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Construction of Yeast Artificial Chromosome Libraries
From Pathogens and Nonmodel Organisms

Cecilia P. Sanchez and Michael Lanzer

Summary
Many infectious diseases of global impact are caused by parasites. This includes dis-

eases with protozoan etiology, such as malaria, African sleeping sickness, Chagas disease,
toxoplasmosis, and amoebiasis, as well as diseases caused by metazoa, such as river blind-
ness, schistosomiasis, ecchinococcosis, and ascariasis. Combined, parasitic diseases affect
more than half the world’s human population and are responsible for decreased gross
national products and billions of dollars in lost earnings. Although the magnitude of the
problem precludes quick solutions, there is reasonable hope that a better understanding of
these organisms, especially the host–parasite interactions that underpin virulence and
pathogenicity mechanisms, will provide new opportunities for rational intervention strate-
gies. Yeast artificial chromosomes (YAC) have substantially aided in this endeavor by
providing an unlimited access to defined parts of a parasite’s genome, which, in turn, has
facilitated a broad range of molecular studies. For example, YACs have facilitated posi-
tional cloning strategies to identify genes involved in antigenic variation and drug resis-
tance mechanisms. Moreover, YACs have been invaluable tools for the many genome
sequencing projects examining parasites. In this chapter, we provide a detailed protocol of
how to generate representative YAC libraries from parasite genomes. This protocol can be
applied to both protozoa and metazoa, and can even be used for YAC library construction
of parasite material isolated from a single infected host.
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1. Introduction
The discovery that yeast can accept large fragments of heterologous DNA

as yeast artificial chromosomes (YAC) marked a breakthrough in the analysis
of complex genomes (1). Although standard prokaryotic cloning systems, such
as plasmids and cosmids, have a limited cloning capacity, YACs are able to
incorporate large fragments of DNA ranging from between 30 kb and several
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megabases (2–4). Access to large pieces of cloned DNA has facilitated a num-
ber of applications, including positional cloning of genes of interest, transcrip-
tional mapping of chromosomal domains, and the physical mapping of
chromosomes and entire genomes (5). Last but not least, the numerous genome
sequencing projects would not have progressed as rapidly if it were not for
YACs to assemble the short reads into long stretches of contiguous sequence
information, identify gaps in the sequence, and help close them.

The basis of a YAC are the vector arms, which contain all functions neces-
sary for mitotic segregation in yeast, including a centromeric sequence (CEN),
an autonomous replication sequence (ARS), and telomere sequences (TEL). In
addition, the vector arms harbor selectable markers (TRP1 and URA3, mediat-
ing tryptophan and uracil autotrophy in suitable yeast hosts) and an interrupt-
ible marker containing the EcoRI cloning site (SUP4-o, mediating a red/white
color selection for DNA insertion events). The most frequently used YAC vec-
tor is pYAC4 (1), which, besides the elements previously mentioned, contains
the Col E1 replication origin and the ampicillin selectable marker for propaga-
tion in Escherichia coli.

