 
shows that we have 

up+1 − up



 ¶ ρp ‖u1 − u0‖ 
for any p ¾ 0. Then a second induction on k ¾ 0 shows that for all p ,k ∈ N, we have 



up+k − up


 ¶ (ρp + · · · + ρp+k−1) · ‖u1 − u0‖ ¶ 

ρp · ‖u1 − u0‖ ,1− ρ 

and this proves that the sequence (un)n∈N is a Cauchy sequence. Since the space E is 
complete, this sequences has a limit a ∈ E . Since U is closed, we have a ∈ U . 
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Now from the continuity of f and the relation un+1 = f (un), we deduce that 
a = f (a). So this a is a fixed point of f . If b is an arbitrary fixed point, the inequality 
‖a − b‖ = 

 f (a) − f (b )



 ¶ ρ ‖a − b‖ proves that ‖a − b‖ = 0 and thus a = b , 
showing that the fixed point is unique. 

Remark 1.19 Here is one reason why Banach’s theorem is very important. Suppose we have 
a normed vector space E and a map g : E → E , and we would like to solve an equation 
g(x) = b . This amounts to finding the fixed points of f (x) = g(x) + x − b , and we can hope 
that f may be a contraction, at least locally. This happens, for instance, in the case of the 
Newton method, if the function used is nice enough, and if a suitable (rough) approximation 
of a zero is known. 
This is an extremely fruitful idea: one can prove this way the Cauchy-Lipschitz theorem 

concerning existence and unicity of solutions to a large class of differential equations; one can 
also study the existence of certain fractal sets (the von Koch snowflake, for instance), certain 
stability problems in dynamical systems, etc. 

Not only does it follow from Banach’s theorem that certain equations have 
solutions (and even better, unique solutions!), but the proof provides an effec­
tive way to find this solution by a successive approximations: it suffices to fix 
u0 arbitrarily, and to define the sequence (un)n∈N by means of the recurrence 
formula un+1 = f (un); then we know that this sequence converges to the fixed 
point a of f . Moreover, the convergence of the sequence of approximations 
is exponentially fast: the distance from the approximate solution un to the 
(unknown) solution a decays as fast as ρn . An example (the Picard iteration) is 
given in detail in Problem 1 on page 46. 

1.2.d Double sequences 

Let (xn,k)(n,k)∈N2 be a double-indexed sequence of elements in a normed vector 
space E . We assume that the sequences made up of each row and each column 
converge, with limits as follows: 

x11 x12 x13 · · · −→ A1 
x21 x22 x23 · · · −→ A2 
x31 x32 x33 · · · −→ A3 
. . . . . . . . . 
↓ ↓ ↓ 
B1 B2 B3 

The question is now whether the sequences (An)n∈N and (Bk)k∈N themselves 
converge, and if that is the case, whether their limits are equal. In general, it 
turns out that the answer is “No.” However, under certain conditions, if one 
sequence (say (An)) converges, then so does the other, and the limits are the 
same. 

DEFINITION 1.20 A double sequence (xn,k)n,k converges uniformly with re­
spect to k to a sequence (Bk )k∈������ as n →∞ if 
∀ǫ > 0 ∃N ∈ N ∀n ∈ N ∀k ∈ N n ¾ N =⇒ 

��xn,k − Bk
�� < ǫ. 
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In other words, there is convergence with respect to n for fixed k, but in such 
a way that the speed of convergence is independent of k; or one might say that 
“all values of k are similarly behaved.” 
Uniform convergence with respect to n toward the sequence (An)n∈N is 

similarly defined. 

THEOREM 1.21 (Double limit) With notation as above, if the following three con­
ditions hold: 

➀ each row converges, and A = lim xn,k for all n ∈ N,n 
k→∞ 

➁ each column converges, and Bk = lim xn,k for all k ∈ N, 
n→∞ 

➂ the convergence is uniform either with respect to n or with respect to k; 

then the sequences (An)n∈N and (Bk)k∈N converge, lim An = lim Bk = ℓ. One n→∞ k→∞ 
says that the double sequence ( xn,k)n,k converges to the limit ℓ. 

Be aware that the uniform convergence condition ➂ is very important. 
The following examples gives an illustration: here both limits exist, but they 
are different. 

1 0 0 0 · · · → 0 
1 1 0 0 · · · → 0 
1 1 1 0 · · · → 0 
1 1 1 1 · · · → 0 
. . . . . . . . . . . . . . . 
↓ ↓ ↓ ↓ 
1 1 1 1 · · · 

1.2.e Sequential definition of the limit of a function 

DEFINITION 1.22 Let f : K → K ′ (where K,K ′ = R or C or any normed 
vector space), let a ∈ K, and let ℓ ∈ K ′ . Then f has the limit ℓ, or tends 
to ℓ, at the point a if we have 

∀ǫ > 0 ∃η > 0 ∀z ∈ K |z − a| < η =⇒ 
�� f (z)− ℓ

�� < ǫ. 

There are also limits at infinity and infinite limits, defined similarly: 

DEFINITION 1.23 Let f : K → K ′ (where K,K ′ = R or C). Let ℓ ∈ K ′ . 
Then f tends to ℓ at +∞, resp. at −∞ (in the case K = R), resp. at infinity 
(in the case K = C), if we have 

∀ǫ > 0 ∃A ∈ R ∀x ∈ R x > A =⇒ 
�� f (x)− ℓ

�� < ǫ, �
resp. ∀ǫ > 0 ∃A ′ ∈ R ∀x ∈ R x < A ′ =⇒ 

�� f (x)− ℓ
�� < ǫ 

resp. ∀ǫ > 0 ∃A ∈ R+ ∀z ∈ C |z| > A =⇒ 
�� f (z)− ℓ

�� < ǫ
�
. 
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Similarly, a function f : R → R tends to +∞ at +∞ if 

∀M > 0 ∃A ∈ R ∀x ∈ R x > A =⇒ f (x) > M , 

and finally a function f : C → C tends to infinity at infinity if 

∀M > 0 ∃A ∈ R ∀z ∈ C |z| > A =⇒ 
�� f (z)�� > M . 

In some cases, the definition of limit is refined by introducing a punctured 
neighborhood, i.e., looking at the values at points other than the point where 
the limit is considered: 

DEFINITION 1.24 Let f : K − {a} → K ′ (with K,K ′ = R or C and a ∈ K) 
and let ℓ ∈ K ′ . Then f ( x) converges to ℓ in punctured neighborhoods 
of a if 

∀ǫ > 0 ∃η ∈ R ∀z ∈ K 

(z 6 a and |z − a| < η) ⇒ 
�
f (z)− ℓ < ǫ

�
. 

This is denoted 

ℓ = lim f (z). 
z→a 
z 6=a 

This definition has the advantage of being practically identical to the defi­
nition of convergence at infinity. It is often better adapted to the physical 
description of a problem, as seen in Examples 1.1.b and 1.1.c on page 5 and 
the following pages. A complication is that it reduces the applicability of the 
theorem of composition of limits. 

THEOREM 1.25 (Sequential characterization of limits) Let f : K → K ′ be a 
function, and let a ∈ K and ℓ ∈ K ′ . Then f (x) converges to ℓ as x tends to a if 
and only if, for any convergent sequence (xn)n∈N with limit equal to a, the sequence� 
f (xn)

�
n∈N converges to ℓ. 

1.2.f Sequences of functions 

Consider now the case of a sequence of functions ( fn)n∈N each defined on a 
same subset X of R or C and taking values in R or C. Denote by ‖·‖∞ the 
“supremum norm”8: 

‖ f ‖∞ = sup
�� f (x)��. 

x∈X 

8 In fact, it is not a norm on the space of all functions, but only on the subspace of 
bounded functions. We disregard this subtlety and consider here that ‖·‖ takes values in R+ = 
R ∪ {+∞}. 
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The definition of convergence of real or complex sequences may be extended 
to functions in two ways: one is a local notion, called simple, or pointwise, 
convergence, and the other, more global, is uniform convergence.9 

DEFINITION 1.26 (Simple convergence) Let ( fn)n∈N be a sequence of func­
tions, all defined on the same set X , which may be arbitrary. Then the 
sequence ( fn)n∈������ converges simply (or: pointwise on X) to a function f 

x in X , the sequence 
� 
f (x)

�
defined on X if, for any n n∈N converges to f (x). 
This is denoted 

fn 
cv.s−−→ f . 

DEFINITION 1.27 (Uniform convergence) Let ( fn)n∈N be a sequence of func­
tions, all defined on the same set X , which may be arbitrary. Then the 
sequence ( f )n∈������ converges uniformly to the function f ifn 

∀ǫ > 0 ∃N ∈ N ∀n ∈ N n ¾ N =⇒ ‖ fn − f ‖∞ < ǫ. 

cv.u
This is denoted f −−→ f .n 

In other words, in the case where X is a subset of R, the graph of the 
function f is located inside a smaller and smaller band of constant width in 
which all the graphs of fn must also be contained if n is large enough: 

If we have functions fn : X → E , where (E , ‖·‖) is a normed vector space, 
we similarly define pointwise and uniform convergence using convergence 
in E ; for instance, ( fn)n∈N converges uniformly to f if 

∀ǫ > 0 ∃N ∈ N ∀n ∈ N n ¾ N =⇒ sup


 fn(x)− f (x)



 < ǫ. 
x∈X 

Remark 1.28 Uniform convergence is an important theoretical mathematical notion. If one 
wishes to compute numerically a function f using successive approximations fn (for instance, 
partial sums of a series expansion), then to get an error of size at most ǫ for the value f (x1) 
of f at some given point x1, it suffices to find N1 such that 

�� fn(x1) − f (x1)
�� ¶ ǫ for any 

n ¾ N1. Similarly, if the value of f at other points x2, x3, . . . , xp is needed, it will be enough 
to find corresponding integers N2, N3, . . . , Np . However, if it is not known beforehand at 
which points the function will evaluated, it will be necessary to know an integer N such that�� fn(x)− f (x)

�� ¶ ǫ for all n ¾ N and for all x ∈ R. Uniform convergence is then desirable. 

9 The concept of uniform convergence is due to George Stokes (see page 472) and Philipp 
Seidel (1821—1896), independently. 
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It is clear that uniform convergence implies pointwise convergence, but the 
converse is not true. 

Example 1.29 Define a sequence ( fn)n¾1 a functions on R by 

nx if x ∈ [0, 1/n] ,


fn(x) = 

2− nx if x ∈ [1/n, 2/n] ,

0 if x ∈ [2/n, 1] .


The reader will have no trouble proving that ( fn)n¾1 converges pointwise to the zero function. 
However, the convergence is not uniform, since we have ‖ fn − f ‖∞ = 1 for all n ¾ 1. 

