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VIII.

Cohomology of Sporadic Simple Groups

VIII.0 Introduction

In this chapter we will describe progress towards understanding the cohomology of
the sporadic simple groups. Briefly we recall that from the classification of finite
simple groups, [Gor], it was shown that there exist 26 simple groups not belonging to
infinite families (i. e. not of alternating or Lie type) and we study ten of these groups
here: four of the five Mathieu groups; the Janko groups J1, J2, J3; the O’Nan group
O′N; the McLaughlin group McL; and finally the Lyons group Ly.

Here are some of the reasons, (aside from pure curiosity), for understanding
the cohomology of these groups. As we will see in Chap. IX, we can add two and
three dimensional cells to the classifying space of a perfect group to obtain a simply
connected topological space, B+G , with the same homology as BG , and the homotopy
groups of these spaces are of basic importance in homotopy theory. The symmetric
groups build up Q(S0), a process discussed in the introduction to Chap. VI and proved
in IX.3. The general linear groups over a finite field similarly build the classifying
spaces BO and BU as well as certain fibers of “Adams operations”, Ψ k − 1, known as
Im(J )-spaces (IX.3 again). Indeed, in IX.3.2 we point out that these lead to a product
splitting Q(S0) = Im(J )× Coker(J ) with the Im(J ) space completely understood.

It is natural to expect that the sporadic groups should play a role in the structure of
the Coker(J ) space, though we are only beginning to understand some of the smaller
sporadic groups in this framework. The group M11 which has 2-rank two has been
studied by F. Cohen and the three 2-rank three sporadic groups M12, J1 and O′N are
currently being analyzed from this point of view. We only have partial information
about O′N , but both J1 and M12 are closely tied to the exceptional Lie group G2, facts
which are still slightly mysterious, but which we will explain in Chap. IX. Among
the rank four sporadic groups we have determined the cohomology of M22 and M23

and the cohomology rings are discussed in §5. Neither one is Cohen–Macaulay so
the rings are quite complex, but M23 turns out to be the first example of a finite group
for which Hi(G;Z) = 0 for i ≤ 4. Indeed, it had been conjectured by C. Giffen
[Gi] that the only finite group for which this is possible is the trivial group. Also,
the Coker(J ) space is 5-connected with H6(Coker(J );Z) = Z/2, and the natural
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inclusions M23 ⊂ �23 ⊂ �∞ induce an isomorphism of H6(M23;Z) with the Z/2
which generates H6(Coker(J );Z) in this dimension. Again, we expand on these
remarks in §5 and Chap. IX.

Likewise, from the point of view of modular representations, the sporadic groups
are key examples and it is apparent that cohomological invariants play a fundamental
part in recent and ongoing research in this field. As was mentioned in our introduction
to this book the ideas here are discussed in the books of Benson and Evens.

What we shall concentrate on is furnishing detailed calculations of the cohomol-
ogy of a few of these groups. We will apply all the different techniques described in
the previous chapters, hoping perhaps that this will serve as an additional justifica-
tion and description of our methods. In particular, our calculation of H∗(M11;F2) in
§1 completely replaces the much more complex original calculation by Benson and
Carlson. Also, our calculation of H∗(M12,F2), where M12 is the Mathieu group of
order 95,040, replaces the less natural and longer original calculation in [AMM2].

We use F2 coefficients throughout, so they are often suppressed. At some points
we use the ATLAS notation for groups, extensions, etc. In most cases it is self–
explanatory.

VIII.1 The Cohomology of M11

Let G = M11, the first Mathieu group having order 7920 = 24 32 5 11. M11 has
2-rank two with one conjugacy class of groups (Z/2)2 and one conjugacy class of
involutions. From the Atlas, [Co], N(2A) = 2 · Σ4 = GL2(F3), (that is to say, the
normalizer of an involution is the non-split extension of the form

Z/2 � N(2A)−→�4

isomorphic to GL3(F3)), and we can also check that N((Z/2)2) = Σ4. Thus the
quotient |A2(M11)|/M11 has the form

Σ4
s s

D8

GL2(F3)

Apply V.3.3 to obtain the formula

H∗(M11)⊕ H∗(D8) = H∗(GL2(3))⊕ H∗(Σ4)

We already know from IV.2.7 that H∗(D8;F2) = F2[x̄1, ȳ1, w2]/(x̄ ȳ = 0)which has
Poincaré series

PD8(t) =
2

(1− x)(1− x2)
− 1

1− x2
= 1

(1− x)2
.

Similarly, using VI.1.13, the Poincaré series for Σ4 is 1+t+t2+t3

(1−t2)(1−t3)
. From VII.4.5 and

III.4.2 the Poincaré series for H∗(GL2(F3)) is
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(1+ t)(1+ t3)

(1− t2)(1− t4)
= 1+ t + t2 + t3 + t4 + t5

(1− t3)(1− t4)

and so the Poincaré series for M11 is (as first computed in [We], compare [BC3])

1+ t5

(1− t3)(1− t4)
.

The group GL2(F3) contains a Sylow 2-subgroup of M11 and has its mod(2) coho-
mology detected on its elementary 2-subgroups. Consequently the same is true for
M11. More restrictively it follows from VII.4.4 that

H∗(M11;F2) ⊆ F2[x1, x2]GL2(F2 ) = F2[d2, d3] ,
(the Dickson algebra described in III.2.3) and since there is only one element in each
of the dimensions 3, 4, and 5 in this ring we see that H∗(M11) ∼= F2[d3, d2

2](1, d2d3).
Hence we have

Theorem 1.2.

H∗(M11) ∼= F2[v3, v4, v5]/v2
3v4 + v2

5 = 0

with Poincaré series p(t) = 1+t5

(1−t3)(1−t4)
.

Remark 1.3. From the action of the Steenrod Algebra on the Dickson algebra, we
have the following table giving the action of the Steenrod algebra on H∗(M11),

gen.
∖

Sq Sq1 Sq2 Sq3 Sq4

v3 0 v5 v2
3

v4 0 v2
3 0 v2

4

v5 v2
3 0 0 v3

3 + v4v5

VIII.2 The Cohomology of J1

J1 is the first Janko group, of order 175,560. It has a 2-Sylow subgroup isomorphic
to (Z/2)3. Using this, we have already calculated its cohomology in II.6.9 using the
invariant ring determined in III.1.9. For further remarks on H∗(J1) using a poset
decomposition see V.2.11 and V.3. For convenience, we recall the result from II.6.9,

Theorem 2.1.

H∗(J1) ∼= F2[x3, y4, z7](γ5, µ6)
/

γ 2 + yµ+ xz = 0
µ2 + x4 + x2µ+ y3 + γz = 0.
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with Poincaré series

p(t) = (1+ t5)(1+ t6)

(1− t3)(1− t4)(1− t7)
= (1+ x3)(1+ x5)(1+ x6)

(1− x4)(1− x6)(1− x7)
.

The action of A(2) can be computed directly from the explicit form of the
generators given in II.1.9, particularly x given in (II.1.10). We make the following
remarks anticipating our discussion of the relation between J1 and the exceptional
group G2 which we will give in Chap. IX. First H∗(J1;F2) is Cohen–Macaulay over
the Dickson algebra F2[d4, d6, d7] and can be rewritten in the form

F2[d4, d6, d7](1, x, Sq2(x), x2, xSq2(x), x3, x2Sq2(x), x3Sq2(x))

In particular the quotient algebra by the ideal generated by the Dickson elements is

H∗(J1;F2)/(d4, d6, d7)

∼= F2[x, Sq2(x)]/(x4 = (Sq2(x))2 = 0, x2 = Sq1(Sq2(x)))

(∗)

and this is exactly H∗(G2;F2), a “coincidence” which we will try to explain in
Chap. IX. (We are indebted to F. Cohen for this description of H∗(J1;F2) and the
geometric explanation which we give in Chap. IX.)

VIII.3 The Cohomology of M12

In this section we study the Mathieu group M12. It is considerably more complex than
M11 and J1 and we begin with a detailed analysis of the structure of its elementary
2-groups. We explicitly construct subgroups of M12 with respect to which each
conjugacy class of maximal elementary 2-groups is weakly closed. Then we prove
that H∗(Syl2(M12);F2) is detected by restriction to its elementary 2-subgroups and
from that the determination of its cohomology is fairly direct. The discussion here
is a modification, based on ideas in [FM], [M2], of the work of [AMM2] where
H∗(M12;F2) was first determined.

