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Getting Started

In the present chapter we introduce the basic notions necessary to study learning
problems within the framework of statistical mechanics. We also demonstrate
the efficiency of learning from examples by the numerical analysis of a very
simple situation. Generalizing from this example we will formulate the basic
setup of a learning problem in statistical mechanics to be discussed in numerous
modifications in later chapters.

1.1 Artificial neural networks

The statistical mechanics of learning has been developed primarily for networks
of so-called formal neurons. The aim of these networks is to model some of the
essential information processing abilities of biological neural networks on the basis
of artificial systems with a similar architecture. Formal neurons, the microscopic
building blocks of these artificial neural networks, were introduced more than 50
years ago by McCulloch and Pitts as extremely simplified models of the biological
neuron [1]. They are bistable linear threshold elements which are either active or
passive, to be denoted in the following by a binary variable S = ±1. The state Si

of a given neuron i changes with time because of the signals it receives through its
synaptic couplings Ji j from either the “outside world” or other neurons j .

More precisely, neuron i sums up the incoming activity of all the other
neurons weighted by the corresponding synaptic coupling strengths to yield the
post-synaptic potential

∑
j Ji j S j and compares the result with a threshold θi

specific to neuron i . If the post-synaptic potential exceeds the threshold, the neuron
will be active in the next time step, otherwise it will be passive

Si (t + 1) = sgn

(∑
j

Ji j S j (t) − θi

)
, (1.1)
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2 1 Getting Started

where the sign function is defined by sgn(x) = 1 if x > 0 and sgn(x) = −1
otherwise.

The McCulloch–Pitts neuron is clearly an extreme oversimplification of its
biological prototype. In fact, for every objection raised against it, it is easy
to find an additional one. However, the emphasis in statistical mechanics of
neural networks is on issues that are complementary to those of neurophysiology.
Instead of focusing on the single neuron, the main objectives are the collective
properties that emerge in large assemblies of neurons. Previous experience with
complex physical systems such as magnets, liquid crystals and superfluids has
shown that often these collective properties are surprisingly insensitive to many
of the microscopic details and thus the use of extremely simplified models for
the constituents is often appropriate to describe the macroscopic properties of the
system. A central hypothesis in the statistical mechanics of learning is hence that
learning from examples is such a collective emerging property and that it can be
studied in large networks of McCulloch–Pitts neurons.

There are several ways of connecting formal neurons to create a network,
characterized by the connectivity graph of the synaptic matrix Ji j . Figure 1.1 shows
some simple possibilities for small systems.

A mathematical analysis is, however, possible for some extreme architectures
only. Two types of connectivities will be of special interest. In the first one every
neuron is connected with every other neuron, see fig. 1.1b. The dynamics (1.1) is
then highly recurrent and will in general result in a chaotic sequence of different
activity patterns of the neurons. For a suitably chosen set of couplings Ji j , however,
the situation can be much simpler. Consider, e.g., the case of symmetric couplings
Ji j = Jji . It is then easy to show that the function

H(S) = −
∑
i, j

Ji j Si S j (1.2)

with S = {Si } denoting the complete vector of neuron activities, can never
increase under the dynamics (1.1). Since H(S) cannot become arbitrarily small,
the system will eventually approach configurations which minimize H and then
remain in these attractor states. In fact, by suitably choosing the couplings Ji j

these attractors can be prescribed to be certain desired neuron configurations
ξξξµ = {ξµ

1 , . . ., ξ
µ

N }, ξ
µ

i = ±1. The index µ labels the different coexisting
attractor states and runs from 1 to p. If the network is now initialized in some
configuration S which is similar to one of these embedded patterns, ξξξ 1 say, the
dynamics will in most cases tend to this attractor and thereby restore the complete
pattern ξξξ 1. In this sense, attractor neural networks may function as associative
memories which are able to retrieve a stored pattern ξξξ 1 if initially stimulated by a
noisy or incomplete variant S of this pattern. The parallel and distributed character
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1.1 Artificial neural networks 3

(a) (b)

(c) (d)

Fig. 1.1. Different types of networks of formal neurons. (a) general architecture, (b) fully
connected attractor neural network, (c) feed-forward network with one hidden layer, (d)
single layer perceptron.

of such a memory is rather reminiscent of the human brain and very different
from present-day electronic memory devices. Central questions in the statistical
mechanics of attractor neural networks concern the maximal possible number pc

of patterns ξξξµ that can be stored, the properties of different learning rules fixing
the values of the synaptic couplings as functions of the stored patterns, the typical
basins of attraction quantifying the maximally admissible difference of the stimulus
from the desired pattern, and the interference of different patterns in the retrieval
process. There are several textbooks dealing with the statistical mechanics analysis
of these systems [2, 3, 4, 5].

