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Chapter

Reminders: convergence of
sequences and series

This first chapter, which is quite elementary, is essentially a survey of the notion
of convergence of sequences and series. Readers who are very confortable with this
concept may start reading the next chapter.

However, although the mathematical objects we discuss are well known in princi-
ple, they have some unexpected properties. We will see in particular that the order
of summation may be crucial to the evaluation of the series, so that changing the
order of summation may well change its sum.

We start this chapter by discussing two physical problems in which a limit process
is hidden. Each leads to an apparent paradox, which can only be resolved when the
underlying limit is explicitly brought to light.

1.1]
The problem[¢f limits in physics[]

1.1.a[] Two paradoxes involving kinetic energy[]
First paradox

Consider a truck with mass » driving at constant speed v = 60 mph on a
perfectly straight stretch of highway (think of Montana). We assume that,
friction being negligible, the truck uses no gas to remain at constant speed.
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On the other hand, to accelerate, it must use (or guzzle) £ gallons of gas in
order to increase its kinetic energy by an amount of 1 joule. This assumption,
although it is imperfect, is physically acceptable because each gallon of gas
yields the same amount of energy.

So, when the driver decides to increase its speed to reach 2’ = 80 mph, the
quantity of gas required to do so is equal to the difference of kinetic energy,
namely, it is

1 1
UE! ~ ;) = Sm(s/ — %) = Zlm(6400 — 3 600) = 1400 x L.

With€-m = 10—(1)00] -mile™ - h?, say, this amounts to 0.14 gallon. Jolly good.

Now, let us watch the same scene of the truck accelerating, as observed by
a highway patrolman, initially driving as fast as the truck @ = v = 60 mph,
but with a motorcycle which is unable to go faster.

The patrolman, having his college physics classes at his fingertips, argues
as follows: “in my own galilean reference frame, the relative speed of the truck
was previously * = 0 and is now #*/ = 20 mph. To do this, the amount of
gas it has guzzled is equal to the difference in kinetic energies:

WEY — EX) = %Qm ((7;*’)2 - (7;*)2) - %Qm(400 — 0) = 200 x i,
or around 0.02 gallons.”

There is here a clear problem, and one of the two observers must be wrong.
Indeed, the galilean relativity principle states that all galilean reference frames
are equivalent, and computing kinetic energy in the patrolman’s reference
frame is perfectly legitimate.

How is this paradox resolved?

We will come to the solution, but first here is another problem. The reader,
before going on to read the solutions, is earnestly invited to think and try to
solve the problem by herself.

Second paradox

Consider a highly elastic rubber ball in free fall as we first see it. At some
point, it hits the ground, and we assume that this is an elastic shock.

Most high-school level books will describe the following argument: “as-
sume that, at the instant # = 0 when the ball hits the ground, the speed of
the ball is ; = —10 m-s~!. Since the shock is elastic, there is conservation of
total energy before and after. Hence the speed of the ball after the rebound is
v, = —wy, or simply +10 m-s~! going up.”

This looks convincing enough. But it is not so impressive if seen from
the point of view of an observer who is also moving down at constant speed
Vgps = 3 = —10 m-s~!. For this observer, the speed of the ball before the
shock is o = v — vp = 0 m-s~1, so it has zero kinetic energy. However,
after rebounding, the speed of the ball is 2 = v, — v, = 20 m-s~!, and
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therefore it has nonzero kinetic energy! With the analogue of the reasoning
above, one should still have found 25 = v} = 0 (should the ball go through
the ground?)

So there is something fishy in this argument also. It is important to
remember that the fact that the right answer is found in the first case does not imply
that the argument that leads to the answer is itself correct.

Readers who have solved the first paradox will find no difficulty in this
second one.

Paradoxes resolved

Kinetic energy is of course not the same in every reference frame. But this
is not so much the kinetic energy we are interested in; rather, we want the
difference before and after the event described.

Let’s go back to elementary mechanics. What happens, in two distinct
reference frames, to a system of N solid bodies with initial speed #; (i =
1,...,N) and final speed o’ after some shock?

In the first reference frame, the difference of kinetic energy is given by

N
AE, = Zmz’(”;'z — 7}).
i=1

In a second reference frame, with relative speed @ with respect to the first,
the difference is equal to

N

AE! =3 m((v) = w)P —(v,— w)?)

i=1

N N
:Zmi(vgz—viz)—ZZeﬁ Zmi(v;—vi) =AE, —2w-AP,
i=1

i=1

(we use * as exponents for any physical quantity expressed in the new reference
frame), so that AE* = AE, as long as the total momentum is preserved during
the shock, in other words if AP = 0.

In the case of the truck and the patrolman, we did not really take the
momentum into account. In fact, the truck can accelerate because it “pushes
back” the whole earth behind it!

So, let us take up the computation with a terrestrial mass M, which is
large but not infinite. We will take the limit [M — oo] at the very end of the
computation, and more precisely, we will let [M /m — oo].

At the beginning of the “experiment,” in the terrestrial reference frame, the
speed of the truck is ». At the end of the experiment, the speed is #’. Earth,
on the other hand, has original speed V' = 0, and if one remains in the same
galilean reference frame, final speed V' = %(7) — o) (because of conservation
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of total momentum).! The kinetic energy of the system at the beginning is
then %m 2?2 and at the end it is %m 2’2 + %M V’2. So, the difference is given
by
1 1 m? 1 m
AE, = -m(v"”? — o))+ ——(v — v')? = —m(v'? — o? [1 O<—>]
L= ym(@” = o) o= oY = (e = o) 140 (2
This is the amount of gas involved! So we see that, up to negligible terms, the
first argument gives the right answer, namely, 0.14 gallons.
We now come back to the patrolman’s frame, moving with speed w with
respect to the terrestrial frame. The initial speed of the truck is v* = v — w,

and the final speed is #’* = ' — w. The Earth has initial speed V* = —w
and final speed V/* = —w + %/(v — o’). The difference is now:
1 1
AE[* — Em('y/*z _ 7)*2) + EM(V/*Z _ V*Z)
1 1 1 2 1
= Em(v’ —w) — Em(v —w) + EM [%(7} —v')— w} - EMMZ
= 1mﬂ/z— 1m'yz—l—m(w— v’)- w—l—lm—z(ﬂ— v —m(v — ') w
2 2 2M ’
AE* = AE,.

Hence the difference of kinetic energy is preserved, as we expected. So even
in this other reference frame, a correct computation shows that the quantity
of gas involved is the same as before.

The patrolman’s mistake was to forget the positive term —m(v — v') - w,
corresponding to the difference of kinetic energy of the Earth in its galilean
frame. This term does not tend to 0 as [M /m — oo] !

From the point of view of the patrolman’s frame, 0.02 gallons are needed to
accelerate the truck, and the remaining 0.12 gallons are needed to accelerate the Earth!

We can summarize this as a table, where T is the truck and E is the Earth.

Initial Final

E, init. E, final AE
speed speed ¢ ‘ ¢
T v o’ Lmo? Loy %(,{}/27 22)
2 mz
m m _ /)2
E 0 2 (v — ') 0 %ﬁ(ﬂ—ﬂ/)z +2M(1} ')
™ v—w v —w %m(v—w)z %m(v’— w)? %(y/z 2?)
2
m
+ — (v —v')?
EF —w Z(v—9v)—w 1M w? Y(2(y— 1/’)—7171)2 ZM( )
M 2

! Note that the terrestrial reference frame is then not galilean, since the Earth started “mov-
ing” under the truck’s impulsion.
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(Mlustration @ Craig TaompsoN 2001)

Fig. 1.1 — Romeo, Juliet, and the boat on a lake.

The second paradox is resolved in the same manner: the Earth’s rebound
energy must be taken into account after the shock with the ball.

The interested reader will find another paradox, relating to optics, in Exer-
cise 1.3 on page 43.

1.1.b[] Romeo, Juliet, and[viscous fluids[]

Here is an example in mechanics where a function f(x) is defined on [0, 4-o0[,
but 1irnx—>0+ f(x) 7£ f(O)

Let us think of a summer afternoon, which Romeo and Juliet have dedi-
cated to a pleasant boat outing on a beautiful lake. They are sitting on each
side of their small boat, immobile over the waters. Since the atmosphere is
conducive to charming murmurs, Romeo decides to go sit by Juliet.

Denote by M the mass of the boat and Juliet together, 7 that of Romeo,
and L the length of the walk from one side of the boat to the other (see
Figures 1.1 and 1.2).

Two cases may be considered: one where the friction of the boat on the
lake is negligible (a perfect fluid), and one where it is given by the formula
f = —nv, where f is the force exerted by the lake on the boat, o the speed of
the boat on the water, and 7 a viscosity coefficient. We consider the problem
only on the horizontal axis, so it is one-dimensional.

We want to compute how far the boat moves

1. in the case n = 0;
2. in the case n # 0.

Let £ be this distance.
The first case is very easy. Since no force is exerted in the horizontal plane
on the system “boat + Romeo + Juliet,” the center of gravity of this system
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(Mlustration @ Craig Taompson 2001)
Fig. 1.2 — Romeo moved closer.

does not move during the experiment. Since Romeo travels the distance L
relative to the boat, it is easy to deduce that the boat must cover, in the
opposite direction, the distance

m

(= L
m+ M

In the second case, let x(¢) denote the positive of the boat and y(#) that
of Romeo, relative to the Earth, not to the boat. The equation of movement
for the center of gravity of the system is

M3 +mj = —nx.

We now integrate on both sides between ¢ = 0 (before Romeo starts moving)
and ¢ = 4-o00. Because of the friction, we know that as [ — +o0], the speed
of the boat goes to 0 (hence also the speed of Romeo, since he will have been
long immobile with respect to the boat). Hence we have

+oo
(M +m3)| = 0=—n(x(+00) = (0))

or nl = 0. Since n # 0, we have { = 0, whichever way Romeo moved to the
other side. In partcular, if we take the limit when n — 0, hoping to obtain
the nonviscous case, we have:

lil’l’(l) U(n)=0 hence lim €(n) # €(0).

n—)

n—0
n>0 n>0
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V()

Fig. 1.3 — Potential wall V(x) = V, H(x).

Conclusion: The limit of a viscous fluid to a perfect fluid is singular. It is not
possible to formally take the limit when the viscosity tends to zero to obtain
the situation for a perfect fluid. In particular, it is easier to model flows of
nonviscous perfect fluids by “real” fluids which have large viscosity, because of
turbulence phenomena which are more likely to intervene in fluids with small
viscosity. The interested reader can look, for instance, at the book by Guyon,
Hulin, and Petit [44].

Remark 1.1[JThe exact form f = —nwv of the friction term is crucial in this argument. If the
force involves additional (nonlinear) terms, the result is completely different. Hence, if you try
to perform this experiment in practice, it will probably not be conclusive, and the boat is not
likely to come back to the same exact spot at the end.

1.1.c[] Potential[wall in quantum mechanics[]

In this next physical example, there will again be a situation where we have a
limit lin})f(x) = f(0); however, the singularity arises here in fact because of
X—>

a second variable, and the true problem is that we have a double limit which
does not commute: lim lim f(x, y) # lim lim f(x, »).
x—0y—0 y—0x—0

The problem considered is that of a quantum particle arriving at a poten-
tial wall. We look at a one-dimensional setting, with a potential of the type
V(x) = Vy H(x), where H is the Heaviside function, that is, H(x) = 0 if
x < 0and H(x) = 1if x > 0. The graph of this potential is represented in
Figure 1.3.

A particle arrives from x = —oo in an energy state E > V; part of it is
transmitted beyond the potential wall, and part of it is reflected back. We are
interested in the reflection coefficient of this wave.

The incoming wave may be expressed, for negative values of x, as the sum
of a progressive wave moving in the direction of increasing x and a reflected
wave. For positive values of x, we have a transmitted wave in the direction
of increasing x, but no component in the other direction. According to the
Schrodinger equation, the wave function can therefore be written in the form

p(x 1) = $(x) f(2),
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Fig. 1.4 — “Smoothed” potential V' (x) = V, /(1 + e~*/4), with 2 > 0.

a x

where
elkx | Be—ikx if x <0, with £ < 27'”5,
(x) = ‘
Aei¥x if x>0, with &/ & 7“”’;‘“%’ .