The Structure of the Mathieu Group M12

The Mathieu group M12 is the subgroup of �12 generated by the following 6 elements
as given for example in [Ha, pp. 79–80]:

u = (1, 2, 3)(4, 5, 6)(7, 6, 9)

a = (2, 4, 3, 7)(5, 6, 9, 8)

b = (2, 5, 3, 9)(4, 8, 7, 6)

x = (1, 10)(4, 5)(6, 8)(7, 9)

y = (1, 11)(4, 6)(5, 9)(7, 8)

z = (1, 12)(4, 7)(5, 6)(8, 9).
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It is 5-fold transitive and has order 26 33 5 11 = 95, 040. Note that 〈a, b〉 ∼= Q8

while 〈x, y, z〉 ∼= �4. When we conjugate a, b by x, y, z we obtain xax = b, xbx = a,
yay = ba, yby = b−1, zaz = a−1, and zbz = ba, so Q8 is normal in the subgroup
W = 〈a, b, x, y, z〉 which consequently has order 26 3 = 192 and contains a 2-Sylow
subgroup of M12. In particular

H = Syl2(M12) = 〈a, b, d, k〉
where

d = xyz = (1, 10, 11, 12)(4, 8, 7, 6)

k = xyxz = (1, 12)(5, 9)(6, 8)(10, 11).

Note that bd = db so 〈b, d〉 = (Z/4)2, and kθk = θ−1 for each θ ∈ 〈b, d〉. Likewise,
ka = ak, ada−1 = b−1d, so setting s = ad2 we have s2 = 1, 〈s, k〉 = (Z/2)2 and we
can write H as a split extension (Z/4)2 ×T (Z/2)2 where the twisting by s is given
by sds = b−1d, sbs = b−1.

There are seven conjugacy classes of elements of order two in H , the central
element a2 = (2, 3)(4, 7)(5, 9)(6, 8), one having two elements and representative

d2 = (1, 11)(4, 7)(6, 8)(10, 12),

four with four elements in each conjugacy class having representatives

k = (1, 10)(4, 7)(5, 9)(11, 12),

(1, 12)(2, 6)(3, 8)(4, 5)(7, 9)(10, 11),

(1, 10)(2, 5)(3, 9)(4, 6)(7, 8)(11, 12),

(1, 11)(2, 6)(3, 8)(4, 9)(5, 7)(10, 12),

and finally one class with eight elements and representative z. The centralizers of the
elements in the last 5 classes are given as follows, four copies of D8 × Z/2 for the
four classes with four elements and (Z/2)3 for the class with 8 elements. In �12 the
involutions contained in M12 lie in two conjugacy classes, the class {4} consisting
of elements which are products of 4 disjoint involutions and {6} consisting of those
elements which are products of six disjoint involutions, so there are at least two
distinct conjugacy classes of involutions in M12. In fact, it is well known, [Co], that
there are exactly two.

From the structure of the centralizers in H it is easy to see that every elementary
2-subgroup of H is contained in a (Z/2)3 and that there are exactly 8 distinct (Z/2)3’s,
three of the form 47 (by which we mean that each non-identity element is in the class
{4}), three of the form 4364, and finally two of the form 4166. These last two are
conjugate in H and consequently weakly closed in H ⊂ M12. In the other two classes
two of the groups are conjugate and the third is normal in H .

Remark 3.1. These (Z/2)3’s are given as follows. The normal subgroup of type 47 is
V1 = 〈b2, d2, k〉 and the two other subgroups of this type are V2 = 〈b2, d2, bd−1k〉,
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〈b2, d2, d−1k〉. The normal subgroup of type 4364 is V3 = 〈b2, d2, bk〉, and the two
non-normal subgroups of this type are V4 = 〈b2, k, s〉, 〈b2, d2k, bs〉, while the two
subgroups of type 4166 are V5 = 〈b2, bd2k, s〉 and 〈b2, bk, ks〉.

Set H21 = 〈a, b, k, dkd−1〉 = Q8 ×T K where K ⊂ �4 is the Klein group.
Since k and dkd−1 act on Q8 by conjugation with a, ab respectively, it follows
that 〈ak, abdkd−1〉 ∼= Q8 commutes with 〈a, b〉 and H21 is the central product,
Q8 ∗Q8

∼= D8 ∗ D8, an extra special 2-group. H21 is also the subgroup of H which
is spanned by the three groups of the form 4364, and the element of order three,

xy = (1, 10, 11)(4, 9, 8)(5, 6, 7) (3.2)

which normalizes H21 permutes the three subgroups cyclically. Thus these groups
form a single conjugacy class in M12 and are weakly closed in W ⊂ M12. H21 also
contains the normal 47 subgroup, and xy normalizes this group as well. Hence, W
can be rewritten (Z/2)3×T �4. Finally, H21 contains both of the 4166 subgroups, and
each is normal in 〈H21, xy〉.

The subgroup, H22 ⊂ H which is spanned by the three subgroups of the form
47 also has order 32. It is 〈b, d, k〉 so H22

∼= (Z/4)2 ×T Z/2 with the element of
order two acting to invert the elements in (Z/4)2. Consequently there are exactly
four subgroups of the form (Z/2)3 ⊂ H22, 〈b2, d2, k〉, 〈b2, d2, bk〉, 〈b2, d2, dk〉 and
〈b2, d2, bdk〉. The first, third, and fourth each have the form 47 and the second has
the from 4364. Also, the element

T = (1, 4, 2)(3, 11, 7)(5, 10, 6)(8, 9, 12) ∈ M12 (3.3)

normalizes H22 and cyclically permutes the three 47 subgroups while normalizing
the 4364. Finally, the element d2a = b2s ∈ H satisfies d2aTd2a = T−1, so

W ′ = 〈H, T 〉 = H22 ×T �3.

and V1 is weakly closed in W ′ ⊂ M12. Summarizing the discussion above we have

Theorem 3.4.

a. There are precisely three conjugacy classes of groups (Z/2)3 contained in M12.
Under the inclusion M12 ⊂ �12 they remain non-conjugate. The first, I , has the
form 47, the second II , has the form 4364, and the third, III , has the form 4166.

b. There are subgroups W and W ′ of M12 described above so that W ∩ W ′ = H
and I ⊂ W ′, II ⊂ W and III ⊂ H are all weakly closed in M12.

c. The Weyl group of I in M12 and the Weyl group of II in M12 are copies of �4.
d. The Weyl group of III in M12 is A4, the Weyl group of III in W.

(There isn’t much to add to the discussion above to complete the proof. In the Atlas,
[Co], it is noted that the centralizer of the involution of type {4} is W , and the
centralizer of an involution of type {6} is Z/2× �5 and from this the result is direct.)
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For later reference we give the explicit actions of xy and T on the eight (Z/2)3’s
in H now. The notation is that the element in the nth position in the image group is
the image of the nth element in the domain group. First the normalizing actions.

T : 〈b2, d2, bk〉−−→〈d2, b2d2, d2bk〉, xy : 〈b2, d2, k〉−−→〈b2, k, kd2〉
(3.5)

The action of d2xy on a representative group V5 is

〈b2, d2bk, s〉−−→〈b2, b2d2bks, d2bk〉. (3.6)

Next we give the action of xy on the three subgroups of type 4364

〈b2, d2, bk〉−−→〈b2, k, b2sk〉−−→〈b2, d2k, bs〉, (3.7)

and the acton of T on the three subgroups of type 47,

〈b2, d2, k〉−−→〈d2, b2d2, bd−1k〉−−→〈b2d2, b2, d−1k〉. (3.8)

Using the results above, and, for example, the detailed subgroup results in
[AMM2] or [BR] we have the following picture of the poset space

3.9 |A2(M12)|/M12

There are 9 vertices, 17 edges and 9 triangles in this orbit complex. We have only
shown the isotropy information for the vertices and a few edges. The full details are
given in [AMM2, p. 106]. In Webb’s formula, V.3.3, most of the groups cancel out
and we are left with only

H∗(M12)⊕ H∗(H) ∼= H∗(W )⊕ H∗(W ′). (3.10)

Additionally, a close analysis of the structure of the finite Chevellay groups G2(q)
shows that for q ≡ 3, 5 mod (8), Syl2(G2(q)) ∼= Syl2(M12), and the configuration
W ∪H W ′ is also contained in G2(q). See, e. g. [M2].
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This completes our discussion of the subgroup structure of M12. We now turn to
the cohomology ring.

