
1
Properties of the S-matrix

In this chapter we specify the kinematics, define the normalisation of ampli-
tudes and cross sections and establish the basic formalism used throughout.
All mathematical functions used, and their properties, can be found in [9].

1.1 Kinematics

We consider first the two-body scattering process 1 + 2 → 3 + 4 of figure
1.1, where the particles have masses mi and four-momenta Pi, i = 1, . . . , 4.
Our notation is that the four-momentum of a particle is P = (E,p), where
E is its energy and p its three-momentum, and we write

P1.P2 = E1E2 − p1.p2. (1.1)

The Lorentz-invariant variables s, t and u, called Mandelstam variables, are
defined by

s = (P1 + P2)2

t = (P1 − P3)2
u = (P1 − P4)2 (1.2)

with the relation

s+ t+ u =
4∑

i=1

m2i . (1.3)

Equation (1.3) means that a two-body amplitude is a function of only two
independent variables. We shall normally take these to be s and t, with u
defined via (1.3), and write the amplitude as A(s, t). However, sometimes
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2 1 Properties of the S-matrix
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Figure 1.1. Two-body scattering process 1 + 2 → 3 + 4

it will be more appropriate to use s and u, or t and u, as the independent
variables, and then write the amplitude as A(s, u) or A(t, u).
Figure 1.1 not only describes the scattering process 1 + 2 → 3 + 4 in the
s-channel but, by reversing the signs of some of the four-momenta, it can
also represent the t-channel process 1+3̄ → 2̄+4 and the u-channel process
1 + 4̄ → 3 + 2̄, where the bar denotes the antiparticle.
In the s-channel centre-of-mass frame of the initial particles 1 and 2, the
four-momenta are given explicitly by

P1 = (E1,p1) P2 = (E2,−p1)
P3 = (E3,p3) P4 = (E4,−p3) (1.4)

where Ei is the energy of particle i, p1 is the three-momentum of particle 1
and p3 the three-momentum of particle 3 in this frame. Then

s = (E1 + E2)2 = (E3 + E4)2 (1.5)

and

E1 =
1

2
√
s
(s+m21 −m22) E2 =

1
2
√
s
(s+m22 −m21)

E3 =
1

2
√
s
(s+m23 −m24) E4 =

1
2
√
s
(s+m24 −m23) (1.6)

and

p21 =
1
4s

[s− (m1 +m2)2] [s− (m1 −m2)2]

p23 =
1
4s

[s− (m3 +m4)2] [s− (m3 −m4)2]. (1.7)
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1.2 The cross section 3

From (1.2) and (1.4),

t = m21 +m
2
3 − 2(E1E3 − p1.p3)

= m21 +m
2
3 − 2(E1E3 − |p1||p3| cos θs)

u = m21 +m
2
4 − 2(E1E4 + p1.p3)

= m21 +m
2
4 − 2(E1E4 + |p1||p3| cos θs) (1.8)

where θs is the angle between the three-momenta of particles 1 and 3 in
the s-channel centre-of-mass frame, that is it is the centre-of-mass-frame
scattering angle.
The physical region for the s-channel is given by

s ≥ (m1 +m2)2 and − 1 ≤ cos θs ≤ 1. (1.9)

For arbitrary masses the boundary of the physical region as a function of
s and t is rather complicated. It is simpler for equal masses mi = m,
i = 1, . . . , 4, so that p1 = p3 = p and

s = 4(p2 +m2)
t = −2p2(1− cos θs)
u = −2p2(1 + cos θs). (1.10)

The physical region for s-channel scattering is then given by s ≥ 4m2,
t ≤ 0 and u ≤ 0. In this channel, s is an energy squared and each of t
and u is a momentum transfer squared. Similarly the physical region for
t-channel scattering is t ≥ 4m2, u ≤ 0, s ≤ 0; and for u-channel scattering
it is u ≥ 4m2, s ≤ 0, t ≤ 0. The symmetry between s, t and u is readily
demonstrated by plotting the physical regions in the s-t plane with the s
and t axes inclined at 60◦, as shown in figure 1.2.