The function f(¢) is only a time-related phase factor and plays no role in
what follows. The reflection coefficient of the wave is given by the ratio of the
currents associated to ¢ and is given by R =1 — % |AJ* (see [20,58]). There
remains to find the value of A. To find it, it suffices to write the equation
expressing the continuity of ¢ and ¢’ at x = 0, Since ¢(07) = (07), we
have 1 + B = A. And since ¢/(07) = ’(07), we have k(1 — B) = k’A, and
we deduce that A = 2k/(k + k). The reflection coefficient is therefore equal

to
K, (k=K (VE-JE-V,\’
R=t-gH _<k+k’>_<ﬁ+,/E—Vo>' (1)

Here comes the surprise: this expression (1.1) is independant of #. In particu-
lar, the limit as [# — 0] (which defines the “classical limit”) yields a nonzero
reflection coefficient, although we know that in classical mechanics a particle
with energy E does not reflect against a potential wall with value V, < EV
So, displaying explicitly the dependency of R on 7, we have:

lim R(%) # 0 = R(0).
50

In fact, we have gone a bit too fast. We take into account the physical
aspects of this story: the “classical limit” is certainly not the same as brutally
writing “% — 0.” Since Planck’s constant is, as the name indicates, just a
constant, this makes no sense. To take the limit # — 0 means that one
arranges for the quantum dimensions of the system to be much smaller than
all other dimensions. Here the quantum dimension is determined by the de

? The particle goes through the obstacle with probability 1.
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Broglie wavelength of the particle, that is, A = %/p. What are the other
lengths in this problem? Well, there are none! At least, the way we phrased it:
because in fact, expressing the potential by means of the Heaviside function is
rather cavalier. In reality, the potential must be continuous. We can replace it
by an infinitely differentiable potential such as V' (x) = V,/(1+e~*/4), which
increases, roughly speaking, on an interval of size 2 > 0 (see Figure 1.4). In
the limit where 4 — 0, the discontinuous Heaviside potential reappears.

Computing the reflection coefficient with this potential is done similarly,
but of course the computations are more involved. We refer the reader to [58,
chapter 25]. At the end of the day, the reflection coefficient is found to
depend not only on 7, but also on «, and is given by

sinham(k — k/)>2

R(7,a) = <m

(7 appears in the definition of ¥ = v2mE /b and k' = /2m(E — V;)/5.)
We then see clearly that for fixed nonzero a, the de Broglie wavelength of the
particle may become infinitely small compared to 4, and this defines the
correct classical limit. Mathematically, we have

Va #0 ;I;irrg)R(ﬁ,a) =0 classical limit
540
On the other hand, if we keep % fixed and let « to to 0, we are converging
to the Heaviside potential and we find that
k—Fk

2

So the two limits [# — 0] and [# — 0] cannot be taken in an arbitrary order:

o k—k\? o
}I;l_r)r(l)clllg%)R(ﬁ,a) = <k n k’> but ilir%) }I;E)I})R(E,a) =0.
5#0 a#0 a#0 5#£0

To speak of R(0,0) has a priori no physical sense.

1.1.d[J] Semi-infinite filter behaving[as waveguide[]

We consider the cicuit AB,
2C C
|
\

M

made up of a cascading sequence of “T” cells (2C, L, 2C),
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20 2C
A o] —e

B @ ®

(the capacitors of two successive cells in series are equivalent with one capacitor
with capacitance C). We want to know the total impedance of this circuit.

First, consider instead a circuit made with a finite sequence of 7 elementary
cells, and let Z, denote its impedance. Kirchhoff’s laws imply the following
recurrence relation between the values of Z,:

1
1L Z
1 e <2iCco + ”>
Zyi1 = 7 + , (1.2)
Z2Co ot ! +Z
21Cw "

where w is the angular frequency. In particular, note that if Z, is purely
imaginary, then so is Z, ;. Since Z; is purely imaginary, it follows that

Z, 1R for all » € N.

We don’t know if the sequence (Z,), oy converges. But one thing is cer-
tain: if this sequence (Z,),oy converges to some limit, this must be purely
imaginary (the only possible real limit is zero).

Now, we compute the impedance of the infinite circuit, noting that this
circuit A B is strictly equivalent to the following:

2C 2C

A o] |

B e

Hence we obtain an equation involving Z:

|
i z
1 +1”<mcw+ >

21Cw ny

(13)
1Lew +

21Cw

Some computations yield a second-degree equation, with solutions given by

1 1
Z2:—-<L——>.
C 4C ?

We must therefore distinguish two cases:
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1
o If w < w, = ———, we have Z? < 0 and hence Z is purely imaginary of

24 LC
P [ 1 L
= 1 [ —
4C%2? C

Remark 1.2[]Mathematically, there is nothing more that can be said, and in particular there
remains an uncertainty concerning the “sign” of Z.

However, this can also be determined by a physical argument: let < tend to 0 (continuous
regime). Then we have

the form

i

Z(w) o0t :I:ZCco’

the modulus of which tends to infinity. This was to be expected: the equivalent circuit is
open, and the first capacitor “cuts” the circuit. Physically, it is then natural to expect that, the
first coil acting as a plain wire, the first capacitor will be dominant. Then

i

Z(w) ~

w—0T 72C(A)

(corresponding to the behavior of a single capacitor).
Thus the physically acceptable solution of the equation (1.3) is

~ | L
= —1 -
4C%*w? C

1
o If o> w, =———, then Z? > 0 and Z is therefore real:

2
z—i,/L !
- C 4C2w?

Remark 1.3[JHere also the sign of Z can be determined by physical arguments. The real part
of an impedance (the “resistive part”) is always non-negative in the case of a passive component,
since it accounts for the dissipation of energy by the Joule effect. Only active components
(such as operational amplifiers) can have negative resistance. Thus, the physically acceptable

solution of equation (1.3) is
Z= 4y Lo
B C  4C%?

In this last case, there seems to be a paradox since Z cannot be the limit
as n — 400 of (Z,),cn- Let’s look at this more closely.

From the mathematical point of view, Equation (1.3) expresses nothing but the
fact that Z is a “fixed point” for the induction relation (1.2). In other words,
this is the equation we would have obtained from (1.2), by continuity, i we
had known that the sequence (Z,),y converges to a limit Z. However, there
is no reason for the sequence (Z,),y to converge.

Remark 1.4[] From the physical point of view, the behavior of this infinite chain is rather sur-
prising. How does resistive behavior arise from purely inductive or capacitative components?
Where does energy dissipate? And where does it go?
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In fact, there is no dissipation of energy in the sense of the Joule effect, but energy does
disappear from the point of view of an operator “holding points 4 and B.” More precisely,
one can show that there is a flow of energy propagating from cell to cell. So at the beginning
of the circuit, it looks like there is an “energy well” with fixed power consumption. Still, no
energy disappears: an infinite chain can consume energy without accumulating it anywhere.’
In the regime considered, this infinite chain corresponds to a waveguide.

We conclude this first section with a list of other physical situations where
the problem of noncommuting limits arises:

e taking the “classical” (nonquantum) limit, as we have seen, is by no
means a trivial matter; in addition, it may be in conflict with a “non-
relativistic” limit (see, e.g., [6]), or with a “low temperature” limit;

e in plasma thermodynamics, the limit of infinite volume (V' — oo) and
the nonrelativistic limit (¢ — oo) are incompatible with the thermo-

dynamic limit, since a characteristic time of return to equilibrium is
V13 /¢,

e in the classical theory of the electron, it is often reproached that such
a classical electron, with zero naked mass, rotates too fast at the level of
the equator (200 times the speed of light) for its magnetic moment and
renormalized mass to conform to experimental data. A more careful
calculation by Lorentz himself' gave about 10 times the speed of light
at the equateur. But in fact, the limit [ — 0T] requires care, and if
done correctly, it imposes a limit [z/¢c — 17] to maintain a constant
renormalized mass [7];

e another interesting example is an “infinite universe” limit and a “diluted
universe” limit [56].

1.2[]

Sequences(]

1.2.a[] Sequences in a normed[Vector space[]

We consider in this section a normed vector space (E,||-||) and sequences of
elements of E.’

3 This is the principle of Hilbert’s infinite hotel.
* Pointed out by Sin-Itiro Tomonaga [91].
> We recall the basic definitions concerning normed vector spaces in Appendix A.
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DEFINITION 1.5 (Convergence[of[a$equence)[JLet (£, ||-||) be a normed vec-
tor space and (#,),c a sequence of elements of E, and let { € E. The
sequence (#,),cyy converges to ¢ if, for any ¢ > 0, there exists an index
starting from which #, is at most at distance ¢ from {:

Ve>0 dNeN VreN n=N=>|u, L <e.
Then £ is called the limit of the sequence (#,), <y, and this is denoted

L= lim u, or u, — L.
n—0oo n—o0
DEFINITION 1.6[JA sequence (#,),cy of real numbers converges to 400 (resp.
to —oo) if, for any M € R, there exists an index N, starting from which all
elements of the sequence are larger than M:

VMeR INeN VreN n=2N=—=u,>M (resp. u,, < M).

In the case of a complex-valued sequence, a type of convergence to infinity,
in modulus, still exists:

DEFINITION 1.7[JA sequence (z,),cn Of complex numbers converges to in-
finity if, for any M € R, there exists an index N, starting from which all
elements of the sequence have modulus larger than M:

VMeR dNeN VeeN n=N=>|z,| > M.

Remark 1.8 There is only “one direction to infinity” in C. We will see a geometric interpreta-
tion of this fact in Section 5.4 on page 146.

Remark 1.9[] The strict inequalities ||#, — || < ¢ (or |#,| > M) in the definitions above (which,
in more abstract language, amount to an emphasis on ogpen subsets) may be replaced by
|l#, — || < e, which are sometimes easier to handle. Because ¢ > 0 is arbitrary, this gives
an equivalent definition of convergence.

1.2.b[] Cauchy[$equences[]

It is often important to show that a sequence converges, without explicitly
knowing the limit. Since the definition of convergence depends on the limit ¢,
it is not conveninent for this purpose.’ In this case, the most common tool
is the Cauchy criterion, which depends on the convergence “of elements of the
sequence with respect to each other™:

¢ As an exemple: how should one prove that the sequence (#, )y, With

”
— (G
n, = 2 4
p=1

»

converges? Probably not by guessing that the limit is 77t* /720.
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DEFINITION 1.10 (Cauchy[¢riterion)[JA sequence (#,),cn 10 a normed vector
space is a Cauchy sequence, or satisfies the Cauchy criterion, if

Ve>0 INeN VpqeN g>p>N=|u,—un]<c
or, equivalently, if

Ve>0 dNeN VpkeN pZN:>HuP+k—uPH<E.

A common technique used to prove that a sequence (#,),.y 1s a Cauchy
sequence 1s therefore to find a sequence (a, ),y of real numbers such that

Plirgloapzo and Vp,keN Huﬁk—uPH < a,.

PROPOSITION 1.11[0Any convergent sequence is a Cauchy sequence.

This is a trivial consequence of the definitions. But we are of course
interested in the converse. Starting from the Caucy criterion, we want to be
able to conclude that a sequence converges — without, in particular, requiring
the limit to be known beforehand. However, that is not always possible:
there exist normed vector spaces E and Cauchy sequences in E which do not
converge.

Example 1.12[JConsider the set of rational numbers Q. With the absolute value, it is a normed
@-vector space. Consider then the sequence

uy=3 ;=31 u,=314 u;=3141 x,=3.1415 u,=3.14159.-.

(you can guess the rest’...). This is a sequence of rationals, which is a Cauchy sequence (the
distance between #, and #,; is at most 1077). However, it does not converge in @, since its
limit (in R!) is 7t, which is a notoriously irrational number.

The space @ is not “nice” in the sense that it leaves a lot of room for Cauchy sequences to

exist without converging 7z Q. The mathematical terminology is that Q is not complete.

DEFINITION 1.13 (Complete[ector[$pace)[JA normed vector space (E, ||-||) is
complete if all Cauchy sequences in E are convergent.

THEOREM 1.14(07%e spaces R and C, and more generally all finite-dimensional real
or complete normed wvector spaces, are complete.

Proor

First case: It is first very simple to show that a Cauchy sequence (,,),, oy of real num-
bers is bounded. Hence, according to the Bolzano-Weierstrass theorem (Theorem A.41,
page 581), it has a convergent subsequence. But any Cauchy sequence which has a
convergent subsequence is itself convergent (its limit being that of the subsequence),
see Exercise 1.6 on page 43. Hence any Cauchy sequence in R is convergent.

Second case: Considering C as a normed real vector space of dimension 2, we can
suppose that the base field is R.