Write D8 = {x, y | x2 = y2 = (xy)4 = 1}. Then H22 ⊂ D8×D8 with embedding
given by b 	→ ((xy)−1, xy), d 	→ (1, xy), and y 	→ (x, x), and this extends to
a map π : H−→D8 � Z/2 by π(s) = E, the element which exchanges the two copies
of D8.

Theorem 3.11. H∗(H22;F2) is detected by restriction to its four maximal elementary
(Z/2)3 subgroups. In particular

H∗(H22;F2) = F2[w1, w2, c](1, x1, x2, x1x2)

with relations x2
1 = x1c, x2

2 = x2c where the w’s are two dimensional and the
remaining generators are one dimensional.

Proof. Recall from IV.2.7 or IV.1.10 that H∗(D8;F2) = F2[x̄, ȳ, w2]/(x̄ ȳ = 0),
where

H1(D8;F2) = Hom(D8,F
+
2 )

with generators x̄(x) = 1, x̄(y) = 0, ȳ(x) = 0, ȳ(y) = 1. In H∗(D8 × D8;F2) write
x1 = x̄ ⊗ 1, x2 = 1 ⊗ x̄, y1 = ȳ ⊗ 1,y2 = 1 ⊗ ȳ, w1 = w ⊗ 1 and w2 = 1 ⊗ w.
Then in the Gysin sequence for the inclusion H22 ⊂ D8 × D8 we have that the map
∪χ : H∗(D8 × D8;F2)−→H∗+1(D8 × D8;F2) is just ∪(x1 + x1 + y1 + y2). We have

H∗(D8 × D8;F2) = F2[x1, y1, x2, y2, w1, w2]/(x1 y1, x2 y2)

and this can be rewritten as

F2[χ, x1 + y1, x1, x2, w1, w2]/(χx2 = x2
2 + x2(x1 + y1), x1(x1 + y1) = x2

1).

In particular, multiplication by χ is injective, and from this the result is direct where
c1 is the image of x1 + y1. ��

In IV.7.3 a special class, Γ(x) ∈ H2i(G � Z/2;F2) is constructed for each x ∈
Hi(G;F2). Moreover, these classes, their cup products with ei where e ∈ H1(G �
Z/2;F2) is dual to E, and classes of the form tr (y), y ∈ H∗(G × G;F2) generate
H∗(G � Z/2;F2). Also, in the Gysin sequence for the inclusion

π : H ↪→ D8 � Z/2 (∗)

the map H∗(D8 � Z/2;F2)
χ−→H∗+1(D8 � Z/2;F2) is multiplication by tr (x1 + y1)

which restricts to H∗(D8 × D8;F2) as x1 + x2 + y1 + y2. We can now state

Corollary 3.12.

a. H∗(H;F2) is detected by restriction to the cohomology of its 5 conjugacy classes
of maximal elementary two groups.



VIII.3 The Cohomology of M12 253

b. Up to extensions,

H∗(H;F2) = F2[c, π∗ tr (w1),π
∗Γ(w)](1, π∗ tr (x1), π

∗Γ(x̄), π∗ tr (x1w2))

⊕ e1F2[e1, c, π
∗Γ(w)](1, π∗Γ(x̄))

where e1 is one dimensional and dual to E.

Proof. We begin by consdering the Gysin sequence for the inclusion (∗). The
kernel of ∪χ is (e) = eF2[Γ(x̄), Γ(ȳ), Γ(w), e]/(Γ(x̄)Γ(ȳ)), but note that the
square of any element in (e) is again a non-zero element of (e). Now, the trans-
fer, tr : H∗(H;F2)−→H∗(D8 � Z/2;F2), while it does not commute with cup
products, does commute with squares (since they are stable cohomology opera-
tions), so there are no possible nilpotents in the cokernel of the restriction map
H∗(D8 � Z/2;F2)−→H∗(H;F2).

Next we need H∗(D8 � Z/2)/(∪χ). We have an exact sequence

0−−→(e)−−→H∗(D8 � Z/2;F2)−−→H∗(D8 × D8;F2)
Z/2−−→0.

When we cup this sequence with χ we obtain an exact sequence

0−−→(e)−−→H∗(D8 � Z/2;F2)/(χ)

−−→H∗(D8 × D8)
Z/2/(χH∗(D8 × D8)

Z/2)−−→0,

and since the right hand quotient is easily seen to have no nilpotent elements the first
statement follows.

We now use the spectral sequence of the extension H22 � H
π−→Z/2 with E2-term

H∗
T (Z/2; H∗(H22;F2)). Here the action of Z/2 on H∗(H22;F2) is given by T(c) = c

since c = x1+y1 ∼ x2+y2, T(x1) = x2, T(w1) = w2. Consequently we can calculate
the E2-term explicitly as

E2 = F2[c, w1 +w2,w1w2](1, x1 + x2, x1x2, x1w2 + x2w1)

⊕ eF2[e, c, w1w2](1, x1x2).

But each of the generators above, except c is in the image ofπ∗ and hence is an infinite
cycle, while c is also an infinite cycle, since H1(H;F2) = Hom(H,F+2 ) = (Z/2)3,
and the spectral sequence collapses. This proves the second statement. ��

From 3.12 it follows that the restriction images of all the generators to the five
conjugacy classes of (Z/2)3’s are explicit. They can be determined as follows. From
IV.7.1 and IV.7.2 we obtain the restrictions of Γ(θ) to the basic subgroups K × K ,
S × K , K × S, S × S, 〈∆(K ), E〉 and 〈∆(S), E〉, and the image of tr is zero
when restricted to these last two groups. But also, under π we obtain the following
inclusions where A = (xy)2:

V1 = 〈b2, d2, k〉 	→ 〈A1 + A2, A2, x1 + x2〉 ⊂ K × K
V2 = 〈b2, d2, bd−1k〉 	→ 〈A1 + A2, A2, y1 + x2〉 ⊂ S× K
V3 = 〈b2, d2, bk〉 	→ 〈A1 + A2, A2, y1 + y2 + A2〉 ⊂ S× S
V4 = 〈b2, k, s〉 	→ 〈A1 + A2, x1 + x2, E〉 = 〈∆(K ), E〉
V5 = 〈b2, bd2k, s〉 	→ 〈A1 + A2, y1 + y2, E〉 = 〈∆(S), E〉.

(3.13)
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For definiteness, assume that w is given so that res ∗(w) = a2 + ah in both H∗(K )
and H∗(S) where a is dual to A and h is dual to x in K , y in S. In the each of the
groups Vi write λ as the dual to b2, τ is dual to the second generator, and h is dual to
the third. Also, write n = τ2 + τh, v = λ4 + λ2(τ2 + h2 + τh)+ λ(τ2h+ τh2). Then
we have the following table for the restrictions to the five (Z/2)3’s in 3.13.

gen.
∖

group V1 V2 V3 V4 V5

c h h h τ τ

π∗tr(x1) 0 h 0 0 0

e 0 0 0 h h

π∗Γ(x̄) h2 0 0 τ2 + τh 0

π∗tr(w1) n n n 0 0

π∗tr(x1w2) τ2h + τh2 λ2h + λh2 0 0 0

π∗Γ(w) v v v v v

(3.14)

From this the detailed structure of H∗(H;F2) can be easily obtained.
However, we now have a simple criterion for determining the cohomology of

M12, W , and W ′ directly from the table above by using the actions of T and (xy)
detailed in 3.5–3.8, which lead to the following maps in cohomology:

Map On Elements
(xy)∗ : H∗(V1)−→H∗(V1) h 	→ h + τ, τ 	→ h, λ 	→ λ

T ∗ : H∗(V2)−→H∗(V1) h 	→ h, τ 	→ λ+ τ, λ 	→ τ

T ∗ : H∗(V3)−→H∗(V3) h 	→ h, τ 	→ h + τ + λ, λ 	→ τ

(xy)∗ : H∗(V4)−→H∗(V3) h 	→ h, τ 	→ τ + h, λ 	→ λ+ h
(d2xy)∗ : H∗(V5)−→H∗(V5) h 	→ τ, τ 	→ h + τ, λ 	→ λ+ τ

(3.15)

Now the stability conditions for elements to be in H∗(W ), H∗(W ′) and H∗(M12) are
easily written down.