YAC libraries have been generated for numerous organisms, including
human (2,3), mouse (2), bovine (6), Arabidopsis (7), rice (8,9), zebra fish (10),
and several human pathogens, such as the human malarial parasites Plasmo-
dium falciparum (11,12) and Plasmodium vivax (13,14), the etiological cause
of Chagas disease, Trypanosome cruzi (15), and Schistosoma mansoni, an agent
of schistosomiasis (16). In the case of P. falciparum, YAC technology has pro-
vided, for the first time, a stable source of DNA from this organism. P.
falciparum DNA exhibits an unusually high A+T content that averages 82%
and approaches 90–95% in intergenic regions. As a consequence of its high
A+T content, P. falciparum DNA is unstable in E. coli and is subject to frequent
recombination and deletion events. In addition to DNA fragments with a high
A/T content, long inverted repeats or Z-structures also tend to be quite unstable
in E. coli (17–19), but can be stably maintained in yeast as YACs (20–22).
Generally, YACs appear to be more tolerant of DNA fragments with unusual
properties than are other cloning systems, including plasmids, cosmids, and
bacterial artificial chromosomes. Thus, in cases in which DNA stability causes
concerns, YACs offer a viable method to generate representative libraries. An
additional advantage of using a yeast cloning system is the opportunity to
selectively clone a specific chromosomal region from a complex genome by
methods termed transformation-associated recombination (TAR) cloning and
radical TAR cloning (23,24). TAR cloning allows a specific region of interest,
such as a large gap in a sequence, to be captured from a complex genome and
transferred, by recombination, to a specific yeast cloning vector.
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YAC technology has substantially aided in the analysis of pathogens and
their disease-causing interactions with their respective hosts. A prominent
example is the dissection of a 400-kb locus on the P. falciparum chromosome
7 containing a determinant of resistance to the formerly first line antimalarial
drug, chloroquine (25). Other examples include the identification and charac-
terization of multicopy gene families, such as the P. vivax vir (14) and the P.
falciparum var gene family (26), which are involved in antigenic variation and
other immune evasion mechanisms. The physical mapping of entire chromo-
somes by overlapping YAC clones and the subsequent genome project have
revealed that these variant genes comprise large gene families with their mem-
bers being predominantly located at subtelomeric domains (14,26,27) where
they are subjected to frequent recombination events. Since its first description,
YAC technology has been improved and simplified (4,28), rendering it almost
a routine technique for laboratories with a background in molecular biology.
The construction of a YAC library consists of the following steps:

1. Isolation of high quality genomic DNA.
2. Partial digestion of the genomic DNA.
3. Preparation of the YAC vector arms.
4. Ligation of the vector arms with the partially digested DNA.
5. Yeast transformation.
6. Library organization and maintenance.

The protocols detailed in this chapter were originally developed for the gen-
eration of YAC libraries from malarial parasites; however, the protocols can be
adapted to any other pathogen, and may even be used to generate YAC libraries
from scarce pathogen material isolated from a single patient or a single infected
animal.

2. Materials
2.1. Embedding Chromosomal DNA in Agarose

1. 0.5 M Ethylenediaminetetraacetic acid (EDTA), pH 8.0. Autoclave and store at
room temperature.

2. TSE buffer: 100 mM NaCl, 50 mM EDTA, and 20 mM Tris-HCl, pH 8.0. Auto-
clave and store at room temperature.

3. TE buffer: 10 mM Tris-HCl and 1 mM EDTA, pH 8.0. Autoclave and store at
room temperature.

4. 1.25% InCert agarose (Biozym, Oldendorf, Germany) dissolved in TE buffer.
Store at 4°C. Melt at 68°C and equilibrate at 42°C prior to use.

5. 2 mg/mL Proteinase K (Roche Applied Science, Mannheim, Germany) dissolved
in 0.5 M EDTA, 1% N-lauryl-sarcosinate, pH 8.0. Prepare fresh.

6. T10E50 buffer: 10 mM Tris-HCl and 50 mM EDTA, pH 8.0. Autoclave and store at
room temperature.
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7. 10X TBE buffer for pulse-field gel electrophoresis (PFGE): 890 mM Tris-base,
890 mM boric acid, and 20 mM EDTA, pH 8.0.

8. SeaKem LE agarose (Biozym).
9. Casting molds (Bio-Rad, Hercules, CA).

10. PFGE system (Bio-Rad).

2.2. Partial Digestion of Genomic DNA

1. 100 mM Phenylmethylsulfonyl fluoride (PMSF) in 2-propanol. Dissolve at 68°C
and store at –20°C. (Caution: very toxic.) Very unstable in aqueous solution.
Prepare fresh shortly before use.

2. T10E50 buffer: 10 mM Tris-HCl and 50 mM EDTA, pH 8.0. Autoclave and store at
room temperature.

3. TE buffer: 10 mM Tris-HCl and 1 mM EDTA, pH 8.0. Autoclave and store at
room temperature.

4. 10 mg/mL Bovine serum albumin (Fraction V, Sigma, St. Louis, MO).
5. 10X EcoRI methylase buffer: 0.8 mM S-adenosyl-methionine, 20 mM MgCl2, 1 M

NaCl, 10 mM dithiothreitol (DTT), and 0.5 mM Tris-HCl, pH 7.6. Store at –20°C.
6. 100 mM Spermidine. Store at –20°C.
7. 20 U/µL EcoRI (New England Biolabs, Ipswich, MA).
8. 40 U/µL EcoRI methylase (New England Biolabs).
9. 0.5 M EDTA, pH 8.0. Autoclave and store at room temperature.