7 This is simply #, = 10~ - |10"7t| where |- is the integral part function.
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Consider a basis B = (&;,...,5,) of the vector space E. Then we deduce that E is
complete from the case of the real numbers and the following two facts: (1) a sequence
(%, )nen Of vectors, with coordinates (x1,...,x?) in B, converges in E if and only if
each coordinate sequence (x*,),o; and (2), if a sequence is a Cauchy sequence, then
each coordinate is a Cauchy sequence.

Both facts can be checked immediately when the norm of E is defined by ||x|| =
max|x*|, and other norms reduce to this case since all norms are equivalent on E.

Example 1.15[]The space L? of square integrable functions (in the sense of Lebesgue), with the

norm Hf”iz e fR |fI%, is complete (see Chapter 9). This infinite-dimensional space is used

very frequently in quantum mechanics.

Counterexample 1.16[]Let £ = K[X] be the space of polynomials with coefficients in K (and
arbitrary degree). Let P € E be a polynomial, written as P = > «,X”, and define its norm by

[|P]| « max |o;|. Then the normed vector space (E,||-||) is not complete (see Exercise 1.7 on
page 43).

Here is an important example of the use of the Cauchy criterion: the fixed
point theorem.

1.2.c[] The fixed point theorem([]

We are looking for solutions to an equation of the type

S(x) =%,

where f: E — E is an application defined on a normed vector space E, with
values in E. Any element of E that satisfies this equation is called a fixed
point of f.

DEFINITION 1.17 (Contraction)[JLet E be a normed vector space, U a subset
of E. Amap f : U — E is a contraction if there exists a real number
e € [0,1] such that Hf(y)—f(x)” < plly — x| forallx, y € U. In particular,

f is continuous on U

THEOREM 1.18 (Banach([fixed point theorem)[1Ler E be a complete normed wvec-
tor space, U a non-empty closed subset of E, and [ : U — U a contraction. Then f
bas a unique fixed point.

Proor. Chose an arbitrary #, € U, and define a sequence (#,),o for = 0 by
induction by #,,, = f(u,). Using the definition of contraction, an easy induction
shows that we have

||”p+1 - p|| < 7 |y — mg|
for any p = 0. Then a second induction on & > 0 shows that for all p,k € N, we have

- [l
[#y00 = 1, | < (7 -+ 77 -l — ]| < -5 [y = o[

and this proves that the sequence (#,),oy 1s a Cauchy sequence. Since the space E is
complete, this sequences has a limit « € E. Since U is closed, we have « € U.
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Now from the continuity of f and the relation #,, , = f(u,), we deduce that

f(a). So this a is a ﬁxed point of f. If # is an arbitrary fixed point, the inequality

||a—bH = Hf(ﬂ || < pHa—bH proves that || — &|| = 0 and thus « = &,
showing that the ﬁxed point is unique.

Remark 1.19[JHere is one reason why Banach’s theorem is very important. Suppose we have
a normed vector space £ and a map g : £ — E, and we would like to solve an equation
g(x) = &. This amounts to finding the fixed points of f(x) = g(x) + x — &, and we can hope
that f may be a contraction, at least locally. This happens, for instance, in the case of the
Newton method, if the function used is nice enough, and if a suitable (rough) approximation
of a zero is known.

This is an extremely fruitful idea: one can prove this way the Cauchy-Lipschitz theorem
concerning existence and unicity of solutions to a large class of differential equations; one can
also study the existence of certain fractal sets (the von Koch snowflake, for instance), certain
stability problems in dynamical systems, etc.

Not only does it follow from Banach’s theorem that certain equations have
solutions (and even better, unique solutions!), but the proof provides an ¢ffec
tive way to find this solution by a successive approximations: it suffices to fix
u, arbitrarily, and to define the sequence (#,),c by means of the recurrence
formula #, | = f(u,); then we know that this sequence converges to the fixed
point 4 of f. Moreover, the convergence of the sequence of approximations
is exponentially fast: the distance from the approximate solution #, to the
(unknown) solution « decays as fast as p”. An example (the Picard iteration) is
given in detail in Problem 1 on page 46.

1.2.d[] Double[$equences[]

Let (x, 1 )(s ) be a double-indexed sequence of elements in a normed vector

space E. We assume that the sequences made up of each row and each column
converge, with limits as follows:

Xy Xy X3 o — A
Xy Xy Xy o —— A,
X3 X3y Xzy o —— A

B, B, B;
The question is now whether the sequences (4,),cy and (By )y themselves
converge, and if that is the case, whether their limits are equal. In general, it
turns out that the answer is “No.” However, under certain conditions, if one
sequence (say (A,)) converges, then so does the other, and the limits are the
same.

DEFINITION 1.20JA double sequence (x,;),, converges uniformly with re-
spect to % to a sequence (B}),on as 7 — 00 if

Ve>0 INeN VreN VkeN n>N=|x,;,—B|<e
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In other words, there is convergence with respect to 7 for fixed %, but in such
a way that the speed of convergence is independent of k; or one might say that
“all values of % are similarly behaved.”

Uniform convergence with respect to # toward the sequence (A,),cn 18
similarly defined.

THEOREM 1.21 (Double limit)OWith notation as above, if the following three con-
ditions hold:

@ each row converges, and A, = klirgo X h Jorall n € N,
@ each column converges, and B, = lim x,,, forall k € N,
n—oo

® the convergence is uniform either with respect to n or with respect to k;

then the sequences (A,,),cn and (By),en converge, lim A, = lim B, = L One
n—0Q0

k—o0

says that the double sequence (x,, ), ; converges to the limit (.

Be aware that the uniform convergence condition ® is very important.
The following examples gives an illustration: here both limits exist, but they
are different.

—_ = = =
— == O
——_= O O
— O O O
Vil

S O OO

— e

1.2.e[] Sequential definition of{the limit[¢f[a function[]

DEFINITION 1.22[JLet f : K — K’ (where K, K’ = R or C or any normed
vector space), let 2 € K, and let £ € K’. Then f has the limit £, or tends
to £, at the point a if we have

Ve>0 dn>0 VzekK |z—a|<7;:>‘f(z)—ﬁ‘<e.
There are also limits at infinity and infinite limits, defined similarly:

DEFINITION 1.23[JLet f : K — K’ (where K,K’ = R or C). Let £ € K".
Then f tends to £ at 400, resp. at —oo (in the case K = R), resp. at infinity
(in the case K = C), if we have

Ve>0 3AeR VxeR x>dAd=|f(x)—{|<s,
[resp. Ve>0 34’€R VxeR x<A’:>‘f(x)—Q|<€
resp. Ve>0 4Rt VzeC 2| > A= |f(z) — (| < ¢].



18 REMINDERS CONCERNING CONVERGENCE

Similarly, a function f: R — R tends to +oo at +oo if
VM >0 d4eR VxeR x>A= f(x)> M,
and finally a function f: C — C tends to infinity at infinity if
VM >0 JA4cR VzeC |z| > A = |f(z)] > M.

In some cases, the definition of limit is refined by introducing a punctured
neighborhood, i.e., looking at the values at points other than the point where
the limit is considered:

DEFINITION 1.24[JLet f : K — {a} — K’ (with K,K’ = R or C and « € K)
and let { € K. Then f(x) converges to £ in punctured neighborhoods
of a if

Ve>0 dneR VzekK
(z#aand |z —a| <n)= (|f(2) -] <e).
This is denoted
¢ = lim f(z).

zZ—a

z#a

This definition has the advantage of being practically identical to the defi-
nition of convergence at infinity. It is often better adapted to the physical
description of a problem, as seen in Examples 1.1.b and 1.1.c on page 5 and
the following pages. A complication is that it reduces the applicability of the
theorem of composition of limits.

THEOREM 1.25 (Sequential[¢haracterization of limits)[JLer f : K — K’ be a

Sfunction, and let a € K and L € K. Then f(x) converges to L as x tends to a if
and only if, for any convergent sequence (x,,),cn with limit equal to a, the sequence

(s (X,,))n oy converges to L.

1.2.f[] Sequences of functions[]

Consider now the case of a sequence of functions (f,),cy each defined on a
same subset X of R or C and taking values in R or C. Denote by ||-||., the

[ »8
supremum norm

1/l = sup | /(x)].
xeX

®In fact, it is not a norm on the space of all functions, but only on the subspace of
bounded functions. We disregard this subtlety and consider here that ||-|| takes values in R* =
R U {+o0}.
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The definition of convergence of real or complex sequences may be extended

to functions in two ways: one is a local notion, called simple, or pointwise,
. . 9

convergence, and the other, more global, is uniform convergence.

DEFINITION 1.26 (Simple[¢onvergence)[]Let (f,),cn be a sequence of func-
tions, all defined on the same set X, which may be arbitrary. Then the
sequence (f,,),eN converges simply (or: pointwise on X) to a function f
defined on X if, for any x in X, the sequence (f, (x)) converges to f(x).
This is denoted

CV.s

Jo — 1

DEFINITION 1.27 (Uniform[¢onvergence)[]Let (f,),cn be a sequence of func-
tions, all defined on the same set X, which may be arbitrary. Then the
sequence (f),),n converges uniformly to the function f if

Ve>0 dNeN VeeN nzN=|f,—fllo<e¢

Cv.U

This is denoted fn— f

In other words, in the case where X is a subset of R, the graph of the
function f is located inside a smaller and smaller band of constant width in
which all the graphs of f, must also be contained if 7 is large enough:

\ |
If we have functions f, : X — E, where (E, ||-||) is a normed vector space,

we similarly define pointwise and uniform convergence using convergence
in E; for instance, (f,),cn converges uniformly to f if

Ve>0 dNeN VzeN nZN:>supr”(x)—f(x)H<e
xeX

Remark 1.28[]Uniform convergence is an important theoretical mathematical notion. If one
wishes to compute numerically a function f using successive approximations f, (for instance,
partial sums of a series expansion), then to get an error of size at most ¢ for the value f(x))
of f at some given point x;, it suffices to find N, such that |f,(x) — f(x1)| < ¢ for any
n = N,. Similarly, if the value of f at other points x,,x;,.. %) is needed, it will be enough
to find corresponding integers N,, N;,...,N,. However, if it is not known beforehand at

which points the function will evaluated, it will be necessary to know an integer N such that
|fn(x) 7f(x)| < ¢ forall # > N and for all x € R. Uniform convergence is then desirable.

’ The concept of uniform convergence is due to George STOKES (see page 472) and Philipp
SEIDEL (1821—1896), independently.
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[t is clear that uniform convergence implies pointwise convergence, but the
converse is not true.

Example 1.29[] Define a sequence (), a functions on R by

nx ifx0,1/n], !
f(x)=X2—nx ifxe[l/n2/n],
0 ifxe[2/n1]. \ x
1/n 2/n 1

The reader will have no trouble proving that (f,),-; converges pointwise to the zero function.
However, the convergence is not uniform, since we have || f, — f|| ., =1 forall z > 1.

Example 1.30[ The sequence of functions f, : R — R defined for » > 1 by

fn:x»—>sin(x+ f)

n

converges uniformly to f : x — sinx on the interval [0,27], and in particular it converges
pointwise on this interval. However, although the sequence converges pointwise to the sine
function on R, the convergence is not uniform on all of R. Indeed, for » > 1, we have

) =in(ED) i ()= (D),

and those two values differ by 1 in absolute value. However, one can check that the convergence
is uniform on any bounded segment in R.

¢ Exercise[J1.10Let g(x) = e and f,(x) = g(x — #). Does the sequence (f; ),y converge
pointwise on R? Does it converge uniformly?

Remark 1.31]In the case where the functions f, are defined on a subset of R with finite
measure (for instance, a finite segment), a theorem of Egorov shows that pointwise convergence
implies uniform convergence except on a set of arbitrarily small measure (for the definitions,
see Chapter 2).

Remark 1.32[JThere are other ways of defining the convergence of a sequence of functions. In
particular, when some norm is defined on a function space containing the functions f,, it is
possible do discuss convergence in the sense of this norm. Uniform convergence corresponds
to the case of the |||, norm. In Chapter 9, we will also discuss the notion of convergence in
quadratic mean, or convergence in L? norm, and convergence in mean or convergence in L! norm.
In pre-Hilbert spaces, there also exists a weak convergence, or convergence in the sense of scalar
product (which is not defined by a norm if the space is infinite-dimensional).

A major weakness of pointwise convergence is that it does not preserve
continuity (see Exercise 1.10 on page 44), or limits in general (Exercise 1.12).
Uniform convergence, on the other hand, does preserve those notions.

THEOREM 1.33 (Continuity[®f[a limit)[1Let (f,),cn be a sequence of functions de-
fined on a subset D in K (or in a normed vector space), with values in an arbitrary
normed vector space. Assume that the sequence (f,)),cn converges uniformly to a_func-

tion f.

