
Chapter 1

Introduction

Bluetooth is a way for devices to wirelessly communicate over short distances.
Wireless communication has been around since the late nineteenth century,
and has taken form in radio, infrared, television, and more recently 802.11.
What distinguishes Bluetooth is its special attention to short-distance com-
munication, usually less than 30 ft. Both hardware and software are affected
by this special attention.

A comprehensive set of documents, called the Bluetooth Specifications,∗

describes, in gory detail, everything from the basic radio signal to the high-
level protocols for this wireless, short-range communication. Our goal is to
help you master the essentials and then with a pat on the back and a firm
handshake, let you wade through the gory details on your own, confident that
you are well prepared. In other words, our goal is to help the reader get started.

1.1 Understanding Bluetooth as a Software Developer

There is nothing especially difficult about Bluetooth, although the unusually
wide scope of Bluetooth makes it hard to get started. There is so much in the
Bluetooth specification and at so many different levels, it is hard to distinguish
the essentials from the elective. Technology specifications, especially ones

∗ http://www.bluetooth.com/Bluetooth/Learn/Technology/Specifications/

1

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-70375-8 - Bluetooth Essentials for Programmers
Albert S. Huang and Larry Rudolph
Excerpt
More information

Bluetooth Essentials for Programmers

that are given folksy names, often refer to something very specific and with
a narrow scope. For example, there is no single specification of the Internet.
Rather each of the components has its own specification. Ethernet, for exam-
ple, describes how to connect a bunch of machines together to form a simple
network, but that’s about it. TCP/IP describes two specific communication
protocols that form the basis of the Internet, but they’re just two protocols.
Similarly, HTTP is the basis behind the World Wide Web, but also boils
down to a simple protocol. The Internet is a collection of these and other
pieces. A software developer first learning about Internet programming –
how to connect one computer on the Internet to another and send data
back and forth – will not initially bother with the details of Ethernet or
e-mail, precisely because neither technology is central. Sure, e-mail is a
wonderful example of Internet programming and Ethernet gives context
on how the connections are implemented, but TCP/IP programming is the
essence.

In many ways, the word Bluetooth is like the word Internet because it
encompasses a wide range of subjects. Similar to USB, Ethernet, and 802.11,
Bluetooth defines a lot of physical on-the-wire stuff, such as the radio frequen-
cies and how to modulate and demodulate signals. Similar to Voice-over-IP
protocols used in many Internet applications, Bluetooth also describes how
to transmit audio between devices. But Bluetooth also specifies everything
in between! It’s no wonder that the Bluetooth specifications are thousands
upon thousands of pages.

This text answers the question: How do we create programs that connect
two Bluetooth devices and transfer data between them? We introduce the
essential concepts, as well as application design considerations. Later chap-
ters show how to actually do this with a number of popular programming
languages and operating systems. Most importantly, we keep it simple but
sufficient.

1.2 Essential Bluetooth Programming Concepts

The essentials of Bluetooth programming are neither numerous nor diffi-
cult. Throughout the rest of this chapter, they will be compared to those of
Internet programming. Although Bluetooth was designed from the ground
up, presumably independent of the Ethernet and TCP/IP protocols, it is quite
reasonable to think of Bluetooth programming in the same way as Internet
programming. Both fall under the general rubric of network programming,

2

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-70375-8 - Bluetooth Essentials for Programmers
Albert S. Huang and Larry Rudolph
Excerpt
More information

Introduction

and share the same principles of one device communicating and exchang-
ing data with another device. Bluetooth and Internet programming share so
much in common that understanding one makes it much easier to understand
the other.

TCP/IP programming is mature, ubiquitous, has plenty of examples, and
its comparison with Bluetooth strengthens the reader’s understanding of both
topics. The biggest difference, as mentioned earlier, is that Bluetooth focuses
on physically proximate devices, whereas Internet programming doesn’t care
about distance at all. This difference will greatly affect how two devices ini-
tially find each other and establish an initial connection. After that, everything
is pretty much the same.

The actual process of establishing a connection depends on whether the de-
vice in question is establishing an outgoing or an incoming connection. Roughly,
this is the difference between which device sends the first data packet to initi-
ate communications and which device receives that packet. We’ll often refer
to these as the client and server, respectively.

Note: We use the words client and server only to distinguish be-
tween which device initiates a connection, and without implying
any relationship to the Client–Server model of network program-
ming. Despite the overlap, it is perfectly reasonable for a server
(the way we use the word) to function as a client (in the Client–
Server model sense), and vice versa.