1.2 The cross section

For orthonormal states 〈f | and |i〉, that satisfy 〈f |f〉 = 〈i|i〉 and 〈f |f ′〉 =
δff ′ , the S-matrix element 〈f |S|i〉 is defined such that

Pfi = |〈f |S|i〉|2 = 〈i|S†|f〉〈f |S|i〉 (1.11)

is the probability of |f〉 being the final state, given |i〉 as the initial state.
If the set of orthonormal states |f〉 is complete,∑

f

|f〉〈f | = 1. (1.12)
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4 1 Properties of the S-matrix
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Figure 1.2. Physical regions for equal-mass scattering such as ππ → ππ

Starting from the initial state |i〉, the probability of ending up in some final
state must be unity so

1 =
∑
f

|〈f |S|i〉|2 =
∑
f

〈i|S†|f〉〈f |S|i〉 = 〈i|S†S|i〉. (1.13)

Since (1.13) must be true for any choice of the complete set of basis states
|i〉 it follows that S†S = 1. Similarly the requirement that any final state
|f〉 has originated from some initial state |i〉 yields SS† = 1. That is, S is
unitary.
We now go over to the case of continuum states and specialise to a two-body
initial state. The scattering matrix S is related to the transition matrix T
by

〈f |S|i〉 = 〈P ′
1P

′
2 . . . P

′
n|S|P1P2〉 = δfi + i(2π)4δ4(P f − P i) 〈f |T |i〉 (1.14)

where P i is the sum of the initial four-momenta and P f the sum of the final
four-momenta. The scattering amplitude is normalised such that the tran-
sition rate per unit time per unit volume from the initial state |i〉 = |P1P2〉
to the final state |f〉 = |P ′

1 · · ·P
′
n〉 is

Rfi = (2π)4δ4(P f − P i) |〈f |T |i〉|2. (1.15)

The total cross section for the reaction 12 → n particles is

σ12→n =
1

4|p1|
√
s

∑
(2π)4δ4(P f − P i) |〈fn|T |i〉|2 (1.16)

where the sum is over the momenta of the particles in the n-particle state
〈fn|. That is, with δ+(p2 −m2) = δ(p2 −m2) θ(p0),
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1.2 The cross section 5

σ12→n =
1

4|p1|
√
s

∫ (
n∏

i=1

d4P ′
i

(2π)4
2πδ+(P ′

i
2 −m2i )

)

× (2π)4δ4
( n∑

i=1

P ′
i − P1 − P2

)
|〈P ′

1 · · ·P ′
n|T |P1P2〉|2

=
1

4|p1|
√
s

∫ (
n∏

i=1

d3p′i
2Ei(2π)3

)
(2π)4δ4

( n∑
i=1

P ′
i − P1 − P2

)

× |〈P ′
1 · · ·P

′
n|T |P1P2〉|2. (1.17)

Here, p1 is the initial momentum in the s-channel centre-of-mass frame. It
is given by (1.7):

|p1|2s = (P1.P2)2 −m21m22 = 1
4 [s− (m1 +m2)2] [s− (m1 −m2)2]. (1.18)

We must use this in (1.17), which then gives the cross section in any frame:
it is Lorentz invariant, and the momentum integrations may be performed
in any frame.
We may calculate a differential cross section dσ12→n/dω. Typically, ω will
be a momentum transfer between an initial and a final particle, or the
corresponding scattering angle, or the energy of one of the final particles.
To calculate the differential cross section, we first express ω as a function
ω(Pi, P ′

f ) of the various momenta, and then include δ(ω−ω(Pi, P ′
f )) in the

integrations in (1.17). For example, when the final state contains just two
particles and t is the momentum transfer defined in (1.2),

dσ12→34
dt

=
1

4|p1|
√
s

∫
d4P3
(2π)4

2πδ+(P32 −m23)
d4P4
(2π)4

2πδ+(P42 −m24)

×(2π)4δ4(P1 + P2 − P3 − P4)|〈P3P4|T |P1P2〉|2δ(t− (P1 − P3)2)
=

1
64π|p1|2s |〈P3P4|T |P1P2〉|

2 δ(t− (P1 − P3)2). (1.19)

In the equal-mass case this gives

dσ

dt
=

1
16πs(s− 4m2)

|〈P3P4|T |P1P2〉|2. (1.20)

The formulae in this section apply when the particles involved have no spin
or, if they do have spin, when we average over initial spin states and sum
over final spin states.
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6 1 Properties of the S-matrix

1.3 Unitarity and the optical theorem

Unitarity provides an important connection between the total cross section
and the forward (θs = 0) elastic scattering amplitude; this connection is
known as the optical theorem. Because the operator S is unitary, so that
SS† = 1, for any orthonormal states 〈j| and |i〉

δji = 〈j|SS†)|i〉 =
∑
f

〈j|S|f〉〈f |S†)|i〉 (1.21)

where we have used the completeness relation (1.12). With the definition
(1.14) of the T -matrix, this is