Example 1.30 The sequence of functions fn : R → R defined for n ¾ 1 by 
x 

f : x 7−→ sin
�
x + 

� 
n n 

converges uniformly to f : x 7→ sin x on the interval [0, 2π], and in particular it converges 
pointwise on this interval. However, although the sequence converges pointwise to the sine 
function on R, the convergence is not uniform on all of R. Indeed, for n ¾ 1, we have 

x 

1 

1/n 2/n 1 

π 
fn 
� nπ � 

= sin
� nπ 

+ 
� 

and f 
� nπ � 

= sin
� nπ � 

,
2 2 2 2 2 

and those two values differ by 1 in absolute value. However, one can check that the convergence 
is uniform on any bounded segment in R. 

� Exercise 1.1 Let g(x) = e−x2 and fn(x) = g(x − n). Does the sequence ( fn)n∈N converge 
pointwise on R? Does it converge uniformly? 

Remark 1.31 In the case where the functions f are defined on a subset of R with finite n 
measure (for instance, a finite segment), a theorem of Egorov shows that pointwise convergence 
implies uniform convergence except on a set of arbitrarily small measure (for the definitions, 
see Chapter 2). 

Remark 1.32 There are other ways of defining the convergence of a sequence of functions. In 
particular, when some norm is defined on a function space containing the functions fn , it is 
possible do discuss convergence in the sense of this norm. Uniform convergence corresponds 
to the case of the ‖·‖∞ norm. In Chapter 9, we will also discuss the notion of convergence in 
quadratic mean, or convergence in L2 norm, and convergence in mean or convergence in L1 norm. 
In pre-Hilbert spaces, there also exists a weak convergence, or convergence in the sense of scalar 
product (which is not defined by a norm if the space is infinite-dimensional). 

A major weakness of pointwise convergence is that it does not preserve 
continuity (see Exercise 1.10 on page 44), or limits in general (Exercise 1.12). 
Uniform convergence, on the other hand, does preserve those notions. 

THEOREM 1.33 (Continuity of a limit) Let ( fn)n∈N be a sequence of functions de­
fined on a subset D in K (or in a normed vector space), with values in an arbitrary 
normed vector space. Assume that the sequence ( fn)n∈N converges uniformly to a func­
tion f . 

i) Let a ∈ D be such that all functions fn are continuous at the point a. Then f 
is also continuous at the point a. 
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ii) In particular, if each fn is continuous on D, then the limit function f is also 
continuous on D . 

This property extends to the case where a is not in D , but is a limit point 
of D . However, it is then necessary to reinforce the hypothesis to assume that 
the functions fn have values in a complete normed vector space. 

THEOREM 1.34 (Double limit) Let D be a subset of R (or of a normed vector 
space) and let x0 ∈ D be a limit point10 of D . Let ( fn)n∈N be a sequence of functions 
defined on D with values in a complete normed vector space E . Assume that, for all 
n, the function fn has a limit as x tends to x0. Denote ℓn = limx→x0 fn(x). 
If ( fn)n∈N converges uniformly to a function f , then 

i) f (x) has a limit as x → x0; 

ii) (ℓn)n∈N has a limit as n →∞; 
iii) the two limits are equal: lim f (x) = lim ℓ . 

x→x0 n→∞ n

In other words: lim lim f (x) = lim lim f (x). 
x→x0 n→∞ n n→∞ x→x0 n

If we want a limit of differentiable functions to remain differentiable, 
stronger assumptions are needed: 

THEOREM 1.35 (Differentiation of a sequence of functions) Let I be an inter­
val of R with non-empty interior, and let ( fn)n∈N be a sequence of functions defined 
on I with values in R, C, or a normed vector space. Assume that the functions fn are 
differentiable on I , and moreover that: 

i) the sequence ( fn)n∈N converges pointwise to a function f ; 

′ ii) the sequence ( fn )n∈N converges uniformly to a function g . 

′ Then f is differentiable on I and f = g. 

Remark 1.36 If the functions take values in R or C or more generally any complete normed 
vector space, it is possible to weaken the assumptions by asking, instead of (i), that the sequence 
( fn(x0)) converges at a single point x0 ∈ I . Assumption (ii) remains identical, and the conclu­
sion is the same: ( fn)n∈N converges uniformly to a differentiable function with derivative equal 
to g . 

Counterexample 1.37 The sequence of functions given by 

n

f : x 7−→ 
8 ∑ sin2(nx) 

n π 4n2 − 1
k=1 

10 See Definition 4.52 on page 106; the simplest example is D = ]a, b ] and x0 = a. 
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converges uniformly to the function f : x 7→ |sin x | (see Exercise 9.3 on page 270), but the 
sequence of derivatives does not converge uniformly. The previous theorem does not apply, 
and indeed, although each fn is differentiable at 0, the limit f is not. 

Remark 1.38 It happens naturally in some physical situations that a limit of a sequence of 
functions is not differentiable. In particular, in statistical thermodynamics, the state functions 
of a finite system are smooth. However, as the number of particles grows to infinity, disconti­
nuities in the state functions or their derivatives may appear, leading to phase transitions. 

Uniform convergence is also useful in another situation: when trying to 
exchange a limit (or a sum) and an integration process. However, in that 
situation, pointwise convergence is often sufficient, using the powerful tools 
of Lebesgue integration (see Chapter 2). 

THEOREM 1.39 (Integration on a finite interval) Let ( fn)n∈N be a sequence of 
integrable functions (for instance, continuous functions), which converges uniformly to 
a function f on a finite closed interval [a, b] ⊂ R. Then f is integrable on [a, b] 
and we have ∫ b ∫ b 

lim f (x)dx = f (x)dx . 
n→∞ n

a a 

Example 1.40 This theorem is very useful, for instance, when dealing with a power series 
expansion which is known to converge uniformly on the open disc of convergence (see Theo­
rem 1.66 on page 34). So, if we have f (x) = 

∑∞ xn for |x | < R, then for any x such that n=0 an|x | < R, we deduce that 
∞

n xn+1
∫ x
f (s)ds = 

∑ a
. 

n + 10 n=0 

To establish that a sequence converges uniformly, in practice, it is necessary 
to compute ‖ fn − f ‖∞, or rather to bound this expression by a quantity which 
itself converges to 0. This is sometimes quite tricky, and it is therefore useful 
to know the following two results of Dini:11 

THEOREM 1.41 (Dini) Let K be a compact subset of Rk , for instance, a closed ball. 
Let ( fn)n∈N be an increasing sequence of continuous functions converging pointwise 
on K to a continuous function f . Then the sequence ( fn)n∈N converges uniformly to f 
on K . 

THEOREM 1.42 (Dini) Let I = [a, b] be a compact interval in R, and let ( fn)n∈N 
be a sequence of increasing functions from I to R that converges pointwise on I to a 
continous function f . Then ( fn)n∈N converges uniformly on I . 

11 Ulisse Dini (1845—1918) studied in Pisa and Paris before taking a position in Pisa. His 
work concerned the theory of functions of a real variable, and he contributed to the early 
development of functional analysis. 
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Remark 1.43 Be careful to distinguish between an increasing sequence of functions and 
a sequence of increasing functions. The former is a sequence ( fn)n∈N of real-valued 
functions such that fn+1(x) ¾ fn(x) for any x ∈ R and n ∈ N. The latter is a 

sequence of real-valued functions defined on K ⊂ R such that for any x , y ∈ K : 
x ¶ y =⇒ fn(x) ¶ fn( y). 

As mentioned briefly already, it is possible with Lebesgue’s dominated 
convergence theorem to avoid requiring uniform convergence to exchange an 
integral and a limit, as in Theorem 1.39. See Chapters 2 and 3 for details on 
this theory. 

1.3 

Series 

1.3.a Series in a normed vector space 

We first recall the definition of convergence and absolute convergence of a 
series in a normed vector space. 

DEFINITION 1.44 (Convergence of a series) Let (an)n be a sequence with val­
ues in a normed vector space. Let (Sn)n∈N denote the sequence of partial 
sums 

n
def 

Sn = 
∑ 
ak . 

k=0 

• The series � a converges, and its sum is equal to A if the sequence n 
(Sn)n∈N converges to A . This is denoted 

∞
a = A .

∑ 
n 

n=0 

• The series � an converges absolutely if the series 
∑ ‖an‖ converges 

in R. 

• In particular, a series∑ 
an of real or complex numbers converges abso­

lutely if the series 
∑ |a | converges in R.n

As in the case of sequences, there exists a Cauchy criterion for convergence 
of series12: 

12 This criterion was stated by Bernhard Bolzano (see page 581) in 1817. But Bolzano was 
isolated in Prague and little read. Cauchy presented this criterion, without proof and as an 
obvious fact, in his analysis course in 1821. 
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THEOREM 1.45 (Cauchy criterion) If a series 
∑ 
un with values in a normed vec­

tor space E converges, then it satisfies the Cauchy criterion: 
q

∀ǫ > 0 ∃N ∈ N ∀p , q ∈ N (q > p ¾ N ) =⇒ 






∑ 
un 





 < ǫ, 
n= p 

or in other words: 

lim 
∑ 

u = 0. 
p ,q→∞ n 

p¶n¶q 

Conversely, any series which satisfies the Cauchy criterion and takes values in R, 
C, any finite-dimensional normed vector space, or more generally, any complete normed 
vector space, converges. 

From this the following fundamental theorem is easily deduced: 

THEOREM 1.46 Any absolute convergent series 
∑ 
an with values in a complete 

normed vector space is convergent. 
In particular, any absolutely convergent series of real or complex numbers is conver­

gent. 

Proof. Let 
∑ 
un be an absolutely convergent series. Although we can write 

k k




∑ 
u





 ¶ 
∑ 
‖u ‖ ,n n

n=0 n=0 

nothing can be deduced from this, because the right-hand side does not tend to zero. 
But we can use the Cauchy critetion: for all p , q ∈ N, we have of course 

q q




∑ 
u





 ¶ 
∑ 
‖u ‖ ,n n

n= p n= p 

and since 
∑ ‖un‖ satisfies the Cauchy criterion, so does 

∑ 
un. Since un lies in a 

complete space by assumption, this means that the series 
∑ 
un is indeed convergent. 

1.3.b Doubly infinite series 

In the theory of Fourier series, we will have to deal with formulas of the type 

+∞∫ 1 �� f (t)��2 dt = 
∑ 
|cn|2 . 

0 n=−∞ 

To give a precise meaning to the right-hand side, we must clarify the meaning 
of the convergence of a series indexed by integers in Z instead of N. 

DEFINITION 1.47 A doubly infinite series 
� 
n∈������ an , with an is a normed 

vector space, converges if 
∑ 
an and 

∑ 
a−n are both convergent, the index 

ranging over N in each case. Then we denote 
+∞ ∞ ∞

def
∑ 
an = 

∑ 
an + 

∑ 
a−n 

n=−∞ n=0 n=1 



����
�∑ �
���

∑ ∑ ∑ 

∑ ∑ ∑ 

∑ ∑ ∑ 
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and say that this is the sum of 
∑
n∈Z an . 

