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Preface

Theory without Practice is empty,
Practice without Theory is blind.

The current text Mathematics for Engineers is a collection of four volumes covering the first three up
to  the  fifth  terms  in  undergraduate  education.  The  text  is  mainly  written  for  engineers  but  might  be
useful for students of applied mathematics and mathematical physics, too.
Students and lecturers will find more material in the volumes than a traditional lecture will be able to
cover. The organization of each of the volumes is done in a systematic way so that students will find an
approach  to  mathematics.  Lecturers  will  select  their  own  material  for  their  needs  and  purposes  to
conduct their lecture to students.
For students  the volumes are helpful  for  their  studies  at  home and for  their  preparation for  exams.  In
addition the books may be also useful for private study and continuing education in mathematics. The
large  number  of  examples,  applications,  and  comments  should  help  the  students  to  strengthen  their
knowledge.
The  volumes  are  organized  as  follows:  Volume  I  treats  basic  calculus  with  differential and  integral
calculus  of  single  valued  functions.  We use  a  systematic  approach  following a  bottom-up strategy to
introduce the different terms needed. Volume II covers series and sequences and first order differential
equations  as  a  calculus  part.  The  second  part  of  the  volume  is  related  to  linear  algebra.  Volume  III
treats vector calculus and differential  equations of higher order.  In Volume IV we use the material of
the previous volumes in numerical applications; it is related to numerical methods and practical
calculations.  Each  of  the  volumes  is  accompan ed  by  a  CD  containing  the  Mathematica
of the book.
As prerequisites we assume that students had the basic high school education in algebra and geometry.
However,  the  presentation  of  the  material  starts  with  the  very  elementary  subjects  like  numbers  and
introduces in a systematic way step by step the concepts for functions. This allows us to repeat most of
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the material known from high school in a systematic way, and in a broader frame. This way the reader
will be able to use and categorize his knowledge and extend his old frame work to a new one
The  numerous  examples  from  engineering  and  science  stress  on  the  applications  in  engineering.  The
idea behind the text concept is summarized in a three step process:

Theor � Example � Applications
 examples are discussed in connection with the theory then it turns out that the theory is not only valid

for this specific example but useful for a broader application. In fact  usually theorems or a collection of
theorems  can  even  handle  whole  classes  of  problems.  These  classes  are  sometimes  completely
separated  from  this  introductory example;  e.g.  the  calculation  of  areas  to  motivate  integration  or  the
calculation of the power of an engine, the maximal height of a satellite in space, the moment of inertia
of a wheel, or the probability of failure of an electronic component. All these problems are solvable by
one and the same method, integration.
However, the three step process is not a feature which is always used. Some times we have to introduce
mathematical terms which are used later on to extend our mathematical frame. This means that the text
is  not  organized  in  a  historic  sequence  of  facts  as  traditional  mathematics  texts.  We  introduce
definitions,  theorems, and corollaries in a way which is  useful to create progress in the understanding
of  relations.  This  way of  organizing  the  material  allows  us  to  use  the  complete  set  of  volumes  as  a
reference book for further studies. 
The present text uses Mathematica  as a tool to discuss and to solve examples from mathematics.  The
intention  of  this  book is  to  demonstrate  the  usefulness  of  Mathematica  in  everyday applications  and
calculations. We will not give a complete description of its syntax but demonstrate by examples the use
of  its  language.  In  particular,  we  show how this  modern  tool  is  used  to  solve  classical  problems  and

We hope that we have created a coherent way of a first approach to mathematics for engineers. 
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1

1.1. Introduction
We  have  compiled  this  material  for  a  sequence  of  courses  on  the  application  of  numerical
approximation techniques. The text is designed primarily for undergraduate students from engineering
who have completed the basic courses of calculus. Familiarity with the fundamentals of linear algebra
and differential equations is helpful, but adequate introductory material on these topics is presented in
the text so that those courses will be refreshed at the certain point.
Our main objective with this book is to provide an introduction to modern approximation techniques;
to  explain  how, why,  and  when they can  be  expected to  work;  and  to  provide  a  firm basis  for  future
study of numerical analysis and scientific computing.
The book contains material for a single term of study, but we expect many readers to use the text not
only for a single term course but as a basic reference for their future studies. In such a course, students
learn  to  identify  the  types  of  problems  that  require  numerical  techniques  for  their  solution  and  see
examples of the error propagation that can occur when numerical methods are applied. They accurately
approximate  the  solutions  of  problems  that  cannot  be  solved  symbolically in  an  exact  way and  learn
techniques for estimating error bounds for the approximations.
Mathematics  is  for  engineers  a  tool.  As for  all  other  engineering applications working with tools  you
must know how they act and react in applications. The same is true for mathematics. If you know how
a  mathematical  procedure  (tool)  works  and  how  the  components  of  this  tool  are  connected  by  each
other  you  will  understand  its  application.  Mathematical  tools  consist  as  engineering  tools  of
components.  Each  component  is  usually  divisible  into  other  components  until  the  basic  components
(elements) are found. The same idea is used in mathematics there are basic elements you should know
as  an  engineer.  Combining  these  basic  elements  we  are  able  to  set  up  a  mathematical  frame  which
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incorporates  all  those  elements  which  are  needed  to  solve  a  problem.  In  other  words,  we  use  always
basic ideas to derive advanced structures. All mathematical thinking follows a simple track which tries
to  apply fundamental  ideas  used  to  handle  more  complicated  situations.  If  you  remember  this  simple
concept you will be able to understand advanced concepts in mathematics as well as in engineering.

1.2. Concept of the Text
Every concept in the text is illustrated by examples, and we included more than 1,000 tested exercises
for  assignments,  class  work  and  home  work  ranging  from  elementary  applications  of  methods  and
algorithms  to  generalizations  and  extensions  of  the  theory.  In  addition,  we  included  many  applied
problems  from  diverse  areas  of  engineering.  The  applications  chosen  demonstrate  concisely  how
numerical methods can be, and often must be, applied in real life situations. 
During  the  last  25  years  a  number  of  symbolic  software  packages  have  been  developed  to  provide
symbolic mathematical  computations on a computer.  The standard packages  widely used in  academic
applications are Mathematica®, Maple® and Derive®. The last one is a package which is used for basic
calculus  while  the  two  other  programs  are  able  to  handle  high  sophisticated  calculations.  Both
Mathematica  and  Maple  have  nearly  the  same  mathematical  functionality  and  are  very  useful  in
symbolic and numeric calculations. This is a major advantage if we develop algorithms and implement
them to generate numerical results. This approach is quite different from the traditional approach where
algorithms are developed by pencil and paper and afterwards implemented in packages like MATLAB
or  in  a  programming  language  like  FORTRAN  or  C.  Our  approach  in  using  Mathematica  is  a
combination of symbolic and numeric approach, a so called hybrid approach, allowing the design and
implementation in the same environment. However the author's preference is Mathematica because the
experience  over  the  last  25  years  showed  that  Mathematica's  concepts  are  more  stable  than  Maple's
one. The author used both of the programs and it turned out during the years that programs written in
Mathematica   25  years  ago  still  work  with  the  latest  version  of  Mathematica  but  not  with  Maple.
Therefore the book and its calculations are based on a package which is sustainable for the future.
Having  a  symbolic  computer  algebra  program  available  can  be  very  useful  in  the  study  of
approximation  techniques.  The  results  in  most  of  our  examples  and  exercises  have  been  generated
using  problems  for  which  exact  values  can  be  determined,  since  this  permits  the  performance  of  the
approximation  method  to  be  monitored.  Exact  solutions  can  often  be  obtained  quite  easily  using
symbolic computation. In addition, for many numerical techniques the error analysis requires bounding
a  higher  ordinary or  partial  derivative  of  a  function,  which  can  be  a  tedious  task  and  one  that  is  not
particularly instructive once the techniques of calculus have been mastered. Derivatives can be quickly
obtained symbolically, and a little insight often permits a symbolic computation to aid in the bounding
process as well.
We have chosen Mathematica  as our standard package because of its wide distribution and reliability.
Examples and exercises have been added whenever we felt that a computer algebra system would be of
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significant benefit, and we have discussed the approximation methods that Mathematica employs when
it is unable to solve a problem exactly. 