10. 10 mg/mL Proteinase K (Roche Applied Science) dissolved in TE buffer.
Prepare fresh.

2.3. Vector Preparation

1. pYAC4 vector (American Type Culture Collection, registration number: 67379).
2. 20 U/µL EcoRI (New England Biolabs).
3. 20 U/µL BamHI (New England Biolabs).
4. 1 U/µL Calf intestinal phosphatase (New England Biolabs).
5. 10X Calf intestinal phosphatase buffer (New England Biolabs).
6. TE-saturated phenol/chloroform (1:1 v/v). Prepare fresh. Do not use red phenol.
7. 100% Ethanol.
8. 75% Ethanol.
9. TE buffer: 10 mM Tris-HCl and 1 mM EDTA, pH 8.0.

10. 10 U/µL T4 polynucleotide kinase (New England Biolabs).

2.4. Ligation

1. 1X ligation buffer: 30 mM NaCl, 10 mM MgCl2, 0.75 mM spermidine, 0.3 mM
spermine, and 50 mM Tris-HCl, pH 7.6. Store at –20°C.

2. 10 U/µL T4 polynucleotide kinase (New England Biolabs).
3. 100 mM Adenosine triphosphate, pH 7.5. Store at –20°C.
4. 1 M DTT.
5. 400 U/µL T4 DNA ligase (New England Biolabs).
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2.5. Size Fractionation

1. SeaKem low gelling agarose, molecular biology grade (Biozym).
2. 10X TBE buffer for PFGE: 890 mM Tris-base, 890 mM boric acid, 20 mM EDTA,

pH 8.0.
3. Yeast chromosome size marker (New England Biolabs).
4. 10 mg/mL Ethidium bromide solution (Caution: mutagenic).
5. 1 U/µL β-agarase I (New England Biolabs).
6. β-agarase I buffer (New England Biolabs).
7. PGFE system (Bio-Rad).

2.6. Yeast Spheroplast Preparation and Transformation

1. Saccharomyces cerevisiae strain AB1380 (American Type Culture Collection,
Palo Alto, CA; reference number: 20843).

2. YPD medium: 1% Bacto-yeast extract (BD Biosciences), 2% Bacto-peptone (BD
Biosciences), pH to 5.8. After autoclaving, add glucose to a final concentration of
2% from a stock of filter-sterilized 40% glucose.

3. YPD agar: 1% Bacto-yeast extract (BD Biosciences), 2% Bacto-peptone (BD
Biosciences), 2% Bacto-agar (BD Biosciences), pH to 5.8. After autoclaving, add
glucose to a final concentration of 2% from a stock of filter-sterilized 40% glucose.

4. 0.5% Adenine hemisulfate (Sigma). Sterile filter the solution.
5. 1 M Sorbitol. Autoclave and store at 4°C.
6. Na-phosphate buffer, pH 7.6: 84.5 mL 1 M Na2HPO4 and 15.5 mL 1 M NaH2PO4

in 100 mL H2O.
7. SPEM buffer: 1 M sorbitol, 0.1 M Na-phosphate buffer, pH 7.6, and 10 mM EDTA.

Sterile filter. Add 30 mM of β-mercaptoethanol prior to use.
8. 10 mg/mL of 20T Zymolase (MP Biomedicals, Irvine, CA) dissolved in 10 mM

NaH2PO4, pH 7.5. Store in 100 µL aliquots at –70°C. Use a fresh aliquot for each
transformation.