The other extreme type of architecture, called feed-forward neural network, is
shown in fig. 1.1c. In such a network, the neurons can be arranged in layers l =
1, . . ., L such that every neuron in layer l only receives inputs from neurons of
layer (l − 1) and in turn only feeds neurons in layer (l + 1). The first layer, l = 1,
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4 1 Getting Started

 

Fig. 1.2. Simple perceptron used to rank dual numbers.

is called the input layer; the last one, l = L; the output layer; and all layers with
1 < l < L are referred to as hidden layers.

Due to the absence of feedback loops the dynamics is very simple. The input
is mapped to the output via successive time steps according to (1.1). The network
therefore performs a classification of the input strings into classes labelled by the
different configurations of the output layer. This architecture is well suited for
learning from examples. In particular the simplest feed-forward neural net, the
perceptron, having no hidden layers at all, as shown in fig. 1.1d, can be analysed
in great detail. Its introduction by Rosenblatt in 1962 [6] initiated a first period of
euphoria about artificial neural networks. The attractive features of the perceptron
as a simple model for some basic cognitive abilities of the human brain also
stimulated some speculations widely overestimating its relevance. So this period
ended surprisingly abruptly in 1969 when some rather obvious limitations of the
perceptron were clearly stated [7].

Nevertheless the perceptron is a very interesting and valuable model system. In
the statistical mechanics of learning it has become a kind of “hydrogen atom” of the
field and hence it will often be the focus of attention in this book. In later chapters
we will discuss the application of the techniques developed for the perceptron to
the more powerful multilayer networks having one or more hidden layers.

1.2 A simple example

It is certainly appropriate to introduce learning from examples by discussing a
simple example. Consider the perceptron shown in fig. 1.2. It has N = 20 input
units Si each connected directly to the single output σ by real valued couplings Ji .
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1.2 A simple example 5
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Fig. 1.3. Graphical representation of the perfect couplings for a perceptron to rank dual
numbers as given by (1.4). J1, . . ., J10 (white) are positive, J11, . . ., J20 (black) are
negative, cf. (1.4).

For any input vector S the output is determined by the rule

σ = sgn

(∑
i

Ji Si

)
, (1.3)

which is a special case of (1.1).
We would like to use the network to rank 10-digit dual numbers.1 To this end we

require the output to be +1 (−1) if the dual number represented by the left ten input
bits is larger (smaller) than the one given by the right ten inputs. For simplicity we
ignore for the moment the possibility of the two numbers being equal.

It is easy to construct a set of couplings that does the job perfectly. Consider the
coupling values

J perf
i = 210−i if i = 1, . . ., 10

J perf
i = −J perf

i−10 if i = 11, . . ., 20, (1.4)

displayed also in fig. 1.3. This choice gives, as it should, a larger weight in the
superposition (1.3) to the leftmost bits in the two subfields of the input. On the
other hand it ensures that less significant bits are able to tip the balance if the first

1 A 3-digit dual number with dual code (−1, 1, −1) is equal to 0 · 22 + 1 · 21 + 0 · 20.
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6 1 Getting Started

bits of the two numbers coincide. The above problem is simple enough for us to
guess the appropriate values of the couplings. Doing so is an example of explicit
programming as used in almost all present-day computers.

However, we can apply another, more interesting procedure to solve the problem,
namely learning from examples. Let us first initialize the couplings Ji at random.
We then select, out of the total of 220 	 106 different input strings, a given number
p of input vectors ξξξµ, µ = 1, . . ., p at random and for each case provide the correct
output, which we denote by σ

µ

T . Next, we train the network with this set {ξξξµ, σ
µ

T }.
To this end we sequentially present each of the input vectors to the network and
verify whether the resulting network output σµ given through (1.3) is correct, i.e.
coincides with σ

µ

T . If so, which will initially happen for roughly half of the cases,
we simply proceed to the next example. If however σµ 
= σ

µ

T we modify the
couplings in such a way that the example under consideration is less likely to be
misclassified upon the next presentation. Various rules to achieve this goal will be
presented in chapter 3.2 We iterate this procedure until all examples of the training
set are reproduced correctly. The fact that the procedure converges is a priori not
obvious, but it does so for the problem under consideration: ranking numbers is a
learnable problem for the perceptron.