1) Let a € D be such that all functions f, are continnous at the point a. Then f
is also continuouns at the point a.
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11) In particular, if each f, is continuous on D, then the limit function [ is also
continuous on D.

This property extends to the case where 4 is not in D, but is a limit point
of D. However, it is then necessary to reinforce the hypothesis to assume that
the functions f, have values in a complete normed vector space.

THEOREM 1.34 (Double limit)[Ler D be a subset of R (or of a normed wvector
space) and let xy € D be a limit point” of D. Let (f,), o be a sequence of functions
defined on D with values in a complete normed vector space E. Assume that, for all
n, the function f,, has a limit as x tends to x,. Denote U, =lim, _,, f,(x).

If (f,)) e converges uniformly to a function f, then
1) f(x) has a limit as x — x;;
i) (,),ex bas a limit as n — oo;

iii) the two limits are equal: lim f(x) = lim {,,.

X=X n—00
In other words: lim lim f,(x)= lim lim f,(x).
X—>Xy n—00 n—00 X—X

If we want a limit of differentiable functions to remain differentiable,
stronger assumptions are needed:

THEOREM 1.35 (Differentiation[¢f[a[$equence[df functions)[]Let I be an inter-
val of R with non-empty interior, and let (f,),cn be a sequence of functions defined
on I with values in R, C, or a normed vector space. Assume that the functions f, are
differentiable on I, and moreover that:

1) the sequence (f,,),cn converges pointwise to a_function f;

i) the sequence (f)),cn converges uniformly to a function g.

Then [ is differentiable on I and f' = g.

Remark 1.36[JIf the functions take values in R or C or more generally any complete normed
vector space, it is possible to weaken the assumptions by asking, instead of (i), that the sequence
(f, (%)) converges at a single point x, € /. Assumption (ii) remains identical, and the conclu-
sion is the same: (f,),oy converges uniformly to a differentiable function with derivative equal
to g.

Counterexample 1.37[]The sequence of functions given by

Y 8 i sin(nx)
tx— —
! T An? — 1

1% See Definition 4.52 on page 106; the simplest example is D = ]z, %] and x, = a.
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converges uniformly to the function f : x — [sinx]| (see Exercise 9.3 on page 270), but the
sequence of derivatives does not converge uniformly. The previous theorem does not apply,
and indeed, although each f, is differentiable at 0, the limit f is not.

Remark 1.38[]1t happens naturally in some physical situations that a limit of a sequence of
functions is not differentiable. In particular, in statistical thermodynamics, the state functions
of a finite system are smooth. However, as the number of particles grows to infinity, disconti-
nuities in the state functions or their derivatives may appear, leading to phase transitions.

Uniform convergence is also useful in another situation: when trying to
exchange a limit (or a sum) and an integration process. However, in that
situation, pointwise convergence is often sufficient, using the powerful tools
of Lebesgue integration (see Chapter 2).

THEOREM 1.39 (Integration on affinite interval)[Les (f,),cn be a sequence of
integrable functions (for instance, continuous functions), which converges uniformly to
a function f on a finite closed interval [a,b] C R. Then f is integrable on [a,b]
and we have

n—

lim Lb fi(x)dx = J b f(x)da.

Example 1.40[]This theorem is very useful, for instance, when dealing with a power series
expansion which is known to converge uniformly on the open disc of convergence (see Theo-
rem 1.66 on page 34). So, if we have f(x) =" a,x" for |x| < R, then for any x such that
|x| < R, we deduce that

o)

Lx f@ds=>" nd—+1 P

n=0

To establish that a sequence converges uniformly, in practice, it is necessary
to compute || f;, — f]|.., or rather to bound this expression by a quantity which
itself converges to 0. This is sometimes quite tricky, and it is therefore useful
to know the following two results of Dini:"

THEOREM 1.41 (Dini)[Let K be a compact subset of R, for instance, a closed ball.
Let (f,),en be an increasing sequence of continuous functions converging pointwise

on K to a continnous function f. Then the sequence (f,),cn converges uniformly to f
on K.

THEOREM 1.42 (Dini)[JLet I = [a,b] be a compact interval in R, and let (f,,),cn
be a sequence of increasing functions from I to R that converges pointwise on I to a
continous function f. Then (f,),cn converges uniformly on I.

" Ulisse Dint (1845—1918) studied in Pisa and Paris before taking a position in Pisa. His
work concerned the theory of functions of a real variable, and he contributed to the early
development of functional analysis.
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a sequence of increasing functions. The former is a sequence (f,),oy of real-valued

functions such that f, ,(x) = f,(x) for any x € R and # € N. The latter is a
sequence of real-valued functions defined on K < R such that for any x, y € K:
x <y = f,(x) < 1,0

As mentioned briefly already, it is possible with Lebesgue’s dominated
convergence theorem to avoid requiring uniform convergence to exchange an
integral and a limit, as in Theorem 1.39. See Chapters 2 and 3 for details on
this theory.

‘c Remark 1.43[]Be careful to distinguish between an increasing sequence of functions and

1.3[]

Series[]

1.3.a[] Series in a normed[yector space[]

We first recall the definition of convergence and absolute convergence of a
series in a normed vector space.

DEFINITION 1.44 (Convergence[of[a[3eries)[]Let («,,), be a sequence with val-
ues in a normed vector space. Let (S,),oy denote the sequence of partial
sums

n
def
Sn = Z Ap-
k=0

e The series Y, a4, converges, and its sum is equal to A if the sequence
(S,),en converges to A. This is denoted

| converges

e The series Y, 4, converges absolutely if the series >_ ||,

mn R.

e In particular, a series > a,, of real or complex numbers converges abso-
lutely if the series >_ |a,| converges in R.

As in the case of sequences, there exists a Cauchy criterion for convergence
12
of series :

> This criterion was stated by Bernhard BorzaNo (see page 581) in 1817. But Bolzano was
isolated in Prague and little read. Cauchy presented this criterion, without proof and as an
obvious fact, in his analysis course in 1821.
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THEOREM 1.45 (Cauchy(¢riterion)[llf a series > u,, with values in a normed vec-
tor space E converges, then it satisfies the Cauchy criterion: .

2

n=p

Ve>0 INeN VpgeN (g>p=N)= <e,

or in other words:
lim E u, =0.
Y

Conwersely, any series which satisfies the Cauchy criterion and takes values in R,
C, any finitedimensional normed vector space, or more generally, any complete normed
vector space, converges.

From this the following fundamental theorem is easily deduced:

THEOREM 1.46[Jdny absolute convergent series > a, with values in a complete
normed vector space is convergent.

In particular, any absolutely convergent series of real or complex numbers is conver-
gent.

Proor. Let > #, be an absolutely convergent series. Although we can write

k
M AP
n=0

nothing can be deduced from this, because the right-hand side does not tend to zero.
But we can use the Cauchy critetion: for all p, 4 € N, we have of course

7
<D Nl
n=p

and since Y. ||u,|| satisfies the Cauchy criterion, so does > #,. Since #, lies in a
complete space by assumption, this means that the series > #, is indeed convergent.

k

2

n=0

q

PR

n=p

1.3.b[] Doubly infinite series[]

In the theory of Fourier series, we will have to deal with formulas of the type

“+o00o

1
fo FOPde= S 1o,

n=—0o0

To give a precise meaning to the right-hand side, we must clarify the meaning
of the convergence of a series indexed by integers in Z instead of N.

DEFINITION 1.47[JA doubly infinite series »;, 5 4,, with 4, is a normed
vector space, converges if » a4, and > a_, are both convergent, the index
ranging over N in each case. Then we denote

—+o00

[eS) 0
def
PO BRI
n=0 n=1

n=—0o0
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and say that this is the sum of > _, a,,.

In other words, a series of complex numbers > _, a, converges to { if and
only if, for any ¢ > 0, there exists N > 0 such that

<i“”> —Q’ <e.

n=—i

forany i = N and j >

Remark 1.48[]1t is crucial to allow the upper and lower bounds 7 and ; to be indepen-
dent. In particular, if the limit of Z a, exists, it does not follow that the doubly
infinite series > _, 4, converges.

For instance, take @, = 1/n for n # 0 and @, = 0. Then we have 3*_ 4, = 0
for all £ (and so this sequence does converge as % tends to infinity), but the series Z
diverges according to the definition, because each of the series > 4, and > a_, (
divergent.

n=—t %n

ne’l a,

, (over n > 0) is

1.3.c[] Convergence offa double series[]

As in Section 1.2.d, let (4,;); ;i be a family of real numbers indexed by two
integers. For any p,q € N, we have

9 9 P
33y =3 e
i=1 j=1 j=1i=1

since each sum 1s finite. On the other hand, even if all series involved are
convergent, it is not always the case that

(oo} oo oo (oo}
22w and DD ay,
i=1 j=1 j=1i=1

as the following example shows:

1-1 0 0 0 0
01 -1 0 0 0
(@)=10 0 1 -1 0 0

where we have (note that 7 is the row index and ; is the column index):
(o0} oo
S50 b 35,
i=1 j=1 Jj=1i=1
We can find an even more striking example by putting

1-1 0 0 0 0
0 2 -2 0 0 0
(@j)=10 0 3 -3 0 0
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in which case
(o]

SN =020 bt SIS e, =S 1= teo.

i=1 j=1 i=1 j=1i=1 j=1

1.3.d[] Conditionally[¢onvergent[3eries,[]
absolutely[¢onvergent[series[]

DEFINITION 1.49[]A series > a, with 4, in a normed vector space is condi-
tionnally convergent if it is convergent but not absolutely convergent.

DEFINITION 1.50[[We denote by & the group of permutations, that is, the
group of bijections from N to N, and we denote by &, the finite group of
permutations of the set {1,...,#}.

DEFINITION 1.51[JA series Y, x,, is commutatively convergent if it is con-
vergent with sum X, and for any permutation ¢ € &, the rearranged series
D Xy(y) converges to X.

Is a convergent series necessarily commutatively convergent? In other words,
is it legitimate to change arbitrarily the order of the terms of a convergent series?

At first sight, it is very tempting to say “Yes,” almost without thinking,
since permuting terms in a finite sum has no effect on the result. The problem
is that we have here an infinite sum, not a finite sum in the algebraic sense.
So there is a limiting process involved, and we will see that this brings a
very different picture: only absolutely convergent series will be commutatively
convergent. So, if a series is conditionally convergent (convergent but not
absolutely so), changing the order of the terms may alter the value of the sum
— or even turn it into a divergent series.

THEOREM 1.52[Let > a,, be a conditionnally convergent series, with a,, € R. Then

Jor any U € R, there exists a permutation ¢ € & such that the rearranged series
D Ay converges to L.

In fact, for any a,b € R, with a < b, there exists a permutation ) € S such that
the set of limit points of the sequence of rearranged partial sums <Zk _0 a¢(k))”€N is
the interval [a,b].

Proor. We assume that > a, is conditionnally convergent.
» First remark: there are infinitely many positive values and infinitely many negative values
of the terms «,, of the series. Let @, denote the sequence of non-negative terms, in the
order they occur, and let 3, denote the sequence of negative terms.

Here is an illustration:

u,: 1 3 2 —4 -1 2 -1 0 2

a @ oa By Byoay Byoas
» Second remark: both series > a, and > 3, are divergent, their partial sums con-
verging, respectively, to +oco and —oo. Indeed, if both series were to converge, the
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series >_a, would be absolutely convergent, and if only one were to converge, then
>~ a, would be divergent (as follows from considering the sequence of partial sums).
» Third remark: both sequences (,,),on and (3,),cn tend to 0 (since (a,,),on tends
to 0, as a consequence of the convergence of >_a,).

Now consider £ € R. Let S, denote the sequence of sums of values of o and 3
which is constructed as follows. First, sum all consecutive values of @, until their sum
is larger than ¢; call this sum ;. Now add to S, all consecutive values of 3, until
the resulting sum S, + 3, + - -+ is smaller than {; call this sum S,. Then start again
adding from the remaining values of «, until getting a value larger than {, called S;,
and continue in this manner until the end of time.

Now notice that:

e Since at each step we add at least one value of o or one of [3, it is clear that
all values of o will be used sooner or later, as well as all values of 3, that is,
when all is said and done, all values of «, will have been involved in one of the
sums S,.

e Since, at each step, the distance |[{ — S,| is at most equal to the absolute value
of the last value of o or 3 considered, the distance from §, to { tends to 0 as #
tends to infinity.