1.3. Organization of the Text
The book is organized in chapters which will cover the first steps in Numerical Methods demonstrating
when numeric is useful and how it can be applied to specific problems in simulation. We go on with the
representation of numbers and the finite representation of numbers on a computer.  Having introduced
numbers and errors for a finite number representation we discuss how we can represent functions and
their approximation by interpolation. Numerical interpolation is the basis of different other approaches
in  numeric  such  as  integration  and  solution  of  differential  equations.  Related  to  the  representation of
functions  are  the  methods  of  root  finding  for  a  function  of  a  single  or  several  variables.  After  the
discussion of the procedures for numerical root finding we examine linear systems of equations. In this
field  the  classical  solution  approaches  are  discussed  as  well  as  iterative  methods  to  solve  linear
equations. The final topic is related to the solution of initial and boundary value problems. We will also
examine the finite element method applied to ordinary differential equations. 
The whole material is organized in seven chapters where the first  
introduction.  In  Chapter  2  we  will  deal  with  object  oriented  concepts  of  simulation;  it  is  an
introductory chapter to demonstrate where and how numeric methods is applied. In Chapter 3, we deal
with  concepts  of  numbers  and  the  representation  of  numbers  in  finite  formats.  We  also  discuss  the
consequences of a finite representation and discuss the basic errors occurring in such representation. In
Chapter 4 we use different approaches to approximate functions by polynomials. We also discuss how
polynomials are represented  in  a  numerically  stable  way.  Chapter  5  discusses  non  polynomial  functions
and their roots. Different approaches are discussed to find roots of a single valued function. The classic
approaches  like  bisection,  Regula  Falsi,  and  Newton's  method  are  discussed.  In  addition, we  use
Banach's fixed point theorem to show that for a certain class of functions this approach is quite efficient.
Chapter  6  deals  with  linear  systems  of  equations.  We  discuss  the  methods  by  Gauß  and  give
estimations  on  the  number  of  operations  needed  to  carry  out  this  approach.  For  large  systems  of
equations  we  introduce  iterative  solution  procedures  allowing  us  to  treat  also  sparse  equations.  An
important  point  in  engineering  are  eigenvalues  and  eigenvectors,  discussed  in  connection  with  the
power  method  approach.  Finally, in  Chapter  7,  we  discuss  the  solution  of  ordinary  differential
equations. For ordinary differential equations the standard solver like Euler, Taylor, and Runge-Kutta's
method are discussed. In addition to the solution of initial value problems, we discuss also the solution
of  boundary  value  problems  especially  two  point  boundary  methods.  The  approaches  used  to  solve
boundary  problems  are  shooting  and  optimization  methods  and  finite  differences  and  collocation
methods.  The  finite  element  method  and  its  basic  principles  are  described  for  ordinary  differential
equations.

part of  this  chapter  is  the  current
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1.4. Presentation of the Material
Throughout  the  book  I  will  use  the  traditional  presentation  of  mathematical  terms  using  symbols,
formulas,  definitions,  theorems,  etc.  to  set  up  the  working  frame.  This  representation  is  the  classical
mathematical  part.  In  addition  to  these  traditional  presentation  tools  we  will  use  Mathematica  as  a
symbolic,  numeric,  and  graphic  tool.  Mathematica  is  a  computer  algebra  system allowing us  to  carry
out  hybrid  calculations.  This  means  calculations  on  a  computer  are  either  symbolic  or/and  numeric.
Mathematica is a calculation tool allowing us to do automatic calculations on a computer. Before you
use such kind of tool it is important to understand the mathematical concepts. The use of Mathematica
allows  you  to  minimize  the  calculations  but  you  should  be  aware  that  you  will  only  understand  the
concepts if you do your own calculations by pencil and paper. Once you have understood the way how
to avoid errors in calculations and in  concepts  you are ready to use the symbolic calculations offered
by Mathematica.  It  is  important  for  your understanding that  you make errors  and derive an improved
understanding from these errors. You will never reach a higher level of understanding if you apply the
functionality of  Mathematica  as  a  black  box  solver  of  your  problems.  Therefore  I recommend to  you
first  try to understand by using pencil  and paper calculations  and then switch to the symbolic algebra
system if you have understood the concepts.   
You can get a trial version of Mathematica directly from Wolfram Research by requesting a download
address  from  where  you  can  download  the  trial  version  of  Mathematica.  The  corresponding  web
address to get Mathematica for free is:
 http://www.wolfram.com/products/mathematica/experience/request.cgi
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2
Simulation Methods

2.1 Introduction
Today we are in a situation which allows us to set up different kind of calculations ranging from simple
algebraic  calculations  up  to the  complicated  integration  procedure  for  nonlinear  partial  differential
equations.  Since the 40ties  of  the last  century there started a development  of  computers  and software
which supports  the ideas  of  numerical  calculations  in  an  ever  increasing  way in  efficiency.  The  new
approach to mathematics by means of numerical calculations was dramatically changed and pushed in
one direction by inventing and developing personal computers (PCs). PCs are now used by everybody
who  has  to  calculate  or  to  simulate  some  kind  of  models.  The  PC  somehow  revolutionized  the  way
how calculations are carried out today. 
In the past, numerical calculations were not the tool of the best choice but a burden for those which had
to carry out such kind of calculations. For example, the calculations related to the now famous Kepler
laws  took  more  than  10  years  of  laborious  calculations  by  Kepler  himself.  These  calculations
examining the paths of planets actually were numerical calculations done by pencil and paper. Later on,
mechanical  calculators  and recently pocket  calculators  replaced ruler  based calculators  in  engineering
which was somehow a great step forward to make numerical calculations more efficient. Today, we use
pocket  calculators  and  computers  to  carry  out  this  kind  of  calculations.  However,  numerical
calculations  are necessary to  boil down a theory to a number; the theory itself  can today be generated
symbolically on computers.
Since  the  beginning  of  mathematics  there  were  always  two  branches  of  calculations; a symbolic  and

to  establish  the  theoretical  framework  o
mathematics  while  numerical  calculations  were  used  for  specific  practical  applications. Up  to  now,
these  two  branches  remained  in  mathematics  as  a  symbiosis  of  two  ways  to  consistently  formulate
theoretical  ideas  and  to  derive  practical  information  from  it. Today, some  of  the  mathematicians  and

a  numeric  one.  The  symbolic  calculations  were  used f



engineers make a sharp distinction between numeric and symbolic  and even some  practically oriented
engineers believe that numeric is the only way how calculations can be carried out today. This point of
view ignores that today we have strong symbolic programs available which also run on computers and
generate  much  more  useful  information  than  just  a  single  number.  The  symbolic  approach  generates
general  formulas  which  allows  us  to  describe  the  system  or  model  under  general  conditions  for  the
parameters.  The  symbolic  approach  to  calculations  is  thus  more  useful  for  the  theoretical  work.  It
allows for example to formulate the theoretical background needed in numerical calculations. Another
advantage of symbolic calculations is that formulas can be generated on a computer which are the basis
of  numerical  calculations.  This  brings  us  to  the  point  where  we  have  to  distinguish  between  the
formulation of a model or equation and the evaluation of a model or equation.
The  formulation  of  a  mathematical  expression  is  solely  related  to  the  symbolic  creation  of  the
expression. The evaluation of an expression is  related to the numerical  evaluation and derivation of a
number. To derive numbers from a symbolic expression
in  the expression  and use  the algebraic  rules  we agreed  on.  The evaluation of  an expression  assumes
that we know the symbols of this expressions and the numerical values for these symbols. On the other
hand, if  we  know  the  symbolic  representation  of  the  expression  then  we  usually  distinguish  between
important  symbols  which  can  change  their  values  and  unimportant  symbols  which  keep  their  values.
This  kind  of  classification  allows  us  to  introduce  so  called  major  variables  and  parameters  in  an
expression,  respectively.  The  major  variables  or  model  variables  are  those  variables  which  can  be
changed  continuously  in  the  model.  The  parameters  of  the  expression  or  model  are  those  quantities
which remain constant for the time of evaluation. Thus a model or an expression consists of two kinds
of symbols: parameters and model variables. Model variables determine the basic structure of the model
while parameters represent the influence of different quantities on the model. The basic definition of a
model can be formulated as follows:

Definition 2.1. Model and Parameters

A  mathematical  model  is  symbolically  represented  by  the  methods  and  the  parameters.  Methods
define the structure of the model and thus the calculation while parameters define the influences onto
the model.�
This kind of definition is  used since the beginning of mathematics and becomes nowadays a practical
application  in  software  engineering.  The  link  between  the  definition  given  and  the  application  in
generating calculation or simulation programs is the style of programming.
Since  the  beginning of  numerical  calculations  it  was  the  case  that  between  the  tool  (machine,  pocket
calculator,  PC)  there  was  always  a  link  between  the  symbolic  formulation  and  the  numerical  result.
This  link  is  known  today  as  programming  language  allowing  us  to  represent  the  original  symbolic
calculations in different steps appropriate for the calculation tool used to carry out the calculation. For
mechanical  calculations  this  programming language  consists of  how  the  steps  of  the  calculations  are
applied  to  the  machine  while  for  computers  the  steps  are  collected  in  programs.  During  the  past
decades, different  programming  styles  were  developed  such  as  sequential,  functional,  and  object
oriented programming. It  turned out that  the last  programming style is most appropriate to establish a

, we have to specify the values of each symbol
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one-to-one correspondence between the mathematical model and the programming style on a computer.
This  correspondence  between  the  program  and  the  theoretical  background  does  not  dramatically
influence the numerical evaluation but helps to avoid difficult formulations.
The  following  sections  will  introduce  the  ideas  used  in  simulation  and  the  methods  to  generate
software from these ideas.

2.2 Simulation
Simulation is the subject in engineering which generates the link between the reality and the theoretical
description  (model)  of  a  situation.  Simulation  uses  numerical  and  symbolic  procedures  to  generate
results which are related to the questions under discussion.

2.2.1 Structure of Models
As discussed before, a model consists of two components. These two components are: the methods on
which the model is based on and the parameters determining the properties of the model. The methods
are  the  laws  governing  the  model  while  the  parameters  are  the  interface  of  the  method  to  the
environment. Thus the parameters can be seen as the input quantities which determine the behavior of
the model. The methods or laws of the model determine the structure of the model. This means that the
methods  determine  the  output  or  results  in  a  specific  way.  These  results  are  influenced  by  the
parameters. The following diagram shows the schematic structure of a model.

Figure 2.1. Classification of a model by its parameters and methods. 

To clarify the structure of a model let us discuss the most prominent model in engineering and physics.
This  model  is  Newton's  third  law  which  verbally  is  stated  as  to  every  action  there  is  an  equal  and
opposite reaction.
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Example 2.1. Newton's Law
Newton's law was established by Sir Isak Newton in 1660s. He uses this model to describe his obser-
vations regarding the action and reaction of forces. Let us assume we are looking on a ball which is
falling from a tower of height H .  We know from Newton's second law that this fall can be described
by the formula

(2.1)m a � F

where  m  is  the  mass  of  the  ball,  a  the  acceleration  which  the  particle  experiences,  and  F  the  force
acting  on  the  ball.  The  model  here  is  a  simple  relation  connecting  physical  (model)  quantities  like
acceleration a  and force F  with model parameters like mass m.  The distinction between parameters
and  model  variables  here  is  very simple because  the  only property the  particle  has  is  its  mass.  The
model  is  generated  by Newton's  law combining  acceleration  with  force.  For  the  falling  particle  we
know  that  the  acting  force  is  the  gravitation  force  of  earth.  In  this  case  F � �m g  where  g  is  the
gravitational acceleration which in fact is also a constant. The model thus simplifies to 

(2.2)m a � �m g

or

(2.3)a � �g.

Here the model reduces to a simple algebraic equation where the left hand side is the model variable
and  the  right  hand  side  represents  a  model  parameter.  Thus  model  parameters  and  model  variables
are the same. This situation changes if we assume that acceleration is a quantity which changes with
time.�
The  first  example  was  used  to  introduce  the  notation  and  terminology  in  modelling  and  simulation
processes. However, the final relation was a very simple algebraic relation which does not need much
mathematical  efforts  to  determine  the  precise  meaning  of  this  relation  and  to  evaluate  the  relation.
Since the value of the terrestrial acceleration is known as  g � 9.81m�s2 , there is no need to use numerical
procedure to find a reliable value for a. However the question arises how accurate the value for g  can
be  found  in  measurements  or  tables.  The  accuracy  and  precision  will  be  discussed  in  a  later  section
where we will define these terms.
To see how models are created and how models are evaluated we will discuss here the same example
with a different aim. Our goal is to introduce the time dependence of the model and to demonstrate how
this time dependence changes the reliability of the results.

Example 2.2. Newton's Law as a time
If  we  assume  that  acceleration  is  defined  due  to  the  temporal  changes  of  the  velocity  then  we  can
replace  acceleration  in  Newton's  equation  by  the  derivative  of  the  velocity;  i.e.  a � dv � dt.  Thus
Newton's law for a falling ball can be written as

(2.4)m a � �m g

which is equivalent to

-dependent relation
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(2.5)m
dv

dt
� �m g

or

(2.6)
dv

dt
� �g

This  is  a  simple  first  order  differential  equation  for  the  velocity  with  constant  right  hand  side.  To
solve this equation we can use either numerical or symbolic methods to derive a solution. Let us first
use  our  mathematical  knowledge to  solve  this  equation. The  equation  is  a  separate  equation  which
can be written in separated variables as

(2.7)dv � �g dt

Integrating this equation results to

(2.8)� dv � �g � dt

which will deliver the solution as a function of time

(2.9)v�t� � �g t �C

where C is an integration constant. The result gained is a linear function in time t. The parameters of
the  model  are  here  g  the  terrestrial  acceleration  g  and  some integration  constant  C  which  is  deter-
mined by the initial  velocity of  the ball.  Let  us  assume that  the initial  velocity is  zero and thus  the
constant C vanishes. This assumption will simplify the result to

(2.10)v�t� � �g t

which is an exact result for the solution.
On the other hand we can solve this first order ordinary differential equation by means of numerical
methods. This means that we approximate the continuous description by a discrete one; i.e.