The success on the training set, however, does not tell us whether the network
has really learned the rule behind the examples. To answer this question the
performance on so far unseen inputs has to be investigated.3 A quantitative
measure of the degree of generalization from the examples to the rule can be
obtained by determining the fraction of wrong outputs when running through the
complete set of 220 different inputs. This fraction is called the generalization error
ε and is one of the central quantities in the analysis of learning problems.

Figure 1.4 shows ε as a function of the size p of the training set as resulting from
simulations as described above. Note that ε is a random variable which depends on
the particular choice of the training set. In fig. 1.4, we have reproduced the average
over 1000 random realizations of the training set.

The general behaviour is as expected. For p = 0 the network has no information
at all about the target rule. By chance half of the examples are classified correctly,
ε = 0.5, which is the known success rate for pure guessing. With increasing
p the generalization error decreases monotonically and for p → ∞ it must, of
course, vanish. However, the surprising fact is that the generalization error already
becomes rather small for p of the order of a few hundred, which is much less than
the total number of different input vectors! In other words, the network is able to
generalize rather well in the sense that it can approximate the desired rule on the
basis of a very limited set of examples.
2 In the simulations shown below we used the randomized perceptron learning rule discussed in section 3.2.
3 This is also the reason why exercises are to be found at the end of most chapters of this book.
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Fig. 1.4. Simulation results (circles) for the generalization error of a perceptron learning
from examples to rank dual numbers. The results are averaged over 1000 realizations of
the training set, and the statistical error is smaller than the symbol size. The full line
gives the analytic result of the quenched calculation, the dashed line that of the annealed
approximation. Both are discussed in detail in chapter 2.

In a similar way, one can show that a somewhat more complicated network
made of Boolean gates is able to learn the addition of numbers from examples
[8]. Another striking demonstration of learning from examples in artificial neural
networks is the ability of a multilayer neural net to read English text aloud [9], and
many more examples have been documented [10].

At first sight it may seem somewhat enigmatic that a system as simple as the
perceptron should be “intelligent enough” to decipher a rule behind examples.
Nevertheless the explanation is rather simple: the perceptron can only implement a
very limited set of mappings between input and output, and the ranking of numbers
happens to be one of them. Given this limitation it is therefore comparatively
easy to select the proper mapping on the basis of examples. These rather vague
statements will be made more precise in the following chapters.

To get a more concrete idea of how the perceptron proceeds in the above
problem, it is instructive to look at the evolution of the couplings Ji as a function
of the size p of the training set. In fig. 1.5 the couplings are shown for p = 50 and
p = 200. In both cases we have normalized them such that J1 = 29 in order to
facilitate comparison with the target values given in (1.4) and fig. 1.3. As one easily
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8 1 Getting Started
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Fig. 1.5. Graphical representation of the perceptron couplings after learning 50 (left) and
200 (right) examples. The signs of the columns indicate whether the couplings have the
same sign as the perfect couplings of fig. 1.3 or not.

realizes, the relation between the most important couplings J1, J2, J3, J11, J12, J13

is fixed first. This is because they decide the output for the large majority of
input patterns, both in the training and in the complete set. Considering that
correct values for J1, J2, J3, J11, J12 and J13 yield a correct output for 15/16 of all
patterns already, one understands how the initial efficiency of the learning process
is achieved. By the same token, one expects that inputs which give information
about the couplings J9, J10, J19 and J20 are rare, with a rather slow asymptotic
decay of the generalization error to zero as a result.

We have included in fig. 1.4 the generalization error as obtained from two
analytic treatments of the learning problem within the framework of statistical
mechanics (an approximate one called “annealed” and the exact one referred to
as “quenched”). The concepts and techniques necessary to produce curves such as
these are the main subject of this book.