Devices initiating an outgoing connection need to choose a target device
and a transport protocol, before establishing a connection and transferring
data. Devices establishing an incoming connection need to choose a transport
protocol, and then listen before accepting a connection and transferring data.
Figures 1.1 and 1.2 illustrate these basic concepts and how they translate to
both Internet and Bluetooth programming. Notice that for outgoing connec-
tions, only the first two steps (choosing a target device, transport protocol,
and port number) are different for Bluetooth and Internet programming.
Once the outgoing connection is established, everything is pretty much the
same. The processes for accepting an incoming connection are even more
similar, with the main difference being the added support of Bluetooth for
dynamically assigned port numbers.

3

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-70375-8 - Bluetooth Essentials for Programmers
Albert S. Huang and Larry Rudolph
Excerpt
More information

Bluetooth Essentials for Programmers

Choose a target device

Choose a transport
protocol and port
number

Establish a connection

Transfer data

Disconnect

Search for nearby
devices (Device Inquiry)

Query each device
for its display name

Choose device with
user-specified name

Network
programming

Bluetooth
programming

Search target device for
SDP records matching a
predefined identifier
(e.g. UUID, name, etc.)

Choose port number
on matching record

Hard-code a protocol
 RFCOMM, L2CAP, or SCO

socket(...)
connect(...)

Internet (TCP/IP)
programming

Connect to a known
DNS server

Lookup the IP address
of a user-specified or
hard-coded DNS name

Hard-code a protocol
 TCP, UDP, RTP, etc.

Choose a user-specified
or hard-coded port
number

send(...), recv(...)

close(...)

socket(...)
connect(...)

send(...), recv(...)

close(...)

Outgoing connections

Figure 1.1 There are five major conecptual steps for programming an outgoing connection.
Only the initial process of choosing a target device, transport protocol, and port number
differs significantly from Internet to Bluetooth programming.

4

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-70375-8 - Bluetooth Essentials for Programmers
Albert S. Huang and Larry Rudolph
Excerpt
More information

Introduction

Wait for and accept
incoming connections

Transfer data

Disconnect

Network
programming

Bluetooth
programming

listen(...)
accept(...)

Internet (TCP/IP)
programming

send(...), recv(...)

close(...)

listen(...)
accept(...)

send(...), recv(...)

close(...)

Choose a transport
protocol and port
number

Hard-code a protocol
 TCP, UDP, RTP, etc.

Choose a hard-coded
port number

Hard-code a protocol
 RFCOMM, L2CAP, SCO, etc.

Choose a hard-coded
or dynamically
assigned port number

Advertise service with
local SDP server
 optional, but recommended

Reserve local resources
and enter listening
mode

socket(...)
bind(...)
listen(...)

socket(...)
bind(...)
listen(...)

Incoming connections

Figure 1.2 There are also five major conecptual steps for programming an incoming connec-
tion. As with outgoing connections, the details of Internet and Bluetooth programming are
related, although slightly different.

5

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-70375-8 - Bluetooth Essentials for Programmers
Albert S. Huang and Larry Rudolph
Excerpt
More information

Bluetooth Essentials for Programmers

The seasoned network programmer will notice that some of the steps
illustrated don’t always apply, and don’t necessarily have to be completed in
the order shown. For example, if the address of a server is hard-coded into a
client program, then there’s no need to use the Domain Name System (DNS)
or a device inquiry. The key here is that these diagrams show the “vanilla”
way of doing things, which can be adapted and tweaked to serve the needs
of each individual application. As we go through each concept, in the next
several sections, we mention each of these deviations in turn. Subsequent
chapters elaborate on how these concepts are implemented across various
platforms and programming languages.

1.2.1 Choosing a Target Device
Every Bluetooth chip ever manufactured is imprinted with a globally unique
48-bit address, referred to as the Bluetooth address or device address. This is
identical in nature to the Machine Address Code (MAC) address for Ether-
net.∗ In fact, both address spaces are managed by the same organization – the
IEEE Registration Authority. These Bluetooth addresses, assigned at manu-
facture time, are intended to be unique and remain static for the lifetime of
the chip. It conveniently serves as the basic addressing unit in all of Bluetooth
programming.