Theorem 3.16.

a. α ∈ H∗(H;F2) is contained in the image of res ∗ : H∗(W;F2)−→H∗(H;F2) if
and only if res ∗(α) ∈ H∗(V1)

Z/3 , and also in H∗(V5)
Z/3 , while the map above

from H∗(V4) to H∗(V3) stabilizes res∗(α).
b. α ∈ res ∗(H∗(W ′;F2)) if and only if res ∗(α) ∈ H∗(V3)

Z/3 and the map from
H∗(V2) to H∗(V1) stabilizes α.

c. α ∈ res ∗(H∗(M12)) if and only if the conditions in both (a.) and (b.) are satisfied,
i. e., if and only if α ∈ H∗(W ) ∩ H∗(W ′) ⊂ H∗(H).

Remark 3.17. π∗Γ(w)+c4+e4+(ce)2+π∗tr(w1)
2 restricts to the Dickson element d4

at each of the Vi . From this and the fact that d6 = Sq2(d4), d7 = Sq1(d6) it follows that
H∗(M12;F2) contains a copy of F2[d4, d6, d7]. In fact it turns out that H∗(M12;F2)

is actually Cohen–Macaulay, that is to say, free and finitely generated, over this
subalgebra.
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Remark 3.18. V5 is weakly closed in H ⊂ M12 and, from 3.14, the image of

res∗ : H∗(H;F2)−−→H∗(V5;F2)

is F2[h, τ, v4] in H∗(V5). From 3.15 the action of (d2xy)∗ fixes v4 and acts on
F2[h, τ] in the same way Z/3 acts in III.1.3. Consequently, H∗(V5)

Z/3 = F2[h2 +
hτ+τ2, h2τ+hτ2, d4](1, h3+h2τ+τ3) is the image of restriction from H∗(M12;F2).
Thus, besides the copy of the Dickson algebra there is one two dimensional generator
α and there are two three dimensional generators, Sq1(α) and l3 in H∗(M12;F2). They
are constructed as follows: α = (π∗tr(x1)

2 + π∗Γ(x̄)+ e2 + c2 + ec which restricts
to (0, 0, h2, h2, h2 + τh + τ2) and l3 = c3 + e3 + π∗tr(x1)

3 + (c+ e)π∗Γ(x̄)+ e2c
which restricts to (0, 0, h3, h3, h3 + h2τ + τ3).

Remark 3.19. The map T−∗(xy)∗T ∗ : H∗(V2)−→H∗(V2) is given on elements by h 	→
h + λ, τ 	→ h + λ + τ , λ 	→ h, so π∗tr(x1w2) is stable for T ∗ and is also Z/3
invariant in both H∗(V2), H∗(V1). Consequently, since it restricts to 0 in the remaining
groups it is in the image from H∗(M12). This gives us a third independent generator
m3 ∈ H3(M12), and a generator Sq2(m3) ∈ H5(M12).

The remaining details of the determination of H∗(M12;F2) are direct and sim-
plified considerably by the weak closure conditions of 3.4 as 3.18 shows. We leave
them to the reader and content ourselves with quoting the result from [AMM2].

Theorem 3.20. H∗(M12;F2) has the form F2[α2, x3, y3, z3, d4, γ5, d6, d7]/R where
the di are described above and R is the relation set

α(x + y + z) = 0 x3 = α3x + αd4x + xd6

xy = α3 + x2 + y2 xz = α3 + y2

x2 y = α3z + αd4z + yd6 + αd7 yz = α3 + x2

d7x = d4x2 + α2x2 αγ = α2 y
d7 y = α2d6 + α2 y2 + d4x2 + d4 y2 yγ = αy2

d7z = γ 2 + α2d6 + α2x2 + d4x2 + d4z2 xγ = α4 + αz2

d2
7 = z3γ + α2d4d6 + α5d4+

z4 = γd7 + x4 + α4d4 + z2d6 zd4d7 + zd6(γ + αz)
+d2

4(α
3 + xz + yz).

The Poincaré series for H∗(M12;F2) is

1+ t2 + 3t3 + t4 + 3t5 + 4t6 + 2t7 + 4t8 + 3t9 + t10 + 3t11 + t12 + t14

(1− t4)(1− t6)(1− t7)

and H∗(M12;F2) is Cohen–Macaulay over F2[d4, d6, d7].
(Note that all the generators have been constructed in 3.17-3.19 but x, y and z are
linear combinations of Sq1(α), l, and m and not these generators themselves.)

As a test the reader should calculate the Poincaré series for H∗(W;F2) and
H∗(W ′;F2). Applying the result of Webb’s formula, 3.10, then gives the Poincaré
series in 3.20. This was a critical step in [AMM2], but here, using the weak closure
conditions, it only serves the role of assuring us that we have made no numerical
errors.
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VIII.4 Discussion of H∗(M12;F2)

Given a situation such as that of H , W , and W ′, we can find a universal completion
Γ = W ∗H W ′ which makes the diagram below commute,

H ↪→ W ′�
�φ2

W
φ1−→ Γ

and such that any Γ ′ (generated by W and W ′) that occurs in such a push–out diagram
is a quotient of Γ . Γ is called the amalgamated product of W and W ′ over H . It is
well known, (see [Se3]), that an amalgamated product as above will act on a tree with
finite isotropy, and orbit space of the form

W • H •W ′

In [Go], Goldschmidt analyzed the situation for actions on the cubic tree (the tree of
valence 3) and obtained a classification of finite primitive amalgams of index (3, 3)
(this refers to the indexes [W : H], [W ′ : H]). He shows that M12 is one of 15 such
amalgams, necessarily a quotient of the universal one Γ .

From this we deduce the existence of an extension

1−−→Γ ′−−→Γ−−→M12−−→1 (4.1)

where Γ ′ is a free group (it has cohomological dimension 1). Using the formula for
Euler characteristics in [Brown], we have, on the one hand

χ(Γ ) = 1

192
+ 1

192
− 1

64
= − 1

192

(amalgamated product), and also

χ(Γ ) = χ(Γ ′)
|M12| .

Hence χ(Γ ′) = 95, 040(− 1
192 ) = −495 and it follows that Γ ′ ∼= ∗496

1 Z, the free
group on 496 generators.

We can now state

Theorem 4.2. The natural map Γ−→M12 induces an isomorphism

H∗(M12;F2)−−→H∗(Γ ;F2).

Proof. Consider the map

res W
H ⊕ res W ′

H : H∗(W )⊕ H∗(W ′)−−→H∗(H) .
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Its kernel is clearly im( res W
H ) ∩ im( res W ′

H )
∼= H∗(M12). On the other hand, (3.10)

gives that H∗(W ) ⊕ H∗(W ′) ∼= H∗(M12) ⊕ H∗(H). Hence res W
H ⊕ res W ′

H is
onto. On the other hand, from the structure of the orbit space of the tree described
at the beginning of this section there is a classifying space for W ∗H W ′ of the
form BW ∪BH Bw′ , and, applying the Mayer-Vietoris sequence we have a long exact
sequence

· · · −−→Hi(Γ )−−→Hi(W )⊕ Hi(W ′)−−→Hi(H)−−→Hi+1(Γ )−−→· · ·
As it comes from a Mayer-Vietoris sequence the same map as before arises, hence
the sequence splits and

H∗(W )⊕ H∗(W ′) ∼= H∗(Γ )⊕ H∗(H).

Consequently, by rank considerations and the fact that the finite subgroups in Γ are
mapped isomorphically into M12 under the projections the proof is complete. ��
Corollary 4.3. H1(Γ ′;F2) is an M12-acyclic F2(M12)-module of rank 496 which is
not projective.