In other words, a series of complex numbers 
∑
n∈Z an converges to ℓ if and 

only if, for any ǫ > 0, there exists N > 0 such that 
j � 

− ℓ
for any i ¾ N and j ¾ N ,
 < ǫ.
an 
n=−i 

infinite series 
∑
n∈Z a converges. 

for all k (and so this sequence does converge as k tends to infinity), but the series 
∑
n∈Z a

i jIt is crucial to allow the upper and lower bounds and to be indepen-Remark 1.48 ∑kdent. In particular, if the limit of exists, it does not follow that the doublya−k nn=

n ∑k6For instance, take 1 for 0 and 0. Then we have 0/a n n a a= = == 0 −kn nn=

n∑ ∑
diverges according to the definition, because each of the series and (over 0) is¾a a n−n n 

divergent. 

1.3.c Convergence of a double series 

As in Section 1.2.d, let be a family of real numbers indexed by( ) twoa ∈i j i j N,

∑ 

integers. For any p , q ∈ N, we have 
p q q p

ai j ai j ,=


∞ ∞ ∞ ∞∑ 

i=1 j=1 j=1 i=1 

since each sum is finite. On the other hand, even if all series involved are 
convergent, it is not always the case that 

ai j and ai j , 

. . . 

. . . 

. . . 

i=1 j=1 j=1 i=1 

as the following example shows: 

 

∞ ∞ ∞ ∞∑ 

where we have (note that i is the row index and j is the column index): 





1 −1 0 0 0 0

0 1 −1 0 0 0


(ai j ) 0 0 1 −1 0 0
=


. . . . . .. . . . . .. . . . . . 

0 but
 1.
ai j ai j =
 =



 

i=1 j=1 j=1 i=1 

We can find an even more striking example by putting 

. . . 

. . . 

. . . 





1 −1 0 0 0 0

0 2 −2 0 0 0


(ai j ) 0 0 3 −3 0 0
=


. . . . . .. . . . . .. . . . . . 
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in which case 
∞ ∞ ∞ ∞ ∞ ∞∑∑ 

ai j = 
∑ 
0 = 0 but 

∑∑ 
ai j = 

∑ 
1 = +∞. 

i=1 j=1 i=1 j=1 i=1 j=1 

1.3.d Conditionally convergent series, 
absolutely convergent series 

DEFINITION 1.49 A series 
∑ 
an with an in a normed vector space is condi­

tionnally convergent if it is convergent but not absolutely convergent. 

DEFINITION 1.50 We denote by S the group of permutations, that is, the 
group of bijections from N to N, and we denote by Sn the finite group of 
permutations of the set {1, . . . , n}. 
DEFINITION 1.51 A series 

�
x is commutatively convergent if it is con-n 

vergent with sum X , and for any permutation ϕ ∈ S, the rearranged series ∑ 
xϕ(n) converges to X . 

Is a convergent series necessarily commutatively convergent? In other words, 
is it legitimate to change arbitrarily the order of the terms of a convergent series? 
At first sight, it is very tempting to say “Yes,” almost without thinking, 

since permuting terms in a finite sum has no effect on the result. The problem 
is that we have here an infinite sum, not a finite sum in the algebraic sense. 
So there is a limiting process involved, and we will see that this brings a 
very different picture: only absolutely convergent series will be commutatively 
convergent. So, if a series is conditionally convergent (convergent but not 
absolutely so), changing the order of the terms may alter the value of the sum 
— or even turn it into a divergent series. 

THEOREM 1.52 Let
∑ 
an be a conditionnally convergent series, with an ∈ R. Then 

for any ℓ ∈ R, there exists a permutation ϕ ∈ S such that the rearranged series ∑ 
aϕ(n) converges to ℓ. 

In fact, for any a, b ∈ R, with a ¶ b , there exists a permutation ψ ∈ S such that 
the set of limit points of the sequence of rearranged partial sums 

�∑
k
n 
=0 aψ(k)

� 
is 

n∈N 
the interval [a, b]. 

Proof. We assume that 
∑ 
an is conditionnally convergent. 

◮ First remark: there are infinitely many positive values and infinitely many negative values 
of the terms an of the series. Let αn denote the sequence of non-negative terms, in the 
order they occur, and let βn denote the sequence of negative terms. 
Here is an illustration: 

u : 1 3 2 −4 −1 2 −1 0 2 · · · n 
α1 α2 α3 β1 β2 α4 β3 α5 α6 · · · 

◮ Second remark: both series 
∑ 
αn and 

∑ 
βn are divergent, their partial sums con­

verging, respectively, to +∞ and −∞. Indeed, if both series were to converge, the 
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series 
∑ 
an would be absolutely convergent, and if only one were to converge, then ∑ 

an would be divergent (as follows from considering the sequence of partial sums). 
◮ Third remark: both sequences (αn)n∈N and (βn)n∈N tend to 0 (since (an)n∈N tends 
to 0, as a consequence of the convergence of 

∑ 
an). 

Now consider ℓ ∈ R. Let Sn denote the sequence of sums of values of α and β 
which is constructed as follows. First, sum all consecutive values of αn until their sum 
is larger than ℓ; call this sum S1. Now add to S1 all consecutive values of βn until 
the resulting sum S1 + β1 + · · · is smaller than ℓ; call this sum S2. Then start again 
adding from the remaining values of αn until getting a value larger than ℓ, called S3, 
and continue in this manner until the end of time. 
Now notice that: 

•	 Since at each step we add at least one value of α or one of β, it is clear that 
all values of α will be used sooner or later, as well as all values of β, that is, 
when all is said and done, all values of an will have been involved in one of the 
sums S .n

•	 Since, at each step, the distance |ℓ − S | is at most equal to the absolute value n
of the last value of α or β considered, the distance from Sn to ℓ tends to 0 as n 
tends to infinity. 

From this we deduce that the sequence (Sn) is a sequence of partial sums of a 
rearrangement of the series 

∑ 
an , and that it converges to ℓ. Hence this proves that by 

simply changing the order of the terms, one may cause the series to converge to an arbitrary sum. 
Let now a, b ∈ R with a < b (the case a = b being the one already considered). 

• If a and b are both finite, we can play the same game of summation as before, but 
this time, at each step, we either sum values of αn until we reach a value larger than b , 
or we sum values of β until the value is less than a.n • If b = +∞ and a is finite, we sum from a to above a+1, then come back to below 
a, then sum until we are above a + 2, come back below a, etc. Similarly if a = −∞ 
and b is finite. 
• If a = −∞ and b = +∞, start from 0 to go above 1, then go down until reaching 
below −2, then go back up until reaching above 3, etc. 

Example 1.53 Consider the sequence (an)n∈N∗ with general term an = (−1)n+1/n. It follows 
from the theory of power series (Taylor expansion of log(1+ x)) that the series

∑ 
an converges 

and has sum equal to log 2. If we sum the same values an by taking one positive term followed 
by two negative terms, then the resulting series converges to 1

2
log 2. Indeed, if (Sn)n∈N and 

′ (S n)n∈N denote the sequence of partial sums of the original and modified series, respectively, 
then for n ∈ N we have 

S2n = 1− 1 + 1 − 1 + · · · + 1 − 1 
2 3 4 2n−1 2n 

and S3
′ 
n = 1− 1 − 1 + 1 − 1 − 1 + · · · + 1 − 1 − 1 

2 4 3 6 8 2n−1 4n−2 4n︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ 

= 1 − 1 + 1 − 1 + · · · + 1 − 1 = 1 S2n . 2 4 6 8 4n−2 4n 2 

As an exercise, the reader can check that if one takes instead two positive terms followed by 
one negative terms, the resulting series converges with a value equal to 3 log 2. 

2 
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The following result shows that, on the other hand, one can rearrange at 
will the order of the terms of an absolutely convergent series. 

THEOREM 1.54 A series of complex numbers is commutatively convergent if and only 
if it is absolutely convergent. 

Proof. Assume first that the terms of the series are real numbers. The theorem above 
shows that if 

∑ 
an is commutatively convergent, it must be absolutely convergent. 

Conversely, assume the series is absolutely convergent and let ℓ denote its sum. Let ψ 
be any permutation. By convergence of the series, there exists N ¾ 1 such that 

n���∑ 
ak − ℓ

��� < ǫ 
k=1 

for n ¾ N . For each such n ¾ N , there exists N ′ such that the set {ψ(1), . . . ,ψ(N ′ )}
contains {1, . . . ,n} (it suffices that N ′ be larger than the maximum of the images of 1, 
. . . , N by the inverse permutation ψ−1). Then for any m ¾ N ′, we have 

m n����
∑ 

− ℓ

���� ¶ 

����
∑ ����+

∑ 
|ak | ¶ ǫ +

∑ 
|ak |,aψ(k) ak − ℓ

k=1 k=1 k>n k>n 

since the set {ψ(1), . . . ,ψ(m)} contains {1, . . . ,n}, and possibly additional values which 
are all larger than n. The absolute convergence makes its appearance now: the last sum 

′′ on the right is the remainder for the convergent series 
∑ |ak |, and for n ¾ N it is 

therefore itself smaller than ǫ. Since, given ǫ, we can take n = N ′′ and find the value 
N ′ from it, such that 

m����
∑ 
aψ(k) − ℓ

���� ¶ 2ǫ 
k=1 

for m ¾ N ′, and so we have proved that the rearranged series converges with sum equal 
to ℓ. 
If the terms of the series are complex numbers, it suffices to apply the result for real 

series to the series of real and imaginary parts. 

The possibility of rearranging at will the order of summation explains the 
importance of absolutely convergent series13 . 

Remark 1.55 In statistical mechanics, there are so-called diagrammatic methods to compute the 
values of certains quantities, such as pressure or mean-energy, at equilibrium. Those methods 
are based on rearrangements of the terms of certain series, summing “by packets” in particular. 
Those methods are particularly useful when the original series is not absolutely convergent. This 
means that all results obtained in this manner must be treated carefully, if not suspiciously. 
They belong to the gray area of exact (at least, this is what everyone believes!) results, but which 
are not rigorous. (It is of course much more difficult to obtain results which can be judged with 
mathematical standards of rigor; the reader is invited to read the beautiful papers [63, 64] for 
convincing illustrations.) 

13 Peter Gustav Lejeune-Dirichlet showed in 1837 that a convergent series with non-negative 
terms is commutatively convergent. In 1854, Bernhard Riemann wrote three papers in order to 
obtain a position at the university of Göttingen. In one of them, he describes commutatively 
convergent series in the general case. However, another paper was selected, concerning the 
foundations of geometry. 
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1.3.e Series of functions 

We can define pointwise and uniform convergence of series of functions just 
as was done for sequences of functions. 