From this we deduce that the sequence (S,) is a sequence of partial sums of a
rearrangement of the series > «,, and that it converges to {. Hence this proves that &y
stmply changing the order of the terms, one may cause the series to converge to an arbitrary sum.

Let now 4,5 € R with 4 < / (the case 2 = b being the one already considered).

e If 2 and & are both finite, we can play the same game of summation as before, but
this time, at each step, we either sum values of «, until we reach a value larger than &,
or we sum values of 3, until the value is less than 4.

o If » = 400 and « is finite, we sum from 4 to above 4+ 1, then come back to below

a, then sum until we are above 4 + 2, come back below 4, etc. Similarly if 4 = —oc0
and / is finite.
e If 4 = —oco and b = 400, start from 0 to go above 1, then go down until reaching

below —2, then go back up until reaching above 3, etc.

Example 1.53[]Consider the sequence (a,),oy- With general term 4, = (—1)"*!/n. It follows
from the theory of power series (Taylor expansion of log(1 + x)) that the series >, converges
and has sum equal to log2. If we sum the same values z, by taking one positive term followed
by two negative terms, then the resulting series converges to 1log2. Indeed, if (S,),oy and
(87,),en denote the sequence of partial sums of the original and modified series, respectively,
then for » € N we have

and

— 1141 _ 1y 1 _ 1

Som 2+3 4+ Jr2;171 2n

S/ —1—-1_1,1_1_1,4 . 1 1 _ 1

3n 2 4+3 6 8+ +271—1 4n—2  4n
~—— N—— ——o—
-1_ 1,1 1, L 1 _1_1g
2 4+6 s+ +4n72 4n 2 2

As an exercise, the reader can check that if one takes instead two positive terms followed by
one negative terms, the resulting series converges with a value equal to % log 2.
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The following result shows that, on the other hand, one can rearrange at
will the order of the terms of an absolutely convergent series.

THEOREM 1.54[1A series of complex numbers is commutatively convergent if and only
if it is absolutely convergent.

Proor. Assume first that the terms of the series are real numbers. The theorem above
shows that if >, is commutatively convergent, it must be absolutely convergent.
Conversely, assume the series is absolutely convergent and let £ denote its sum. Let ¢
be any permutation. By convergence of the series, there exists N > 1 such that

n
E ak—Q‘<a
k=1

for » = N. For each such » = N, there exists N’ such that the set {¢(1),...,p(N’)}
contains {1,...,7} (it suffices that N/ be larger than the maximum of the images of 1,
..., N by the inverse permutation ¢)~!). Then for any m > N’, we have

Zaw)fﬁ Zﬂk*2‘+2‘“k|$f+2|“/¢"
=1 =1

k>n k>n
since the set {(1),...,¢(m)} contains {1,...,#}, and possibly additional values which
are all larger than #. The absolute convergence makes its appearance now: the last sum
on the right is the remainder for the convergent series > |4,|, and for » > N” it is
therefore itself smaller than e. Since, given ¢, we can take » = N’ and find the value

N’ from it, such that
D 4y L
=1

for m = N’, and so we have proved that the rearranged series converges with sum equal
to L.

If the terms of the series are complex numbers, it suffices to apply the result for real
series to the series of real and imaginary parts.

<

< 2

The possibility of rearranging at will the order of summation explains the
importance of absolutely convergent series”.

Remark 1.55[]In statistical mechanics, there are so-called diagrammatic methods to compute the
values of certains quantities, such as pressure or mean-energy, at equilibrium. Those methods
are based on rearrangements of the terms of certain series, summing “by packets” in particular.
Those methods are particularly useful when the original series is not absolutely convergent. This
means that all results obtained in this manner must be treated carefully, if not suspiciously.
They belong to the gray area of exact (at least, this is what everyone believes!) results, but which
are not rigorous. (It is of course much more difficult to obtain results which can be judged with
mathematical standards of rigor; the reader is invited to read the beautiful papers [63,64] for
convincing illustrations.)

B Peter Gustav Leyeune-DiricHLET showed in 1837 that a convergent series with non-negative
terms is commutatively convergent. In 1854, Bernhard RiemanN wrote three papers in order to
obtain a position at the university of Gottingen. In one of them, he describes commutatively
convergent series in the general case. However, another paper was selected, concerning the
foundations of geometry.
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1.3.e[] Series of functions[]

We can define pointwise and uniform convergence of series of functions just
as was done for sequences of functions.

DEFINITION 1.56 (Pointwise[¢onvergence)[]Let X be an arbitrary set, (E, ||-||)
a normed vector space. A series »_ f, of functions f, : X — E converges
pointwise to a function F : X — E if, for any x € X, the series > £, (x)
converges to F(x) in E, that is, if

Ve>0 VxeX dN &N VreN

S filx) — F(x)
k=1

The function F is called the pointwise, or simple, limit of the series > f,,

CV.s.

and this is denoted > f, — F.

DEFINITION 1.57 (Uniform[¢onvergence)[JLet X be an arbitrary set, (E,||-||)
a normed vector space. A series »_ f, of functions f, : X — E converges
uniformly to a function F : X — E if the sequence of partial sums of the
series converges uniformly to F, that is, if

Ve>0 dNeN VxeX VeeN

n=N—

n

> filx) = F(x)

k=1

<e.

Cv.U

This is denoted > f, —— F. This amounts to

lim
n—0o0

ka—FH =0 where ||g||oo:supHg(X)H-
o] xeX

oo

DEFINITION 1.58 (Absolute[¢onvergence)[JLet X be an arbitrary set, (E,||-||)
a normed vector space. A series »_ f, of functions f, : X — E converges
absolutely if the series > ||, ||, converges, where

1 folloo = sup [ £,()]|:
xeX

The following theorem is the most commonly used to prove uniform
convergence of a series of functions:

THEOREM 1.59(Any absolutely convergent series with values in a complete normed
vector space is uniformly convergent, and hence pointwise convergent.

Corresponding to the continuity and differentiability results for sequences of
functions, we have:
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THEOREM 1.60 (Continuity[and differentiability[¢f[a series of functions)[]

Let D be a subset of R or of a normed vector space. Let (f,),cn be a sequence of
Sunctions f,,: D — E, where (E,||-||) is some normed vector space, for instance, R
or C. Assume that the series Y, f, converges pointwise to a function F.

i) If each f, is continuous on D, and if the series Y, f,, converges uniformly on
D, then F is continuous on D.

ii) If D is an interval of R, each f, is differentiable on D, and the series Y, f
converges uniformly, then F is differentiable and we have

n=0

1.4[]

Power[3eries,[analytic functions[]

Quite often, physicists encounter series expansions of some function.
These expansions may have different origins:

e the superposition of many phenomena (as in the Fabry-Perot interfer-
ometer);

e perturbative expansions, when exact computations are too difficult to
perform (e.g., hydrodynamics, semiclassical expansions, weakly relativis-
tic expansions, series in astronomy, quantum electrodynamics, etc.);

e sometimes the exact evalution of a function which expresses some phys-
ical quantity is impossible; a numerical evaluation may then be per-
formed using Taylor series expansions, Fourier series, infinite product
expansions, or asymptotic expansions.

We first recall various forms of the Taylor formula. The general idea is
that there is an approximate expression

(x —a) (x —a)f

S@) e fla) + (5 —a) S @) + A

for a function f which is at least & times differentiable on an interval J, with
values in some normed vector space (E, ||-||), and for a given point a € J,
where x lies is some neighborhood of 4.

The question is to make precise the meaning of the symbol “~”!

Define R, (x) to be the difference between f(x) and the sum on the right-
hand side of the above expression; in other words, we have

@)+

k (x —a)
7 =522 00) 4 Ry = Ty Ri)

n=0
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Brook TAvLOR (1685—1731), English mathematician, was a student
at Cambridge, then member and secretary of the prestigious Royal
Society, a venerable institution dedicated to the advancement of
Science. He wrote the famous formula

fla+e)=fla)+ef'(a)+ < f"(a)+

without considering the issue of convergence. He was also inter-
ested in the physical and mathematical aspects of vibrating strings.

by definition. Of course, we hope that the Taylor remainder R,(x) is a
“small quantity,” so that we may approximate the value of f(x) by the value
of the Taylor polynomial of order % at x, that is, by 7,(x). There are
different ways in which this remainder may become small:

e one may let x tend to a (for a fixed value of k);
e or let k tend to infinity (for a fixed value of x).

The Taylor-Lagrange and Taylor-Young formulas are relevant for the first case,
while the second belongs to the theory of power series.

1.4.a[] Taylor formulas[]

THEOREM 1.61 (Taylor formula[with integral(temainder)[ILet ] be an interval
of R, and (E,||-||) a normed vector space. Let f : ] — E be a_function of 6* class

on ], which is piecewise of €*t1 class on J. For any a and x € ], we have

Z(x - f@)+ f(x SED@)dr.

THEOREM 1.62 (Taylor-Lagrange formula)[Le f : | — R be a real-valued
Sfunction of €* class on an interval ] of R, which is k + 1 times differentiable in the
interior of J. Let a € J. Then, for any x € ], there exists 0 € 10, 1[ such that

: (x —af+
f(x) =Z G gy E=

= CES] P a0 — ).

Remark 1.63[JThis formula is only valid for real-valued functions. However, the following
corollary is also true for functions with complex values, or functions with values in a normed
vector space.
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COROLLARY 1.64 (Taylor-Lagrange inequality)[lLet [ : ] — E be a function of
G* class on an interval ] of R, with values in a normed vector space E. Assume f
is k + 1 times differentiable in the interior of J. Let a € J. Then for any x € J we
have

|.X' _ ﬂ|k+l

< B s 70,
S

kL (x —a) )
-3 E L | <t

|
=0 n.

THEOREM 1.65 (Taylor-Young formula)(lLes f be a function which is k times
differentiable on an interval | of R, with values in a normed vector space E. Let
a € J. Then we have

X—a

E (y —a)
S(x)— Z %f(”)(ﬂ) = o ((x— a)k).
n=0 .

1.4.b[] Some numerical illustrations[]

Suppose we want to compute numerically some values of the inverse tangent
function arctan, which is of course infinitely differentiable on R. It is easy to
compute the values of the successive derivatives of this function at 0, and we
can write down explicitly the Taylor polynomial at 0 of arbitrary order: this
gives the expression

k
arctanx = Z ﬂ T Ry (x),
—2n+1

for the Taylor formula of order 2z 4 1 (notice that only odd powers of x
appear, because the inverse tangent function is odd).

If we represent graphically those polynomials with £ = 0, 1, 4, 36 (i.e., of
order 1, 5, 9, and 18, respectively), with the graph of the function itself for
comparison, we obtain the following:

-05 -05 -05 -05

order 1 order 5 order 9 order 37
The following facts appear:

e on each graph (i.e., for fixed k), the Taylor polynomial and the inverse
tangent functions get closer and closer together as x approaches 0;
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e for a fixed real number x € [—1,1] (for instance 0.8), the values at x of
the Taylor polynomial of increasing degree get closer and closer to the
value of the function as % increases;

e on the other hand, for a real number x such that |x| > 1, disaster
strikes: the larger % is, the further away to arctanx is the value of the
Taylor polynomial!

The first observation is simply a consequence of the Taylor-Young formula.
The other two deserve more attention. It seems that the sequence (7},),cn of
the Taylor polynomials converges on [—1,1] and diverges outside.” However,
the function arctan is perfectly well-defined, and very regular, at the point x = 1; it
does not seem that anything special should happen there. In fact, it is possible
to write down the Taylor expansion centered at 2 = 1 instead of « = 0 (this
is a somewhat tedious computation"), and (using approximations of the same
order as before), we obtain the following graphs:

We can see the same three basic facts, except that convergence seems to be
restricted now to the interval [1 —V2,1+ \/ﬂ

In order to understand why such intervals occur, it is necessary to dwell fur-
ther on the theory of power series (see below) and especially on holomorphic
functions of a complex variable (in particular, Theorem 4.40 on page 101).
We will only state here that the function arctan can be continued naturally
to a function on the complex plane (arctanz, is defined as the value of the
integral of the function 1/(1+2%) on a certain path' joining the origin to z,.
The function thus obtained is well-defined, independently of the chosen path,
up to an integral multiple of 77 and is a well-defined function on C minus
the two single points where 1 + z? vanishes, namely i and —i. Then, one
shows that for such a function, the sequence of Taylor polynomials centered

" To be honest, it is difficult to ascertain from the graphs above if the interval to consider is
[—1,1] or ]—1,1[, for instance. The general theory of series shows that (7,,(x)),oy converges
quickly if |x| < 1 and very slowly if |x| = 1.