Proof. The proof follows from considering the spectral sequence over F2 associated
to (4.4) below and the observation that 64 does not divide 496. ��

This representation has radically different cohomological behavior at distinct
primes dividing |M12|. For example, at p = 3 we have a sequence

H p−2(M12; H1(Γ ′;F3))−−→H p(M12;F3)−−→H p(W;F3)⊕ H p(W ′;F3)

and clearly the term on the left must be non-trivial. It appears, however, that this
module restricted to M11 ⊆ M12 is the same one associated to the poset space for
M11.

To complete our discussion on M12, we will explain the nature of its Poincaré se-
ries. Recall from 4.1 that H∗(M12;F2) is Cohen–Macaulay over the Dickson algebra
F2[d4, d6, d7]. For any finite group G with Cohen–Macaulay cohomology Carlson
and Benson, [BC2], have shown that the Poincaré series must satisfy a functional
equation which in our case is

pM12(t) = (−t)rk M12 pM12(t). (∗)

The method they use is to construct a projective ZG-complex P∗ of dimension
rk G∑
i=1
(ni −1) (where the {ni} are the dimensions of the generators of a polynomial sub-

algebra over which the cohomology is free and finitely generated), having the chain

homotopy type of C∗
(

rk G∏
i=1

Sni−1

)
. This is done by using cohomological varieties

[BC1].
Then they consider the spectral sequence
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E p,q
2 = H p(G, Hq(P∗)) 1⇒ H p+q((P∗)G )

Let vi ∈ Hni−1(P∗) be the cohomology generators; by construction they transgress
to ρi ∈ Hni (G) and we have

E∗,0∞ ∼= H∗((P∗)G ) ∼= H∗(G)/(ρi)

and so if q(t) = P.S. H∗(P∗G), then

pG(t) = q(t)

/
rkG∏
i=1

(1− tni )

(P∗)G is the algebraic orbit cochain complex, and hence will also satisfy Poincaré
Duality, from wich pG(t) satisfies (∗). The construction of a geometric complex X
satisfying this is more delicate, and obstructions certainly exist in the general case.

For M12 the existence of such a complex can be proved, [M2], by considering,
besides the map Γ−→M12 of 4.2, also a map Γ−→G2(F3∞) constructed in [M2] as
a consequence of the remark following (3.10). Taking plus constructions as described
in Chap. IX, we obtain a fibering B+Γ−→B+G2(F3∞ ) and the fiber is a (2-local) finite
complex with the correct Poincaré series. On the other hand the (2-local) homotopy
equivalence B+Γ−→B+M12

gives the desired map on the fiber complex. We do not know
if this fiber is a manifold or not though it is a (2-local) finite dimensional Poincaré
duality complex.

On the other hand, there is a closely related complex which is a manifold. We
now elaborate on this.

Let Y be the graph associated to the Tits Building of L3(F2) first described in
Chap. V. We recall that one associates a vertex to each proper subgroup in (F2)

3 and
an edge to any proper flag. This is a trivalent graph with a transitive L3(F2)-action,
having as orbit space the edge

B = D8•
P1 = Σ4

•
Σ4 = P2

The Tits Building has the equivariant homotopy type of A2(L3(F2)), and we have

Z(2) ⊕ Z(2)[G/D8] ∼= Z(2)[G/Σ4] ⊕ Z(2)[G/Σ4] ⊕ P (4.4)

where P = H1(Y,Z(2)) is an 8-dimensional projective module, the so-called Stein-
berg representation.

The above also arises by considering the amalgamated product Γ = Σ4 ∗
D8
Σ4.

The graph Y is a quotient of the cubic tree under a free normal group Γ ′ ⊆ Γ , with
quotient L3(F2). As for M12, H∗(Γ ) ∼= H∗(L3(F2)).

We consider the non-split extension E:

1 → (Z/2)3 → E → L3(F2)→ 1 (4.5)
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E is a group of order 1344 and it contains the subgroups W , W ′ which appear in M12,
realized as

1 → (Z/2)3 → W → P1 → 1

1 → (Z/2)3 → W ′ → P2 → 1
(4.6)

and Syl2(E) = Syl2(M12), realized as

1 → (Z/2)3 → H → D8 → 1

Denote Q = (Z/2)3, G = L3(F2) as before. Then

H∗(E) ∼= H∗(HomE(F∗,F2)) ∼= H∗(HomQ(F∗,F2)
G )

∼= H∗(G,HomQ(F∗,F2))

where F∗ is a free resolution of Z over ZE. From this and Shapiro’s formula, we
deduce

H∗(E)⊕ H∗(H) ∼= H∗(W )⊕ H∗(W ′)
⊕ H∗(G,HomQ(F∗,F2)⊗ St)

Rearranging, we obtain

Theorem 4.7.

H∗(E) ∼= H∗(M12)⊕ (H∗(Q)⊗ St)L3(F2 )

The group E is the normalizer of a (Z/2)3 in the compact Lie group G2, which
is a 14-dimensional manifold, with

H∗(BG2)
∼= F2[d4, d6, d7] ([Bo2])

Now E acts freely on G2 and one can in fact show

Theorem 4.8.

P.S.(H∗(G2/E)) = PE(t) · (1− t4)(1− t6)(1− t7).

In [M2], PE(t) was determined to be

PE(t) = 1+t2+3t3+2t4+4t5+5t6+4t7+5t8+4t9+2t10+3t11+t12+t14

(1−t4)(1−t6)(1−t7)
.

The numerator represents the Poincaré series of the manifold G2/E, and it clearly
dominates our answer for PM12(t), explaining the leading terms. As a corollary we
obtain that the Poincaré series for (H∗(Q)⊗ St)L3(F2 ) is

z(t) = t4 + t5 + t6 + 2t7 + t8 + t9 + t10

(1− t4)(1− t6)(1− t7)
.

Algebraically, the denominator is explained by the action of the Dickson algebra

F2[d4, d6, d7] ∼= H∗(Q)L3(F2 ).
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VIII.5 The Cohomology of Other Sporadic Simple Groups

The O’Nan Group O′N

The O’Nan group O′N has order 460, 815, 505, 920 = 29 34 5 73 11 19 31, and
in [AM3] we determine the poset space |A2(O′N)|/O′N , obtaining the following
picture:

From this picture some easy cancellations give

H∗(O′N)⊕H∗((Z/4)3 ·Σ4)

∼= H∗((Z/4)3 · GL3(F2))⊕ H∗(Z/4 · SL3(F4)×T Z/2).

Our calculations show that the cohomology will be Cohen–Macaulay. Indeed, in this
case the cohomology of Syl2(O

′N) is already Cohen–Macaulay, but is not detected
by restriction to elementary 2-groups. We refer to [AM3] for complete details. It is
worth noting that a key part of the cohomology of O′N is detected by restriction to
H∗((Z/4)3)GL3(F2 ), which has been analyzed in Chap. III. However, this calculation
is somewhat delicate since the image is a proper subsect of the invariant ring, though
the Dickson elements are all present.

The Rank Four Sporadic Groups

Perhaps one of the most interesting things about M12 is that

Syl2(M12) ∼= Syl2(G2(q)) ∼= Syl2(
3 D4(q))

for q ≡ 3, 5 mod (8). A second group which is the Sylow 2-subgroup of an entire
series of interesting groups is

Syl2(Ã8) = Syl2(M22) = Syl2(M23) = Syl2(PSU4(3)) = Syl2(McL). (5.1)

These are all rank four groups and three of them are sporadics. In fact, there are eight
sporadic groups of rank four at the prime 2:
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Group Name Order Basic 2-locals, etc.