〈j|T |i〉 − 〈j|T †|i〉 = (2π)4i
∑
f

δ4(P f − P i)〈j|T †|f〉〈f |T |i〉. (1.22)

For the particular case j = i,

2 Im 〈i|T |i〉 =
∑
f

(2π)4δ4(P f − P i)|〈f |T |i〉|2. (1.23)

The right-hand side is (1.15) summed over f : it is the total transition rate.
This gives us the total cross section, which is (1.17) summed over n, the
number of final-state particles:

σTot12 =
1

2|p1|
√
s
Im 〈i|T |i〉. (1.24)

Here, |p1| is again the magnitude of the initial centre-of-mass frame three-
momentum, which is given by (1.18). 〈i|T |i〉 is the scattering amplitude
for the reaction 1 + 2 → 1 + 2 with the direction of motion of the particles
unchanged, that is it is the forward scattering amplitude, θs = 0. For
m3 = m1 and m4 = m2 the forward direction corresponds to t = 0. Then

σTot12 =
1

2|p1|
√
s
ImA(s, t = 0) (1.25)

where A(s, t) is the elastic scattering amplitude. Equation (1.24) or (1.25)
is the optical theorem.

1.4 Crossing and analyticity

The basic principle of crossing is that the same function A(s, t) analytically
continued to the three physical regions of figure 1.2 gives the corresponding
scattering amplitude there, with s, t, u related by (1.3). This is obviously
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1.4 Crossing and analyticity 7

2z

cz

1z

Figure 1.3. Paths of analytic continuation that pass round different sides of a
branch point

true order by order for Feynman diagrams. For example Coulomb scattering
(e−e− → e−e−) and Bhabha scattering (e+e− → e+e−) are described by
the same Feynman diagrams.
It is necessary to make some assumption about the analytic structure of
the scattering amplitude A(s, t) in order to continue from one region to
another. The assumption usually made is that any singularity has a dy-
namical origin. Poles are associated with bound states and thresholds give
rise to cuts. For example in the s-plane a bound state of mass mB =

√
sB

will give rise to a pole at s = sB and there will be cuts with branch points
corresponding to physical thresholds. These arise because of the unitarity
condition (1.23). In this condition, P f2 = s is the squared invariant mass of
the state f , which shows that n-particle states contribute to the imaginary
part of the amplitude if

√
s is greater than the n-particle threshold energy.

The threshold for producing a state in which the particles have masses
M1,M2,M3, . . . is at s = (M1 +M2 +M3 + · · ·)2. In a model with only
one type of particle, of mass m, the thresholds are at s = 4m2, 9m2, . . ..
Each corresponds to a branch point of A(s, t). When a function f(z) of a
complex variable z has a branch point at some point zc, we attach a cut
to the branch point, to remind us that continuing f(z) from z1 to z2 along
paths that pass to different sides of the branch point results in different
values for the function: see figure 1.3. We say that f(z) has a discontinuity
across the cut. Since we may choose the point z2 to lie in any direction
relative to z1, we must be prepared to draw the cut in any direction. It
need not be a straight line. The only constraint is that one end of it is
at z = zc and does not cross any other singularity. For A(s, t), therefore,
we need a cut attached to each branch point s = 4m2, 9m2, 16m2, . . .. By
convention, we draw each cut along the real axis, so that the one attached
to s = 4m2 passes through all the other branch points and effectively all
these branch points need only one cut, the right-hand one in figure 1.4.
A consequence of the assumption of analyticity is crossing symmetry. Con-
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8 1 Properties of the S-matrix

u=4m s=4m

u=u s=s
2 2

BB

Figure 1.4. Poles and cuts in the complex s-plane for equal mass scattering for a
given, fixed t. Recall that u = 4m2 − s− t.

sider the scattering process

a+ b→ c+ d (1.26)

and write its amplitude as Aa+b→c+d(s, t, u), reinstating the variable u
for symmetry, but remembering that it is not independent being given in
terms of s and t by (1.3). The physical region for the process (1.26) is
s > max{(ma +mb)2, (mc +md)2}. In the equal-mass case, t, u < 0; in the
unequal-mass case the constraint on t and u is more complicated, but most
of the physical region lies in t, u < 0. The amplitude may be continued
analytically to the region t > max{(ma +mc̄)2, (mb̄ +md)2} and s, u < 0.
This gives the amplitude for the t-channel process

a+ c̄→ b̄+ d (1.27)

where b̄ and c̄ mean respectively the antiparticles of b and c. That is, we
have

Aa+c̄→b̄+d(t, s, u) = Aa+b→c+d(s, t, u). (1.28)