DEFINITION 1.56 (Pointwise convergence) Let X be an arbitrary set, (E , ‖·‖) 
a normed vector space. A series 

∑ 
fn of functions fn : X → E converges 

pointwise to a function F : X E if, for any x ∈ X , the series 
∑ 
fn(x) 

converges to F (x) in E , that is, if
→ 

∀ǫ > 0 ∀x ∈ X ∃N ∈ N ∀n ∈ N 
n

n ¾ N =⇒ fk(x)− F (x) < ǫ. 
k=1 

The function F is called the pointwise, or simple, limit of the series 
∑ 
fn, 

cv.s.
and this is denoted 

∑ 
fn −−→ F . 

DEFINITION 1.57 (Uniform convergence) Let X be an arbitrary set, (E , ‖·‖) 
a normed vector space. A series 

∑ 
fn of functions fn : X → E converges 

uniformly to a function F : X E if the sequence of partial sums of the→
series converges uniformly to F , that is, if 

∀ǫ > 0 ∃N ∈ N ∀x ∈ X ∀n ∈ N 
n

n ¾ N =⇒ fk(x)− F (x) < ǫ. 
k=1 

cv.u
This is denoted

∑ 
fn −−→ F . This amounts to 

n
lim 






∑ 
fk − F





 = 0 where ‖g‖∞ = sup


g(x)

. 

n→∞ k=1 ∞ x∈X 

DEFINITION 1.58 (Absolute convergence) Let X be an arbitrary set, (E , ‖·‖) 
a normed vector space. A series 

∑ 
fn of functions fn : X → E converges 

absolutely if the series 
∑ ‖ fn‖∞ converges, where 

‖ fn‖∞ = sup


 fn(x)



. 
x∈X 

The following theorem is the most commonly used to prove uniform 
convergence of a series of functions: 

THEOREM 1.59 Any absolutely convergent series with values in a complete normed 
vector space is uniformly convergent, and hence pointwise convergent. 

Corresponding to the continuity and differentiability results for sequences of 
functions, we have: 
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THEOREM 1.60 (Continuity and differentiability of a series of functions) 
Let D be a subset of R or of a normed vector space. Let ( fn)n∈N be a sequence of 
functions fn : D → E, where 

�
E , ‖·‖ � is some normed vector space, for instance, R 

or C. Assume that the series 
∑ 
fn converges pointwise to a function F . 

i) If each fn is continuous on D , and if the series 
∑ 
fn converges uniformly on 

D , then F is continuous on D . 

′ii) If D is an interval of R, each fn is differentiable on D , and the series 
∑ 
fn 

converges uniformly, then F is differentiable and we have 
∞

′ ′ F	 = 
∑ 
f .n

n=0 

1.4 

Power series, analytic functions 

Quite often, physicists encounter series expansions of some function. 
These expansions may have different origins: 

•	 the superposition of many phenomena (as in the Fabry-Perot interfer­
ometer); 

•	 perturbative expansions, when exact computations are too difficult to 
perform (e.g., hydrodynamics, semiclassical expansions, weakly relativis­
tic expansions, series in astronomy, quantum electrodynamics, etc.); 

•	 sometimes the exact evalution of a function which expresses some phys­
ical quantity is impossible; a numerical evaluation may then be per­
formed using Taylor series expansions, Fourier series, infinite product 
expansions, or asymptotic expansions. 

We first recall various forms of the Taylor formula. The general idea is 
that there is an approximate expression 

f (x) ≈ f (a) + (x − a) f ′ (a) +
(x − a)2 

f ′′ (a) + · · · + (x − a)k
f (k)(a)

2! k! 

for a function f which is at least k times differentiable on an interval J , with 
values in some normed vector space 

�
E , ‖·‖ �, and for a given point a ∈ J , 

where x lies is some neighborhood of a. 
The question is to make precise the meaning of the symbol “≈”! 
Define Rk(x) to be the difference between f (x) and the sum on the right-

hand side of the above expression; in other words, we have 

k (x − a)n 
f (x) = 

∑ 
f (n)(a) + Rk(x) = Tk(x) + Rk(x) n! n=0 
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Brook Taylor (1685—1731), English mathematician, was a student 
at Cambridge, then member and secretary of the prestigious Royal 
Society, a venerable institution dedicated to the advancement of 
Science. He wrote the famous formula 

f (a + ǫ) = f (a) + ǫ f ′ (a) + ǫ2 f ′′ (a) + · · · 
2 

without considering the issue of convergence. He was also inter­
ested in the physical and mathematical aspects of vibrating strings. 

by definition. Of course, we hope that the Taylor remainder Rk( x) is a 
“small quantity,” so that we may approximate the value of f (x) by the value 
of the Taylor polynomial of order k at x, that is, by Tk(x). There are 
different ways in which this remainder may become small: 

• one may let x tend to a (for a fixed value of k); 
• or let k tend to infinity (for a fixed value of x ). 

The Taylor-Lagrange and Taylor-Young formulas are relevant for the first case, 
while the second belongs to the theory of power series. 

1.4.a Taylor formulas 

THEOREM 1.61 (Taylor formula with integral remainder) Let J be an interval 
of R, and 

�
E , ‖·‖ � a normed vector space. Let f : J → E be a function of C k class 

on J , which is piecewise of C k+1 class on J . For any a and x ∈ J , we have 

k (x − a)n 
∫ x (x − t)k 

f (x) = 
∑ 

f (n)(a) + f (k+1)(t)dt . 
n! k! n=0 a 

THEOREM 1.62 (Taylor-Lagrange formula) Let f : J → R be a real-valued 
function of C k class on an interval J of R, which is k + 1 times differentiable in the 
interior of J . Let a ∈ J . Then, for any x ∈ J , there exists θ ∈ ]0, 1[ such that 

k (x − a)n (x − a)k+1 
f (x) = 

∑ 
f (n)(a) + f (k+1)

�
a + θ(x − a)

�
. 

n! (k + 1)! n=0 

Remark 1.63 This formula is only valid for real-valued functions. However, the following 
corollary is also true for functions with complex values, or functions with values in a normed 
vector space. 
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COROLLARY 1.64 (Taylor-Lagrange inequality) Let f : J → E be a function of 
C k class on an interval J of R, with values in a normed vector space E . Assume f 
is k + 1 times differentiable in the interior of J . Let a ∈ J . Then for any x ∈ J we 
have 

k (x − a)n 






|x − a|k+1



 f (x)− 
∑ 

f (n)(a) ¶ sup


 f (k+1)(t)

E . 

n=0 n! E (k + 1)! t∈ J 

THEOREM 1.65 (Taylor-Young formula) Let f be a function which is k times 
differentiable on an interval J of R, with values in a normed vector space E . Let 
a ∈ J . Then we have 

k

f (x)− 
∑ (x − a)n

f (n)(a) = o 
�
(x − a)k

�
. 

n! x→a 
n=0 

1.4.b Some numerical illustrations 

Suppose we want to compute numerically some values of the inverse tangent 
function arctan, which is of course infinitely differentiable on R. It is easy to 
compute the values of the successive derivatives of this function at 0, and we 
can write down explicitly the Taylor polynomial at 0 of arbitrary order: this 
gives the expression 

k (−1)n 2n+1arctan x = 
∑ 

x + Rk(x),2n + 1 n=0 

for the Taylor formula of order 2n + 1 (notice that only odd powers of x 
appear, because the inverse tangent function is odd). 
If we represent graphically those polynomials with k = 0, 1, 4, 36 (i.e., of 

order 1, 5, 9, and 18, respectively), with the graph of the function itself for 
comparison, we obtain the following: 

1 1 1 1 

0.5 0.5 0.5 0.5 

–1 –0.5 0.5 1 –1 –0.5 0.5 1 –1 –0.5 0.5 1 –1 –0.5 0.5 1 

x x x x 

–0.5 –0.5 –0.5 –0.5 

–1 –1 –1 –1 

order 1 order 5 order 9 order 37 

The following facts appear: 

• on each graph (i.e., for fixed k), the Taylor polynomial and the inverse 
tangent functions get closer and closer together as x approaches 0; 
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•	 for a fixed real number x ∈ [−1, 1] (for instance 0.8), the values at x of 
the Taylor polynomial of increasing degree get closer and closer to the 
value of the function as k increases; 

•	 on the other hand, for a real number x such that |x | > 1, disaster 
strikes: the larger k is, the further away to arctan x is the value of the 
Taylor polynomial! 

The first observation is simply a consequence of the Taylor-Young formula. 
The other two deserve more attention. It seems that the sequence (Tk)k∈N of 
the Taylor polynomials converges on [−1, 1] and diverges outside.14 However, 
the function arctan is perfectly well-defined, and very regular, at the point x = 1; it 
does not seem that anything special should happen there. In fact, it is possible 
to write down the Taylor expansion centered at a = 1 instead of a = 0 (this 
is a somewhat tedious computation15), and (using approximations of the same 
order as before), we obtain the following graphs: 

2 2 2 2 

1 1 1 1 

–1 1 2 3 –1 1 2 3 –1 1 2 3 –1 1 2 3 

x x x x 

–1 –1	 –1 –1 

We can see the same three basic facts, except that convergence seems to be 
restricted now to the interval 

�
1−p 

2, 1+ 
p 
2
�
. 

In order to understand why such intervals occur, it is necessary to dwell fur­
ther on the theory of power series (see below) and especially on holomorphic 
functions of a complex variable (in particular, Theorem 4.40 on page 101). 
We will only state here that the function arctan can be continued naturally 
to a function on the complex plane (arctan z0 is defined as the value of the 
integral of the function 1/(1+ z2) on a certain path16 joining the origin to z0. 
The function thus obtained is well-defined, independently of the chosen path, 
up to an integral multiple of π17 and is a well-defined function on C minus 
the two single points where 1 + z2 vanishes, namely i and −i. Then, one 
shows that for such a function, the sequence of Taylor polynomials centered 

14 To be honest, it is difficult to ascertain from the graphs above if the interval to consider is 
[−1, 1] or ]−1, 1[, for instance. The general theory of series shows that (Tn(x))n∈N converges 
quickly if |x | < 1 and very slowly if |x | = 1. 
15 The n-th coefficient of the polynomial is (−1)n+1sin(nπ/4)2−n/2/n and the constant term 
is π/4. 
16 This notion of integral on a path is defined by the formula (4.2) page 94. 
17 This is a consequence of the residue theorem 4.81 on page 115. 
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at a converges on the open disc centered at a with radius equal to the distance 
from a to the closest singulirity (hence the radius is |1− 0| = 1 in the first 
case of Taylor expansions at a = 0, and is |1− i| = 2 in the second case). 

1.4.c Radius of convergence of a power series 

A power series centered at z0 is any series of functions of the type 

∞
z 7−→ 

∑ 
an (z − z0)

n , 
n=0 

where (an)n∈N is a given sequence of real or complex numbers, which are 
sometimes called the coefficients of the power series. 