9. STC solution: 1 M sorbitol, 10 mM CaCl2, and 10 mM Tris-HCl, pH 7.5. Sterile
filter and store at 4°C.

10. PEG solution: 20% polyethylene glycol (molecular weight 8000), 10 mM CaCl2,
and 10 mM Tris-HCl, pH 7.5. After autoclaving, the appropriate amount of a ster-
ile 1 M CaCl2 solution is added. A white precipitate may form in the solution on
the addition CaCl2. However, this does not seem to interfere with the transforma-
tion efficiency.

11. SOS medium: 1 M sorbitol, 6.5 mM CaCl2, 0.25% Bacto-yeast extract (BD Bio-
sciences), and 0.5% Bacto-peptone (BD Biosciences). Filter-sterilize and store at
room temperature. Before use, add sterile-filtered 20 µg/mL adenine, 20 µg/mL
histidine, 30 µg/mL leucine, 30 µg/mL lysine, 20 µg/mL tryptophan, and 20 µg/
mL uracil.

12. AHC medium: 1 M sorbitol, 0.67% Bacto-yeast nitrogen base without amino ac-
ids (BD Biosciences), 1% casamino acids (BD Biosciences), 20 µg/mL adenine
hemisulfate (Sigma). After autoclaving, add glucose to a final concentration of
2% from a stock of filter-sterilized 40% glucose.
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13. AHC-TOP agar: 1 M sorbitol, 0.67% Bacto-yeast nitrogen base without amino
acids (BD Biosciences), 1% casamino acids (BD Biosciences), 5% Bacto-agar
(BD Biosciences), and 20 µg/mL adenine hemisulfate (Sigma). After autoclaving,
add glucose to a final concentration of 2% from a stock of filter-sterilized 40%
glucose.

14. AHC agar: 1 M sorbitol, 0.67% Bacto-yeast nitrogen base without amino acids
(BD Biosciences), 1% casamino acids (BD Biosciences), 2% Bacto-agar (BD
Biosciences), and 20 µg/mL adenine hemisulfate (Sigma). After autoclaving, add
glucose to a final concentration of 2% from a stock of filter-sterilized 40% glu-
cose.

15. 96- or 384-Well microtiter plates (Greiner, Frickenhausen, Germany).
16. Hematocytometer (Fisher Scientific, Nidderau, Germany).

2.7. Replication and Long-Term Storage of YAC Library

1. YPD medium: 1% Bacto-yeast extract (BD Biosciences) and 2% Bacto-peptone
(BD Biosciences). Adjust pH to 5.8. After autoclaving, add glucose to a final
concentration of 2% from a stock of filter-sterilized 40% glucose.

2. YPD medium/glycerol (2:3).
3. 96 or 384 replicator (Sigma).

3. Methods
3.1. Preparation of High-Quality DNA

DNA is a fragile polymer that easily breaks when subjected to mechanical
stress. It is therefore imperative to handle chromosomal DNA with the utter-
most care. Shearing is to be avoided, as is contamination with DNA-digesting
nucleases, or exposure to X-rays or ultraviolet (UV) light (see Note 1). The
preparation of high-quality chromosomal DNA begins with enriched or puri-
fied pathogens of interest (see Note 2) being embedded in agarose blocks. All
subsequent manipulation steps are carried out using these agarose blocks. For
protocols to grow, enrich, and purify the organism of interest the reader is
referred to the specialized literature (see Note 2).

1. Resuspend cells in TSE buffer at a concentration of approx 5 × 108 cells/mL. Use
a 50-mL tube and place the cells at 37°C.

2. Add an equal volume of melted 1.25% InCert agarose equilibrated at 37°C and
mix gently by tapping against the tube.

3. Using a 1-mL tip, slowly suck up the cell/agarose suspension and fill each casting
mold with 100 µL of suspension. Keep the molds on ice for 5 min until the agarose
hardens.

4. Push the hardened agarose blocks out of the molds with a flat object, such as a
Pasteur pipet bent into an L-shape.

5. Place agarose blocks in proteinase K solution and incubate at 50°C for 48 h. Use
0.5 mL of solution for each block.
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6. Wash blocks twice in T10E50 buffer for 15 min at room temperature while gently
shaking.