For one Bluetooth device to communicate with another, it must have some
way of determining the other device’s Bluetooth address. The address is used
in all layers of the Bluetooth communication process, from the low-level
radio protocols to the higher level application protocols. In contrast, TCP/IP
network devices that use Ethernet discard the 48-bit MAC address at higher
layers of the communication process and switch to using IP addresses. The
principle remains the same however, in that the unique identifying address
of the target device must be known in order to communicate with it.

The client program may not have advance knowledge of these target ad-
dresses. In Internet programming, the user typically knows or supplies a host
name, such as www.kernel.org, which must then be translated to a physi-
cal IP address by DNS. In Bluetooth, the user will typically supply some
user-friendly name, such as “My Phone,” and the client translates this to a
numerical address by searching nearby Bluetooth devices and checking the
name of each device.

∗ http://www.ietf.org/rfc/rfc0826.txt

6

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-70375-8 - Bluetooth Essentials for Programmers
Albert S. Huang and Larry Rudolph
Excerpt
More information

Introduction

Note: Throughout the book, we will use the words adapter and
device, with slightly different meanings. In general, a Bluetooth de-
vice refers to any machine capable of Bluetooth communication.
When we’re talking about writing programs, adapter refers specifi-
cally to the Bluetooth device on the local computer (the one that’s
running the program). This is to reduce confusion and help specify
exactly which device is in question.

Device Name

Humans do not deal well with 48-bit numbers, such as 0x000EED3D1829 (in
much the same way, we do not deal well with numerical IP addresses like
68.15.34.115), and so Bluetooth devices will almost always have a user-
friendly name (also called the display name). This name is usually shown to
the user in lieu of the Bluetooth address to identify a device, but ultimately
it is the Bluetooth address that is used in actual communication. For many
machines, such as mobile cell phones and desktop computers, this name is
configurable and the user can choose an arbitrary word or phrase. There is
no requirement for the user to choose a unique name, which can sometimes
cause confusion when many nearby devices have the same name. When send-
ing a file to someone’s phone, for example, the user may be faced with the task
of choosing from five different phones, each of which is named “My Phone.”

Names in Bluetooth are similar to DNS names in that both are
human-friendly identifiers that eventually get translated to machine-friendly
identifiers. They differ in that DNS names are unique (there can only be one
www.google.com) and registered with a central database, whereas Bluetooth
names are more or less arbitrary, frequently duplicated, and are registered
only on the device itself. In TCP/IP, one begins with a DNS name. Translat-
ing a DNS name to an IP address involves contacting a nameserver, issuing a
query, and waiting for a result. In Bluetooth, the lookup process is reversed.
First, a device searches for nearby Bluetooth devices and compiles a list of
their addresses. Then, it contacts each nearby device individually and queries
it for its user-friendly name.

Searching for Nearby Devices

Device discovery, also known as device inquiry, is the process of searching
for and detecting nearby Bluetooth devices. It is simple in theory: To figure

7

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-70375-8 - Bluetooth Essentials for Programmers
Albert S. Huang and Larry Rudolph
Excerpt
More information

Bluetooth Essentials for Programmers

out what’s nearby, broadcast a “discovery” message and wait for replies. Each
reply consists of the address of the responding device and an integer identi-
fying the general class of the device (e.g., cell phone, desktop PC, headset,
etc.). More detailed information, such as the name of a device, can then be
obtained by contacting each device individually.∗

In practice, this is often a confusing and irritating subject for Bluetooth
developers and users. The source of this aggravation stems from the fact that it
can take a long time to detect nearby Bluetooth devices. To be specific, given
a Bluetooth cell phone and a Bluetooth laptop sitting next to each other on a
desk, it will usually take an average of 5 seconds before the phone detects the
presence of the laptop, and it sometimes can take upward of 10–15 seconds.
This might not seem like that much time, but put in context it is suprising.
During the device discovery process, the phone is changing frequencies more
than a thousand times a second, and there are only 79 possible frequencies
on which it can transmit. It is a wonder why they don’t find each other in the
blink of an eye.

The technical reasons for this are mostly due to the result of a strangely
designed search algorithm, explained in greater detail in Section 1.3.9. Newer
versions of Bluetooth (starting in Bluetooth 1.2) attempt to reduce the aver-
age search time, but don’t expect any miracles in the near future. Suffice to
say, device discovery takes too long.

Note: A common misconception is that when a Bluetooth de-
vice enters an area, it somehow “announces” its presence so that
other devices will know that it’s around. This never happens (even
though it’s not a bad idea), and the only way for one device to de-
tect the presence of another is to conduct a device discovery.