M22 3rd Mathieu 443,520 24 : A6, 24 : �5, 23 : L3(2)

J2 Janko-Hall 604,800 (D8 ∗ Q8) : A5, 24 : (22 : 32)

M23 4th Mathieu 10,200,960 24 : A7, 24 : (GL2(4) : 2)

HS Higman–Sims 44,352,000 43 : L3(2), (4 ∗ Q8 ∗ Q8) : �5, �8

J3 Janko 50,232,960 (Q8 ∗ D8) : A5, 24 : SL2(4)

McL McLaughlin 898,128,000 24 : A7, L3(4) : 22, Ã8

Co3 3rd Conway 495,766,656,000 McL : 2, HS, M23

L y Lyons 51,765,179,004,000,000 G2(5), 3 · McL : 2, Ã11

In this section we will describe the calculations of the mod 2 cohomology for the
groups M22, M23, McL, J2, J3 and L y. We will present “second generation” versions
of some of these computations. As a clearer picture has increasingly emerged. we
feel that they are more enlightening. The cohomology of M22 was determined by
Adem–Milgram [AM4], the cohomology of M23 by Milgram [M5], that of McL
by Adem–Milgram [AM5], that of L y by Adem–Karagueuzian–Milgram–Umland,
[AKMU], and that of J2, J3 by Carlson–Maginnis–Milgram. For the Higman–Sims
group HS, the cohomology of the 2–Sylow subgroup was calculated in [ACKM], and
the full mod 2 cohomology of HS is now available, albeit not that easy to describe.
From there an obvious immediate goal is to understand the cohomology of Co3,
which as we have seen, seems to have an intriguing role to play in homotopy theory.
Here we should note that the size of these groups and the technical advantages now
available in computer algebra, via the MAGMA program have led to the development
of interesting new hybrid techniques, which promise to lead to substantial further
progress. In particular the cohomology of the final Mathieu group M24 can now be
determined, as can the cohomology of He (the Held group), which shares the same
2–Sylow subgroup. The mod 2 cohomology ring of UT5(2), the Sylow 2–subgroup
of both M24 and He has recently been determined. The biggest hurdle that remains in
determining H∗(M24,F2) and H∗(He,F2) is the calculation and close study of the
various invariant subrings in H∗((Z/2)6,F2), that occur for the different normalizers
of the two non–conjugate (Z/2)6’s in each of these groups. However, these groups
represent a new level of complexity and progress along these lines is not expected to
be rapid.

The group L3(4) = PSL3(F4) = SL4(F4)/3 and its Sylow 2-subgroup play
a critical role in studying many of these groups. We have a natural 22 ⊂ Out(L3(4)) =
2×�3 generated by the element 22 given by acting on the coefficients of the matrices
with the (non-trivial) Galois automorphism of F4 over F2, x 	→ x2. Similarly, there
is the standard automorphism, 23 : A 	→ A−t , taking A to its transpose-inverse. We
write 21 for the composite of 22, 23 and note that the subgroup 〈21, 22〉 = 22 ⊂
Aut(L3(4)). We have
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Syl2(M22) = Syl2(M23) = Syl2(McL) = Syl2(L3(4)) : 〈22〉
Syl2(J2) = Syl2(J3) = Syl2(L3(4)) : 〈21〉

Syl2(L y) = Syl2(L3(4)) : 22

= Syl2(L3(4)) : 〈21, 22〉
Syl2(HS) = 43 : D8

Syl2(Co3) = Syl2(HS) : 2 (5.2)

We also have inclusions of index four Syl2(M22) ⊂ Syl2(HS), Syl2(J2) ⊂ Syl2(HS).
The importance of L3(4) can be explained by the fact that it is really the Mathieu
group M21. Because it has Lie type it has a simple poset-geometry:

24 : A5
22+4:32

s s24 : A5

where we have abbreviated 22+4 = Syl2(L3(4)) following ATLAS notation. Here
note that SL2(4) = A5, and the action of �5 on 24 is, in both cases given by
regarding 24 as the 2-dimensional vector space over F4, (F4)

2, while 22+4 : 32 is just
the subgroup of upper-triangular matrices in SL3(F4) quotiented out by the central
Z/3.

We will tie these subgroups together by studying the subgroups of the 3-fold
wreath product 2 � 2 � 2.

The Lattice of Subgroups of 2 � 2 � 2

Write 2 � 2 = D8 = {x, y | x2 = y2 = (xy)4 = 1} and 2 � 2 � 2 = (D8)
2 : 2 with the

new generator acting to interchange the two copies of D8. Thus 2 �2 �2 is generated by
x, y, s with x′ = sxs, y′ = sys generating a second copy of D8 which commutes with
the first. In particular the quotient of 2 � 2 � 2 by the Frattini subgroup is 23 = 〈x, y, s〉
and the commutator subgroup which in this case equals the Frattini subgroup is given
as

(2 � 2 � 2)′ = 〈xx′, yy′, (xy)2〉 = D8 × 2. (5.3)

Note that there is an outer automorphism of D8 which exchanges x, y that extends
to an outer automorphism of 2 � 2 � 2 exchanging x, y, then exchanging x′, y′, but
fixing s. We now have:

Lemma 5.4. There are seven index two subgroups of 2 � 2 � 2:
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homomorphism kernel name

(1, 0, 0) 〈y, y′, (xy)2, (x′y′)2, s, xx′〉 UT4(2)

(0, 1, 0) 〈x, x′, (xy)2, (x′y′)2, s, yy′〉 UT4(2)

(0, 0, 1) 〈x, x′, y, y′〉 D8 × D8

(1, 1, 0) 〈xy, x′y′, xx′, s〉 = 42 : 22 H

(1, 0, 1) 〈y, y′, (xy)2, (x′y′)2, sx〉 = 24 : 4 S

(0, 1, 1) 〈x, x′, (xy)2, (x′y′)2, ys〉 = 24 : 4 S

(1, 1, 1) 〈xy, x′y′, xs〉 = 42 : 4 T

where the group in question is given as the kernel of a homomorphism φa,b,c : 2 � 2 �
2−→2 and φa,b,c(x) = a, φa,b,c(y) = b, φa,b,c(s) = c with a, b, c ∈ (0, 1) = Z/2.

Here H = Syl2(M12) and the copies of UT4(2) are each isomorphic to the Sylow
2-subgroup of A8

∼= L4(2). There is a single copy of Q8 ∗ Q8 = D8 ∗ D8 in 2 � 2 � 2,

Q8 ∗ Q8 = {xx′, (xy)2, yy′, s}. (5.5)

which is the intersection

Q8 ∗ Q8 = H ∩UT4(2)1 = H ∩UT4(2)2 = UT4(2)1 ∩UT4(2)2.
(5.6)

We now wish to go a little deeper into the structure of the Sylow 2-subgroup of
the central extension 2A10 = Ã10. For this we need the relatively well known result
below.

Lemma 5.7. The wreath product 2 � 2 � 2 has three conjugacy classes of 24’s.

Proof. Since D8 has two subgroups of the form 22,

K = 〈x, (xy)2〉, J = 〈y, (xy)2〉
there are at least three conjugacy classes of 24 ⊂ 2 � 2 � 2 given as K × K , J × J , and
K × J , all contained in D8 × D8 with the first two normal. To see that there are no
more than three one can look at the decomposition

〈(xy)2, xx′, yy′〉 = 2× D8 � 2 � 2 � 2−−→〈x, y′, s〉 = 23

and verify that a 24 will either have image 2 or 22 = 〈x, y′〉 in the quotient.

Now, consider the alternating group A10 ⊃ �8. Note that

Syl2(A10) = Syl2(�8) = 2 � 2 � 2. (5.8)

Also, A10 has a unique 2-fold cover Ã10 with extension data described as follows: an
involution v ∈ A10 has v2 = z, the new central element, if and only if v = (a, b)(c, d)
in cycle notation. Thus, for two involutions α, β, we have αβ = βα if and only if
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αβ = (a, b)(c, d)(e, f )(g, h) ∈ A10

for eight distinct elements a, b, . . . , h. In particular, the three conjugacy classes
of 24’s in 2 � 2 � 2 lift as follows when we set K = 〈(1, 3)(2, 4), (1, 2)(3, 4)〉,
J = 〈(1, 2), (3, 4)〉 so their representatives in �10 are given as

K × K ∼= 〈(1, 2)(3, 4), (1, 3)(2, 4), (5, 6)(7, 8), (5, 7)(6, 8)〉
J × J ∼= 〈(1, 2)(9, 10), (3, 4)(9, 10), (5, 6)(9, 10), (7, 8)(9, 10)〉
K × J ∼= 〈(1, 2)(3, 4), (1, 3)(2, 4), (5, 6)(9, 10), (7, 8)(9, 10)〉

and we see that K̃ × K ∼= K̃ × J ∼= Q8 ∗ Q8 while J̃ × J ∼= D8 ∗ Q8 since

〈(1, 2)(3, 4)(5, 6)(7, 8), (5, 6)(7, 8)〉 ⊂ J̃ × J

is a D8 while 〈(1, 2)(9, 10), (3, 4)(9, 10)〉 ∼= Q8 and the two subgroups together
span the entire lift and are directly seen to commute.