7. Store blocks in T10E50 buffer at 4°C until use.
8. Check the quality of the DNA by PFGE analysis (0.4% SeaKem LE agarose gel;

0.5X TBE buffer; voltage, 2.7 V/cm; running time, 36 h; initial switching time,
120 s; final switching time, 720 s; temperature, 18°C). Each block should contain
between 5 and 10 µg of genomic DNA. (See Subheading 3.5. for more details on
the preparation of the gel.)

3.2. Partial Digestion of Genomic DNA

Prior to digestion with restriction endonuclease, the blocks containing the
DNA of interest need to be treated with PMSF in order to inactivate any residual
proteinase K from the DNA preparation. Partially digested genomic DNA for
YAC cloning is then generated using a mixture of the restriction endonuclease
EcoRI and EcoRI methylase. The proper conditions need to be determined
experimentally for each DNA preparation by titrating both enzymes against
each other. The ratio of both enzymes determines the average DNA size, which,
for YAC cloning, should range between 200 and 500 kb. It is recommended to
start initially with 1 U of EcoRI and 30 U of EcoRI methylase per agarose block
(5–10 µg of DNA), and then stepwise increase the concentration of the methy-
lase until a ratio of 1:320 is reached. In some cases it may be also necessary to
titrate the concentration of EcoRI in order to generate DNA fragments of the
desired average size. The size of the digested DNA is monitored by PFGE (see
Subheading 3.5. for details on gel preparation and running conditions).

1. Wash blocks twice in T10E50 buffer containing 1 mM of fresh PMSF (1 mL per
block) for 30 min. Shake gently.

2. Wash blocks three times in T10E50 buffer (1 mL per block) for 30 min. Shake
gently.

3. Wash blocks three times in T10E1 buffer (1 mL per block) for 30 min. Shake gently.
4. Transfer each block into a sterile 1.5-mL Eppendorf tube and add:

a. 50 µL of bovine serum albumin (10 mg/mL).
b. 50 µL of 10X EcoRI methylase buffer.
c. 13 µL of spermidine (100 mM).
d. EcoRI restriction endonuclease.
e. EcoRI methylase.
f. Sterile H2O to a final volume of 500 µL.

5. Incubate at 37°C for 4 h.
6. Stop the reaction by adding:

a. 55 µL of 0.5 M EDTA, pH 8.0.
b. 62 µL of proteinase K solution (10 mg/mL).

7. Incubate at 50°C for 30 min.
8. Wash the blocks once in TE buffer at 50°C for 30 min. Shake gently.
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9. Incubate the blocks in TE buffer containing 1 mM PMSF at 50°C for 30 min to
inactive the proteinase K (1 mL of solution per block). Shake gently.

10. Wash the blocks twice in TE buffer at 50°C for 30 min.
11. Check the size of the partially digested DNA by PFGE (see Subheading 3.5. for

details on gel preparation and running conditions).

The genomic DNA is now ready for ligation.

3.3. YAC Vector Preparation

The left and right YAC cloning vector arms are liberated from the plasmid
pYAC4 by digestion with the restriction endonucleases EcoRI and BamHI.
pYAC4 can be propagated in suitable E. coli strains, such as DH5α.

1. Cleave purified pYAC4 plasmid DNA with EcoRI and BamHI to completion.
2. Denature restriction endonucleases by heat treatment at 68°C for 10 min.
3. Dephosphorylate free 5' ends using a phosphatase (0.05 U/µg DNA) in 1X phos-

phatase buffer. Incubate at 37°C for 30 min. According to our experience, phos-
phatases from calf intestine or shrimp work equally well.

4. Add EDTA, pH 8.0 to a final concentration of 5 mM and incubate the reaction at
68°C for 10 min to inactivate the phosphatase.

5. Purify the DNA by phenol/chloroform extraction followed by ethanol precipitation.
6. Resuspend the DNA in TE buffer at a final concentration of 2 µg/µL.

Digestion of the vector arms is monitored electrophoretically. Dephosphory-
lation is verified by ligation in the presence and absence of T4 polynucleotide
kinase. The ligation assays are then transformed into E. coli. In the case of the
dephosphorylated vector arms, only a few, if any, colonies should grow,
whereas a large number of colonies should appear when the vector arms are
ligated in the presence of T4 polynucleotide kinase.