1.3 General setup

We are now ready to formulate the basic scenario for learning problems in the
statistical mechanics of artificial neural networks. To this end we consider a feed-
forward network of formal neurons with N input units denoted by Si , i = 1, . . ., N
and one output σ . We restrict ourselves to networks with a single output unit
merely for simplicity. Since there are no couplings between neurons in the same
layer, networks with several outputs are not significantly more complex than those
with a single one.
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1.3 General setup 9

The input–output mapping performed by the network is specified by a vector
J = {J1, . . ., JN } of synaptic couplings. The network is required to adapt these
couplings in order to perform a certain target mapping which will be generally
referred to as the rule. It is often convenient to think of the target mapping as being
represented by another feed-forward neural net characterized by a synaptic vector
T = {T1, . . ., TN }. Although the teacher network T and the student network J
must, of course, have the same number N of inputs and a single output they may,
in general, differ in their architecture.

In his task to approximate the teacher neither the detailed architecture nor the
components of the teacher vector T are known to the student. The only accessible
information about the target rule is contained in the training set composed of
p inputs ξξξµ, µ = 1, . . ., p with ξξξµ = {ξµ

i = ±1, i = 1, . . ., N } and their
corresponding outputs σ

µ

T = ±1, µ = 1, . . ., p provided by the teacher. The
prescription {ξξξµ, σ

µ

T } → J which specifies a suitable student coupling vector J on
the basis of the training set is called a learning rule. The most obvious requirement
for a learning rule is to generate a student vector which approximates the teacher as
well as possible. But there are also other important features such as the time needed
for the determination of J and the flexibility with respect to the incorporation of
new inputs added to the training set.

A crucial question is how the examples of the training set are selected. This is
quite important since different training sets of the same size may well convey a
different amount of information about the target rule. In many practical situations
one cannot design the training set at will since its elements are determined by
some experimental procedure. In order to model these situations one therefore
assumes that the examples of the training set are selected independently at random
according to some probability distribution PS(S) defined on the input space.
Throughout this book we will use simple distributions such as

PS(S) =
∏

i

[
1

2
δ(Si + 1) + 1

2
δ(Si − 1)

]
, (1.5)

which implies that the individual components Si of the inputs are ±1 with equal
probability and independently of each other. Some properties of the δ-function
δ(x) are summarized in appendix 1.

Analogously to considering a training set compiled at random it is often sensible
not to concentrate on one specific target rule T but to assume that also the target
is chosen at random from a rule space according to some probability distribution
PT(T). The results of the analysis will then characterize a whole class of learning
problems rather than singling out the performance on one particular task.

Finally, many learning rules involve random elements in order to facilitate
convergence. As a result, the training set leads not to a unique J-vector but to
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10 1 Getting Started

a whole distribution PJ(J). The learning process is then conveniently described as
a reshaping of this probability distribution on the basis of the information gained
from the examples [11, 12].

In conclusion there are several sources of randomness in a generic learning
problem and the different ways of dealing with this probabilistic nature result in
different approaches to a mathematical analysis of learning.

In order to quantify the success of the student in approximating the teacher we
first need a measure of similarity or dissimilarity between two networks. Let us
present the same input vector S to both networks and denote by σT and σ the
corresponding output of the teacher and the student respectively. For binary outputs
the quantity

d(J; S, T) = θ(−σT σ) (1.6)

is an appropriate distance measure since with the θ -function defined by θ(x) = 1
if x > 0 and θ(x) = 0 otherwise (cf. (A1.17)) it is 1 in case of an error
(output different from target output) and 0 otherwise.4 We may then quantify the
performance of the student on the training set by calculating the so-called training
error

εt(J; {ξξξµ}, T) = 1

p

p∑
µ=1

d(J;ξξξµ, T) (1.7)

which just gives the fraction of misclassified patterns of the training set. The
training error is an important ingredient of most learning rules and we will see
in later chapters that it is often (but not always) a good idea to choose a student
vector with small training error.

On the other hand the training error is clearly not suitable for determining how
well the student really approximates the target rule. This is measured by the
generalization error ε(J; T), which is defined as the average of d over the whole
set of possible inputs S

ε(J; T) =
∑
{S}

PS(S) d(J; S, T). (1.8)

Equivalently we may interpret ε as the probability that the student classifies a
randomly drawn input differently from the teacher. It is sometimes also referred
to as “probability of mistake” or “expected 0–1 loss”. Note that it is natural to
sample the test input from the same probability distribution PS as the training
examples.

From the definition of εt and ε it is clear that the problem of learning from
examples shares some features with a standard problem in mathematical statistics,

4 For continuous outputs d(J; S, T) = (σT − σ)2/4 is a suitable generalization.
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