The group 22+4 has a presentation as follows:

22+4 =
{

x, y, e, f, z, t

∣∣∣∣ 〈x, y, z, t〉 ∼= 〈e, f, z, t〉 ∼= 24,

[x, e] = z, [x, f ] = t, [y, e] = t, [y, f ] = tz

}
(5.9)

and contains exactly two copies of 24, 〈x, y, z, t〉, 〈e, f, z, t〉, and three copies of the
group Q8 × 2:

(Q8 × 2)z = {xe, ye f, t},
(Q8 × 2)t = {x f, ye, z}, (5.10)

(Q8 × 2)tz = {xe f, y f, t}.
Lemma 5.11. The lift of Q8 ∗ Q8 = UT4(2)1 ∩ UT4(2)2 is just 22+4. Moreover,
Syl2(L y) contains a unique copy of 22+4.

Proof. One checks easily that the quotient of 22+4 by a single central element is
Q8 ∗ Q8. Also, the table of index two subgroups of 2 � 2 � 2 above shows that there is
no copy of 22+4 ⊂ 2 � 2 � 2. Consequently there is at most one copy 22+4 ⊂ Syl2(L y)
but we already know there is at least one since Syl2(McL) ⊂ Syl2(L y). ��
Remark 5.12. The lift of

23
I = 〈(1, 2)(3, 4)(5, 6)(7, 8), (1, 3)(2, 4)(5, 7)(6, 8), (1, 5)(2, 6)(3, 7)(4, 8)〉

is the first 24 ⊂ 22+4 and the lift of its conjugate,

23
II = 〈(1, 2)(3, 4)(5, 6)(7, 8), (1, 4)(2, 3)(5, 7)(6, 8), (1, 6)(2, 5)(3, 7)(4, 8)〉

gives the second 24 ⊂ 22+4.
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Now, notice that 〈Q8 ∗Q8, J× J〉 is one of the UT4(2)’s while 〈Q8 ∗Q8, K×K〉
is the other. The lift of the first is Syl2(J2) = 22+4 : 21 while the lift of the second
is Syl2(M22) = 22+4 : 22, and the entire group is Syl2(L y). Finally, the lift of H is
22+4 : 23.

We will now look at the subgroup structure for the Lyons group L y; the following
table summarizes the information about maximal subgroups.

The Maximal Subgroups of the Lyons Group L y

Order Group
5, 895, 000, 000 G2(5)
5, 388, 768, 000 3 · McL : 2

46, 500, 000 53 · L4(5)
29, 916, 800 Ã11

9, 000, 000 51+4+ : 4�6

3, 849, 120 35 : (2× M11)

699, 840 32+4 : (Ã5).D8

1474 67 : 22
666 37 : 18

Consequently, L y contains the two subgroups 3 · McL and a three extension of
L3(4) : 21 ⊂ L3(4) : 〈21, 22〉, which is a subgroup of 3 · McL : 2, but not of 3 · McL.
However, from our analysis above there are only two possible candidates for the
intersections of these groups with Syl2(L y), so 3 : McL intersects in the lift of the
UT4(2) which contains K × K , while L3(4) : 21 intersects in the lift of the UT4(2)
which contains J × J .

Remark 5.13. Note that the ATLAS table of maximal subgroups of L y shows that
G2(5) ⊂ L y is a maximal subgroup, [Co] p. 174. Consequently, Syl2(L y) must
contain a copy of Syl2(G2(5)) ∼= Syl2(M12). In fact one can show that Syl2(L y)
contains a unique copy of Syl2(M12) and identify it.

The Cohomology Structure of 22+4

We review the description of H∗(22+4) given in [AM1] (see also [Mag]):

F2[v4, w4] ⊗
{
(F2[x, y] ⊕ F2[e, f ])(1, L3,M3, L M)

⊕〈x f, ye, x2 f, x f 2, x fL, R6〉
}
. (5.14)

The radical is the piece

F2[v4, w4](x f, ye, x2 f, x f 2, x fL)

and the restriction to each H∗(24) is the entire invariant subring

H∗(24)2
2 = F2[x, y, v4, w4](1, L,M, L M).

Also, R6 restricts to (L M, 0) in the cohomology of the two copies of 24 while
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x 	→ (x, 0),

y 	→ (y, 0),

e 	→ (0, x),

f 	→ (0, y),

L 	→ (L, L),

M 	→ (M,M).

describes the rest of the restriction to the two 24’s.
An essential step in the work of [CMM] was the following sharpening of (5.14).

It helps clarify the existing results on H∗(M22), H∗(M23) and makes it possible to
determine H∗(J2), H∗(J3) as well.

Lemma 5.15. The two copies of 24 and the three copies of Q8 × 2 contained in 22+4

detect H∗(22+4) under restriction.

Proof. A computer calculation using MAGMA results in the following table giving
the restrictions of the generators above to the cohomology of the three Q8×2 ⊂ 22+4.
We have H∗(Q8 × 2) = F2[γ4, t1](1, a, b, a2, b2, a2b) where a is dual to the first
generator in the corresponding group of (2.3) while b is dual to the second and t is
dual to the third:

element (Q8 × 2)z (Q8 × 2)t (Q8 × 2)zt

x a + b a b

y b b a + b

e a b b

f b a a

L b2t + bt2 (a + b)2t + (a + b)t2 b2t + bt2

v4 t4 + a2t2 γ4 + a2t2 t4 + γ4

w4 γ4 γ4 + t4 γ4

Consequently we have the following restriction images for the generators of the
radical:

element (Q8 × 2)z (Q8 × 2)t (Q8 × 2)zt

x f a2 a2 ab

ye ab b2 a2

x2 f a2b 0 a2b

xye 0 a2b a2b

x fL a2bt2 a2bt2 a2bt2

v4 t4 + a2t2 γ4 + a2t2 t4 + γ4

w4 γ4 γ4 + t4 γ4
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and the image of the radical clearly has the form

F2[v4, w4](x f, ye, x2 f, xye, x fL)

as required. ��

Detection and the Cohomology of J2, J3

The spectral sequence for the group extension, converging to H∗(22+4 : 22) collapses
at E2, as does the spectral sequence converging to H∗(22+4 : 21). Moreover, one again
gets detection theorems for the cohomology of these groups. We obtain the following
theorem (see [Mag])

Theorem 5.16. There is a copy of the group Q8 ∗ D8 ⊂ 22+4 : 21 and H∗(Q8 ∗ D8)

H∗(22+4) detect H∗(22+4 : 21).

Using 5.15, this can be immediately sharpened to

Theorem 5.17. There are three conjugacy classes of subgroups isomorphic to Q8×2
and one conjugacy class of 24’s in 22+4 : 21 and restriction to these four subgroups
detects H∗(22+4 : 21).

In J2 and J3 the three conjugacy classes of Q8 × 2’s in 22+4 : 21 all become
conjugate and we have, with only a little further work (see [CMM])

Theorem 5.18. In both H∗(J2) and H∗(J3) the radical has the form

F2[d8, d12](k5, a7, a11)

while the restriction of the image of H∗(J2) to H∗(24) is the inverse image in
H∗(24)2

2 : 32
of the subalgebra H∗(22)�3 under the inclusion of the center of 22+4 in

24
I . Similarly, the image of H∗(J3) in H∗(24) is the inverse image in H∗(24)GL2(4) of

H∗(22)�3 .