3.4. Ligation

1. Wash agarose blocks three times in 1X ligation buffer at room temperature
for 30 min.

2. Remove all liquid and place six agarose blocks into a 1.5-mL Eppendorf tube.
3. Add an equal amount of prepared vector arm DNA. Assuming that each of the six

agarose blocks contains 5–10 µg of genomic DNA, approx 60 µg of prepared
vector arm DNA are required. The mass ratio of 1:1 between genomic and vector
arm DNA translates approximately into a 500-fold molar excess of vector arms vs
genomic DNA (see Note 3).

4. Melt agarose blocks at 68°C for 10 min.
5. Allow genomic and vector arm DNA to equilibrate at 37°C for 2 h (see Note 3).
6. Add 1/10 vol of premade ligation mix (22 U/µL T4 DNA ligase, 5 mM adenosine

triphosphate, and 100 mM DTT in 1X ligation buffer). Pipet into the middle of
the molten agar. Do not mix (see Note 3).
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7. Remove 10 µL of the sample and add 10 U of T4 polynucleotide kinase to it in
order to verify ligation conditions. Incubate at 20°C for 12 h. Self-ligation of the
vector arms will occur and is monitored electrophoretically using a conventional
1% agarose gel. As a control, run unligated vector arms on the same gel.

8. Allow the solution to equilibrate at 37°C for 1 h (Note 3).
9. Incubate the ligation reaction at 20°C for 24 h. The agarose will solidify during

this time.

3.5. Size Fractionation

A size fractionation of the ligation reaction is highly recommended to remove
the excess vector arms, as well as small YACs, which would otherwise be over-
represented in the YAC library because of their higher transformation effi-
ciency. Size selection is carried out using PFGE.

1. Prepare a 1% agarose gel in 0.5X TBE using a low gelling agarose, such as
SeaKem molecular grade (Note 4). Tape up several teeth of the gel comb in order
to generate a well large enough for the ligation sample. Load yeast chromosome
size markers in the outside wells and seal all wells with molten agarose (1% in
TBE buffer).

2. Run PFGE (voltage, 4.5 V/cm; running time, 18 h; initial switching time, 5 s;
final switching time, 25 s; temperature, 14°C; field angle 120°, running buffer,
0.5X TBE).

3. After electrophoresis, cut off the gel lanes containing the size markers and a very
small part of the lane containing the sample. Stain these pieces in 200 mL of
running buffer containing 80 µL of a 10-µg/mL ethidium bromide solution for
30 min and examine them under UV light.

4. Mark the area of the gel that holds DNA fragments ranging from between 100 and
500 kb.

5. Reassemble the gel pieces with the rest of the gel which was kept in running buffer
during this time to avoid drying out.

6. Excise the region containing the high molecular weight DNA using a sterile glass
cover slip.

7. Place this gel slice into a 15-mL tube. Store at 4°C until use.
8. Stain the entire gel as described in step 3, examine by UV light, and take a picture

for documentation.
9. Wash the gel slice containing the size-fractionated DNA three times for 20 min

each in β-agarase buffer.
10. Melt the gel slice containing the size-fractionated DNA at 68°C for 10 min.
11. Allow the sample to cool to 42°C, add β-agarase I to a final concentration of

50 U/mL, and incubate at 42°C for 3 h. The DNA is now ready for transformation
into yeast spheroplasts.
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3.6. Yeast Spheroplast Preparation and Transformation

S. cereviseae strain AB1380 is used as the host in YAC (1). As a selective
medium we routinely use AHC-medium. The AHC medium is as selective as
synthetic minimal media, allows for red/white color selection of positive
transformants, but is much easier to prepare (Note 5).

1. For high transformation efficiency, plate AB1380 yeast cells from a frozen glyc-
erol stock onto a YPD plate, and incubate the plate at 30°C for 48 h.

2. Take a single red colony and prepare an overnight culture in YPD medium supple-
mented with 0.002% adenine hemisulfate.