Discoverability and Connectability

For privacy and power concerns, all Bluetooth devices have two options
that determine whether or not the device responds to device inquiries and
connection attempts. The Inquiry Scan option controls the former, and the

∗ Bluetooth 2.1 introduces the Extended Inquiry Response, where the most commonly requested in-
formation, such as the name of a responding device and a summary of the services it offers, can be
transmitted directly in the inquiry response, saving some time.

8

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-70375-8 - Bluetooth Essentials for Programmers
Albert S. Huang and Larry Rudolph
Excerpt
More information

Introduction

Table 1.1 Inquiry Scan and Page Scan.

Inquiry Page
Scan Scan Interpretation

On On The local device is detectable by other Bluetooth devices,
and will accept incoming connection requests. This is often
the default setting.

Off On Although not detectable by other Bluetooth devices, the
local device still responds to connection requests by devices
that already have its Bluetooth address. This is often the
default setting.

On Off The local device is detectable by other Bluetooth devices,
but it will not accept any incoming connections. This is
mostly useless.

Off Off The local device is not detectable by other Bluetooth
devices, and will not accept any incoming connections.
This could be useful if the local device will only establish
outgoing connections.

Page Scan option controls the latter. Both are described in Table 1.1, and are
configurable to some degree on most devices.

Although the names inquiry scan and page scan are confusing, it is impor-
tant not to confuse these two terms with the actual processes of detecting and
connecting to other devices. The reasoning behind these names is that these
options control whether the local device scans for device inquiries and con-
nection attempts. A device is in discoverable mode when inquiry scan is on.

1.2.2 Choosing a Transport Protocol
Different applications have different needs, hence the reason for different
transport protocols. This section describes the ones you should know about
for Bluetooth programming, and why your application might use them.

The two factors that distinguish the protocols here are guarantees and
semantics. The guarantees of a protocol state how hard it tries to deliver
a packet sent by the application. A reliable protocol, like TCP, takes the
“deliver-or-die” mentality; it ensures that all sent packets get delivered, or dies
trying (terminates the connection). A best-effort protocol, like UDP, makes
a reasonable attempt at delivering transmitted packets, but ignores the case

9

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-70375-8 - Bluetooth Essentials for Programmers
Albert S. Huang and Larry Rudolph
Excerpt
More information

Bluetooth Essentials for Programmers

when the packets do not arrive, say, due to signal noise, a crashed router, an
act of god, and so on.

The semantics of a protocol can be either packet-based or streams-based.
A packet-based protocol like UDP sends data in individual datagrams of
fixed maximum length. A streams-based protcol, like TCP, on the other
hand, just sends data without worrying about where one packet ends and the
next one starts. This choice is more a matter of preference than any specific
requirements, because with a little arm-twisting, a packet-based protocol can
be used like a streams-based protocol, and vice versa.

Bluetooth contains many transport protocols, nearly all of which are spe-
cial purpose. We consider four protocols to be essential, although only two,
RFCOMM and L2CAP, are likely to be used to get started. And of these two,
only the first, RFCOMM, will be relevant for many readers. The protocols
are presented in the order of their relevance; the anxious reader can skim
over the latter two or three.

RFCOMM

The Radio Frequency Communications (RFCOMM) protocol is a reliable
streams-based protocol. It provides roughly the same service and reliabil-
ity guarantees as TCP. The Bluetooth specification states that it was de-
signed to emulate RS-232 serial ports (to make it easier for manufac-
turers to add Bluetooth capabilities to their existing serial port devices),
but we prefer to turn that definition around and say that RFCOMM is a
general-purpose transport protocol that happens to work well for emulating serial
ports.

The choice of port numbers is the biggest difference between TCP and
RFCOMM from a network programmer’s perspective. Whereas TCP sup-
ports up to 65,535 open ports on a single machine, RFCOMM allows only
30. This has a significant impact on how to choose port numbers for server
applications.

A distinguishing attribute of RFCOMM is that, depending on the applica-
tion and the target platform, sometimes it is the only choice. Some environ-
ments, such as the Microsoft Windows XP Bluetooth API and Nokia Series
60 Python, support only the RFCOMM transport protocol. This really isn’t
all that bad because it’s a robust general-purpose protocol, but it is something
worth keeping in mind if you were to consider the other protocols mentioned.
For more information, see Section 1.3.10.

10

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-70375-8 - Bluetooth Essentials for Programmers
Albert S. Huang and Larry Rudolph
Excerpt
More information