THEOREM 1.66 (Radius of convergence) Let 
∑ 
an(z − z0)

n be a power series 
+

centered at z0. The radius of convergence is the element in R defined by 

def 
R = sup

�
t ∈ R+ ; (an tn)n∈N is bounded

	
. 

The power series converges absolutely and uniformly on any compact subset in the disc 
def 

B(z0 ; R) = 
�
z ∈ C ; |z − z0| < R

	
, in the complex plane C, and it diverges for 

any z ∈ C such that |z| > r . For |z| = r , the series may be convergent, conditionally 
convergent, or divergent at z. 

Note that “absolute convergence” here refers to absolute convergence as a 
series of functions, which is stronger than absolute convergence for every z 
involved: in other words, for any compact set D ⊂ B(z0 ; R), we have 

∞∑ 
sup |a zn| < +∞.n

n=0 z∈D
∑∞

Example 1.67 The power series − log(1− z) = n=1 z
n/n converges for any z ∈ C such that 

|z| < 1 and diverges if |z| > 1 (the radius of convergence is R = 1). Moreover, this series is 
divergent at z = 1, but conditionnally convergent at z = −1 (by the alternate series test), and 
more generally, it is conditionnally convergent at z = e iθ for any θ /∈ 2πZ (this can be shown 
using the Abel transformation, also known as “summation by parts”). 

DEFINITION 1.68 (Power series expansion) Let Ω be an open subset in R 
or C. A function f : Ω → C defined on Ω has a power series expansion 
centered at some z0 ∈ Ω if there exist an open subset V ⊂ Ω containing z0 
and a sequence (an)n∈N of complex numbers such that 

∞
∀z ∈ V f (z) = 

∑ 
an(z − z0)

n . 
n=0 

The radius of convergence of a power series depends only weakly on the 
precise values of the coefficients, so, for instance, if F = P /Q is a rational 
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function with no pole in N, the power series 
∑ 
F (n) an z

n and 
∑ 
an z

n have 
the same radius of convergence. From this and Theorem 1.60, it follows in 
particular that a power series can be differentiated term by term inside the 
disc of convergence: 

THEOREM 1.69 (Derivative of a power series) Let J be an open subset of R, 
x0 ∈ J , and f : J → C a function which has a power series expansion centered at x0: 

∞
f (x) = 

∑ 
an(x − x0)

n . 
n=0 

Let R > 0 be the radius of convergence of this power series. Then f is infinitely differ­
entiable on the open interval ]x0 − R, x0 + R[, and each derivative has a power series 
expansion on this interval, which is obtained by repeated term by term differentiation, 
that is, we have 

∞ ∞
f ′ (x) = 

∑ 
nan (x − x0)

n−1 and f (k)(x) = 
∑ 

(n − 

n! 

k)! 
an(x − x0)

n−k 
n=1 n=k 

for any k ∈ N. Hence the n-th coefficient of the power series f (x) can be expressed as


f (n)(x0) a = .n n! 

Remark 1.70 The power series 
∑� 
f (n)(x0)/n!

� · (x − x0)
n is the Taylor series of f at x0. On 

any compact subset inside the open interval of convergence, it is the uniform limit of the 
sequence of Taylor polynomials. 

Remark 1.71 In Chapter 4, this result will be extended to power series of one complex variable 
(Theorem 4.40 on page 101). 

1.4.d Analytic functions 

Consider a function that may be expended into a power series in a neighbor­
hood V of a point z0, so that for z ∈ V , we have 

∞
f (z) = 

∑ 
an(z − z0)

n . 
n=0 

Given such a z ∈ V , a natural question is the following: may f also be expended 
into a power series centered at z? 
Indeed, it might seem possible a priori that f can be expanded in power 

series only around z0, and around no other point. However, this is not the 
case: 

DEFINITION 1.72 (Analytic function) A function f : Ω → C defined on an 
open subset Ω of C or R is analytic on Ω if, for any z0 ∈ Ω, f has a power 
series expansion centered at z0. 
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Note that the radius of convergence of the power series may (and often 
does!) vary with the point z0. 

THEOREM 1.73 Let 
∑ 
an z

n be a power series with positive radius of convergence 
R > 0, and let f denote the sum of this power series on B(0 ; R). Then the function 
f is analytic on B(0 ; R). 

Example 1.74 The function f : x 7→ 1/(1− x) has the power series expansion 
∞

f (x) = 
∑ 
xn 

n=0 

around 0, with radius of convergence equal to 1. Hence, for any x0 ∈ ]−1, 1[, there exists a 
power series expansion centered at x0 (obviously with different coefficients). This can be made 
explicit: let h ∈ B(0 ; |1− x0|), then with x = x0 + h, we have 

1 1 1 ∞ (x − x0)
n 

f (x) = f (x0 + h) = = · = 
∑ 

. 
1− (x0 + h) 1− x0 1− h/(1− x0) n=0 (1− x0)n+1

Remark 1.75 (Convergence of Taylor expansions) Let f : U → C be a function defined on an 
open subset U of R. Under what conditions is f analytic?18 There are two obvious necessary 
conditions: 

• f is infinitely differentiable on U ; 
• for any x0 ∈ U , there exists an open disc B(x0, r ) such that the series 

∑ 1 f (n)(x0)(x − 
n! 

x0)
n converges for any x ∈ B(x0, r ). 

However, those two conditions are not sufficient. The following classical counter-example 
shows this: let 

def 
f (x) = exp

�−1/x2� if x =6 0, f (0) = 0. 

It may be shown19 that f is indeed of C∞ and that each derivative of f at 0 vanishes, which 
ensures (!) the convergence of the Taylor series everywhere. But since the function vanishes 
only at x = 0, it is clear that the Taylor series does not converge to f on any open subset, 
hence f is not analytic. 
It is therefore important not to use the terminology “analytic” where “infinitely differen­

tiable” is intended. This is a confusion that it still quite frequent in scientific literature. 
The Taylor formulas may be used to prove that a function is analytic. If the sequence 

(Rn)n∈N of remainders for a function f converges uniformly to 0 on a neighborhood of a ∈ R, 
then the function f is analytic on this neighborhood. To show this, one may use the integral 
expression of the remainder terms in the Taylor formula. A slightly different but useful 
approach is to prove that both the function under consideration and its Taylor series (which 
must be shown to have positive radius of convergence) satisfy the same differential equation, 
with the corresponding initial conditions; then f is analytic because of the unicity of solutions 
to a Cauchy problem. 
Also, it is useful to remember that if f and g have power series expansions centered at z0, 

then so do f + g and f g . And if f (z0) 6 0, the function 1/ f also has a power series expansion = 
centered at z0. 

18 The same question, for a function of a complex variable, turns out to have a completely 
different, and much simpler, answer: if f is differentiable — in the complex sense — on the 
open set of definition, then it is always analytic. See Chapter 4. 
19 By induction, proving that f (n)(x) is for 6 0 of the form x 7→ Q n(x) f (x), for some x = 
rational function Q n . 
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1.5 

A quick look at asymptotic and divergent series 

1.5.a Asymptotic series 

DEFINITION 1.76 (Asymptotic expansion) Let F be a function of a real or 
complex variable z, defined for all z with |z| large enough. The function F 
has an asymptotic expansion if there exists a sequence (an)n∈N of complex 
numbers such that 

N
N nlim z

( 

F (z)− 
∑ a

) 

= 0 
z→∞ zn n=0 

for any positive integer N . This is denoted

∞ anF (z) ∼ 
∑ 

. (1.4) 
z→∞ zn n=0 

The definition means that the expansion (1.4) is a good approximation for 
large values of z. Indeed, if we only consider the first twenty terms of the 
series, for instance, we see that the sum of those approximates f (z) “to order 
1/z20 at least” when [z →∞]. 
However, it frequently turns out that for fixed z, the behavior of the series 

in (1.4) is quite bad as N → ∞. In particular, the series may be divergent. 
This phenomenon was pointed out and studied in detail by Henri Poincaré 
in the case of asymptotic series used in astronomy, at the beginning of the 
twentieth century [70]. 
How can a divergent asymptotic series still be used? Since 

∑ 
an/z

n is 
asymptotic to F , if there is some R such that F is continuous for |z| ¾ R, 
then we see that there exist constants C1, C2,. . . such that 

N����
an 
����

CNF (z)− 
∑ 

zn 
¶ |z|N+1 for N ∈ N and |z| ¾ R. 

n=0 

For fixed z, we can look for the value of N such that the right-hand side of 
this inequality is minimal, and truncate the asymptotic series at this point. 
Of course, we do not obtain F (z) with infinite precision. But in many cases the 
actual precision increases with |z|, as described in the next section, and may 
be pretty good. 
It is also possible to speak of asymptotic expansion as z → 0, which 

corresponds to the existence of a sequence (an)n∈N such that 

N

lim 
1 
� 
f (z)− 

∑ 
an

� 
= 0,zn

z→0 zN n=0 
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which is denoted ∞
znf (z) ∼ 

∑ 
an . (1.5) 

z→0 
n=0 

Remark 1.77 If it exists, an asymptotic expansion of a function is unique, but there 
may be two different functions with the same asymptotic expansion! For instance, e−x 
and e−x2 both have asymptotic expansions with an = 0 for all n as x → +∞. 

A physical example is given by quantum electrodynamics. This quantum 
theory of electromagnetic interactions gives physical results in the form of 
series in powers of the coupling constant α = hc ≈ 1/137 (the Sommer­e2/ }
feld fine structure constant), which means that a perturbative expansion in α is 
performed: 
As shown by Dyson [32], when studying a physical quantity F we can ex­

pect to find a perturbative series of the following type (with the normalization 
h}= c = 1): 

∞
F (e2) = F (α) = 

∑ 
fn α
n . 

n=0 

Since the value of α is fixed by Nature, with a value given by experiments, only 
the truncated series can give a physical result if the series is divergent. The 
truncation must be performed around the 137-th term, which means that we 
still expect a very precise result — certainly more precise, by far, than anything 
the most precise experiment will ever give! However, if F (e2) is not analytic 
at e = 0, the question is raised whether the asymptotic expansion considered 
gives access to F uniquely or not. 
Studying asymptotic series is in itself a difficult task. Their implications 

in physics (notably field theory) are at the heart of current research [61]. 