Similarly for the u-channel process

a+ d̄→ b̄+ d (1.29)

we have
Aa+d̄→b̄+c(u, t, s) = Aa+b→c+d(s, t, u). (1.30)

There are various mathematical results about the analytic properties of
scattering amplitudes. Although these results are not complete, what is
known is consistent with the assumption that the analytic structure in the
complex s-plane for equal mass scattering is that shown in figure 1.4. The
right-hand cut, from s = 4m2 to ∞, arises from the physical thresholds in
the s-channel. The pole at s = sB assumes that there is a bound state
in the s-channel with mass mB =

√
sB. The left hand cut and pole arise

respectively from the physical thresholds in the u-channel and an assumed
u-channel bound state at u = uB. The position of the singularities in
the s-plane arising from u-channel effects is given by the relation (1.3).
Thus the presence of a threshold at u = u0 for positive u means that the
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1.4 Crossing and analyticity 9

amplitude A(s, t) must have a cut along the negative real axis with a branch
point at s = s̄0 = 4m2− t−u0, so that s̄0 = −t when u0 = 4m2. Equally, a
bound-state pole at u = uB will give rise to a pole at s = 4m2 − t− uB. In
figure 1.4 we have drawn the u-channel bound-state pole and the u-channel
cut to the left of the corresponding s-channel singularities. However, they
move as t varies and for physical values of t, t ≤ 0, the u-channel pole is
actually to the right of the s-channel pole, and when t is sufficiently large
negative the two cuts actually overlap.
In perturbation theory, masses are assigned a small negative imaginary part,
m2 → m2−iε, which is made to go to zero at the end of any calculation. The
same iε prescription is used outside the framework of perturbation theory;
for example it makes Minkowski-space path integrals converge for large
values of the fields. In figure 1.4, the iε prescription pushes the branch point
at s = 4m2 downwards in the complex s-plane, and likewise the branch
points corresponding to the higher thresholds, s = 9m2, s = 16m2, . . .. As
ε→ 0, the branch points move back on to the real axis from below. That is,
the physical s-channel amplitude is reached by analytic continuation down
on to the real axis from the upper half of the complex s-plane. This is
equivalent to saying that the physical amplitude is

lim
ε→0A(s+ iε, t). (1.31)

If we analytically continue it to real values of s between sB and 4m2, there is
no cut and the amplitude is real there[10]. The Schwarz reflection principle
tells us that an analytic function f(s) which is real for some range of real
values of s satisfies

f(s∗) = [f(s)]∗.

So if we make a further continuation via the lower half of the complex plane,
back to real values of s greater than 4m2, we obtain the complex conjugate
of the physical amplitude:

A(s− iε, t) = [A(s+ iε, t)]∗. (1.32)

Therefore, for s ≥ 4m2 and −s < t, u ≤ 0,

2i ImA(s+ iε, t) = A(s+ iε, t)−A(s− iε, t) (1.33)

where it is understood in this equation that we have to take the limit ε→ 0.
(By convention the imaginary part of the amplitude is defined to be real,
as is evident from the factor 2i.) The right hand side of (1.33) is called the
s-channel discontinuity, denoted by Ds(s, t, u).
Similar arguments can be applied to the physical t-channel and u-channel
processes 1+3̄ → 2̄+4 and 1+4̄ → 3+2̄. Thus there must be cuts along the
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10 1 Properties of the S-matrix

Figure 1.5. Contour of integration in the complex s′-plane

real positive t and u axes, with branch points at the appropriate physical
thresholds in these channels, and possibly poles as well. Equivalently to
(1.33) we define the t-channel and u-channel discontinuities by

Dt(s, t, u) = A(s, t+ iε)−A(s, t− iε) = 2i ImA(s, t+ iε)
t > 4m2 and u, s ≤ 0

Du(s, t, u) = A(s, u+ iε)−A(s, u− iε) = 2i ImA(s, u+ iε)
u > 4m2 and s, t ≤ 0 (1.34)

where again the limit ε→ 0 is understood.
Knowing the analytic structure of an amplitude allows us to derive a “dis-
persion relation”. We fix t and use the contour of integration shown in
figure 1.5, which must be such that the point s = s′ is within it. Then
(s′ − s)−1A(s′, t) is analytic within the contour except for a pole at s′ = s,
so that Cauchy’s theorem tells us that the integral of this function is just
the residue at the pole, which is 2πiA(s, t). Hence

A(s, t) =
1
2πi

∮
ds′
A(s′, t)
s′ − s (1.35)

with u (u′) given in terms of s (s′) and t by (1.3). Assume for the moment
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