3. Inoculate 50 mL of YPD medium supplemented with 0.002% adenine hemisulfate
with the fresh overnight culture to obtain an OD600 of 1.0. Use a 500-mL Erlenm-
eyer flask with bumps. Incubate the culture at 30°C in a shaking incubator (180
rpm) until an OD600 of 4.0 is reached. This corresponds to approx 3 × 107 cells/mL.
The cell density should double every 90 min.

4. Collect the cells by centrifugation at 400–600g for 10 min at room temperature.
5. Wash the cells once with 20 mL sterile water and centrifuge as described in step 4.
6. Wash once with 20 mL of 1 M sorbitol and centrifuge as described in step 4.
7. Resuspend the cells in 20 mL of 30°C prewarmed SPEM buffer containing fresh

β-mercaptoethanol. The cell density should be close to 7.5 × 107 cells/mL. Remove
sample, dilute it 10-fold in water, and determine the OD600. The OD600 value
obtained serves as the prespheroplast reference.

8. Add 45 µL of 20T Zymolase solution. Incubate cells by slowly shaking in a 30°C
water bath for about 20 min. The extent of spheroplast formation is determined
spectrophotometrically. Every 5 min a 50-µL aliquot is removed, diluted 10-fold
in water, and the OD600 value determined. As spheroplasts lyse in water owing to
the lack of a cell wall, the reduction in the OD600 value is directly proportional to
the amount of spheroplasts formed. Eighty to 90% of the cells must be sphero-
plasts within 20 min to achieve optimal transformation efficiency. If not, it is
strongly recommended to repeat the preparation.

9. Collect the spheroplasts by centrifugation at 200–300g for 4 min at room
temperature.

10. Gently resuspend the cells in 20 mL of 1 M sorbitol, and centrifuge as described
in step 9.

11. Wash the spheroplasts once in 20 mL of STC, centrifuge as in step 9, and finally
resuspend them in 2 mL of STC. At this point, the spheroplasts are stable at room
temperature for at least an hour. The cell density is now determined microscopi-
cally using a hematocytometer. Adjust the volume to a final cell concentration of
6.5 × 108 cells/mL.

12. To 150 µL of spheroplasts, add 50 µL of β-agarase I treated size fractionated DNA
(approx 80 ng) in a 15-mL tube (use a 1-mL tip with a widened opening). Incubate
at 20°C for 10 min. Scaling up the reaction significantly reduces transformation
efficiency (Note 6). It is, therefore, recommended to run parallel assays.
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13. Add 1.5 mL of PEG solution and mix by gently inverting the tube. Incubate at
20°C for 10 min.

14. Immediately centrifuge at 200–300g for 4 min at room temperature.
15. Carefully decant the supernatant and resuspend cells in 225 µL of SOS solution.

Incubate at 30°C for 30 min.
16. Gently resuspend the settled spheroplasts. Add 8 mL of molten AHC-TOP agar

(prewarmed to 50°C) and gently invert to mix. Quickly pour onto an AHC plate
that has been prewarmed to 37°C (Note 5). For yeast transformation, AHC-Top
agar and AHC plates need to contain 1 M sorbitol to osmotically buffer the sphero-
plasts. Allow plates to sit for 10 min at room temperature.

17. Incubate plates at 30°C for 7 d. The first yeast clones should be visible after 2–3 d.
Those yeast clones that contain artificial chromosomes turn red on AHC-plates,
whereas revertants and clones harboring pYAC4 remain white.

Red colonies are picked and transferred to 96- or 384-well microtiter plates
containing 150 or 80 µL of YPD medium, respectively. Cells are grown for 2–
3 d at 30°C.

3.7. Replication and Long-Term Storage of YAC Library

1. Using a 96- or 384-replicator, transfer YAC clones to a new set of microtiter plates
containing an appropriate amount of YPD media in each well. Use a sterile
replicator for each microtiter plate to avoid cross-contamination of YAC clones.
Metal replicators can be sterilized as follows: dip the pins of the replicator in 80%
ethanol, flame, and then cool for several seconds on a sterile YPD agar plate.