" The n-th coefficient of the polynomial is (—1)*+!sin(z7t/4)2~"/2 /n and the constant term
1s T/4.

' This notion of integral on a path is defined by the formula (4.2) page 94.

7 This is a consequence of the residue theorem 4.81 on page 115.
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at @ converges on the open disc centered at 4 with radius equal to the distance
from a to the closest singulirity (hence the radius is |1 — 0] = 1 in the first

case of Taylor expansions at 2 = 0, and is |1 — i| = +/2 in the second case).

1.4.c[] Radius of{¢onvergence of[a power series[]

A power series centered at z, is any series of functions of the type

o0
zZ—> Za” (z —zy)",
n=0

where (4,),cy 18 a given sequence of real or complex numbers, which are
sometimes called the coefficients of the power series.

THEOREM 1.66 (Radius[f[¢onvergence)[lLer > a,(z — z,)" be a power series
centered at zy. The radius of convergence is the element in RY defined by

REsup {t € R ; (a, "),y is bounded}.

The power series converges absolutely and uniformly on any compact subset in the disc
B(zy; R) = {z € C; |z—zy)| < R}, in the complex plane C, and it diverges for
any z € C such that |z| > r. For |z| = r, the series may be convergent, conditionally
convergent, or divergent at z.

Note that “absolute convergence” here refers to absolute convergence as a
series of functions, which is stronger than absolute convergence for every z
involved: in other words, for any compact set D C B(z,; R), we have

o

Z sup |a,z"| < +oo.
n=0 zeD

Example 1.67[]The power series — log(1 — z) = > > | z” /n converges for any z € C such that
|z] < 1 and diverges if |z| > 1 (the radius of convergence is R = 1). Moreover, this series is
divergent at z = 1, but conditionnally convergent at z = —1 (by the alternate series test), and
more generally, it is conditionnally convergent at z = ei? for any 6 & 27tZ (this can be shown
using the Abel transformation, also known as “summation by parts”).

DEFINITION 1.68 (Power[$eries[¢éxpansion)[JLet 2 be an open subset in R
or C. A function f : Q — C defined on € has a power series expansion
centered at some z, € (2 if there exist an open subset V' C  containing z,
and a sequence (,,), oy of complex numbers such that

VzeV flz)= Zan(z —zy)".
n=0

The radius of convergence of a power series depends only weakly on the
precise values of the coefficients, so, for instance, if F = P/Q is a rational
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function with no pole in N, the power series > F(#)a, z"” and > a, z" have
the same radius of convergence. From this and Theorem 1.60, it follows in
particular that a power series can be differentiated term by term inside the
disc of convergence:

THEOREM 1.69 (Derivative[df[a power[series)[1Ler | be an open subset of R,
xg € J, and f: ] — C a_function which has a power series expansion centered at x:

(o)

S(x) =2 a,(x —xp)".
n=0
Let R > 0 be the radius of convergence of this power series. Then f is infinitely differ-
entiable on the open interval |xy — R, xy + R|[, and each derivative has a power series
expansion on this interval, which is obtained by repeated term by term differentiation,
that s, we have

PO =, ) and O =3 (e
n=1 n=Fk <” k)

Jor any k € N. Hence the n-th coefficient of the power series f(x) can be expressed as

_ f(")(xo).

a
n!

n

Remark 1.700 The power series > (f")(x,)/n!) - (x — x,)" is the Taylor series of f at x,. On
any compact subset inside the open interval of convergence, it is the uniform limit of the
sequence of Taylor polynomials.

Remark 1.71[]In Chapter 4, this result will be extended to power series of one complex variable
(Theorem 4.40 on page 101).

1.4.d[] Analytic functions[]

Consider a function that may be expended into a power series in a neighbor-
hood V of a point zj, so that for z € V, we have

oo

f2) =2 a,(z —z)".
n=0
Given such a z € V, a natural question is the following: may f also be expended
into a power series centered at z¢
Indeed, it might seem possible a priori that f can be expanded in power
series only around z), and around no other point. However, this is not the
case:

DEFINITION 1.72 (Analytic function)[JA function f : 2 — C defined on an
open subset 2 of C or R is analytic on 2 if, for any z, € Q, f has a power
series expansion centered at z,.
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Note that the radius of convergence of the power series may (and often
does!) vary with the point z,.

THEOREM 1.73[0Let > a, z" be a power series with positive radius of convergence
R > 0, and let f denote the sum of this power series on B(0; R). Then the function
f is analytic on B(0; R).

Example 1.74[JThe function f : x — 1/(1 — x) has the power series expansion
Sflx) =2«
n=0
around 0, with radius of convergence equal to 1. Hence, for any x, € |—1,1[, there exists a

power series expansion centered at x, (obviously with different coefficients). This can be made
explicit: let » € B(0; |1 — x,]), then with x = x;, + 4, we have

) R S U Ny ey
S = o+ D) = T S T T 2

Remark 1.75 (Convergence[f Taylor[éxpansions)[JLet / : U — C be a function defined on an

open subset U of R. Under what conditions is / analytic?'® There are two obvious necessary
conditions:

e [ is infinitely differentiable on U,
e for any x, € U, there exists an open disc B(x,,7) such that the series >_ %ﬂ”)(xo)(x -
Xy)" converges for any x € B(x,, 7).

However, those two conditions are ot sufficient. The following classical counter-example

shows this: let

fx) Zexp(=1/2%) ifx#0,  f(0)=0.
It may be shown" that f is indeed of ¢ and that each derivative of f at 0 vanishes, which
ensures (!) the convergence of the Taylor series everywhere. But since the function vanishes
only at x = 0, it is clear that the Taylor series does not converge to f on any open subset,
hence f is not analytic.

It is therefore important not to use the terminology “analytic” where “infinitely differen-
tiable” is intended. This is a confusion that it still quite frequent in scientific literature.

The Taylor formulas may be used to prove that a function is analytic. If the sequence
(R,),en of remainders for a function f converges uniformly to 0 on a neighborhood of z € R,
then the function f is analytic on this neighborhood. To show this, one may use the integral
expression of the remainder terms in the Taylor formula. A slightly different but useful
approach is to prove that both the function under consideration and its Taylor series (which
must be shown to have positive radius of convergence) satisfy the same differential equation,
with the corresponding initial conditions; then f is analytic because of the unicity of solutions
to a Cauchy problem.

Also, it is useful to remember that if / and g have power series expansions centered at z,,
then so do f+g and fg. And if f(z,) # 0, the function 1/ f also has a power series expansion
centered at z,.

"® The same question, for a function of a complex variable, turns out to have a completely
different, and much simpler, answer: if f is differentiable — in the complex sense — on the
open set of definition, then it is always analytic. See Chapter 4.

¥ By induction, proving that f(®)(x) is for x # 0 of the form x — Q (x) f(x), for some
rational function 0 ,.
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1.5[]
A quick look[at[asymptotic[and divergent[3eries[]

1.5.a[] Asymptotic[$eries[]

DEFINITION 1.76 (Asymptotic[éxpansion)[JLet F be a function of a real or
complex variable z, defined for all z with |z| large enough. The function F
has an asymptotic expansion if there exists a sequence (,,),on of complex
numbers such that

N 4
lim ZN{ F(z)— > 2} =0
Jim, { @ Z}
for any positive integer N. This is denoted

F(z) ~ > —. (1.4)

n
n=0 z

The definition means that the expansion (1.4) is a good approximation for
large values of z. Indeed, if we only consider the first twenty terms of the
series, for instance, we see that the sum of those approximates f(z) “to order
1/2%0 at least” when [z — oo].

However, it frequently turns out that for fixed z, the behavior of the series
in (1.4) is quite bad as N — oco. In particular, the series may be divergent.
This phenomenon was pointed out and studied in detail by Henri Poincaré
in the case of asymptotic series used in astronomy, at the beginning of the
twentieth century [70].

How can a divergent asymptotic series still be used? Since > a,/z" is
asymptotic to F, if there is some R such that F is continuous for |z| > R,
then we see that there exist constants Cj, C,,... such that

C
$||TN+1 forNENand|Z|2R.
V4

F&) =Y,

’ N
n=0

For fixed z, we can look for the value of N such that the right-hand side of
this inequality is minimal, and truncate the asymptotic series at this point.
Of course, we do not obtain F(z) with infinite precision. But in many cases the
actual precision increases with |z|, as described in the next section, and may
be pretty good.

It is also possible to speak of asymptotic expansion as z — 0, which
corresponds to the existence of a sequence (4,,),cy such that

1 <
fim N {f@‘;”"z }:O’
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which is denoted

z—0

Remark[].77[]If it exists, an asymptotic expansion of a function is unique, but there
may be two different functions with the same asymptotic expansion! For instance, e ™*

and e both have asymptotic expansions with &, = 0 for all # as x — +oco.

f@) ~ > a,z (L)
=0

A physical example is given by quantum electrodynamics. This quantum
theory of electromagnetic interactions gives physical results in the form of
series in powers of the coupling constant o = ¢?/%c ~ 1/137 (the Sommer-
feld fine structure constant), which means that a perturbative expansion in a is
performed:

As shown by Dyson [32], when studying a physical quantity F we can ex-
pect to find a perturbative series of the following type (with the normalization

h=c=1)
F(e?) = F(a) = Zf” o”.
n=0

Since the value of « is fixed by Nature, with a value given by experiments, only
the truncated series can give a physical result if the series is divergent. The
truncation must be performed around the 137-th term, which means that we
still expect a very precise result — certainly more precise, by far, than anything
the most precise experiment will ever givel However, if F(e?) is not analytic
at ¢ = 0, the question is raised whether the asymptotic expansion considered
gives access to F uniquely or not.

Studying asymptotic series is in itself a difficult task. Their implications
in physics (notably field theory) are at the heart of current research [61].

1.5.b[] Divergent series[and[@symptotic[¢éxpansions[]

Since Eurer, CaucHy (page 88), and especially PoiNcarg (page 475), it has
been realized that divergent series may be very useful in physics. As seen in the
previous section, they appear naturally in computations of asymptotic series.

As a general rule, convergent series are used to prove numerical or func-
tional identities (between power series, Fourier series, etc). Thus the series may
be used instead of the value of their sum at any time in a computation. An-
other remark is that, from the computational viewpoint, some series are more
interesting than others, because they converge faster. For example, we have the
following two identities for log2:

logz—1—L 1 1 EU

L N 7
logt=log2z=t4 Loy Ly Ly
By TR y T T 2

The second of those (which comes from expanding x — log(1 — x) in power
series at x = 1/2) converges much faster than the first (which results from a
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Leonhard EULER (1707—1783), a Swiss mathematician, an excep-
tional teacher, obtained a position at the Academy of Sciences of
Saint Petersburg thanks to Nicolas and Daniel BErNouLLI when
he was only twenty. He also spent some years in Berlin, but
came back to Russia toward the end of his life, and died there at
seventy-six (while drinking tea). His works are uncountable! We
owe him the notations e and i and he imposed the use of 7t that
was introduced by Jones in 1706. Other notations due to Euler
are sin, cos, tang, cot, sec, and cosec. He also introduced the use
of complex exponents, showed that el* = cosx + 1 sinx, and was
particularly fond of the formula ¢i™ + 1 = 0. He defined the
function I', which extends the factorial function from integers
to C\ (—N), and used the Riemann zeta function for real values
of the variable. No stone of the mathematical garden of his time
was left unturned by Euler; let us only add the Euler angles in
mechanics and the Euler equation in fluid mechanics.

similar expansion at x = —1, hence on the boundary of the disc of conver-
gence™).