(2.11)
dv

dt
�

�v

�t
�

v�ti�1�� v�ti�
ti�1 � ti

� �g

which is equivalent to

(2.12)v�ti�1� � �g�ti�1 � ti�� v�ti�
This equation represents a formula which allows us to evaluate the velocity at a later time �ti�1� using
the information we have for the velocity from previous times �ti�. This formula can be used to itera-
tively  solve  the  velocities.  Any  iteration  procedure  starts  with  an  initial  value  at  the  starting  time
t0. Let us assume that the starting point for our iteration is t0 � 0. At the starting time the velocity is
zero so that we start with v�t0� � 0. The next we have to choose is the time step we are interested in.
Let's  assume  that  we  are  interested  in  an  interval  of  one  second;  i.e.  the  time step  spans 1  second
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away from the initial one. So t1 � 1 and thus t1 � t0 � 1. If we use the value for the terrestrial accelera-
tion with g � 9.81 we will gain the velocity at t1 � 1 by

v1 � 0� 9.81 �1� 0�
�9.81

If  we continue  the  iteration  for  t2 � 2 seconds,  we iterate  the  formula  by using  the  above  formulas
which delivers

v2 � v1� 9.81 �2� 1�
�19.62

The next iteration is gained by the step

v3 � v2� 9.81 �3� 2�
�29.43

The next step is to automatically evaluate this kind of formula up to a certain time. This iteration can
be carried out by a program which can be used by a computer. Such kind of program is contained in
the next line.

vi � 0;
tv � Table��i � 1, vi � vi� 9.81 ��i � 1�� i��, �i, 0, 10��;
tv � Prepend�tv, �0, 0��

0 0
1 �9.81
2 �19.62
3 �29.43
4 �39.24
5 �49.05
6 �58.86
7 �68.67
8 �78.48
9 �88.29

10 �98.1
11 �107.91

The  results  can  be  graphically  represented  in  a  plot,  demonstrating  the  linear  behavior  of  the
solution.
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Figure 2.2. Simple numerical solution for a motion using fixed time steps �t.

The theoretical result can also be used in a graph which is shown in the next plot:
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Figure 2.3. Exact solution for the motion using the analytic expression, is given by v�t� � �g t.

If  we now  plot  both  the  theoretical  and numerical  result  in common we see that  the two solutions
derived correspond. The following plot shows this result.
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Figure 2.4. Comparison of numerical and exact solution of the motion. 

However, this picture changes if we change the time step �t � �ti�1 � ti� by increasing the difference
by a factor 2. If we generate the date again and plot the results as before 

vi � 0;
tv � Table��i � 2, vi � vi� 9.81 ��i � 1�� i��, �i, 0, 10, 2��;
tv � Prepend�tv, �0, 0��

0 0
2 �9.81
4 �19.62
6 �29.43
8 �39.24

10 �49.05
12 �58.86

we observe that the slope of the line changes.
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Figure 2.5. Simple numerical solution for a motion using an increased fixed time step �t.

This becomes obvious when we plot the numerical result and the theoretical result in the same plot.
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Figure 2.6. Numerical and theoretical solution in a common plot. The time step �t was increase by a factor 2. 

The plot  above shows one common characteristic  of all  numeric solutions generated by an iterative
process. If the time step in the iteration is chosen the wrong way then the long term behavior of the
numerical  solutions  deviates dramatically from the theoretical one. This  phenomenon is  always  true
for numerical calculations. Thus, the question raises how to guarantee that a numerical solution repre-
sents  the  correct  figures  of  the  calculation.  This  question  is  the  central  question  in  all  numerical
calculations.�
These observations led us to the following question. Which requirements in a simulation are necessary
to guarantee that the numerical results represent the true results? At the moment, we do not know how to
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define  a  true  numerical  representation  and  how  to  make  sure  that  a  related  program  generates  the
correct results.

2.2.2 Requirements on a Modeling Process
Models  and especially programs should satisfy some requirements  to  guarantee a  quality standard for
the calculations. Most of the programs related to models are currently written in a way to just solve a
single and specific task. This means that programs are written in a way that they are only useful for a
specific  application.  However,  the  development  and  testing  of  a  program  and  thus  a  model  needs  a
certain amount of time till the program is working and another period to make sure that the results are
reliable. This observation on the development process consequently requires that a model respectively
a program should be reusable. This means that the model or components of a model should be designed
in such a way that in another setup these parts can be used again. Since the development of models are
time and cost intensive a model should be scalable. This means that the development costs are gained
not only once but several times. So if the model is scalable and the related program is useful for others
too,  then  the  return  of  investment  should  be  a  multiple  of  the  development  costs.  To  achieve  this
economic goal it is necessary to design the model in such a way that it can be easily used. This means
that  beside a complete documentation of the model there should be an easy way to use and apply the
model.  Usually,  models  need  some  fundamental  theoretical  description  which  are  necessary  for  the
development of the model but not for the application. However, the user should know what is the frame
of  the  theoretical  assumptions  and  where  are  the  limits  of  these  assumptions.  Only  if  we  know  the
limits and side conditions of a model  we can make a  judgment  on  the  efficiency  and  reliability of an
application. These few ideas concerning the general design process of a model and thus a program are
summarized in the following list.
The requirements on programs in practical applications are:

1. a program has to deliver reliable results
2. a program should be reusable
3. an application must be scalable
4. the use of the software should be as easy as possible
5. a program should be accompanied by a complete documentation.

So far we discussed the basic requirements for a modelling process but did not describe how a model is
generated  and  which  steps  are  necessary to  setup  a  model  for  symbolic  or  numeric  calculations.  The
following section will  briefly introduce the way how a model  is  generally developed and which steps
are necessary to derive a model.
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2.2.3 Modelling Process 
The creation of a model is usually a process which consists of different steps. These steps are basically
related to the original physical system which exists in reality. The modeling process consists typically

describe  the  system.  The abstraction  is  governed  by efficiency and  necessary arguments  guaranteeing
the basic properties of the real system. Thus, the abstraction is somehow a short hand description of the
reality  taking  into  account  only  the  essential  features  of  the  system,  compare  Figure  2.7.  If  such  an
abstraction  is  derived  from  the  reality  it  is  necessary  to  create  a  mathematical  formulation.  The
mathematical formulation usually  consists of equations, differential equations, and boundary as well as
initial conditions. The mathematical model again uses some abstract ways to describe the real system.
This  means  that  depending  on  the  mathematical  description  the  model  can  be  simple  or  very
complicated depending on the representation of the model. If the mathematical description is available,
complicated or not the last step which must be carried out is to solve this model. At this  point, numeric
and numerical mathematics comes into play. The solution step of a model usually cannot be carried out
in a pure symbolic way. Only special models or parts of a model are generally accessible by symbolic
solution  methods.  Thus  the  standard  approach  to  solve  a  mathematical  model  is  numeric.  However,
numeric delivers a solution only under certain boundary conditions. This means that a numeric solution
depends on the choice of some numeric parameters determining the solution strategy for a model. Thus,
the  solution  derived  is  only  valid  under  the  validity  of  the  numerical  procedure.  Our  goal  here  is  to
clarify which of the assumptions are critical 
not.

Figure 2.7. Simplified model for a car using springs and dampers in a simple mechanical model allowing elongations and 
rotations.

To summarize the steps used in  a  modelling process,  we collected the different steps  in  the following
list.

of  an  abstraction  of  the  complicated  real  word  incorporating  only  the  most  important  features  to

(if we apply numerical solution procedures) and which are
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2. the mathematical formulation, and
3. the solution of the problem.