1.5.b Divergent series and asymptotic expansions 

Since Euler, Cauchy (page 88), and especially Poincaré (page 475), it has 
been realized that divergent series may be very useful in physics. As seen in the 
previous section, they appear naturally in computations of asymptotic series. 
As a general rule, convergent series are used to prove numerical or func­

tional identities (between power series, Fourier series, etc). Thus the series may 
be used instead of the value of their sum at any time in a computation. An­
other remark is that, from the computational viewpoint, some series are more 
interesting than others, because they converge faster. For example, we have the 
following two identities for log 2: 

1 1 1 (−1)n+1 
log 2 = 1− + − + · · · + + · · · 

2 3 4 n 
1 1 1 1 1− log = log 2 = + + + · · · + + · · · 
2 2 22 · 2 23 · 3 2n · n 

The second of those (which comes from expanding x 7→ log(1− x) in power 
series at x = 1/2) converges much faster than the first (which results from a 
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Leonhard Euler (1707—1783), a Swiss mathematician, an excep­
tional teacher, obtained a position at the Academy of Sciences of 
Saint Petersburg thanks to Nicolas and Daniel Bernoulli when 
he was only twenty. He also spent some years in Berlin, but 
came back to Russia toward the end of his life, and died there at 
seventy-six (while drinking tea). His works are uncountable! We 
owe him the notations e and i and he imposed the use of π that 
was introduced by Jones in 1706. Other notations due to Euler 
are sin, cos, tang, cot, sec, and cosec. He also introduced the use 
of complex exponents, showed that e i x = cos x + i sin x , and was 
particularly fond of the formula e iπ + 1 = 0. He defined the 
function Γ, which extends the factorial function from integers 
to C \ (−N), and used the Riemann zeta function for real values 
of the variable. No stone of the mathematical garden of his time 
was left unturned by Euler; let us only add the Euler angles in 
mechanics and the Euler equation in fluid mechanics. 

similar expansion at x = −1, hence on the boundary of the disc of conver­
gence 20). 
While studying problems of celestial mechanics, Poincaré realized that the 

meaning of “convergent series” was not the same for mathematicians, with 
rigor in mind, or astronomers, interested in efficiency: 

Geometers, preoccupied with rigorousness and often indifferent to the 
length of the inextricable computations that they conceive, with no idea of 
implementing them in practice, say that a series is convergent when the sum 
of its terms tends to some well-defined limit, however slowly the first terms 
might diminish. Astronomers, on the contrary, are used to saying that a se­
ries converges when the twenty first terms, for instance, diminish very quickly, 
even though the next terms may well increase indefinitely. Thus, to take a 

1000n 
simple example, consider the two series with general terms and 

1 · 2 · 3 · · · n 
1 · 2 · 3 · · · n 

. 
1000n 
Geometers will say that the first series converges, and even that it converges 

20 The number of terms necessary to approximate log 2 within 10−6, for instance, can be 
estimated quite precisely for both series. Using the Leibniz test for alternating sums, the 
remainder of the first series is seen to satisfy 

|R | ¶ 
��u �� = 1 ,n n+1 n + 1

and this is the right order of magnitude (a pretty good estimate is in fact Rn ≈ 1/2n). If we 
want |R | to be less than 10−6, it suffices to take n = 106 terms. This is a very slow convergence.n
The remainder of the second series, on the other hand, can be estimated by the remainder of 
a geometric series: 

∞ ∞
Rn 
′ = 

∑ 

· 
1

2n 
¶ 
∑ 

2

1 
k 
= 
2

1 
n 
. 

n
k=n+1 k=n+1 

Hence twenty terms or so are enough to approximate log 2 within 10−6 using this expansion 
(since 220 ≈ 106). 
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Fig. 1.5 — The precise value of f (x) is always found between two successive values of the 
partial sums of the serie 

∑ 
fk(x). Hence, it is inside the gray strip. 

rapidly, [...] but they will see the second as divergent. 
Astronomers, on the contrary, will see the first as divergent [...] and the 

second as convergent. [70] 

How is it possible to speak of convergence of a series which is really 
divergent? We look at this question using a famous example, the Euler series. 
Let ∫ +∞ −t/xe∀x > 0 f (x) = dt ,

1+ t0 

and say we wish to study the behavior of f for small values of x . A first idea 
is to expand 1/(1+ t) as 

∑
(−1)k tk and exchange the sum and the integral if 

permitted. Substitute y = t/x and then integrate by parts; a simple induction 
then shows that ∫ +∞ 

tk e−t/x dt = k! xk+1, 

and since the 
∑
(−1)k k! x

0 
k+1 is obviously divergent for any nonzero value 

of x , this first idea is a lamentable failure. 
To avoid this problem, it is possible to truncate the power-series expansion 

of the denominator, and write 

n−11 
= 
∑ 
(−1)k tk + (−1)

n tn 
,

1+ t 1+ t
k=0 

from which we derive an expression for f of the type f = fn + Rn, where 

fn(x) = x − x2 + 2! x3 − 3! x4 + · · · + (−1)n−1(n − 1)! xn (1.6) 

and ∫ +∞ −t/xtn e
R (x) = (−1)n dt .n 1+ t0 

Since (1+ t)−1 ¶ 1, the remainder satisfies 
��Rn(x)

�� ¶ n! xn+1, which means 
that R (x) is of absolute value smaller than the first omitted term; moreover,n
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Fig. 1.6 — The first 50 partial sums of the series 
∑
(−1)k−1(k − 1)! xk for x = 1/20. 

Notice that, starting from k = 44, the series diverges rapidly. The best precision 
is obtained for n = 20, and gives f (x) with an error roughly of size 2 · 10−8. 

they are of the same sign. It follows (see the proof of the alternating series 
test) that 

f2n(x) < f (x) < f2n+1(x), (1.7) 
although, in contrast with the case of alternating series with terms converging 
to 0, the general term here (−1)nn! xn+1 diverges. Hence it is not possible to 
deduce from (1.7) an arbitrarily precise approximation of f (x). However, if x is 
small, we can still get a very good approximation, as we now explain. 
Fix a positive value of x . There exists an index N0 such that the distance�� f2n+1(x)− f2n(x)

�� is smallest (the ratio between consecutive terms is equal to 
nx , so this value of n is in fact N0 = ⌊1/x⌋). This means that, if we look 
at the first N0 values, the series “seems to converge,” before it starts blowing 
up. It is interesting to remark that the “convergence” of the first N0 terms 
is exponentially fast, since the minimal distance 

�� fN+1(x)− fN (x)
�� is roughly 

given by 
−1/xN ! x N ≈ N ! N−N ∼ 

p
2π/x e

(using the Stirling formula, see Exercise 5.4 on page 154.) Thus, if we wish 
to know the value of f (x) for a “small” value of x , and if a precision of the 
order of 

p
2π/x e−1/x suffices, it is possible to use the divergent asymptotic 

series (1.6), by computing and summing the terms up to the smallest term (see 
Figure 1.5). For instance, we obtain for x = 1/50 a precision roughly equal 
to 6 · 10−20, which is perfectly sufficient for most physical applications! (see 
Figure 1.6.) 
For a given value of x , on the other hand, the asymptotic series does not 

allow any improvement on the precision.21 But the convergence is so fast that 

21 For instance, in quantum field theory, the asymptotic series in terms of α has a limited 
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Sir George Biddel Airy (1801—1892), English astronomer, is known 
in particular for discovering the theory of diffraction rings. He 
determined approximately the solar apex, the direction toward 
which the sun and the solar system seem to be directed, in the 
Hercules region. He was also interested in geology. He was 
director of the Royal Observatory and took part in the con­
troversy concerning priority for the discovery of Neptune (the 
French pushing the claim of Le Verrier while the English de­
fended Adams). 
The picture here represents a fake stamp, painted directly on the 
envelope, representing a contemporary caricature of Sir Airy; the 
post office was bluffed and stamped and delivered the letter. 

it makes it possible to do some computations which are out of reach of a 
standard method! And what Poincaré remarked is, in fact, a fairly general 
rule: divergent series converge, in general, much more rapidly than convergent series. 
In 1857, George Stokes was studying the Airy integral [3] 

def 1 
∫ +∞ � 

t3 
Ai(z) = cos + z t

� 
dt , 

π 0 3 

which appears in the computations of caustics. The goal was to find zeros of 
this function, and compare the with “experimental” zeros (corresponding to 
dark bands in any optics figure, which had been measured with great preci­
sion, at least as far as the first twenty-five). Airy himself, using a convergent 
series expansion of Ai at 0, managed fairly easily to compute the position of 
the first band, and with considerable difficulty, found the second one. In 
fact, his mathematically convergent expansion was “divergent” in the sense of 
astronomers (all the more so as one gets farther away from the origin). Stokes 
used instead the “devilish” method of divergent series22 and, after bypassing 
some nontrivial difficulties (linked, in particular, to complex integration), ob­
tained all the hands23 with a precision of 10−4! 

Remark 1.78 There are other well-known techniques to give a sense to the sum of (some) 
divergent series. The interested reader may read the classic book of Émile Borel [13], the first 
part of which at least is very readable. Concerning asymptotic expansions, see [72]. 

precision since α is fixed (equal to 1/137 approximately) and cannot be made to tend to zero. 
This suggests that quantum field theory, in its current perturbative form, will one day be 
replaced by another theory. Of course, as long as a precision to 10−100 is “enough”... 
22 Niels Abel wrote in 1826 that divergent series are “the Devil’s invention, and it is shameful 
to base any proof of any kind on them. By using them, one can get from them whatever 
result is sought: they have done much evil and caused many paradoxes” (letter to his professor 
Holmboë). 
23 Only the first is less precise, because it is too small and Stokes used an asymptotic expan­
sion at +∞. 
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EXERCISES 

Physical “paradoxes” 

� Exercise 1.2 (Electrical energy) Consider an electric circuit consisting of two identical capac­
itors in series, with capacitance C and resistance R. Suppose that for t ¶ 0, the circuit is open, 
one of the capacitors carries the charge Q , and the other has no charge. At t = 0, the circuit 
is closed, and is left to evolve freely. What is the state of equilibrium for this circuit? What 
is the energy of the system at t = 0? What is the energy as t → +∞? Show that the missing 
energy depends only on R. What happened to this energy? 
Now assume that R = 0. What is the energy of the system at any arbitrary t? What is the 

limit of this energy as t → +∞? Do you have any comments? 

� Exercise 1.3 (A paradox in optics) We know that two distinct sources of monochromatic 
light do not create a clear interference picture in an experiment with Young slits. As the 
distance between the sources increases, we first see a contrast decrease in the interference pic­
ture. This is called a defect of spatial coherence. 
Hence, a famous experiment gives a measurement of the angular distance between two 

components of a double star by the observation of the first disappearance of the interference 
fringes when slowly moving two Young slits apart. 
This experiment works very well with monochromatic light. However, if we define two 

monochromatic sources S1 and S2 mathematically, each emits a signal proportional to e
2iπν t , 

and there should be no problem of spatial coherence. 
Perform the computation properly. A computation in optics always starts with amplitudes 

(possibly, one may show that the crossed terms cancel out in average, and do the computations 
with intensity only). Here, the cross terms are fine, and never disappear. In other words, this 
shows that two different monochromatic light sources are always perfectly coherent. 
But experiment shows the opposite: a defect of spatial coherence. How can this be ex­

plained? 