While studying problems of celestial mechanics, Poincaré realized that the
meaning of “convergent series” was not the same for mathematicians, with
rigor in mind, or astronomers, interested in efficiency:

Geometers, preoccupied with rigorousness and often indifferent to the
length of the inextricable computations that they conceive, with no idea of
implementing them in practice, say that a series is comvergent when the sum
of its terms tends to some well-defined limit, however slowly the first terms
might diminish. Astronomers, on the contrary, are used to saying that a se-
ries converges when the twenty first terms, for instance, diminish very quickly,
even though the next terms may well increase indefinitely. Thus, to take a

. . . . 1000~
simple example, consider the two series with general terms 1232 and
1-2-3---n

1000~

Geometers will say that the first series converges, and even that it converges

? The number of terms necessary to approximate log2 within 1076, for instance, can be
estimated quite precisely for both series. Using the Leibniz test for alternating sums, the
remainder of the first series is seen to satisfy

1

|Rn|g 1
n—+1

”n+1| =

and this is the right order of magnitude (a pretty good estimate is in fact R, ~ 1/2#). If we
want |R | to be less than 10¢, it suffices to take » = 10° terms. This is a very slow convergence.
The remainder of the second series, on the other hand, can be estimated by the remainder of

a geometric series:
& i L1 1
n .on = Z A = YR
S 52 2

Hence twenty terms or so are enough to approximate log2 within 10~ using this expansion
(since 220 ~ 10°).
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Fig. 1.5 — The precise value of f(x) is always found between two successive values of the
partial sums of the serie > f,(x). Hence, it is inside the gray strip.

rapidly, [...] but they will see the second as divergent.
Astronomers, on the contrary, will see the first as divergent [...] and the
second as convergent. [70]

How is it possible to speak of convergence of a series which is really
divergent? We look at this question using a famous example, the Euler series.
Let

141t
and say we wish to study the behavior of f for small values of x. A first idea
is to expand 1/(1+¢) as >(—1)* ¢* and exchange the sum and the integral if
permitted. Substitute y = #/x and then integrate by parts; a simple induction

then shows that
—+o0
J ke t/x dp = pl xhH1
0

and since the > (—1)* &l x¥t! is obviously divergent for any nonzero value
of x, this first idea is a lamentable failure.

To avoid this problem, it is possible to truncate the power-series expansion
of the denominator, and write

+oo —t/x
Vx>0 flx)= J de,
0

nfl
—1)”1”
)

from which we derive an expression for f of the type f = f, + R,, where
() =x—x2 4203 = 3lxt o (1) — 1) " (r.6)

and +00 yn o—t/x
R,(x)= (—1)”J —de.
0 141

Since (1 4 ¢)~! < 1, the remainder satisfies }R”(x)} < n! x”*1, which means
that R, (x) is of absolute value smaller than the first omitted term; moreover,
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0,048”o °
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0,0467

0,044+ ) ) . . 4
10 20 30 40 50
Fig. 1.6 — The first 50 partial sums of the series > (—1)*!(k — 1)lx* for x = 1/20.
Notice that, starting from % = 44, the series diverges rapidly. The best precision
is obtained for #» = 20, and gives f(x) with an error roughly of size 2 - 10-3.

they are of the same sign. It follows (see the proof of the alternating series

test) that
Jan(x) < (%) < foni1(%), (17)

although, in contrast with the case of alternating series with terms converging
to 0, the general term here (—1)”7n!x”*! diverges. Hence it is not possible to
deduce from (1.7) an arbitrarily precise approximation of f(x). However, if x is
small, we can still get a very good approximation, as we now explain.

Fix a positive value of x. There exists an index N, such that the distance
‘ Soni1(x) — fzn(x)| 1s smallest (the ratio between consecutive terms is equal to
nx, so this value of # is in fact Ny, = |1/x|). This means that, if we look
at the first N values, the series “seems to converge,” before it starts blowing
up. It is interesting to remark that the “convergence” of the first N, terms
is exponentially fast, since the minimal distance ‘fNH(x) —fN(x)| is roughly
given by

N!xNa~ N'NN ~ /2 /x e 1/

(using the Stirling formula, see Exercise 5.4 on page 154.) Thus, if we wish
to know the value of f(x) for a “small” value of x, and if a precision of the
order of /27 /x e 1/* suffices, it is possible to use the divergent asymptotic
series (1.6), by computing and summing the terms up fo the smallest term (see
Figure 1.5). For instance, we obtain for x = 1/50 a precision roughly equal
to 6 - 10729, which is perfectly sufficient for most physical applications! (see
Figure 1.6.)

For a given value of x, on the other hand, the asymptotic series does not
allow any improvement on the precision.”’ But the convergence is so fast that

*! For instance, in quantum field theory, the asymptotic series in terms of & has a limited
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Sir George Biddel Airy (1801—1892), English astronomer, is known
in particular for discovering the theory of diffraction rings. He
determined approximately the solar apex, the direction toward
which the sun and the solar system seem to be directed, in the
Hercules region. He was also interested in geology. He was
director of the Royal Observatory and took part in the con-
troversy concerning priority for the discovery of Neptune (the
French pushing the claim of Le Verrier while the English de-
fended Adams).

The picture here represents a fake stamp, painted directly on the
envelope, representing a contemporary caricature of Sir Airy; the
post office was bluffed and stamped and delivered the letter.

it makes it possible to do some computations which are out of reach of a

standard method! And what Poincaré remarked is, in fact, a fairly general

rule: divergent series converge, in general, much more rapidly than convergent series.
In 1857, George Stokes was studying the Airy integral [3]

TS B r
Ai(z) = —J cos <§ —|—zt> ds,
0

T

which appears in the computations of caustics. The goal was to find zeros of
this function, and compare the with “experimental” zeros (corresponding to
dark bands in any optics figure, which had been measured with great preci-
sion, at least as far as the first twenty-five). Airy himself, using a convergent
series expansion of Ai at 0, managed fairly easily to compute the position of
the first band, and with considerable difficulty, found the second one. In
fact, his mathematically convergent expansion was “divergent” in the sense of
astronomers (all the more so as one gets farther away from the origin). Stokes
used instead the “devilish” method of divergent series” and, after bypassing
some nontrivial difficulties (linked, in particular, to complex integration), ob-
tained a// the hands™ with a precision of 10—#!

Remark 1.78[There are other well-known techniques to give a sense to the sum of (some)
divergent series. The interested reader may read the classic book of Emile Borel [13], the first
part of which at least is very readable. Concerning asymptotic expansions, see [72].

precision since « is fixed (equal to 1/137 approximately) and cannot be made to tend to zero.
This suggests that quantum field theory, in its current perturbative form, will one day be
replaced by another theory. Of course, as long as a precision to 1071 is “enough”...

#2 Niels ABEL wrote in 1826 that divergent series are “the Devil’s invention, and it is shameful
to base any proof of any kind on them. By using them, one can get from them whatever
result is sought: they have done much evil and caused many paradoxes” (letter to his professor
Holmbog).

 Only the first is less precise, because it is too small and Stokes used an asymptotic expan-
sion at 4+-oo.
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EXERCISES

Physical “paradoxes”[]

4 Exercise[]1.2 (Electrical[¢énergy)[]Consider an electric circuit consisting of two identical capac-
itors in series, with capacitance C and resistance R. Suppose that for ¢ < 0, the circuit is open,
one of the capacitors carries the charge O, and the other has no charge. At t = 0, the circuit
is closed, and is left to evolve freely. What is the state of equilibrium for this circuit? What
is the energy of the system at + = 02 What is the energy as # — +o00? Show that the missing
energy depends only on R. What happened to this energy?

Now assume that R = 0. What is the energy of the system at any arbitrary /> What is the
limit of this energy as + — +o00? Do you have any comments?

4 Exercise[]1.3 (A paradox in optics)JWe know that two distinct sources of monochromatic
light do not create a clear interference picture in an experiment with Young slits. As the
distance between the sources increases, we first see a contrast decrease in the interference pic-
ture. This is called a defect of spatial coherence.

Hence, a famous experiment gives a measurement of the angular distance between two
components of a double star by the observation of the first disappearance of the interference
fringes when slowly moving two Young slits apart.

This experiment works very well with monochromatic light. However, if we define two
monochromatic sources §; and S, mathematically, each emits a signal proportional to e?™,
and there should be no problem of spatial coherence.

Perform the computation properly. A computation in optics always starts with amplitudes
(possibly, one may show that the crossed terms cancel out in average, and do the computations
with intensity only). Here, the cross terms are fine, and never disappear. In other words, this
shows that two different monochromatic light sources are always perfectly coherent.

But experiment shows the opposite: a defect of spatial coherence. How can this be ex-
plained?

¢ Exercise[]J1.4[]In the rubber ball paradox of page 2, give an interpretation of the variation of
kinetic energy of the ball, in the moving reference frame, in terms of the work of the force
during the rebound. The shock may be modeled by a very large force lasting a very short
amount of time, or one can use the formalism of distributions (see Chapter 7).

Sequences[and series[]

¢ Exercise[]J1.5[1t is known that @, and hence also @ N [0,1], is countable. Let (x,),. be a
sequence of rational numbers such that QN [0,1] = {x, ; » € N}. Show that the sequence
(x,) ey diverges.

¢ Exercise[]J1.6[]In an arbitrary normed vector space, show that a Cauchy sequence which has
a convergent subsequence is convergent.

# Exercise[J1.7[]Show that the space K[X] of polynomials with coefficients in K is not com-
plete with the norm given by

n
= Xi o .
P =2 0 X'— ||P|| = max |a;].

i=1

¢ Exercise[]1.8 (Fixed point)[JLet @,4 € R be real numbers with @ < %, and let f : [4,b] —
[4,0] be a continuous function with a fixed point {. Assume that there exists a real number
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A and an interval V = [{ —¢,0 + ¢] around {, contained in [4,%] and stable under f (i.e.,
f(x) e V if x € V), such that

VxeV  |f(x) = fO] < Ajx—t.
i) Let @ € V be such that A(d —€) < 1. Let # be the sequence defined by induction by
Uy = o, o1 =f(un,) forallzeN.
Show that (#,,),y converges to (.

ii) Show in addition that |, —¢| < A1 (A(e — Q))Z”.

¢ Exercise[]1.9[]Let

2m3x if0<x<1/2n,
fix)=<nm?=2n3(x—1/2n) if1/2n <x<1/n,
0 if1/n<x <1,

for » € N and x € [0,1]. Plot a graph of f, and compute

1 1
lim J f,(x)dx and J lim £, (x)dx.
0 o "

n—00

¢ Exercise[J1.10[] Let (f,),oy be a sequence of functions converging simply to a function f. If
each f, is increasing, show that f is also increasing. Show that the same stability holds for the
properties “f, is convex” and “f, is k-Lipschitz.” Show that, on the other hand, it is possible

that each f, is continuous, but f is not (take £ (x) = sin® x).

¢ Exercise[J1.11[]Let ¢, be the function defined on [—1,1] by

9,(x) = j (1—e7t/m?) de

for n € N*.

Show that ¢, is infinitely differentiable, and that the sequence (¢,),cn+ converges uni-
formly on [—1,1]. What is its limit?

Let ¢ > 0 be given. Show that for any p € N, there exists a map ¥, from [—~1,1] into R,
infinitely differentiable, such that

i) w(0) =0 for & # p, and W' (0) = 1.
ii) fork<p—landxe[-11], [¥P(x)]<e.
Now let (a,),cy be an arbitrary sequence of real numbers. Construct an infinitely differ-

entiable map f from [—1,1] to R such that f*)(0) = 4, for all » € N.

¢ Exercise[]1.12 (Slightly[3urprising[éxercise)[JConstruct a series of functions Y f, defined on
R, which converges pointwise to a sum F(x), the convergence being uniform on any finite
interval of R, and which, moreover, satisfies:

VneN Iir+n f,(x) =400
but
lim F(x) = —oo.

x—+00
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¢ Exercise[]J1.13[JConsider a power series centered at the point « € C, given by
def o=
S(2)=2 ¢ (z—a).
n=0

Let R denote its radius of convergence, and assume R > 0.

i) Prove the Cauchy formula: for any » € N and any r € ]0, R[, we have

J fla+re?)e "0 d6.

i) Prove the Gutzmer formula: for 7 € ]0, R[, we have
21
Z|c | = —J |f(a+rei9)|2d9.
2m ),

iii) Prove that if R = 400, in which case the sum f(z) of the power series is said to
be an entire function, and if moreover f is bounded on C, then f is constant (this is
Liouville’s theorem, which is due to Cauchy).

C

n

27rr

v) Is the sine function a counter-example to the previous result?

¢ Exercise[J1.14[]Let / be a function of > class defined on an open set 2 C R. Show that
f 1s analytic if and only if, for any x, € £, there are a neighborhood ¥ of x; and positive real
numbers M and ¢ such that

(»)
Vxe?¥ VpeN ‘f_fx)
p!

‘th/’.

Function[of two[Variables[]

¢ Exercise[]1.15[]Let f : R> — R be a function of two real variables. This exercise gives
examples showing that the limits

lim lim f(x, lim lim f(x, and lim x,
XﬁOyHOf( ) yao;ﬁof( 7) (x,])%(o,o)f( 7)
are “independent”: each may exist without the other two existing, and they may exist without
being equal.
xy .
if x2 + y2 £0,
) Let f(0) = | 2 +° #
0 ifx=y=0.