The  modeling  process  divides  the  real  system  into  components  and  the  components  are  divided  into
properties  and  methods  to  mathematically  describe  the  system.  The  division  of  the  real  system  into
parts should be carried out in such a way that physical components are related to mathematical models
or  methods.  This  means  that  we  look  right  from  the  beginning  at  parts  and  laws  governing  these
components which combined generate the total system.
This  physical  ideas  have  counterparts  not  only  in  the  mathematical  description  but  also  in  the
programming style. The different programming styles also influence the efficiency of the calculations and
especially the design of the model. In general there are the following ways to generate a program:

� procedural
� recursive
� functional
� object oriented

These different types of program development allow to generate different kinds of programs which may
be  usable  only  once  or  they  are  reusable  if  programmed  in  an  object  oriented  way.  The  older
programing  approaches  based  on  procedural  programming  languages  like  FORTRAN,  MATLAB,  C,
etc.  allow to  generate  programs  in  a  direct  way.  However,  the  generated  program using  subprograms
have a sequential structure. This means that there exists a chain of dependencies on the different parts of
the  program  which  makes  it  difficult  to  reuse  parts  of  it.  Recursive  and  functional  programming
generates  also  a  dependent  structure  which  cannot  be  efficiently  divided  in  independent  parts.  The
object  oriented  programming  style  allows  to  extract  parts  of  the  programs  in  such  a  way  that  these
components  can  be  reused  in  other  programs.  In  addition, the  object-oriented  programming  style is
directly related to the hardware components, because the physical components are directly related to the
classes  and  objects  of  the  programs.  How  this  works  out  will  be  discussed  in  more  detail  in  the
following section.

2.2.4 Object Oriented Approach Using Classes
Object  oriented programming has  the advantage that  classes  consisting of  properties  and methods are
directly  related  to  the  physical  objects  of  the  system.  The  methods  are  related  to  the  mathematical
model  while  the  properties  are  the  model  parameters  determining  the  systems  property.  An  object-
oriented approach in programming assumes that the total system can be divided into components which
are  described  by  specific  formulas  and  parameters.  Formulas  correspond  to  methods  and  parameters
correspond to properties of the class concept. The concept of a class is shown in Figure 2.8.

Three step process:
1. the physical model (hardware, reality)

-
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Figure 2.8. Representation of a class by parameters and methods.

A  class  basically  consists  of  input  values  and  output  quantities.  The  input  and  output  are  related  by
methods and parameters which interact with each other. The methods are laws or formulas used in the
calculations.  The  parameters  are  quantities  which  influence  the  formulas  with  their  values.  This
influence is not only static but can be used in a dynamic way. The methods and parameters are used to
derive an object from this class which is an entity determined by the choice of the parameters. Different
parameter sets will define different objects. For each object the same methods are used to represent the
laws determining the mathematical and physical behavior. The dynamic use of parameters allows us to
connect different classes or different objects.  Generating different objects allows us to generate a tool
box and thus generate different models.
The properties of a class can be summarized in two topics:

� classes depend on parameters determining the properties of the system
� classes are based on calculation methods

There are different approaches to generate classes. The most recent way to generate programs based on
classes  is  JAVA.  Other  programming  languages  are  Simula,  Smalltalk,  C++,  eclipse,  ....  An
environment  in  Mathematica  was  designed  by myself  to  have  this  kind  of  programing  style  not  only
available for numerical calculations but also for symbolic ones. 
The package within Mathematica allowing this style of programming is called Elements. Elements uses
elementary data structures to represent a class. The most elementary structure in Mathematica is a list.
Thus  classes  in  Elements  consist  of  lists  containing  the  parameters  and  methods  in  different  sublists.
The  classes  are  defined  by the  function  Class[].  This  function  uses  four  arguments  which  define  the
class  name,  references  to  other  classes,  a  list  of  properties,  and  a  list  of  methods.  The  class  name
defines the name of the class by a string. The second argument is used to refer to other classes. If the
class is based on the basic elements in Elements then the class Class["Elements"] should appear in the
second slot. If the class we are going to define is based on another class than Elements, then this class
name should occur at the second slot of the function. The third and fourth slot of the class function is
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used  to  define  properties  and  methods  used  in  this  class.  The  following  example  demonstrates  how
Newton's equation can be represented in this class concept.

Example 2.3. Class Concept
Lets assume we need Newton's equation in a general form in our models. 

Solution 2.3. Newton's equation is given in its general form by

(2.13)m
d2 x�t�

dt2
� F

In  words:  mass  multiplied  by  the  second  derivative  of  the  dependent  variable  with  respect  to  the
independent variable equals the acting force. These terms can be directly implemented in a class. The
following lines show how this works.

newton � Class�"Newton", Class�"Element"�,
�� ��� parameter section ��� ��
�description � "Classe Newton defining Newton's equation",

�Mass � 10, Description � "Mass of the body", Dimension �� kg	,
�Force � 0, Description � "Force acting on the body",

Dimension �� kg m 
 s2�,
�dependentVariable � x, Description �

"dependent variable used in Newton's equation", Dimension �� m	,
�independentVariable � t, Description �

"independent variable used in Newton's equation", Dimension �� s	�,
�� ��� method section ��� ��
�
�equationOfMotion�� :� Block��	,

Mass �independentVariable,independentVariabledependentVariable�
independentVariable� �� Force�,

Description � "equation of motion"	,
������ Coordinates ��� ��
getVariables�� :� ��dependentVariable	, independentVariable	,
Description � "get dependent and independent variables"	

	 �
�Class Newton�

The class  Newton allows to define the parameters mass m,  force F,  the dependent and independent
variable x and t, respectively. The method used is the equation of motion defined in (2.13). Choosing
the parameters of  the class in  different  ways we are able to generate different  types of  objects.  The
different  objects  represent  different  models  and  thus  we  can  generate  a  large  variety  of  equations.
The  objects  are  generated  by  using  the  functionality  of  Elements  which  is  contained  in  an  object
generator  �  and  represented  by  the  function  new[].  These  functions  allow  us  to  define  objects  and
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assign  them to  variables.  The  following line  is  an  example  for  this  procedure  using  the  predefined
values for the parameters.

newton001 � newton�new��
�Object of Newton�

In  Elements  there  are  functions  available  which  allow us  to  derive  the  properties  of  an  object.  The
following line demonstrates this

GetProperties�newton001�
��dependentVariable, x�,
�description, Classe Newton defining Newton's equation�,
�Force, 0�, �independentVariable, t�, �Mass, 10��

Another function of Elements is SetProperties allowing us to change or set properties of an object

SetProperties�newton001, �Mass �� 100	�
To check the new values of the object we use again GetProperties

GetProperties�newton001�
��dependentVariable, x�,
�description, Classe Newton defining Newton's equation�,
�Force, 0�, �independentVariable, t�, �Mass, 100��

The attributes attached to the properties can be derived by using the function GetAttributes[]

GetAttributes�newton001, Force�
�Description � Force of the body, Dimension �

kg m

s2
�

Attributes of the methods are derivable the same way, demonstrated in the next line

GetAttributes�newton001, equationOfMotion�
�Description � equation of motion�

The methods are used by using the object and the function defined in the method's section combined
with the object operator �. The following line shows the derivation of the equation of motion 

newton001�equationOfMotion��
100 x���t� � 0

Having the class Newton available we are now able to define different models by changing the proper-
ties of an object. Let us assume that a particle encounters a periodic external force with amplitude f0
and driving frequency 	. So we define a new object incorporating these properties of the force

newton002 � newton�new��Mass �� m, Force �� f0 Sin�� t�	�
�Object of Newton�
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A second model uses a harmonic force due to a spring and in addition instead of the sine function a
cosine  function  to  represent  the  external  force  with  amplitude  A0  and  driving  frequency  	.  The
external force is here given by  A0 cos�	 t�

newton003 � newton�new�
�unabhaengigeVariable �� s, Mass �� 20, Force �� �k x�s� 	 A0 Cos�� s�	�

�Object of Newton�

The two different equations of motion are now available by 

newton002�equationOfMotion��
m x���t� � f0 Sin�t ��

and

newton003�equationOfMotion��
20 x���t� � A0 Cos�s �� � k x�s�

The use of classes and objects allows us to derive a huge variety of models by changing the proper-
ties  of  an  object.  This  variation  is  not  possible  by using  standard  programming  approaches  like  in
procedural  programs.  The derivation  of  equations  is  one  of  the  important  steps  in  modelling a  sys-
tem.  Also  important  is  the  last  step  of  a  simulation  process  which  is  related  to  the  solution  of  the
equations.
To get the methods of a class Elements provides another function which allows to identify the meth-
ods in a class. This function is GetMethodsOfClass[className]. The following line demonstrates the
application of this function.