2. Grow YAC clones for 2–3 d at 30°C. During incubation approximately one-third
of the media will evaporate. The YAC library can be stored at 4°C for up to 3 mo
or can be used to make frozen glycerol stocks.

3. To freeze down the YAC clones, add an appropriate volume of YPD media/glyc-
erol (2:3 v/v) to each well to yield a final glycerol concentration of 20%. In the
case of 96-well plates approx 50 µL YPD media/glycerol is usually added. Resus-
pend the cells in the medium, using a multichannel pipet.

4. Cells can now be stored at –80°C.

4. Notes
1. Success greatly depends on the quality and purity of the starting DNA material.

DNA that is partially degraded, or enzymatically or chemically modified, will
never produce a YAC library. Therefore, shearing and exposure of the DNA to
UV light or X-rays are to be avoided. UV light and X-rays can introduce strand
breakages, depurination, and cross-linking events into the DNA. Exposure to
X-rays becomes a problem when DNA is shipped by air freight as all packages,
not only hand luggage and carry-ons, are routinely X-rayed for safety inspections.
It is, therefore, best to deliver chromosomal DNA in person and, if a flight is
involved in the travel, to keep the DNA on your person.
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2. In some cases it may be necessary to collect pathogen material from patients or
infected animals, for instance when an in vitro culture system is not available. An
example is the malarial parasite P. vivax, which propagates within reticulocytes.
As reticulocytes cannot be readily obtained in large quantities, in vitro culture
conditions for P. vivax are difficult to establish. Access to parasite DNA, there-
fore, relies on material obtained from P. vivax-infected patients or monkeys. If
pathogen material for library construction is collected from host organisms, great
care needs to be taken in order to remove any contaminating nucleated cells from
the host prior to DNA preparation. For the construction of a P. vivax YAC library,
we devised a two-step purification protocol (13). Host leukocytes were initially
removed from the erythrocytes using Plasmodipur filters (Organon Teknika).
Erythrocytes infected with P. vivax were then concentrated using a single step
16% Nycodenz (Sigma) gradient. Nycodenz is resuspended in phosphate buffered
saline and centrifugation is carried out at 900g for 30 min at 15°C. The resulting
material was found to be free of contaminating human DNA, as verified by both
Southern blotting and polymerase chain reaction analyses (13). Recently, we use a
strong magnetic field to purify erythrocytes infected with malarial parasites (29).
Malaria parasites degrade the erythrocyte’s hemoglobin, thereby liberating large
amounts of iron-containing heme. In the oxidative environment of the parasite’s
food vacuole, where hemoglobin degradation occurs, ferrous iron (Fe2+) is oxi-
dized to ferric iron (Fe3+), which because of its magnetic properties allows infected
erythrocytes to be retained in a magnetic field, whereas uninfected erythrocytes
freely pass through this field. Magnetic devices and columns can be purchased
from Miltenyi Biotec, Germany.

3. Do not speed up the process by pipetting or vortexing. Sheared DNA will never
produce a high-quality YAC library.

4. Be careful when handling low gelling agarose gels, as they are slippery and prone
to breakage.

5. It has been observed that YAC transformants often do not grow on synthetic mini-
mal medium selective for both tryptophan and uracil autotrophy. This phenom-
enon has been attributed to the weak TRP promoter, which limits expression of the
TRP gene product. To overcome this problem selective pressure can be applied
sequentially, first for uracil and subsequently for tryptophan autotrophy. Alterna-
tively, transformants can be selected on AHC-medium as described herein. AHC
medium is initially rich in amino acids. However, autoclaving breaks down most
of the tryptophan. The residual amounts of tryptophan do not support permissive
growth of trypophan auxotrophic clones, yet they are sufficient to allow the cells
to recuperate after transformation and express the TRP gene encoded by the YAC
vector arm.

6. It is tempting to scale up the yeast transformation reaction. However, there is
ample evidence that scaling up the reaction significantly reduces transformation
efficiency. Although processing and handling many reaction tubes at the same
time is cumbersome and time consuming, it is still faster than repeating the
experiment.
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