The Cohomology of the Groups M22, M23, SU4(3), McL, and Ly

We view Syl2(M22) as the split extension 22+4 : 22 given explicitly by adjoining an
element a to the presentation of 22+4 above, where a2 = 1 and the action of a on
22+4 is given by setting

xa = x ya = xy
ea = e f a = e f
za = z ta = zt

The group (Q8 × 2)z is normalized by a while a exchanges the other two copies of
(Q8×2). Likewise, a normalizes both copies of 24 in 22+4. Besides the two 24’s there
are now two other conjugacy classes of extremal elementary two groups in Syl2(M22)

with representatives given as follows:
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23
I = 〈a, x, z〉

23
II = 〈a, e, z〉

and we have the following detection result which sharpens the results of [AM4]:

Theorem 5.19.

1. Restriction to 23
I , 23

II and 22+4 detects H∗(22+4 : 22).
2. Restriction to the subgroups 24

I , 24
II , 23

I , 23
II , (Q8 × 2)z and (Q8 × 2)t detects

H∗(22+4 : 22).

Proof. Here, 5.19.1 is contained in [AM4] while 5.19.2 follows directly from 5.19.1
and 5.15.

This result allows a direct understanding of the cohomology of M22, M23, PSU4(3)
and McL. The two 24’s remain non-conjugate in all four groups, and consequently
the two pairs 24

I ⊂ 22+4 : 22, 24
II ⊂ 22+4 : 22 are weakly closed in each. The Weyl

groups are given as follows:

Group V4 W4

M22

M23

PSU4(3)
McL




A6

A7

A6

A7

�5

GL2(4) : 2
A6

A7




It follows from our determination of H∗(22+4) that the intersection of the image of
H∗(G)with H∗(24

j) is the entire invariant subring under the action of the Weyl group.
Moreover, the invariants for each of the groups above are known, as we mentioned
in Chap. III. From [AM2] we have that

F2[x1, x2, x3, x4]A6 = F2[w3, γ5, d8, d12](1, γ9, b15, γ9b15)

F2[x1, x2, x3, x4]A7 = D4(1, x18, x20, x21, x24, x25, x27, x45)

where D4 = F2[d8, d12, d14, d15] is the rank 4 Dickson algebra. Similarly, the �5

invariant subring can be described as

F2[a, b, c,d]�5 =
F2[w̄3, γ5, d8, d12](1, n6, n8, γ9, n10, n12, x12, x14, x15, x16, x18, x24)

where Sq2(n6) = n8, Sq4(n6) = n10, n12 = n2
6, x12 = Sq4(n8) and x14 = n6n8.

The invariant subring for GL2(4) : 2 is more involved and was determined in
[M5]. The Poincaré series has the form p(x)/q(x) where q(x) is the polynomial

q(x) = (1− x10)(1− x12)(1− x15)(1− x24),

and p(x) is
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1+ x6 + 2x8 + x9 + x11 + 2x12 + x13 + 3x14 + 2x15 + 3x16

+ 3z17 + 2x18 + 2x19 + 4x20 + 3x21 + 4x22 + 4x23 + 4x24 + 4x25

+ 4x26 + 4x27 + 5x28 + 5x29 + 4x30 + 4x31 + 4x32 + 4x33 + 4x34

+ 4x35 + 3x36 + 4x37 + 2x38 + 2x39 + 3x40 + 3x41 + 2x42 + 3x43

+ x44 + 2x45 + x46 + x48 + 2x49 + x51 + x57

Expanding out into a Taylor series we obtain

Corollary 5.20. The Poincaré series for the invariants

F2[x1, x2, x3, x4]GL2(4) : 2

has Taylor series of the form

1+ x6 + 2x8 + x9 + x10 + x11 + 3x12

+ x13 + 3x14 + 3x15 + 4x16 + 3x17 + 5x18 + · · · .
It remains to discuss the radicals and the 23’s. In M22 and M23 one of the two 23’s

becomes conjugate to a subgroup of one of the 24’s but the other remains extremal.
Consequently, it is also weakly closed in M22, M23, and has Weyl group L3(2) in both
M22, M23. However, the intersection is not the entire invariant subring, F2[d4, d6, d7],
but F2[d2

4, d6, d7](1, d4d6, d4d7) so this is the restriction image from both H∗(M22),
H∗(M23).

For M22 the radical is

F2[d8, d12](a2, a7, a11, a14)

while M23 has the smaller radical

F2[d8, d12](a7, a11).

The image of restriction in each of the H∗(24;F2)’s is the entire invariant sub-
ring. Thus, to describe the image of H∗(M22;F2) in the direct sum H∗(V4;F2) ⊕
H∗(W4;F2)⊕ H∗(V3;F2) we need to describe the multiple image classes, i. e. those
classes which have non-trivial image in more than one of the three rings. It turns out
that they are generated by (w̄3, w̄3, 0), (0, n6, d6), (0, n10, d4d6) together with the
polynomial ring F2[d8, d12], where d8 	→ (d8, d8, d2

4), d12 	→ (d12, d12, d2
6).

The non-nilpotent part of H∗(M22;F2) is given in [AM4] as the direct sum

H∗(V4;F2)
A6 ⊕ H∗(W4;F2)

�5 ⊕ d7F2[d4, d6, d7]
where the two copies of F2[d8, d12](1, w̄3) in the first two rings are identified.

The result for M23 is similar.

Theorem 5.21. For M23 there is a long exact sequence

0−−→F2[d8,d12](a7, a11)−−→H∗(M23)−−→
H∗(V )A7 ⊕ H∗(W )GL2(4) : 2 ⊕ F2[d4, d6, d7]d7−−→F2[d8, d12]−−→0
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Finally, we have the groups PSU4(3) and McL. In both of these groups the
remaining 23 becomes conjugate to a subgroup of the other 24 and so H∗(PSU4(3)),
H∗(McL) are completely detected by restriction to the two H∗(24)WG (2

4) together
with the determination of the radicals.

Theorem 5.22. There is a long exact sequence

0 → F2[d8, d12](a2,a7, a11, a14)→ H∗(PSU4(3))→ H∗(24)A6 ⊕ H∗(24)A6 →
F2[d8, d12](1, w̄3, b15, w̄3b15)→ 0.

Here, it appears that the class corresponding to the Lie group PSU4(C) is the
(double image) b15.

In the case of McL the result takes the form below, but note that the class b15 is
no longer present.

Theorem 5.23. There is a long exact sequence

0−−→F2[d8, d12](a7, a11)−−→H∗(McL)−−→
H∗(24)A7 ⊕ H∗(24)A7−−→F2[d8, d12](1, x18)−−→0.

In [AKMU] a calculation was given for the ring of invariants,

H∗(24)L3(2) = F2[d2, d3, d4, d8](1, a8, a9, a10, a11, a12, a13, a21)

where the action of L3(2) is the twisted action of the Weyl group of either of the 24’s in
Ã8. Using this, the cohomology rings of Ã8, S̃8 and Ã10 can be quickly determined.
It turns out that the rings for both �̃8 and Ã10 are detected by restriction to the two
maximal elementary 2-subgroups: a 24 and a 23. From this it follows that the same
is true for H∗(L y) and we have a complete determination of the cohomology ring of
L y.

Theorem 5.24. There is a short exact sequence

0−−→H∗(L y)−−→H∗(24)A7 ⊕ F2[d2
4, d

2
6, d7](1, d4d7, d6d7, d4d6d7)

−−→F2[d8, d12]−−→0.

Here the elements d8 and d12 in F2[d8, d12] are the images of (d8, d2
4) and (d12, d2

6)

in the direct sum above.

Remark on the Cohomology of M23

Some time ago it was conjectured by J.L. Loday and later by C. Giffen (see [Gi]) that
if a finite group G satisfies Hi(G,Z) = 0 for i = 1, 2, 3, then G = {1}. The sporadic
group M23 is the first known counterexample to this conjecture. Indeed, combining
the arguments given here together with easier computations at odd primes, Milgram
proved [M]:
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Theorem 5.25. H∗(M23,Z) = 0 for 0 < i < 5

Note that M23 is somewhat unusual among the sporadic groups in that Out(M23) =
Mult(M23) = 1. We also have that H6(M23;Z) = Z/2 is the first non-zero homology
group. In particular, when we look at the usual inclusion M23 ⊂ �23 we can ask about
the image of this first non-trivial class. This will be discussed in Chap. IX, where we
will consider homotopy theoretic aspects of these calculations.