GetMethodsOfClass�newton�
�equationOfMotion, getVariables�

Analogously, the properties of a class can be identified by using the function Properties[className].
For our example this is done by

Properties�newton�
�dependentVariable, description, Force, independentVariable, Mass�

The  discussed  example  demonstrates  that  an  object  oriented  approach  to  formulate  a  model  is  a
natural approach and allows to setup different models by using a single class.�

2.2.5 Tests and Exercises
The following two subsections  serve  to  test  your  understanding of  the  last  section.  Work  first  on  the
test examples and then try to solve the exercises.

2.2.5.1 Test Problems
T1. What is a model? Give examples.
T2. What is a class? Give examples.
T3. How are classes and models related? 
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What is an object oriented representation? Give examples.

2.2.5.2 Exercises
E1. Set up a model for a ball thrown in a base ball game.
E2. Define a class structure for a falling ball incorporating air friction.
E3. Implement in Mathematica a model for a falling particle with friction.

2.3 Car on a Bumpy Road
The problem considered in this section is a practical  application originating from the early phase of a
car design process. Engineers in the automotive business have to know in advance how a new car will
react  under  certain  environmental  conditions.  In  the  sequel,  we  discuss  a  procedure  for  building  a
model that  provides basic information on the behavior of  a car at  the very beginning of its  design. In
this early stage of the process, very little information on the new car is available and thus it is sufficient
to reduce the model to the most essential properties of the car.  These properties can include the mass
distribution  on a  chassis,  that  is,  the location  of  the  engine and  other  heavy components  like the  fuel
tank,  batteries,  gear  box,  and  so  on.  Another  essential  feature  in  this  early  design  phase  is  the
undercarriage.  In  our  model,  these  components  are  combined  into  a  multibody system  interacting  by
forces with each other and with the environment. Knowing the preliminary behavior of the new car, the
next  step  is  to  improve  the  model  over  several  iterations  to  incorporate  more  details  about  the
interacting components. Here, we restrict our considerations to the very beginning of the design process
and  demonstrate  how  an  object-oriented  approach  can  be  used  to  model  different  components  in  a
transparent way. 

2.3.1 Modelling Steps
2.3.1.1 Hardware
Figure 2.9 shows the simplified one-dimensional mechanical model of a car moving on a bumpy road.
In principle, the car consists of three main components: the two axles and the car body. We assume that
the two axles  are coupled to the chassis by a dash pot and a spring. In addition to  the translation, we
allow a  narrow rotation  of  the  body around the  center  of  gravity.  The wheels  are  in  contact  with  the
road  (this  interaction  is  modeled  by introducing springs  and dampers  representing the  two tires).  The
symbols shown in Figure 2.9 have the following meaning: ki, di  with �i � 1� 4�, mk  with �k � 1, 2, 3�,
a,  and  b  are  the  physical  and  geometric  parameters  of  the  system.  The  ki  and  di  denote  force  and
damping constants, mk  are the wheel and chassis masses, and a and b determine the center of the mass
of the chassis. JC2 � I  is the inertia moment of the chassis. The dynamical coordinates denoted by z1,
z2, z3, and 
 describe the vertical and angular motion of the car. The acting external forces on the car
are due to bumps in the road and gravity. The whole system can be described by Newton’s equations.
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Figure 2.9. Simplified model for a car on a bumpy road. 

2.3.1.2 Formulation
These equations of motion (Newton's equations) are given for the coordinates by

(2.14)m1 z1
� � �F1 �F3

(2.15)m2 z2
� � �F2 �F4

(2.16)m3 z3
� � F3

(2.17)I 
� � b F3 � a F4,

where  Fi  are  the  acting  forces.  One  of  the  main  problems  in  car  design  is  to  estimate  how  the  total
system  will  react  under  different  forces,  different  damping  parameters,  different  velocities,  different
environment  conditions,  and  so  on.  These  questions  are  partially  answered  in  the  following
subsections.  The complete examination of all  these inquiries would exceed the space available in this
section. Hence, we will restrict our consideration to a few examples. 
To attack the physical and mathematical aspects we first identify classes that would capture the essence
of this problem. If we look at the equations of motion (2.14-17) and at Figure 2.9, it  seems natural to
divide the car into three main classes: the body, the axles, and the environment.

2.3.2 Class Definitions
The problem can be split  into  the following classes  (see Figure 2.10):  the general  setup class,  the car
body, the axles, the car itself, and some tools needed to carry out the simulation. The simulation class
that provides graphical output refers to other classes that serve as a basis for the computation required
to produce the output. The definition of classes here is mainly guided by the hardware. 
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Figure 2.10. Connections of classes and objects for the simple car model.

In  Figure  2.10, the  static  class  structure  of  the  car  model  is  shown.  Basic  components  are springs
dampers, gravitation, axles, and the road. With these components a higher class for a car is created. The

IV - Chapter 2: Simulation Methods �23



car  class  is  used  in  the  simulation  and  animation  class.  The  arrows  show  how  the  classes  are
interconnected and where objects  of classes  are involved. Objects  are the interfaces  of  the model  and
allow a modular composition of the simulation.
The car model can be split into the following classes which are discussed in the following subsections:
the  general  setup  class,  the  car  body,  the  axles,  the  car  itself,  and some tools  needed to  carry out  the
simulation.  The  simulation  class  provides  graphical  output.  This  class  refers  to  all  other  classes  that
serve as a basis for the computation required to produce the output.

2.3.2.1 Class for Setup
The general setup is concerned with geometric properties and the influence of the environment, such as
the external force given here by four bumps in the road.

Setup � Class�"Setup", Class�"Element"�,
�� ��� Parameters ��� ��
��a � 1.2, Description �� "distance front axle", Dimension �� m	,
�b � 1.2, Description �� "distance rear axle", Dimension �� m	,
�v � 5, Description �� "velocity of the car", Dimension �� m 
 s	,
�stepWidth � 0.1`, Description �� "step width", Dimension �� m	,
�stepHeight � 0.07, Description �� "step height", Dimension �� m		,
�� ��� Methods ��� ��
�extForce�t_� :�

Fold�Plus, 0, Table�
�Tanh�100 � v � �t � n stepWidth�� � Tanh�100 � �v � �t � n stepWidth� �

stepWidth��� � stepHeight 
 2, �n, 1, 4	���
�
�Class Setup�

2.3.2.2 Class Body
The  class  Body  consists  solely  of  geometric  and  physical  parameters  of  the  car  body.  This  class
includes also the initial conditions for displacement, angle, and velocity.
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Body � Class�"Body", Setup,

�� ��� Parameters ��� ��
�description � "Body",

�m � 1200, Description �� "mass", Dimension �� kg	,
�z0 � 0, Description �� "initial displacement", Dimension �� m	,
�zp0 � 0, Description �� "initial velocity", Dimension �� m 
 s	,
�h � 0.75, Description �� "geometric quantity", Dimension �� m	,
�
0 � 0, Description �� "initial value for 
", Dimension �� rad	,
�
p0 � 0, Description �� "initial value for 
 prime",

Dimension �� rad 
 s	,
�zFunName � z, Description �� "name of the z function",

Dimension �� ""	,
�betaFunName � 
 , Description �� "name of the 
 function",

Dimension �� ""		,
�� ��� Methods ��� ��
�	�
�Class Body�

2.3.2.3 Classes for Axles
The common properties  of  the  two axles  are  collected  in  the  class  CarAxle.  This  class  contains  only
parameters - force and damping constants together with initial conditions for the equations of motion.