� Exercise 1.4 In the rubber ball paradox of page 2, give an interpretation of the variation of 
kinetic energy of the ball, in the moving reference frame, in terms of the work of the force 
during the rebound. The shock may be modeled by a very large force lasting a very short 
amount of time, or one can use the formalism of distributions (see Chapter 7). 

Sequences and series 

� Exercise 1.5 It is known that Q, and hence also Q ∩ [0, 1], is countable. Let (xn)n∈N be a 
sequence of rational numbers such that Q ∩ [0, 1] = {xn ; n ∈ N}. Show that the sequence 
(xn)n∈N diverges. 

� Exercise 1.6 In an arbitrary normed vector space, show that a Cauchy sequence which has 
a convergent subsequence is convergent. 

� Exercise 1.7 Show that the space K[X ] of polynomials with coefficients in K is not com­
plete with the norm given by 

n

P = 
∑ 

= |αi | .αi X
i 7−→ ‖P ‖ def max 

i=1 1¶i¶n 

� Exercise 1.8 (Fixed point) Let a, b ∈ R be real numbers with a < b , and let f : [a, b ] → 
[a, b ] be a continuous function with a fixed point ℓ. Assume that there exists a real number 
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λ and an interval V = [ℓ − ǫ, ℓ + ǫ] around ℓ, contained in [a, b ] and stable under f (i.e., 
f (x) ∈ V if x ∈ V ), such that 

∀x ∈ V 
�� f (x)− f (ℓ)

�� ¶ λ |x − ℓ|2 . 
i) Let α ∈ V be such that λ(α − ℓ) < 1. Let u be the sequence defined by induction by 

u0 = α, un+1 = f (un) for all n ∈ N. 

Show that (un)n∈N converges to ℓ. 

ii) Show in addition that |u − ℓ| ¶ λ−1 · �λ(α − ℓ)
�2n 
.n 

� Exercise 1.9 Let 

2n3x if 0 ¶ x ¶ 1/2n, 

fn(x) = 

n2 − 2n3 (x − 1/2n) if 1/2n ¶ x ¶ 1/n,
0 if 1/n ¶ x ¶ 1, 

for n ∈ N and x ∈ [0, 1]. Plot a graph of f , and compute 
∫ 1 ∫ 1 

lim fn(x)dx and lim fn(x)dx . n→∞ n→∞
0 0 

� Exercise 1.10 Let ( fn)n∈N be a sequence of functions converging simply to a function f . If 
each fn is increasing, show that f is also increasing. Show that the same stability holds for the 
properties “ fn is convex” and “ fn is k-Lipschitz.” Show that, on the other hand, it is possible 
that each fn is continuous, but f is not (take fn(x) = sin

2n x). 

� Exercise 1.11 Let ϕn be the function defined on [−1, 1] by 

ϕn(x) = 
∫ x �
1− e−1/nt2

� 
dt 

0 

for n ∈ N∗ . 
Show that ϕn is infinitely differentiable, and that the sequence (ϕn)n∈N∗ converges uni­

formly on [−1, 1]. What is its limit? 
Let ǫ > 0 be given. Show that for any p ∈ N, there exists a map Ψp from [−1, 1] into R, 

infinitely differentiable, such that 

i) Ψ(p
k)
(0) = 0 for k =6 p , and Ψ(pp)(0) = 1. 

(k)ii) for k ¶ p − 1 and x ∈ [−1, 1], ��Ψp (x)
�� ¶ ǫ. 

Now let (an)n∈N be an arbitrary sequence of real numbers. Construct an infinitely differ­
entiable map f from [−1, 1] to R such that f (n)(0) = an for all n ∈ N. 

� Exercise 1.12 (Slightly surprising exercise) Construct a series of functions 
∑ 
fn defined on 

R, which converges pointwise to a sum F (x), the convergence being uniform on any finite 
interval of R, and which, moreover, satisfies: 

∀n ∈ N lim f (x) = +∞ 
x→+∞ n

but 

lim F (x) = −∞. 
x→+∞ 
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� Exercise 1.13 Consider a power series centered at the point a ∈ C, given by 
∞

def
f (z) = 

∑ 
cn(z − a)n . 

n=0 

Let R denote its radius of convergence, and assume R > 0. 

i) Prove the Cauchy formula: for any n ∈ N and any r ∈ ]0,R[, we have 
∫ 2π 

cn = f (a + r eiθ) e−inθ dθ. 
2π r n 0 

1 

ii) Prove the Gutzmer formula: for r ∈ ]0,R[, we have 
∞∑ 
|cn|2 r 2n = 

1 
∫ 2π �� f (a + r eiθ)��2 dθ. 

2π n=0 0 

iii) Prove that if R = +∞, in which case the sum f (z) of the power series is said to 
be an entire function, and if moreover f is bounded on C, then f is constant (this is 
Liouville’s theorem, which is due to Cauchy). 

iv) Is the sine function a counter-example to the previous result? 

� Exercise 1.14 Let f be a function of C∞ class defined on an open set Ω ⊂ R. Show that 
f is analytic if and only if, for any x0 ∈ Ω, there are a neighborhood V of x0 and positive real 
numbers M and t such that 

f (p)(x)
����

���� t p∀x ∈ V ∀p ∈ N ¶ M . 
p ! 

Function of two variables 

� Exercise 1.15 Let f : R2 → R be a function of two real variables. This exercise gives 
examples showing that the limits 

lim lim f (x , y) lim lim f (x , y) and lim f (x , y) 
x→0 y→0 y→0 x→0 (x , y)→(0,0) 

are “independent”: each may exist without the other two existing, and they may exist without 
being equal.  

x y 
if x2 + y2 6 0,=


i) Let f (x , y) = 
 
x2 + y2


0 if x = y = 0.
 

Show that the limits lim lim f (x , y) and lim lim f (x , y) both exist, but that the 
x→0 y→0 y→0 x→0 

limit24 lim f (x , y) is not defined. 
(x , y)→(0,0) 

24 The limit of f as the pair (x , y) tends to a value (a, b ) ∈ R2 is defined using any of 
the natural norms on R2, for instance the norm ‖(x , y)‖∞ = max

� |x | , | y| � or the euclidean 
def 

norm ‖(x , y)‖2 = 
p
x2 + y2, which are equivalent. Thus, we have 

lim f (x , y) = ℓ 
(x , y)→(a,b ) 
(x , y)6=(a,b ) 

if and only if 

∀ǫ > 0 ∃η > 0 6 (a, b ) and 

(x − a, y − b )



∞ 
< η
� 
=⇒ 

� | f (x , y)− ℓ| ¶ ǫ
�
.

�
(x , y) = 
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¨ 
y + x sin(1/ y) if y 6= 0,

ii) Let f (x , y) = 
0 if y = 0. 

Show that both limits lim f (x , y) and lim lim f (x , y) exist, but on the other 
(x , y)→(0,0) y→0 x→0 

hand lim lim f (x , y) does not exist. 
x→0 y→0  

x y � 1� 
=


iii) Let f (x , y) = 
 
x2 + y2 

+ y sin
x 

if x 6 0,

0 if x = 0.


 

Show that lim lim f (x , y) exists. Show that neither lim f (x , y), nor lim lim f (x , y) 
x→0 y→0 (x , y)→(0,0) y→0 x→0 
x 6 y=0 6=0 6 y=0 

exist.  
x2 − y2 

iv) Let f (x , y) = 
 
x2 + y2 

if x2 + y2 6= 0,


0 if x = y = 0.


Show that the limits lim lim f (x , y) and lim lim f (x , y) both exist, but are different. 
x→0 y→0 y→0 x→0 

PROBLEM 

� Problem 1 (Solving differential equations) The goal of this problem is to illustrate, in a 
special case, the Cauchy-Lipschitz theorem that ensures the existence and unicity of the solution 
to a differential equation with a given initial condition. 
In this problem, I is an interval [0, a] with a > 0, and we are interested in the nonlinear 

differential equation 

y ′ = 
t y 

1+ y2 
(E) 

with the initial condition 
y(0) = 1. (CI) 

The system of two equations (E) + (CI) is called the Cauchy problem. In what follows, E 
denotes the space C (I ,R) of real-valued continuous functions defined on I , with the norm 
‖ f ‖∞ = sup

�� f (t)��. 
t∈I 

i) Let ( fn)n∈N be a Cauchy sequence in 
�
E ,‖·‖∞ 

�
. 

(a) Show that for any x ∈ I the sequence 
� 
fn(x)

�
n∈N 
converges in R. For x ∈ I , we 

def
let f (x) = lim fn(x). n→∞ 

(b) Show that ( fn)n∈N converges uniformly f on I . 

(c) Show that the function f : I → R is continuous. 

(d) Deduce from this that
�
E ,‖·‖∞ 

� 
is a complete normed vector space. 

ii) For any f ∈ E , define a function Φ( f ) by the formula 

Φ( f ) : I −→ R, ∫ t u f (u)
t 7−→ Φ( f )(t) = 1+ du. 

0 1+ 
� 
f (u)

�2 
Show that the functions f ∈ E which are solutions of the Cauchy problem (E)+ (CI) 
are exactly the fixed points of Φ. 



� ���
� ���
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x 
iii) Show that the function x 7−→ is 1-Lipschitz on R, i.e.,

1+ x2 

y x 

1+ y2 
− 
1+ x2 

¶ | y − x | . (1.8) 

iv) Show that Φ is a contracting map if a is sufficiently small. 

v) Show that there exists a unique solution to the Cauchy problem. Give an explicit 
iterative method to solve the system numerically (Picard iterations). 

Remark 1.79 In general, all this detailed work need not be done: the Cauchy-Lipschitz theorem 
states that for any continous function ψ(x , y) which is locally Lipschitz with respect to the 
second variable, the Cauchy problem 

′ y = ψ(t , y), 

has a unique maximal solution (i.e., a solution defined on a maximal interval). 

SOLUTIONS 

� Solution of exercise 1.2. The energy of the circuit at the beginning of the experiment is 
the energy contained in the charged capacitor, namely E = Q 2/2C . At equilibrium, when 
[t → ∞], no current flows, and the charge of each capacitor is Q/2 (it is possible to write 
down the necessary differential equations and solve them to check this). Thus the final energy 
is E ′ = 2(Q/2)2/C = E/2. The energy which is dissipated by the Joule effect (computed by 
the integral 

∫
0 

+∞ 
Ri2(t)dt , where t 7→ i(t) is the current flowing through the circuit at time t) 

is of course equal to E − E ′, and does not depend on R. 
However, if R = 0, one observes oscillations of charge in each capacitor. The total energy 

of the system is conserved (it is not possible to compute it from relations in a quasi-stationary 
regime; one must take magnetic fields into account!). In particular, as [t → +∞], the initial 
energy is recovered. The explanation for this apparent contradiction is similar to what hap­
pened for Romeo and Juliet: the time to reach equilibrium is of order 2/RC and tends to 
infinity as [R → 0]. This is a typical situation where the limits [R → 0] and [t → +∞] do 
not commute. 
Finally, if we carry the computations even farther, it is possible to take into account the 

electromagnetic radiation due to the variations of the electric and magnetic fields. There is 
again some loss of energy, and for [t → +∞], the final energy E − E ′ = E/2 is recovered. 