Show that the limits lim limf(x,y) and lirr(l) lirréf(x,y) both exist, but that the
=0~

limit® - l1m00)f(x ,.y) 1s not deﬁned

** The limit of f as the pair (x,y) tends to a value (a,4) € R? is defined using any of
the natural norms on RR?, for instance the norm ||(x, »)||,, = max ( |x|,|»|) or the euclidean

norm ||(x, y)||, & /xZ+ 37, which are equivalent. Thus, we have
lim f(x,y)=1t

(x,9)—(a,b)
() FA(a:b)
if and only if

Ve>0 dn>0 ((x,) # (a,b) and H(x—a,y—b)”oo <n) = (|f(x,y) = <e).
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i) Let f(x,y) = |2 TFein/0) iy 70,
0 if y=0.
Show that both limits ( I)ingoo)f(x,y) and liII(l) linéf(x,y) exist, but on the other
X,))—>(U,! U x—
hand liII(l) Iinéf(x,y) does not exist.
x—0 y—

xy . .
- - f 0,
i) Let f(x,y) =1 x>+ y? +y51n<x> ifx#
0 ifx=0.
Show that limlim f(x, y) exists. Show that neither lim f(x,»), nor limlim f(x, »)
¥50 y—0 (2,9)—(0,0) 70 x50
x#0 y£0 270
exist.
22

. if x2 2 £0,
W) Let floy)={ iqy2 XTI
0 ifx=y=0.

Show that the limits lirr(l)lirréf(x,y) and linélirréf(x,y) both exist, but are different.
x—0 y— y—0x—

4 Problem[]1 (Solving differentiall¢quations)[]The goal of this problem is to illustrate, in a
special case, the Cauchy-Lipschitz theorem that ensures the existence and unicity of the solution
to a differential equation with a given initial condition.

In this problem, [ is an interval [0,4] with @« > 0, and we are interested in the nonlinear
differential equation

ly
/: E
7 14 y? (E)

»0)=1. (@)

with the initial condition

The system of two equations (E) + (CI) is called the Cauchy problem. In what follows, E
denotes the space 4'(/,R) of real-valued continuous functions defined on I, with the norm

/1l = sup | £(2)]-
tel
i) Let (f,),ey be a Cauchy sequence in (E, |||, )-

(a) Show that for any x € I the sequence (f,,(x))neN converges in R. For x € I, we
let f(x) < lim £ (x).
(b) Show that (f,),ey converges uniformly f on /.
(c) Show that the function f : I — R is continuous.
(d) Deduce from this that (E,||-||,, ) is a complete normed vector space.
i1) For any f € E, define a function ®(f) by the formula
O(f): 1 — R,
t
L D)) = 1+J Wy,
o 14 (/(n))

Show that the functions f € E which are solutions of the Cauchy problem (E) + (CI)
are exactly the fixed points of ®.
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iii) Show that the function x — T is 1-Lipschitz on R, i.e.,
x

<l|y—x|. (.8)

y x
14+ 14«2

iv) Show that ® is a contracting map if 4 is sufficiently small.

v) Show that there exists a unique solution to the Cauchy problem. Give an explicit
iterative method to solve the system numerically (Picard iterations).

Remark 1.79[]In general, all this detailed work need not be done: the Cauchy-Lipschitz theorem
states that for any continous function ¢(x, y) which is locally Lipschitz with respect to the
second variable, the Cauchy problem

Y =)

has a unique maximal solution (i.e., a solution defined on a maximal interval).

SOLUTIONS

@ Solution of exercise 1.2. The energy of the circuit at the beginning of the experiment is
the energy contained in the charged capacitor, namely £ = 0?/2C. At equilibrium, when
[t — o0], no current flows, and the charge of each capacitor is 0 /2 (it is possible to write
down the necessary differential equations and solve them to check this). Thus the final energy
is E/ =2(Q/2)?/C = E /2. The energy which is dissipated by the Joule effect (computed by
the integral foﬁo Ri7%(t)d¢, where ¢ — i(z) is the current flowing through the circuit at time ¢)
is of course equal to E — E’, and does not depend on R.

However, if R = 0, one observes oscillations of charge in each capacitor. The total energy
of the system is conserved (it is not possible to compute it from relations in a quasi-stationary
regime; one must take magnetic fields into account!). In particular, as [ — +o0], the initial
energy is recovered. The explanation for this apparent contradiction is similar to what hap-
pened for Romeo and Juliet: the time to reach equilibrium is of order 2/RC and tends to
infinity as [R — 0]. This is a typical situation where the limits [R — 0] and [¢ — +o0] do
not commute.

Finally, if we carry the computations even farther, it is possible to take into account the
electromagnetic radiation due to the variations of the electric and magnetic fields. There is
again some loss of energy, and for [# — +o0], the final energy E — E’ = E /2 is recovered.

@ Solution of exercise 1.3. Light sources are never purely monochromatic; otherwise there
would indeed be no spatial coherence problem. What happens is that light is emitted in wave
packets, and the spectrum of the source necessarily has a certain width AX > 0 (in a typical
example, this is order of magnitude Av = 10" s~1, corresponding to a coherence length of a
few microns for a standard light-bulb; the coherence length of a small He-Ne laser is around
thirty centimeters, and that of a monomode laser can be several miles). All computations must
be done first with AX # 0 before taking a limit AA — 0. Thus, surprisingly, spatial coherence
is also a matter of temporal coherence. This is often hidden, with the motto being “since the
sources are not coherent, I must work by summing intensities instead of amplitudes.”

In fact, when considering an interference figure, one must always sum amplitudes, and then
(this may be a memory from your optics course, or an occasion to read Born and Wolf [14])
perform a time average over a period At, which may be very small, but not too much (depending
on the receptor; the eyes are pretty bad in this respect, an electronic receptor is better, but none
can have Ar = 0).
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The delicate issue is to be careful of a product Az - AX. If you come to believe (wrongly!)
that two purely monochromatic sources interfere without any spatial coherence defect, this
means that you have assumed Az - AX = 0. To see the spatial coherence issue arise, one must
keep AA large enough so that Az - AA cannot be neglected in the computation.

# Solution of exercise 1.7. Let P, = >i_ X*/k. It is easy to see that (P,),.y is a Cauchy
sequence: for any integers £ and p, we have HPp+k — PPH = p+r1'

However, this sequence does not converge in K[X]; indeed, if it were to converge to a
limit L, we would have L € K[X], and all coefficients of L of degree large enough (> N,
say) would be zero, which implies that ||P, — L|| = 1/(degL + 1) if ¥ > N, contradicting that
(P,),en converges to L.

This example shows that K[X] is not complete.

@ Solution of exercise 1.9. For any 7 € N, we have [ f, =n/2, and for any x € [0,1], the
sequence (f”(x))” tends to 0, showing that

lim an(x) dx = +o0 whereas J (Iim f”(x)> dx =0.

@ Solution of exercise 1.11. The sequence (¢, ), converges uniformly to 0.
Notice also the property

?,(00=0, @(0)=1,  oMO0)=0 Vkx2
For given ¢ > 0, it suffices to define W, as the (p — 1)-st primitive of ¢, where N is

sufficiently large so that sup '¢;’71)(x)‘ < e. Here, each primitive is selected to be the
xe[—-1,1]
one vanishing at 0 (i.e., the integral from 0 to x of the previous one). It is easy to see that
the successive derivatives of this function satisfy the require condition, and the last property
follows from the construction.
Now let (a,),o be an arbitrary sequence of real numbers. For all » € N, one can apply the
previous construction to find W, such that

¢in—l)(x)| < 1

27 - max(1,|a,|)

sup
xe[—-1,1]

It is then immediate that the series >, ¥, converges uniformly to a function f having all
desired properties.

Of course, the function f thus constructed is by no means unique: one may add a term
a(p! — 1), where a € R, without changing the values of the derivatives at 0.

@ Solution of exercise 1.12. Let

Jux) ==

4n—1 4n+1

(4n — 1) + (4n + 1)!

for n > 1; the series > f, converges to F(x) =sinx — x.

@ Solution of exercise 1.13

i) The power series for f(a + re'?) may be integrated term by term because of its absolute
convergence in the disc centered at 4 of radius r < R. Since we have

2n . _
J dkMIde =5, — {1 if k =n,
0

0 otherwise,

the stated formula follows.
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i) Similarly, expand |f(a + re‘9)| as a product of two series and integrate term by term.
Most contributions cancel out using the formula above, and only the terms |c,|* 7>
remain.

i) If f is bounded on C, we have |c, "| < || f||.,. Letting r — o0, it follows that ¢, =0
for » = 1, which means that f is constant.

iv) The function sin is 7ot bounded on C! Indeed, we have for instance lim |sin(ix)| =
+o0. So there is no trouble. e

¢ Solution of problem 1
1)  (a) Letx € I. For any p,q € N, we have

V@) = 0] < sup L) = O] = [y = /-

and this proves that the sequence (f,(x)) . is a Cauchy sequence in R, so it

converges.

(b) Let ¢ > 0 be fixed. There exists N such that pr fquoo <eforallp>4> N.
Let x € I. We then have

|f,(x) = f,(x)| <&  foranyp>¢>N,
and since this holds for all p, we may fix ¢ and let p — co. We obtain
|f(x) = f(x)| <& forallg> N.
This bound holds independently of x € I. Thus we have shown that
Hffquoo§s forany ¢4 = N.

Finally, this being true for any ¢ > 0, it follows that the sequence (f,)
converges uniformly to f.

neN

neN

Remark: At this point, we haven’t proved that there is convergence in the normed
vector space (E, ||"||.. ). It remains to show that the limit f is in E, that is, that f is
continuous. This follows from Theorem 1.33, but we recall the proof-

(c) Let x € I; we now show that f is continuous at x.

Let ¢ > 0 be fixed. From the preceding question, there exists an integer /N
such that || f, — fl|,, < ¢ for all z > N, and in particular ||fy — fll, < e.
Since f 1s an element of E, it is continuous. So there exists n > 0 such that

Vyel —xI<n=|/x0)—fu(®)|<e

Using the triangle inequality, we deduce from this that for all y € I such that
|x — y| < n, we have

1fO) = f@)| < [fO) = O] + ) = S @] + [ fvx) = f(x0)] < 3e.

This proves the continuity of f at x, and since x is arbitrary, this proves that f
is continuous on /, and hence is an element of E.

(d) For any Cauchy sequence (f,,),oy in E, the previous questions show that (f,),cx
converges in E. Hence the space (E, |||, ) is complete.

i) Let f be a fixed point of ®. Then we have

Viel  f(0)= (o) (1) = %}EZ))Z

Moreover, it is easy to see that f(0) = &(f)(0) = 1.
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Conversely, let f be a solution of the Cauchy problem (E)+ (CI). Then ®(f) is
differentiable and we have

Viel  ®(f)()= % = f/(2).

The functions f and ®(f) have the same derivative on /, and moreover satisfy

(f)0)=1 and f(0)=1.
It follows that ®(f) = f.
1—x?

mean-value theorem then proves that g is 1-Lipschitz, as stated.
Let f,g € E. Then we have

Looking at the derivative g’ : x — we see that |g’(x)| <1 forall x € R. The

— =su t uf(u) — ”g<”) u
o) —2(g)||., = up L <1+(f<”))z 1+(g<”))2> d
! S () 8(#)
<su u 7 2
JJO 1+ (f(0)” 1+ (g())
< J P

S () 8(n)
by positivity. Using the inequality of the previous question, we get

du

1+ (f) 1+ (g(x))?

a a 612
%0~ 8. < [ w17~ g6 du <7~ gl [ =517 ~ ...
0 0
This is true for any f,g € E, and hence ® is (a2/2)-Lipschitz; if 0 < a < +/2, this
map P is a contraction.

According to the fixed-point theorem, the previous results show that ® has a unique
fixed point in E.

According to Question 1ii), this means that there exists a unique solution of the
Cauchy Problem (E) 4 (CI) on an interval [0,4] for a < /2.

To approximate the solution numerically, it is possible to select an arbitrary function
fo (for instance, simply f; = 0), and construct the sequence (f,),c defined by f, | =
®(f,) for » = 0. This requires computing (numerically) some integrals, which is a fairly
straightforward matter (numerical integration is usually numerically stable: errors do
not accumulate in general”). The speed of convergence of the sequence (f, ),y to the
solution f* of the Cauchy problem is exponential: with 7 = [0, 1], the distance (from
the norm on E) between f, and f is divided by 2 (at least) after each iterative step. It
is therefore possible to expect a good numerical approximation after few iterations (the
precision after ten steps is of the order of || f; — f]|., /1000 since 21° = 1024).

% On the other hand, numerical differentiation tends to be much more delicate.