CarAxle � Class�"CarAxle", Setup,

�� ��� Parameters ��� ��
�description � "Axle",

�m � 42.5, Description �� "mass of the axle"	,
�k1 � 150000, Description �� "wheel�body force constant"	,
�d1 � 700, Description �� "wheel�body damping constant"	,
�k2 � 4000, Description �� "wheel�road force constant"	,
�d2 � 1800, Description �� "wheel�road damping constant"	,
�z0 � 0, Description �� "initial displacement"	,
�zp0 � 0, Description �� "initial velocity"	,
�zFunName � z, Description �� "name of the function z"		,
�� ��� Methods ��� ��
�	�
�Class CarAxle�

In  the  next  step  we  define  classes  for  the  front  and  the  rear  axle.  The  front  axle  consist  solely  of  a
method generating the equation of motion for the axle by considering the acting forces.
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FrontAxle � Class�"FrontAxle", CarAxle,

�� ��� Parameters ��� ��
�	,
�� ��� Methods ��� ��
�getEquations�body_ 
; ObjectOfClassQ�body, Body�� :�

Block��f1 � k1 � �zFunName�t� � extForce�t�� 	

d1 � �zFunName'�t� � D�extForce�t�, t��,
f3 � k2 � ��body�zFunName��t� � b � �body�betaFunName��t�

� zFunName�t�� 	 d2 � �D��body�zFunName��t� �

b � �body�betaFunName��t�, t� � zFunName'�t��	,
�m � zFunName''�t� 	 ��f1 	 f3� � �1 �� 0,

zFunName�0� �� z0, zFunName'�0� �� zp0	�
�
�
�Class FrontAxle�

The  rear  axle  is  generated  in  the  same  way  by  taking  the  relations  specific  for  this  component  into
account.

RearAxle � Class�"RearAxle", CarAxle,

�� ��� Parameters ��� ��
�	,
�� ��� Methods ��� ��
�getEquations�body_ 
; ObjectOfClassQ�body, Body�� :�

Block��f2 � k1 � �zFunName�t� � extForce�t � �a 	 b� 
 v�� 	

d1 � ��body�zFunName�'�t� � D�extForce�t � �a 	 b� 
 v�, t��,
f4 � k2 � ��body�zFunName��t� 	 a � �body�betaFunName��t�

� zFunName�t�� 	 d2 � �D��body�zFunName��t� 	

a � �body�betaFunName��t�, t� � zFunName'�t��	,
�m � zFunName''�t� 	 ��f2 	 f4� � �1 �� 0,

zFunName�0� �� z0, zFunName'�0� �� zp0	�
�
�
�Class RearAxle�

2.3.2.4 Class Car
Finally, after setting up classes for the body and axles, we define a class to describe the car. This class
incorporates  parameters  as  well  as  methods  to  combine  information  from  different  components  and
deliver the equations of motion.
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Car � Class�"Car", Setup,

�� ��� Parameters ��� ��
�description � "Car",

�body � Null, Description �� "body"	,
�frontAxle � Null, Description �� "front axle"	,
�rearAxle � Null, Description �� "rear axle"		,
�� ��� Methods ��� ��

�Ic�a0_, b0_, h0_, m03_� :� Block��	, m03 
 12 � ��a0 	 b0�^2 	 h0^2��,
getEquations�� :� Block�
�f3 � frontAxle�k2 �

��body�zFunName��t� �

b � �body�betaFunName��t� � �frontAxle�zFunName��t�� 	

frontAxle�d2 �

�D��body�zFunName��t� � b � �body�betaFunName��t�, t� �

�frontAxle�zFunName�'�t��,
f4 � rearAxle�k2 �

��body�zFunName��t� 	

a � �body�betaFunName��t� � �rearAxle�zFunName��t�� 	

rearAxle�d2 �

�D��body�zFunName��t� 	 a � �body�betaFunName��t�, t� �

�rearAxle�zFunName�'�t��	,
Union��body�m � �body�zFunName�''�t� 	 2 f3 �� 0,

�body�zFunName��0� �� body�z0,

�body�zFunName�'�0� �� body�zp0, Ic�a, b, body�h, body�m� �
�body�betaFunName�''�t� 	 �b � f3 � a � f4� � �1 �� 0,

�body�betaFunName��0� �� body�
0, �body�betaFunName�'�0� ��

body�
p0	,
frontAxle�getEquations�body�,
rearAxle�getEquations�body��
�,
getVariables�� :� �frontAxle�zFunName, rearAxle�zFunName,

body�zFunName, body�betaFunName	�
�
�Class Car�

2.3.2.5 Class Simulation
Having the  classes  for  all  physical  components  available,  we need  a  tool  to  carry out  the  simulation.
The  following  classes  provide  an  efficient  simulation  of  the  model  and  generate  a  graphical
representation of the results.
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MakeSimulation � Class�"MakeSimulation", Class�"Element"�,
�� ��� Parameters ��� ��
�description � "Simulation of the motion",

�car � Null, Description �� "Car"	,
�maxSteps � 100 000,

Description �� "Maximum number of steps in NDSolve"		,
�� ��� Methods ��� ��
�simulate�tstart_, tend_� :�

Block��nsol � getNSolution�tstart, tend�	,
$TextStyle � �FontFamily �� "Arial", FontSize �� 12	;
MapThread�Plot�Evaluate���car�extForce�t�	, �1 
. nsol	�,

�t, tstart, tend	, PlotRange �� All,

PlotStyle �� �RGBColor�0.25098, 0, 0.25098�,
�RGBColor�0.9, 0, 0�, AbsoluteThickness�3�		,

AxesLabel �� �"t �s�", " "	, PlotLabel �� �2,

GridLines �� Automatic, Frame �� True� &,

�Map�Apply��, �t	� &, car�getVariables���, �"Front Axle",

"Rear Axle", "Body Movement", "Rotation Angle"		��,

getNSolution�tstart_, tend_� :�

NDSolve�car�getEquations��,
car�getVariables��, �t, tstart, tend	,

MaxSteps �� maxSteps��
�
�Class MakeSimulation�

If we wish to see the motion of the car, it is convenient to declare a special class for animations.

MakeAnimation � Class�"MakeAnimation", Class�"Element"�,
�� ��� Parameters ��� ��
�description � "Animate the motion of the car"

�path � "C:\\Documents and Settings\\Gerd.Baumann\\My

Documents\\Mma\\Books\\Engineering\\Vol_IV_Numerics\\

Simulation_Methods\\Generic",

Description �� "Path of the car model"��,
�� ��� Methods ��� ��
�animate�sim1_, tstart_, tend_, �t_� :�

Block��names, l1, tire1, tire2, window1, window2, window3, body,

sol � sim1�getNSolution�tstart, tend�	,
SetDirectory�path�;
names � FileNames�"�.dat"�;
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l1 � Map�ReadList��, Number, RecordLists �� True,

RecordSeparators ��

�If�StringMatchQ�$OperatingSystem, "Windows�"�,
"\n", "\r"�	� &, names�;

tire1 � �GrayLevel�0.752941�, Polygon�l1��1�� 
.
�x_, y_� �� �x, y 	 z1�t�	��;

tire2 � �GrayLevel�0.752941�, Polygon�l1��2�� 
.
�x_, y_� �� �x, y 	 z2�t�	��;

window1 � �GrayLevel�0.752941�, Polygon�l1��3�� 
.
�x_, y_� �� �x Cos��
�t�� 	 y Sin��
�t��,

y Cos��
�t�� � x Sin��
�t�� 	 z3�t�	��;
window2 � �GrayLevel�0.752941�, Polygon�l1��4�� 
.