� Solution of exercise 1.3. Light sources are never purely monochromatic; otherwise there 
would indeed be no spatial coherence problem. What happens is that light is emitted in wave 
packets, and the spectrum of the source necessarily has a certain width Δλ > 0 (in a typical 
example, this is order of magnitude Δν = 1014 s−1, corresponding to a coherence length of a 
few microns for a standard light-bulb; the coherence length of a small He-Ne laser is around 
thirty centimeters, and that of a monomode laser can be several miles). All computations must 
be done first with Δλ 6 0 before taking a limit Δλ → 0. Thus, surprisingly, spatial coherence= 
is also a matter of temporal coherence. This is often hidden, with the motto being “since the 
sources are not coherent, I must work by summing intensities instead of amplitudes.” 
In fact, when considering an interference figure, one must always sum amplitudes, and then 

(this may be a memory from your optics course, or an occasion to read Born and Wolf [14]) 
perform a time average over a period Δt , which may be very small, but not too much (depending 
on the receptor; the eyes are pretty bad in this respect, an electronic receptor is better, but none 
can have Δt = 0). 
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The delicate issue is to be careful of a product Δt · Δλ. If you come to believe (wrongly!) 
that two purely monochromatic sources interfere without any spatial coherence defect, this 
means that you have assumed Δt · Δλ = 0. To see the spatial coherence issue arise, one must 
keep Δλ large enough so that Δt · Δλ cannot be neglected in the computation. 

� Solution of exercise 1.7. Let Pn = 
∑n
k=1 X

k/k. It is easy to see that (Pn)n∈N is a Cauchy 
1sequence: for any integers k and p , we have 



Pp+k − Pp


 = . 

p+1 

However, this sequence does not converge in K[X ]; indeed, if it were to converge to a 
limit L, we would have L ∈ K[X ], and all coefficients of L of degree large enough (¾ N , 
say) would be zero, which implies that ‖Pk − L‖ ¾ 1/(deg L+ 1) if k ¾ N , contradicting that 
(Pn)n∈N converges to L. 
This example shows that K[X ] is not complete. 

� Solution of exercise 1.9. For any n ∈ N, we have 
∫ 
fn = n/2, and for any x ∈ [0, 1], the 

sequence 
� 
fn(x)

�
n 
tends to 0, showing that 

lim 

∫ 
f (x)dx = +∞ whereas 

∫ � 
lim f (x)

� 
dx = 0. 

n→∞ n n→∞ n

� Solution of exercise 1.11. The sequence (ϕn)n∈N converges uniformly to 0. 
Notice also the property 

ϕn(0) = 0, ϕn
′ (0) = 1, ϕn 

(k)(0) = 0 ∀k ¾ 2. 

For given ǫ > 0, it suffices to define Ψp as the (p − 1)-st primitive of ϕN , where N is 
(p−1)sufficiently large so that sup 

���ψp (x)
��� ¶ ǫ. Here, each primitive is selected to be the 

x∈[−1,1] 
one vanishing at 0 (i.e., the integral from 0 to x of the previous one). It is easy to see that 
the successive derivatives of this function satisfy the require condition, and the last property 
follows from the construction. 
Now let (an)n∈N be an arbitrary sequence of real numbers. For all n ∈ N, one can apply the 

previous construction to find Ψn such that 

sup 
��ψ(nn−1)(x)

�� ¶ 
1

. 
x∈[−1,1] 2n · max(1, |an |) 

It is then immediate that the series 
∑ 
anΨn converges uniformly to a function f having all 

desired properties. 
Of course, the function f thus constructed is by no means unique: one may add a term 

α(ϕn 
′ − 1), where α ∈ R, without changing the values of the derivatives at 0. 

� Solution of exercise 1.12. Let 
x4n−1 x4n+1 

fn(x) = − + 
(4n − 1)! (4n + 1)! 

for n ¾ 1; the series 
∑ 
fn converges to F (x) = sin x − x . 

� Solution of exercise 1.13 

i) The power series for f (a + r eiθ) may be integrated term by term because of its absolute 
convergence in the disc centered at a of radius r < R. Since we have 

∫ 2π 

ei (k−n)θ dθ = δkn = 

¨
1 if k = n, 
0 otherwise,0 

the stated formula follows. 
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2
ii) Similarly, expand 

�� f (a + r eiθ)�� as a product of two series and integrate term by term. 
Most contributions cancel out using the formula above, and only the terms |c |2 r 2n n
remain. 

iii) If f is bounded on C, we have |c r n| ¶ ‖ f ‖∞. Letting r → +∞, it follows that c = 0n n 
for n ¾ 1, which means that f is constant. 

iv) The function sin is not bounded on C! Indeed, we have for instance lim 
�� sin(i x)�� = 

+∞. So there is no trouble. x→+∞ 

� Solution of problem 1 

i) (a) Let x ∈ I . For any p , q ∈ N, we have 
�� fp(x)− fq(x)

�� ¶ sup
�� fp( y)− fq( y)

�� = 

 fp − fq



∞ 
, 

y∈I 

and this proves that the sequence 
� 
fn(x)

�
n∈N 
is a Cauchy sequence in R, so it 

converges. 

(b) Let ǫ > 0 be fixed. There exists N such that 


 fp − fq




∞ 
¶ ǫ for all p > q > N . 

Let x ∈ I . We then have 
�
fp(x)− fq (x)

�
¶ ǫ for any p > q > N , 

and since this holds for all p , we may fix q and let p →∞. We obtain 
�� f (x)− fq(x)

�� ¶ ǫ for all q > N . 

This bound holds independently of x ∈ I . Thus we have shown that 


 f − f



 ¶ ǫ for any q ¾ N .q ∞ 

Finally, this being true for any ǫ > 0, it follows that the sequence ( fn)n∈N 
converges uniformly to f . 
Remark: At this point, we haven’t proved that there is convergence in the normed 

vector space 
�
E ,‖·‖∞ 

�
. It remains to show that the limit f is in E , that is, that f is 

continuous. This follows from Theorem 1.33, but we recall the proof. 

(c) Let x ∈ I ; we now show that f is continuous at x . 
Let ǫ > 0 be fixed. From the preceding question, there exists an integer N 

such that ‖ fn − f ‖∞ ¶ ǫ for all n ¾ N , and in particular ‖ fN − f ‖∞ ¶ ǫ. 
Since fN is an element of E , it is continuous. So there exists η > 0 such that 

∀ y ∈ I | y − x | ¶ η =⇒ 
�� fN ( y)− fN (x)

�� ¶ ǫ. 

Using the triangle inequality, we deduce from this that for all y ∈ I such that 
|x − y| ¶ η, we have 
�� f ( y)− f (x)

�� ¶ 
�� f ( y)− fN ( y)

��+ �� fN ( y)− fN (x)
��+ �� fN (x)− f (x)

�� ¶ 3ǫ. 

This proves the continuity of f at x , and since x is arbitrary, this proves that f 
is continuous on I , and hence is an element of E . 

(d) For any Cauchy sequence ( fn)n∈N in E , the previous questions show that ( fn)n∈N 
converges in E . Hence the space 

�
E ,‖·‖∞ 

� 
is complete. 

ii) Let f be a fixed point of Φ. Then we have 

∀t ∈ I f ′ (t) = 
�
Φ( f )

�′ 
(t) = 

1+

t f� 
f

(

(

t) 

t)
�2 . 

Moreover, it is easy to see that f (0) = Φ( f )(0) = 1. 
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Conversely, let f be a solution of the Cauchy problem (E ) + (C I ). Then Φ( f ) is 
differentiable and we have 

∀t ∈ I Φ( f ) ′ (t) = 
1+ 

t f� 
f

(

(

t) 

t)
�2 = f ′ (t). 

The functions f and Φ( f ) have the same derivative on I , and moreover satisfy 

Φ( f )(0) = 1 and f (0) = 1. 

It follows that Φ( f ) = f . 

′iii) Looking at the derivative g : x 7→ 
(1

1

+ 

− 

x

x
2

2 

)2 
we see that 

��g ′ (x)�� ¶ 1 for all x ∈ R. The 

mean-value theorem then proves that g is 1-Lipschitz, as stated. 

iv) Let f , g ∈ E . Then we have 



Φ( f )− Φ(g)



∞ 
= sup 

�����
∫ t   

u f (u) − 
u g(u) 

! 

du 

�����t∈I 0 1+ 
� 
f (u)

�2
1+ 

�
g(u)

�2 
∫ t 

��� f (u) g(u) 
���¶ sup u − du 

t∈I 0 
��1+ � f (u)�2 1+ 

�
g(u)

�2 ��
∫ a 

�����
f (u) g(u) 

�����¶	 u − du 
0 1+ 

� 
f (u)

�2
1+ 

�
g(u)

�2 

by positivity. Using the inequality of the previous question, we get 



Φ( f )− Φ(g)



∞ 
¶ 
∫ a
u
�� f (u)− g(u)

��du ¶ ‖ f − g‖∞ 

∫ a
u du = 

a2 ‖ f − g‖∞ . 20	 0 

This is true for any f , g ∈ E , and hence Φ is (a2/2)-Lipschitz; if 0 ¶ a < 2, this 
map Φ is a contraction. 

v) According to the fixed-point theorem, the previous results show that Φ has a unique 
fixed point in E . 
According to Question ii), this means that there exists a unique solution of the 

Cauchy Problem (E ) + (C I ) on an interval [0, a] for a < 2. 
To approximate the solution numerically, it is possible to select an arbitrary function 
f0 (for instance, simply f0 = 0), and construct the sequence ( fn)n∈N defined by fn+1 = 
Φ( fn) for n ¾ 0. This requires computing (numerically) some integrals, which is a fairly 
straightforward matter (numerical integration is usually numerically stable: errors do 
not accumulate in general25). The speed of convergence of the sequence ( fn)n∈N to the 
solution f of the Cauchy problem is exponential: with I = [0, 1], the distance (from 
the norm on E ) between fn and f is divided by 2 (at least) after each iterative step. It 
is therefore possible to expect a good numerical approximation after few iterations (the 
precision after ten steps is of the order of ‖ f0 − f ‖∞ /1000 since 2

10 = 1024). 

25 On the other hand, numerical differentiation tends to be much more delicate. 