�x_, y_� �� �x Cos��
�t�� 	 y Sin��
�t��,
y Cos��
�t�� � x Sin��
�t�� 	 z3�t�	��;

window3 � �GrayLevel�0.752941�, Polygon�l1��5�� 
.
�x_, y_� �� �x Cos��
�t�� 	 y Sin��
�t��,

y Cos��
�t�� � x Sin��
�t�� 	 z3�t�	��;
body � �RGBColor�0, 0, 0.25098�, Polygon�l1��6�� 
.

�x_, y_� �� �x Cos��
�t�� 	 y Sin��
�t��,
y Cos��
�t�� � x Sin��
�t�� 	 z3�t�	��;

ListAnimate�Table�Show�Graphics��body, tire1, tire2,

window1, window2, window3	 
. sol�,
AspectRatio �� Automatic, Axes �� False, Frame �� True,

PlotRange �� ���.1, 4.4	, �0, 1.4		,
FrameTicks �� None�, �t, tstart, tend, �t	��

��
�
�Class MakeAnimation�

2.3.3 Objects
Up to this point, nothing more than a framework was defined in which the computation can be carried
out. The given classes represent essentially only templates for creating the calculation objects. In order
to setup the simulation,  we have to generate objects and specify their properties.  The car is  generated
by a modular process incorporating the distinguished objects. At this point, it is apparent that we have a
great  advantage  in  designing  a  specific  car  compared  to  traditional  approaches  in  simulation.  For
example,  we  can  define  different  objects  for  axles  and  use  them  as  in  different  simulations  as
parameters of the underlying model. Components (objects) of the same type can be exchanged without
causing any harm to the system. In the sequel, we demonstrate how this process is carried out.
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2.3.3.1 Body Object
First, we create the body by applying Elements  method new[]  to the class Body.  All properties except
zFunName and betaFunName will have their default valued specified in the class declaration.

b � Body�new��zFunName � z3, betaFunName � 
	�
�Object of Body�

The actual properties of the body can be checked by

GetPropertiesForm�b�
Property Value

description Body

a 1.2

b 1.2

betaFunName 	

h 0.75

m 1200

stepHeight 0.07

stepWidth 0.1

v 5

z0 0

zFunName z3

zp0 0

	0 0

	p0 0

2.3.3.2 Axle Object
Next,  objects  for  the axles  are created.  The front axle is  defined with a  mass of  45.5 kg,  the function
representing the displacement of the center of the wheel attached to this axle is denoted by z1.

fa � FrontAxle�new��m �� 45.5, zFunName � z1	�
�Object of FrontAxle�

The properties of the axle are recalled by:
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GetPropertiesForm�fa�
Property Value

description Axle

a 1.2

b 1.2

d1 700

d2 1800

k1 150000

k2 4000

m 45.5

stepHeight 0.07

stepWidth 0.1

v 5

z0 0

zFunName z1

zp0 0

Since  no  values  for  the  damping  and  the  force  constant  were  given  in  the  statement  above  to  new[],
these properties are initialized with values specified in the class declaration itself. 
A second version of the front axle with a more stiffer damping is generated in the following line. We
will  use  this  object  later  in  our  simulations  to  compare  the  influence  of  choosing  stiffer  springs  in  a
design. Here, k1 and k2 are set to the specific values.

fas � FrontAxle�new��m � 45.5,

d1 � 5000, d2 � 5000,

k1 � 150000, k2 � 150 000,

zFunName � z1	�
�Object of FrontAxle�

For the rear axle we just use the default settings. The coordinate of elongation is denoted by z2.

ra � RearAxle�new��zFunName � z2	�
�Object of RearAxle�

A check of parameters shows the values.
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GetPropertiesForm�ra�
Property Value

description Axle

a 1.2

b 1.2

d1 700

d2 1800

k1 150000

k2 4000

m 42.5

stepHeight 0.07

stepWidth 0.1

v 5

z0 0

zFunName z2

zp0 0

2.3.3.3 Car Object
Having  all  components  needed available,  it  is  easy  to  generate  the  car  by  incorporating  the  defined
objects into a common model. The car object is defined by

c � Car�new��frontAxle � fas, rearAxle � ra, body � b	�;
It consist of the front axle, the rear axle, and the body. We note that an object-oriented approach allows
an easy change of the behavior of the model by just changing different components or their properties,
respectively.  Hence,  if  an  engineer  would  have  access  to  a  collection  of  different  bodies,  axles  and
springs,  he would be  able to  create and  test  many different  car  designs  without  the  need to  adapt  the
model.

2.3.3.4 Simulation Object
A simulation object is created from the class MakeSimulation. The simulation can be performed with
any object of the class Car.

sim � MakeSimulation�new��car � c	�
�Object of MakeSimulation�

Finally,  the  actual  simulation  is  initiated  by  calling  the  simulate[]  method  of  the  class
MakeSimulation.  The  input  for  this  function  are  just  the  starting  point  and  the  end  point  of  the
simulation interval. The result are four plots for coordinates of axles, the body, and the rotation angle of
the body. All quantities are plotted depending on the simulation time. 
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GraphicsGrid�Partition�sim�simulate�0, 2�, 2��
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Figure 2.11. Simulation results for the different components, front and rear axle, body motion, and rotation about the center 
of mass.

Now the hard work for an engineer starts.  If  he is  interested in an optimization of the elongations,  he
must  change  the  properties  of  the  car  in  the  simulation.  How  to  achieve  the  best  result  and  how  to
select the best strategy depends on the experience of the individual engineer. However, within an object
oriented  simulation  environment  he  has  the  flexibility  to  incorporate  his  thoughts  in  a  quick  and
transparent  way.  For  example,  he  can  change  some  parameters  of  the  front  axle  to  achieve  a  better
performance of the car...

sim�car�frontAxle�d1 � 700;

sim�car�frontAxle�k1 � 100 000;
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Figure 2.12. Simulation results for changed parameters of the front axle.

...or he can replace the whole front axle by another one with a smoother damper.
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sim�car�frontAxle � fa

�Object of FrontAxle�
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Figure 2.13. Simulation results for the model with a replaced front axle with different properties.

...  and  so  on.  However,  a  clever  engineer  will  resort  to  some  optimization  strategies  which  can  be
carried out by an additional class in the development environment (not shown here).
Finally, if the results are to be presented at meetings and workshops, the behavior of the optimized car
can  be  shown  as  an  animation  using  different  simulation  models  or  strategies.  The  generation  of  an
animation object and the animation itself is started with

an � MakeAnimation�new��;
anim � an�animate�sim, 0, 2, 0.05�

Figure 2.14. Animation of the car motion during a ride over four bumpers.

The flip chart movie is suppressed in the printed version. However, the notebook version of this article
shows you the movement of the car body and the wheels.
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This  example  demonstrated  that  the  object-oriented  approach  to  modeling  is  very  efficient  and
transparent to the user. It divides the process of modeling into two phases. In the first phase, the model
and its components are implemented. In the optimization phase, the parameters of the model satisfying
certain criteria are found. Both phases benefit from the availability of predefined components (objects).
Using  the  classical  approach,  minor  structural  changes  (e.g.,  using  a  different  axle)  require
modifications  by  the  model  builder.  This,  in  turn,  may  have  made  a  subsequent  verification  step
necessary.  In  contrast,  the  object-oriented  approach  allows  this  to  be  done much  more  easily.  A  new
component  (e.g.,  an  axle)  can  be  added  or  exchanged  without  affecting  the  soundness  of  the  model.
This fact is of crucial importance in the industrial environment where models contain a huge number of
parameters. It is necessary to have a clear and well-founded procedure to handle them. If the process to
manage and work with models is clearly specified, results can be obtained more quickly, and they are
more predictable, and comprehensible.
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